SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5

This is a sentence-transformers model finetuned from Alibaba-NLP/gte-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Alibaba-NLP/gte-base-en-v1.5
  • Maximum Sequence Length: 64 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 64, 'do_lower_case': False}) with Transformer model: NewModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("albertus-sussex/veriscrape-sbert-auto-wo-ref-deepseek-chat-0324")
# Run inference
sentences = [
    '$27,174',
    'The data provided by Autodata is provided AS IS without warranty or guarantee of any kind, and Autodata disclaims all warranties or conditions of any kind, expressed or implied, with respect to such data, including the implied warranties of merchantable quality and fitness for a particular purpose.',
    '$39,890',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Triplet

Metric Value
cosine_accuracy 0.9837

Silhouette

  • Evaluated with veriscrape.training.SilhouetteEvaluator
Metric Value
silhouette_cosine 0.405
silhouette_euclidean 0.321

Triplet

Metric Value
cosine_accuracy 0.9793

Silhouette

  • Evaluated with veriscrape.training.SilhouetteEvaluator
Metric Value
silhouette_cosine 0.4049
silhouette_euclidean 0.3216

Training Details

Training Dataset

Unnamed Dataset

  • Size: 35,294 training samples
  • Columns: anchor, positive, negative, pos_attr_name, neg_attr_name, and website_id
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative pos_attr_name neg_attr_name website_id
    type string string string string string int
    details
    • min: 3 tokens
    • mean: 8.16 tokens
    • max: 64 tokens
    • min: 3 tokens
    • mean: 8.98 tokens
    • max: 64 tokens
    • min: 3 tokens
    • mean: 9.5 tokens
    • max: 64 tokens
    • min: 3 tokens
    • mean: 3.27 tokens
    • max: 5 tokens
    • min: 3 tokens
    • mean: 3.59 tokens
    • max: 5 tokens
    • 0: ~4.00%
    • 1: ~2.10%
    • 2: ~3.50%
    • 3: ~3.60%
    • 4: ~4.70%
    • 5: ~63.80%
    • 6: ~3.20%
    • 7: ~3.50%
    • 8: ~7.50%
    • 9: ~4.10%
  • Samples:
    anchor positive negative pos_attr_name neg_attr_name website_id
    $34,270 $22,240 Lexus GX 460 Base 4dr AWD price model 0
    FWD or AWD - GT-R engine model 5
    - $15,195 City:

    11




      Highway:

    17
    –

    18
    engine fuel_economy 5
  • Loss: TripletLoss with these parameters:
    {
        "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
        "triplet_margin": 5
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 3,922 evaluation samples
  • Columns: anchor, positive, negative, pos_attr_name, neg_attr_name, and website_id
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative pos_attr_name neg_attr_name website_id
    type string string string string string int
    details
    • min: 3 tokens
    • mean: 8.4 tokens
    • max: 64 tokens
    • min: 3 tokens
    • mean: 8.63 tokens
    • max: 64 tokens
    • min: 3 tokens
    • mean: 9.54 tokens
    • max: 64 tokens
    • min: 3 tokens
    • mean: 3.21 tokens
    • max: 5 tokens
    • min: 3 tokens
    • mean: 3.63 tokens
    • max: 5 tokens
    • 0: ~3.70%
    • 1: ~2.50%
    • 2: ~3.80%
    • 3: ~3.30%
    • 4: ~5.00%
    • 5: ~62.20%
    • 6: ~4.40%
    • 7: ~3.90%
    • 8: ~7.70%
    • 9: ~3.50%
  • Samples:
    anchor positive negative pos_attr_name neg_attr_name website_id
    $23,215 $95,465 $245,000 engine price 5
    Visit our partners: $32,000 – $38,000 engine price
    $44,605 $22,530 22 mpg city / 33 mpg hwy price fuel_economy 9
  • Loss: TripletLoss with these parameters:
    {
        "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
        "triplet_margin": 5
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • num_train_epochs: 5
  • warmup_ratio: 0.1

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss cosine_accuracy silhouette_cosine
-1 -1 - - 0.5342 0.1323
1.0 276 0.5187 0.2374 0.9829 0.3699
2.0 552 0.0959 0.1561 0.9880 0.3959
3.0 828 0.0714 0.1738 0.9878 0.4028
4.0 1104 0.0594 0.1711 0.9875 0.4159
5.0 1380 0.05 0.2089 0.9837 0.4050
-1 -1 - - 0.9793 0.4049

Framework Versions

  • Python: 3.10.16
  • Sentence Transformers: 4.1.0
  • Transformers: 4.45.2
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.6.0
  • Datasets: 3.1.0
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

TripletLoss

@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification},
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
Downloads last month
2
Safetensors
Model size
137M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for albertus-sussex/veriscrape-sbert-auto-wo-ref-deepseek-chat-0324

Finetuned
(824)
this model

Evaluation results