albertus-sussex commited on
Commit
d41194b
·
verified ·
1 Parent(s): ccd7877

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,469 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:7134
8
+ - loss:TripletLoss
9
+ base_model: Alibaba-NLP/gte-base-en-v1.5
10
+ widget:
11
+ - source_sentence: NIKON - PHOTO
12
+ sentences:
13
+ - from
14
+ - manufacturer
15
+ - price
16
+ - Pentax Imaging
17
+ - source_sentence: $108.99
18
+ sentences:
19
+ - model
20
+ - $87.99
21
+ - price
22
+ - Coolpix S80 Compact Camera
23
+ - source_sentence: ': Casio'
24
+ sentences:
25
+ - Casio Exlim EX-Z1200 12MP Digtial Camera with 3x Anti Shake Optical Zoom
26
+ - model
27
+ - ': Fuji'
28
+ - manufacturer
29
+ - source_sentence: Panasonic Dmc-fx37s 10mp Digital Camera 5x Optical Zoom 2.5" Lcd
30
+ 25mm Leica Lens (dmcfx37s)
31
+ sentences:
32
+ - model
33
+ - $84.62
34
+ - price
35
+ - Ge C1033 Point & Shoot Digital Camera - 10.1 Megapixel - 2.40" Active Matrix Tft
36
+ Color Lcd - Black 3x Optical Zoom - 5.7x - Ge C1033-bk (c1033bk)
37
+ - source_sentence: $108.99
38
+ sentences:
39
+ - price
40
+ - Panasonic
41
+ - manufacturer
42
+ - $123.99
43
+ pipeline_tag: sentence-similarity
44
+ library_name: sentence-transformers
45
+ metrics:
46
+ - cosine_accuracy
47
+ - silhouette_cosine
48
+ - silhouette_euclidean
49
+ model-index:
50
+ - name: SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5
51
+ results:
52
+ - task:
53
+ type: triplet
54
+ name: Triplet
55
+ dataset:
56
+ name: Unknown
57
+ type: unknown
58
+ metrics:
59
+ - type: cosine_accuracy
60
+ value: 0.9974779486656189
61
+ name: Cosine Accuracy
62
+ - type: cosine_accuracy
63
+ value: 0.9988649487495422
64
+ name: Cosine Accuracy
65
+ - task:
66
+ type: silhouette
67
+ name: Silhouette
68
+ dataset:
69
+ name: Unknown
70
+ type: unknown
71
+ metrics:
72
+ - type: silhouette_cosine
73
+ value: 0.9446604251861572
74
+ name: Silhouette Cosine
75
+ - type: silhouette_euclidean
76
+ value: 0.838313102722168
77
+ name: Silhouette Euclidean
78
+ - type: silhouette_cosine
79
+ value: 0.9412728548049927
80
+ name: Silhouette Cosine
81
+ - type: silhouette_euclidean
82
+ value: 0.832588791847229
83
+ name: Silhouette Euclidean
84
+ ---
85
+
86
+ # SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5
87
+
88
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
89
+
90
+ ## Model Details
91
+
92
+ ### Model Description
93
+ - **Model Type:** Sentence Transformer
94
+ - **Base model:** [Alibaba-NLP/gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5) <!-- at revision a829fd0e060bb84554da0dfd354d0de0f7712b7f -->
95
+ - **Maximum Sequence Length:** 64 tokens
96
+ - **Output Dimensionality:** 768 dimensions
97
+ - **Similarity Function:** Cosine Similarity
98
+ <!-- - **Training Dataset:** Unknown -->
99
+ <!-- - **Language:** Unknown -->
100
+ <!-- - **License:** Unknown -->
101
+
102
+ ### Model Sources
103
+
104
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
105
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
106
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
107
+
108
+ ### Full Model Architecture
109
+
110
+ ```
111
+ SentenceTransformer(
112
+ (0): Transformer({'max_seq_length': 64, 'do_lower_case': False}) with Transformer model: NewModel
113
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
114
+ )
115
+ ```
116
+
117
+ ## Usage
118
+
119
+ ### Direct Usage (Sentence Transformers)
120
+
121
+ First install the Sentence Transformers library:
122
+
123
+ ```bash
124
+ pip install -U sentence-transformers
125
+ ```
126
+
127
+ Then you can load this model and run inference.
