SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5

This is a sentence-transformers model finetuned from Alibaba-NLP/gte-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Alibaba-NLP/gte-base-en-v1.5
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the ๐Ÿค— Hub
model = SentenceTransformer("albertus-sussex/veriscrape-sbert-book-reference_4_to_verify_6-fold-1")
# Run inference
sentences = [
    'Publisher: Penguin Group (USA)',
    'Vintage (July 8, 2003)',
    'Peter Pan (Barnes & Noble Classics Series)',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Triplet

Metric Value
cosine_accuracy 0.9757

Silhouette

  • Evaluated with veriscrape.training.SilhouetteEvaluator
Metric Value
silhouette_cosine 0.7582
silhouette_euclidean 0.619

Triplet

Metric Value
cosine_accuracy 0.9797

Silhouette

  • Evaluated with veriscrape.training.SilhouetteEvaluator
Metric Value
silhouette_cosine 0.7518
silhouette_euclidean 0.6157

Training Details

Training Dataset

Unnamed Dataset

  • Size: 9,991 training samples
  • Columns: anchor, positive, negative, pos_attr_name, and neg_attr_name
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative pos_attr_name neg_attr_name
    type string string string string string
    details
    • min: 3 tokens
    • mean: 8.3 tokens
    • max: 32 tokens
    • min: 3 tokens
    • mean: 8.09 tokens
    • max: 30 tokens
    • min: 3 tokens
    • mean: 8.85 tokens
    • max: 30 tokens
    • min: 3 tokens
    • mean: 3.8 tokens
    • max: 5 tokens
    • min: 3 tokens
    • mean: 3.8 tokens
    • max: 5 tokens
  • Samples:
    anchor positive negative pos_attr_name neg_attr_name
    Pub. Date: June 2008 02/02/2010 Marthe (EDT) Lark Books (COR)/ Le Van publication_date author
    The House on Mango Street Invisible Man, The (scholastic Classics) Robert Louis Stevenson title author
    Crown of Destiny (World of Hetar Series #6) Walk The Line Houghton Mifflin Harcourt (September 25, 2006) title publication_date
  • Loss: veriscrape.training.AttributeTripletLoss with these parameters:
    {
        "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
        "triplet_margin": 5
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 1,111 evaluation samples
  • Columns: anchor, positive, negative, pos_attr_name, and neg_attr_name
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative pos_attr_name neg_attr_name
    type string string string string string
    details
    • min: 3 tokens
    • mean: 8.1 tokens
    • max: 32 tokens
    • min: 3 tokens
    • mean: 8.12 tokens
    • max: 29 tokens
    • min: 3 tokens
    • mean: 8.84 tokens
    • max: 30 tokens
    • min: 3 tokens
    • mean: 3.73 tokens
    • max: 5 tokens
    • min: 3 tokens
    • mean: 3.79 tokens
    • max: 5 tokens
  • Samples:
    anchor positive negative pos_attr_name neg_attr_name
    J.R.R. Tolkien M. Richard Maxfield Scholastic Paperbacks author publisher
    Water Wars Taking Sides: Clashing Views on Social Issues Pub. Date: November 2002 title publication_date
    9780440246077 978-0385342308 Publisher: Houghton Mifflin Harcourt isbn_13 publisher
  • Loss: veriscrape.training.AttributeTripletLoss with these parameters:
    {
        "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
        "triplet_margin": 5
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • num_train_epochs: 5
  • warmup_ratio: 0.1

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss cosine_accuracy silhouette_cosine
-1 -1 - - 0.3888 0.1151
1.0 79 1.3394 0.4390 0.9721 0.6995
2.0 158 0.1702 0.3588 0.9712 0.7063
3.0 237 0.1303 0.3267 0.9748 0.7423
4.0 316 0.101 0.2947 0.9757 0.7540
5.0 395 0.0852 0.2938 0.9757 0.7582
-1 -1 - - 0.9797 0.7518

Framework Versions

  • Python: 3.10.16
  • Sentence Transformers: 3.4.1
  • Transformers: 4.45.2
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.5.2
  • Datasets: 3.1.0
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

AttributeTripletLoss

@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification},
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
Downloads last month
17
Safetensors
Model size
137M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for albertus-sussex/veriscrape-sbert-book-reference_4_to_verify_6-fold-1

Finetuned
(824)
this model

Evaluation results