albertus-sussex's picture
Add new SentenceTransformer model
5c76da2 verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:12577
  - loss:AttributeTripletLoss
base_model: Alibaba-NLP/gte-base-en-v1.5
widget:
  - source_sentence: '9781856696616'
    sentences:
      - '9780310278832'
      - author
      - Karen Rose
      - isbn_13
  - source_sentence: Gilbert Guide
    sentences:
      - publication_date
      - '2010'
      - author
      - Bill Bryson
  - source_sentence: September 22, 2009
    sentences:
      - title
      - '2010'
      - Spirit and Spirituality
      - publication_date
  - source_sentence: Andrea Molinari
    sentences:
      - author
      - Janet Evanovich
      - '2005'
      - publication_date
  - source_sentence: '9781416579021'
    sentences:
      - publication_date
      - '1999'
      - '9780802471635'
      - isbn_13
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy
  - silhouette_cosine
  - silhouette_euclidean
model-index:
  - name: SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5
    results:
      - task:
          type: triplet
          name: Triplet
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: cosine_accuracy
            value: 1
            name: Cosine Accuracy
          - type: cosine_accuracy
            value: 1
            name: Cosine Accuracy
      - task:
          type: silhouette
          name: Silhouette
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: silhouette_cosine
            value: 0.9716310501098633
            name: Silhouette Cosine
          - type: silhouette_euclidean
            value: 0.8800336718559265
            name: Silhouette Euclidean
          - type: silhouette_cosine
            value: 0.972745418548584
            name: Silhouette Cosine
          - type: silhouette_euclidean
            value: 0.882105827331543
            name: Silhouette Euclidean

SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5

This is a sentence-transformers model finetuned from Alibaba-NLP/gte-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Alibaba-NLP/gte-base-en-v1.5
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("albertus-sussex/veriscrape-book-test-sbert-bs128_lr0.0002_ep5_euclidean_snTrue_spFalse_hn3_spl100")
# Run inference
sentences = [
    '9781416579021',
    '9780802471635',
    '1999',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Triplet

Metric Value
cosine_accuracy 1.0

Silhouette

  • Evaluated with veriscrape.training.SilhouetteEvaluator
Metric Value
silhouette_cosine 0.9716
silhouette_euclidean 0.88

Triplet

Metric Value
cosine_accuracy 1.0

Silhouette

  • Evaluated with veriscrape.training.SilhouetteEvaluator
Metric Value
silhouette_cosine 0.9727
silhouette_euclidean 0.8821

Training Details

Training Dataset

Unnamed Dataset

  • Size: 12,577 training samples
  • Columns: anchor, positive, negative, pos_attr_name, and neg_attr_name
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative pos_attr_name neg_attr_name
    type string string string string string
    details
    • min: 3 tokens
    • mean: 7.21 tokens
    • max: 29 tokens
    • min: 3 tokens
    • mean: 7.12 tokens
    • max: 25 tokens
    • min: 3 tokens
    • mean: 6.99 tokens
    • max: 23 tokens
    • min: 3 tokens
    • mean: 3.75 tokens
    • max: 5 tokens
    • min: 3 tokens
    • mean: 3.81 tokens
    • max: 5 tokens
  • Samples:
    anchor positive negative pos_attr_name neg_attr_name
    Knopf Doubleday Publishing Group Hyperion Books 9780688144050 publisher isbn_13
    Jane Austen Gillian Gilert : 9780061288890 author isbn_13
    Brett Harris Paul Helm 9780756657703 author isbn_13
  • Loss: veriscrape.training.AttributeTripletLoss with these parameters:
    {
        "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
        "triplet_margin": 5
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 1,398 evaluation samples
  • Columns: anchor, positive, negative, pos_attr_name, and neg_attr_name
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative pos_attr_name neg_attr_name
    type string string string string string
    details
    • min: 3 tokens
    • mean: 7.19 tokens
    • max: 41 tokens
    • min: 3 tokens
    • mean: 7.21 tokens
    • max: 29 tokens
    • min: 3 tokens
    • mean: 6.9 tokens
    • max: 23 tokens
    • min: 3 tokens
    • mean: 3.77 tokens
    • max: 5 tokens
    • min: 3 tokens
    • mean: 3.84 tokens
    • max: 5 tokens
  • Samples:
    anchor positive negative pos_attr_name neg_attr_name
    My Changes The Photographer's Eye: Composition and Design for Better Digital Photos Visual title publisher
    Now, Discover Your Strengths The One Minute Father: Improve Every Moment You Spend with Your Child Three Rivers Pr title publisher
    9781597528283 9780395698655 10/01/1998 isbn_13 publication_date
  • Loss: veriscrape.training.AttributeTripletLoss with these parameters:
    {
        "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
        "triplet_margin": 5
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • learning_rate: 0.0002
  • num_train_epochs: 5
  • warmup_ratio: 0.1

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 0.0002
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss cosine_accuracy silhouette_cosine
-1 -1 - - 0.5086 0.1768
1.0 99 0.5802 0.0524 0.9964 0.8724
2.0 198 0.0406 0.0171 1.0 0.9308
3.0 297 0.0119 0.0 1.0 0.9653
4.0 396 0.0045 0.0208 0.9986 0.9647
5.0 495 0.0017 0.0 1.0 0.9716
-1 -1 - - 1.0 0.9727

Framework Versions

  • Python: 3.10.16
  • Sentence Transformers: 3.4.1
  • Transformers: 4.45.2
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.5.2
  • Datasets: 3.1.0
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

AttributeTripletLoss

@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification},
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}