128
+ ```python
129
+ from sentence_transformers import SentenceTransformer
130
+
131
+ # Download from the 🤗 Hub
132
+ model = SentenceTransformer("albertus-sussex/veriscrape-sbert-camera-wo-ref-deepseek-chat-0324")
133
+ # Run inference
134
+ sentences = [
135
+ '$108.99',
136
+ '$123.99',
137
+ 'Panasonic',
138
+ ]
139
+ embeddings = model.encode(sentences)
140
+ print(embeddings.shape)
141
+ # [3, 768]
142
+
143
+ # Get the similarity scores for the embeddings
144
+ similarities = model.similarity(embeddings, embeddings)
145
+ print(similarities.shape)
146
+ # [3, 3]
147
+ ```
148
+
149
+ <!--
150
+ ### Direct Usage (Transformers)
151
+
152
+ <details><summary>Click to see the direct usage in Transformers</summary>
153
+
154
+ </details>
155
+ -->
156
+
157
+ <!--
158
+ ### Downstream Usage (Sentence Transformers)
159
+
160
+ You can finetune this model on your own dataset.
161
+
162
+ <details><summary>Click to expand</summary>
163
+
164
+ </details>
165
+ -->
166
+
167
+ <!--
168
+ ### Out-of-Scope Use
169
+
170
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
171
+ -->
172
+
173
+ ## Evaluation
174
+
175
+ ### Metrics
176
+
177
+ #### Triplet
178
+
179
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
180
+
181
+ | Metric | Value |
182
+ |:--------------------|:-----------|
183
+ | **cosine_accuracy** | **0.9975** |
184
+
185
+ #### Silhouette
186
+
187
+ * Evaluated with <code>veriscrape.training.SilhouetteEvaluator</code>
188
+
189
+ | Metric | Value |
190
+ |:----------------------|:-----------|
191
+ | **silhouette_cosine** | **0.9447** |
192
+ | silhouette_euclidean | 0.8383 |
193
+
194
+ #### Triplet
195
+
196
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
197
+
198
+ | Metric | Value |
199
+ |:--------------------|:-----------|
200
+ | **cosine_accuracy** | **0.9989** |
201
+
202
+ #### Silhouette
203
+
204
+ * Evaluated with <code>veriscrape.training.SilhouetteEvaluator</code>
205
+
206
+ | Metric | Value |
207
+ |:----------------------|:-----------|
208
+ | **silhouette_cosine** | **0.9413** |
209
+ | silhouette_euclidean | 0.8326 |
210
+
211
+ <!--
212
+ ## Bias, Risks and Limitations
213
+
214
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
215
+ -->
216
+
217
+ <!--
218
+ ### Recommendations
219
+
220
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
221
+ -->
222
+
223
+ ## Training Details
224
+
225
+ ### Training Dataset
226
+
227
+ #### Unnamed Dataset
228
+
229
+ * Size: 7,134 training samples
230
+ * Columns: <code>anchor</code>, <code>positive</code>, <code>negative</code>, <code>pos_attr_name</code>, <code>neg_attr_name</code>, and <code>website_id</code>
231
+ * Approximate statistics based on the first 1000 samples:
232
+ | | anchor | positive | negative | pos_attr_name | neg_attr_name | website_id |
233
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
234
+ | type | string | string | string | string | string | int |
235
+ | details | <ul><li>min: 3 tokens</li><li>mean: 12.12 tokens</li><li>max: 64 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 12.28 tokens</li><li>max: 64 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 11.66 tokens</li><li>max: 64 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.0 tokens</li><li>max: 3 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.0 tokens</li><li>max: 3 tokens</li></ul> | <ul><li>0: ~8.80%</li><li>1: ~9.40%</li><li>2: ~12.30%</li><li>3: ~9.60%</li><li>4: ~11.00%</li><li>5: ~6.50%</li><li>6: ~10.00%</li><li>7: ~11.00%</li><li>8: ~10.70%</li><li>9: ~10.70%</li></ul> |
236
