SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5
This is a sentence-transformers model finetuned from Alibaba-NLP/gte-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Alibaba-NLP/gte-base-en-v1.5
- Maximum Sequence Length: 64 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 64, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("albertus-sussex/veriscrape-sbert-auto-wo-ref-deepseek-chat-0324")
# Run inference
sentences = [
'$27,174',
'The data provided by Autodata is provided AS IS without warranty or guarantee of any kind, and Autodata disclaims all warranties or conditions of any kind, expressed or implied, with respect to such data, including the implied warranties of merchantable quality and fitness for a particular purpose.',
'$39,890',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9837 |
Silhouette
- Evaluated with
veriscrape.training.SilhouetteEvaluator
Metric | Value |
---|---|
silhouette_cosine | 0.405 |
silhouette_euclidean | 0.321 |
Triplet
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9793 |
Silhouette
- Evaluated with
veriscrape.training.SilhouetteEvaluator
Metric | Value |
---|---|
silhouette_cosine | 0.4049 |
silhouette_euclidean | 0.3216 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 35,294 training samples
- Columns:
anchor
,positive
,negative
,pos_attr_name
,neg_attr_name
, andwebsite_id
- Approximate statistics based on the first 1000 samples:
anchor positive negative pos_attr_name neg_attr_name website_id type string string string string string int details - min: 3 tokens
- mean: 8.16 tokens
- max: 64 tokens
- min: 3 tokens
- mean: 8.98 tokens
- max: 64 tokens
- min: 3 tokens
- mean: 9.5 tokens
- max: 64 tokens
- min: 3 tokens
- mean: 3.27 tokens
- max: 5 tokens
- min: 3 tokens
- mean: 3.59 tokens
- max: 5 tokens
- 0: ~4.00%
- 1: ~2.10%
- 2: ~3.50%
- 3: ~3.60%
- 4: ~4.70%
- 5: ~63.80%
- 6: ~3.20%
- 7: ~3.50%
- 8: ~7.50%
- 9: ~4.10%
- Samples:
anchor positive negative pos_attr_name neg_attr_name website_id $34,270
$22,240
Lexus GX 460 Base 4dr AWD
price
model
0
FWD or AWD
-
GT-R
engine
model
5
-
$15,195
City:
11
Highway:
17
–
18engine
fuel_economy
5
- Loss:
TripletLoss
with these parameters:{ "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 }
Evaluation Dataset
Unnamed Dataset
- Size: 3,922 evaluation samples
- Columns:
anchor
,positive
,negative
,pos_attr_name
,neg_attr_name
, andwebsite_id
- Approximate statistics based on the first 1000 samples:
anchor positive negative pos_attr_name neg_attr_name website_id type string string string string string int details - min: 3 tokens
- mean: 8.4 tokens
- max: 64 tokens
- min: 3 tokens
- mean: 8.63 tokens
- max: 64 tokens
- min: 3 tokens
- mean: 9.54 tokens
- max: 64 tokens
- min: 3 tokens
- mean: 3.21 tokens
- max: 5 tokens
- min: 3 tokens
- mean: 3.63 tokens
- max: 5 tokens
- 0: ~3.70%
- 1: ~2.50%
- 2: ~3.80%
- 3: ~3.30%
- 4: ~5.00%
- 5: ~62.20%
- 6: ~4.40%
- 7: ~3.90%
- 8: ~7.70%
- 9: ~3.50%
- Samples:
anchor positive negative pos_attr_name neg_attr_name website_id $23,215
$95,465
$245,000
engine
price
5
Visit our partners:
$32,000 – $38,000
engine
price
$44,605
$22,530
22 mpg city / 33 mpg hwy
price
fuel_economy
9
- Loss:
TripletLoss
with these parameters:{ "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 128per_device_eval_batch_size
: 128num_train_epochs
: 5warmup_ratio
: 0.1
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 128per_device_eval_batch_size
: 128per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | cosine_accuracy | silhouette_cosine |
---|---|---|---|---|---|
-1 | -1 | - | - | 0.5342 | 0.1323 |
1.0 | 276 | 0.5187 | 0.2374 | 0.9829 | 0.3699 |
2.0 | 552 | 0.0959 | 0.1561 | 0.9880 | 0.3959 |
3.0 | 828 | 0.0714 | 0.1738 | 0.9878 | 0.4028 |
4.0 | 1104 | 0.0594 | 0.1711 | 0.9875 | 0.4159 |
5.0 | 1380 | 0.05 | 0.2089 | 0.9837 | 0.4050 |
-1 | -1 | - | - | 0.9793 | 0.4049 |
Framework Versions
- Python: 3.10.16
- Sentence Transformers: 4.1.0
- Transformers: 4.45.2
- PyTorch: 2.5.1+cu124
- Accelerate: 1.6.0
- Datasets: 3.1.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
TripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for albertus-sussex/veriscrape-sbert-auto-wo-ref-deepseek-chat-0324
Base model
Alibaba-NLP/gte-base-en-v1.5Evaluation results
- Cosine Accuracy on Unknownself-reported0.984
- Cosine Accuracy on Unknownself-reported0.979
- Silhouette Cosine on Unknownself-reported0.405
- Silhouette Euclidean on Unknownself-reported0.321
- Silhouette Cosine on Unknownself-reported0.405
- Silhouette Euclidean on Unknownself-reported0.322