albertus-sussex's picture
Add new SentenceTransformer model
be41375 verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:17670
  - loss:AttributeTripletLoss
base_model: Alibaba-NLP/gte-base-en-v1.5
widget:
  - source_sentence: There Is Nothing Wrong With You
    sentences:
      - title
      - isbn_13
      - '9781591603580'
      - The Rough Guide to The Future
  - source_sentence: April 27, 2004
    sentences:
      - publisher
      - Berkley (April 4, 2006)
      - 'Pub. Date: May 2009'
      - publication_date
  - source_sentence: 'Death Note: v. 4'
    sentences:
      - publisher
      - title
      - The Black Library
      - The Magician
  - source_sentence: Rodale Books; Upd Exp edition (October 6, 2009)
    sentences:
      - FOCAL
      - publication_date
      - publisher
      - Sourcebooks, Inc. (October 2009)
  - source_sentence: May 01, 2005
    sentences:
      - publication_date
      - isbn_13
      - 04/02/2010
      - '9780515148152'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy
  - silhouette_cosine
  - silhouette_euclidean
model-index:
  - name: SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5
    results:
      - task:
          type: triplet
          name: Triplet
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: cosine_accuracy
            value: 0.9831975698471069
            name: Cosine Accuracy
          - type: cosine_accuracy
            value: 0.980293333530426
            name: Cosine Accuracy
      - task:
          type: silhouette
          name: Silhouette
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: silhouette_cosine
            value: 0.8029668927192688
            name: Silhouette Cosine
          - type: silhouette_euclidean
            value: 0.6663942933082581
            name: Silhouette Euclidean
          - type: silhouette_cosine
            value: 0.7841435670852661
            name: Silhouette Cosine
          - type: silhouette_euclidean
            value: 0.6505300998687744
            name: Silhouette Euclidean

SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5

This is a sentence-transformers model finetuned from Alibaba-NLP/gte-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Alibaba-NLP/gte-base-en-v1.5
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("albertus-sussex/veriscrape-sbert-book-reference_7_to_verify_3-fold-10")
# Run inference
sentences = [
    'May 01, 2005',
    '04/02/2010',
    '9780515148152',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Triplet

Metric Value
cosine_accuracy 0.9832

Silhouette

  • Evaluated with veriscrape.training.SilhouetteEvaluator
Metric Value
silhouette_cosine 0.803
silhouette_euclidean 0.6664

Triplet

Metric Value
cosine_accuracy 0.9803

Silhouette

  • Evaluated with veriscrape.training.SilhouetteEvaluator
Metric Value
silhouette_cosine 0.7841
silhouette_euclidean 0.6505

Training Details

Training Dataset

Unnamed Dataset

  • Size: 17,670 training samples
  • Columns: anchor, positive, negative, pos_attr_name, and neg_attr_name
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative pos_attr_name neg_attr_name
    type string string string string string
    details
    • min: 3 tokens
    • mean: 7.54 tokens
    • max: 29 tokens
    • min: 3 tokens
    • mean: 7.84 tokens
    • max: 30 tokens
    • min: 3 tokens
    • mean: 8.51 tokens
    • max: 30 tokens
    • min: 3 tokens
    • mean: 3.81 tokens
    • max: 5 tokens
    • min: 3 tokens
    • mean: 3.79 tokens
    • max: 5 tokens
  • Samples:
    anchor positive negative pos_attr_name neg_attr_name
    Barbara Willard J.R.R. Tolkien 1999 author publication_date
    Pub. Date: January 2005 Pub. Date: June 2010 9780515148152 publication_date isbn_13
    : Harlequin Books Little, Brown and Company; 1ST edition (June 29, 2009) The Untamed Bride (Black Cobra Series #1) publisher title
  • Loss: veriscrape.training.AttributeTripletLoss with these parameters:
    {
        "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
        "triplet_margin": 5
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 1,964 evaluation samples
  • Columns: anchor, positive, negative, pos_attr_name, and neg_attr_name
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative pos_attr_name neg_attr_name
    type string string string string string
    details
    • min: 3 tokens
    • mean: 7.57 tokens
    • max: 29 tokens
    • min: 3 tokens
    • mean: 7.8 tokens
    • max: 49 tokens
    • min: 3 tokens
    • mean: 8.27 tokens
    • max: 25 tokens
    • min: 3 tokens
    • mean: 3.84 tokens
    • max: 5 tokens
    • min: 3 tokens
    • mean: 3.79 tokens
    • max: 5 tokens
  • Samples:
    anchor positive negative pos_attr_name neg_attr_name
    Neil Gaiman Erin Hunter Alice's Adventures in Wonderland and Through the Looking Glass (Penguin Classics) author title
    : Avon Books Listening Library : 9780758211880 publisher isbn_13
    June 29, 2010 Pub. Date: May 2008 Simon & Schuster (June 29, 2004) publication_date publisher
  • Loss: veriscrape.training.AttributeTripletLoss with these parameters:
    {
        "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
        "triplet_margin": 5
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • num_train_epochs: 5
  • warmup_ratio: 0.1

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss cosine_accuracy silhouette_cosine
-1 -1 - - 0.4104 0.1222
1.0 139 1.045 0.2123 0.9832 0.7828
2.0 278 0.1225 0.2108 0.9832 0.8034
3.0 417 0.0833 0.2239 0.9812 0.7948
4.0 556 0.0611 0.1974 0.9857 0.8030
5.0 695 0.0476 0.2160 0.9832 0.8030
-1 -1 - - 0.9803 0.7841

Framework Versions

  • Python: 3.10.16
  • Sentence Transformers: 3.4.1
  • Transformers: 4.45.2
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.5.2
  • Datasets: 3.1.0
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

AttributeTripletLoss

@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification},
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}