+ * Samples:
237
+ | anchor | positive | negative | pos_attr_name | neg_attr_name | website_id |
238
+ |:--------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------|:--------------------------|:--------------------------|:---------------|
239
+ | <code>Sakar International, Inc</code> | <code>Fuji Photo Film Co. Ltd</code> | <code>Coolpix S1100pj Compact Camera</code> | <code>manufacturer</code> | <code>model</code> | <code>9</code> |
240
+ | <code>Olympus Stylus Tough 3000 Point & Shoot Digital Camera - 12 Megapixel - 2.70" Lcd - Pink 3.6x Optical Zoom - 5x (227625)</code> | <code>Canon Powershot A470 Digital Camera With Selphy Cp760 Compact Photo Printer - Blue - 7.1 Megapixel - 16:9 - 3.4x Optical Zoom - 4x Digital Zoom - 2.5" Active Matrix Tft Color Lcd - 32mb Secure Digital</code> | <code>Olympus Corporation</code> | <code>model</code> | <code>manufacturer</code> | <code>1</code> |
241
+ | <code>$204.95</code> | <code>$89.00</code> | <code>Fujifilm Z800EXR 12 MP Digital Point and Shoot Camera (Red) BigVALUEInc 8PC Saver Bundle!</code> | <code>price</code> | <code>model</code> | <code>0</code> |
242
+ * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
243
+ ```json
244
+ {
245
+ "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
246
+ "triplet_margin": 5
247
+ }
248
+ ```
249
+
250
+ ### Evaluation Dataset
251
+
252
+ #### Unnamed Dataset
253
+
254
+ * Size: 793 evaluation samples
255
+ * Columns: <code>anchor</code>, <code>positive</code>, <code>negative</code>, <code>pos_attr_name</code>, <code>neg_attr_name</code>, and <code>website_id</code>
256
+ * Approximate statistics based on the first 793 samples:
257
+ | | anchor | positive | negative | pos_attr_name | neg_attr_name | website_id |
258
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
259
+ | type | string | string | string | string | string | int |
260
+ | details | <ul><li>min: 3 tokens</li><li>mean: 12.85 tokens</li><li>max: 64 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 12.51 tokens</li><li>max: 64 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 11.06 tokens</li><li>max: 64 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.0 tokens</li><li>max: 3 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.0 tokens</li><li>max: 3 tokens</li></ul> | <ul><li>0: ~9.33%</li><li>1: ~10.72%</li><li>2: ~12.86%</li><li>3: ~10.84%</li><li>4: ~8.95%</li><li>5: ~5.93%</li><li>6: ~13.11%</li><li>7: ~10.34%</li><li>8: ~8.70%</li><li>9: ~9.21%</li></ul> |
261
+ * Samples:
262
+ | anchor | positive | negative | pos_attr_name | neg_attr_name | website_id |
263
+ |:----------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|:-------------------------------------------|:--------------------------|:--------------------------|:---------------|
264
+ | <code>VistaQuest Corporation</code> | <code>General Electric Company</code> | <code>EasyShare C142 Compact Camera</code> | <code>manufacturer</code> | <code>model</code> | <code>3</code> |
265
+ | <code>Kodak EasyShare Z1485 IS Point & Shoot Digital Camera - Pink</code> | <code>Nikon Coolpix S1100pj 14.1 Megapixel Compact Camera - 5 mm-25 mm - Violet</code> | <code>Kodak</code> | <code>model</code> | <code>manufacturer</code> | <code>2</code> |
266
+ | <code>Panasonic Lumix DMC-ZS7 Point & Shoot Digital Camera - 12.1 Megapixel - 3" Active Matrix TFT Color LCD - Black</code> | <code>Memorex Flash Micro Point & Shoot Digital Camera</code> | <code>Pentax Imaging</code> | <code>model</code> | <code>manufacturer</code> | <code>2</code> |
267
+ * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
268
+ ```json
269
+ {
270
+ "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
271
+ "triplet_margin": 5
272
+ }
273
+ ```
274
+
275
+ ### Training Hyperparameters
276
+ #### Non-Default Hyperparameters
277
+
278
+ - `eval_strategy`: epoch
279
+ - `per_device_train_batch_size`: 128
280
+ - `per_device_eval_batch_size`: 128
281
+ - `num_train_epochs`: 5
282
+ - `warmup_ratio`: 0.1
283
+
284
+ #### All Hyperparameters
285
+ <details><summary>Click to expand</summary>
286
+
287
+ - `overwrite_output_dir`: False
288
+ - `do_predict`: False
289
+ - `eval_strategy`: epoch
290
+ - `prediction_loss_only`: True
291
+ - `per_device_train_batch_size`: 128
292
+ - `per_device_eval_batch_size`: 128
293
+ - `per_gpu_train_batch_size`: None
294
+ - `per_gpu_eval_batch_size`: None
295
+ - `gradient_accumulation_steps`: 1
296
+ - `eval_accumulation_steps`: None
297
+ - `torch_empty_cache_steps`: None
298
+ - `learning_rate`: 5e-05
299
+ - `weight_decay`: 0.0
300
+ - `adam_beta1`: 0.9
301
+ - `adam_beta2`: 0.999
302
+ - `adam_epsilon`: 1e-08
303
+ - `max_grad_norm`: 1.0
304
+ - `num_train_epochs`: 5
305
+ - `max_steps`: -1
306
+ - `lr_scheduler_type`: linear
307
+ - `lr_scheduler_kwargs`: {}
308
+ - `warmup_ratio`: 0.1
309
+ - `warmup_steps`: 0
310
+ - `log_level`: passive
311
+ - `log_level_replica`: warning
312
+ - `log_on_each_node`: True
313
+ - `logging_nan_inf_filter`: True
314
+ - `save_safetensors`: True
315
+ - `save_on_each_node`: False
316
+ - `save_only_model`: False
317
+ - `restore_callback_states_from_checkpoint`: False
318
+ - `no_cuda`: False
319
+ - `use_cpu`: False
320
+ - `use_mps_device`: False
321
+ - `seed`: 42
322
+ - `data_seed`: None
323
+ - `jit_mode_eval`: False
324
+ - `use_ipex`: False
325
+ - `bf16`: False
326
+ - `fp16`: False
327
+ - `fp16_opt_level`: O1
328
+ - `half_precision_backend`: auto
329
+ - `bf16_full_eval`: False
330
+ - `fp16_full_eval`: False
331
+ - `tf32`: None
332
+ - `local_rank`: 0
333
+ - `ddp_backend`: None
334
+ - `tpu_num_cores`: None
335
+ - `tpu_metrics_debug`: False
336
+ - `debug`: []
337
+ - `dataloader_drop_last`: False
338
+ - `dataloader_num_workers`: 0
339
+ - `dataloader_prefetch_factor`: None
340
+ - `past_index`: -1
341
+ - `disable_tqdm`: False
342
+ - `remove_unused_columns`: True
343
+ - `label_names`: None
344
+ - `load_best_model_at_end`: False
345
+ - `ignore_data_skip`: False
346
+ - `fsdp`: []
347
+ - `fsdp_min_num_params`: 0
348
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
349
+ - `fsdp_transformer_layer_cls_to_wrap`: None
350
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
351
+ - `deepspeed`: None
352
+ - `label_smoothing_factor`: 0.0
353
+ - `optim`: adamw_torch
354
+ - `optim_args`: None
355
+ - `adafactor`: False
356
+ - `group_by_length`: False
357
+ - `length_column_name`: length
358
+ - `ddp_find_unused_parameters`: None
359
+ - `ddp_bucket_cap_mb`: None
360
+ - `ddp_broadcast_buffers`: False
361
+ - `dataloader_pin_memory`: True
362
+ - `dataloader_persistent_workers`: False
363
+ - `skip_memory_metrics`: True
364
+ - `use_legacy_prediction_loop`: False
365
+ - `push_to_hub`: False
366
+ - `resume_from_checkpoint`: None
367
+ - `hub_model_id`: None
368
+ - `hub_strategy`: every_save
369
+ - `hub_private_repo`: False
370
+ - `hub_always_push`: False
371
+ - `gradient_checkpointing`: False
372
+ - `gradient_checkpointing_kwargs`: None
373
+ - `include_inputs_for_metrics`: False
374
+ - `eval_do_concat_batches`: True
375
+ - `fp16_backend`: auto
376
+ - `push_to_hub_model_id`: None
377
+ - `push_to_hub_organization`: None
378
+ - `mp_parameters`:
379
+ - `auto_find_batch_size`: False
380
+ - `full_determinism`: False
381
+ - `torchdynamo`: None
382
+ - `ray_scope`: last
383
+ - `ddp_timeout`: 1800
384
+ - `torch_compile`: False
385
+ - `torch_compile_backend`: None
386
+ - `torch_compile_mode`: None
387
+ - `dispatch_batches`: None
388
+ - `split_batches`: None
389
+ - `include_tokens_per_second`: False
390
+ - `include_num_input_tokens_seen`: False
391
+ - `neftune_noise_alpha`: None
392
+ - `optim_target_modules`: None
393
+ - `batch_eval_metrics`: False
394
+ - `eval_on_start`: False
395
+ - `use_liger_kernel`: False
396
+ - `eval_use_gather_object`: False
397
+ - `prompts`: None
398
+ - `batch_sampler`: batch_sampler
399
+ - `multi_dataset_batch_sampler`: proportional
400
+
401
+ </details>
402
+
403
+ ### Training Logs
404
+ | Epoch | Step | Training Loss | Validation Loss | cosine_accuracy | silhouette_cosine |
405
+ |:-----:|:----:|:-------------:|:---------------:|:---------------:|:-----------------:|
406
+ | -1 | -1 | - | - | 0.9180 | 0.3826 |
407
+ | 1.0 | 56 | 0.2179 | 0.0492 | 0.9975 | 0.9327 |
408
+ | 2.0 | 112 | 0.0169 | 0.0601 | 0.9975 | 0.9443 |
409
+ | 3.0 | 168 | 0.0191 | 0.0394 | 0.9962 | 0.9398 |
410
+ | 4.0 | 224 | 0.0126 | 0.0457 | 0.9975 | 0.9419 |
411
+ | 5.0 | 280 | 0.0135 | 0.0444 | 0.9975 | 0.9447 |
412
+ | -1 | -1 | - | - | 0.9989 | 0.9413 |
413
+
414
+
415
+ ### Framework Versions
416
+ - Python: 3.10.16
417
+ - Sentence Transformers: 4.1.0
418
+ - Transformers: 4.45.2
419
+ - PyTorch: 2.5.1+cu124
420
+ - Accelerate: 1.6.0
421
+ - Datasets: 3.1.0
422
+ - Tokenizers: 0.20.3
423
+
424
+ ## Citation
425
+
426
+ ### BibTeX
427
+
428
+ #### Sentence Transformers
429
+ ```bibtex
430
+ @inproceedings{reimers-2019-sentence-bert,
431
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
432
+ author = "Reimers, Nils and Gurevych, Iryna",
433
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
434
+ month = "11",
435
+ year = "2019",
436
+ publisher = "Association for Computational Linguistics",
437
+ url = "https://arxiv.org/abs/1908.10084",
438
+ }
439
+ ```
440
+
441
+ #### TripletLoss
442
+ ```bibtex
443
+ @misc{hermans2017defense,
444
+ title={In Defense of the Triplet Loss for Person Re-Identification},
445
+ author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
446
+ year={2017},
447
+ eprint={1703.07737},
448
+ archivePrefix={arXiv},
449
+ primaryClass={cs.CV}
450
+ }
451
+ ```
452
+
453
+ <!--
454
+ ## Glossary
455
+
456
+ *Clearly define terms in order to be accessible across audiences.*
457
+ -->
458
+
459
+ <!--
460
+ ## Model Card Authors
461
+
462
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
463
+ -->
464
+
465
+ <!--
466
+ ## Model Card Contact
467
+
468
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
469
+ -->
config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Alibaba-NLP/gte-base-en-v1.5",
3
+ "architectures": [
4
+ "NewModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "Alibaba-NLP/new-impl--configuration.NewConfig",
9
+ "AutoModel": "Alibaba-NLP/new-impl--modeling.NewModel",
10
+ "AutoModelForMaskedLM": "Alibaba-NLP/new-impl--modeling.NewForMaskedLM",
11
+ "AutoModelForMultipleChoice": "Alibaba-NLP/new-impl--modeling.NewForMultipleChoice",
12
+ "AutoModelForQuestionAnswering": "Alibaba-NLP/new-impl--modeling.NewForQuestionAnswering",
13
+ "AutoModelForSequenceClassification": "Alibaba-NLP/new-impl--modeling.NewForSequenceClassification",
14
+ "AutoModelForTokenClassification": "Alibaba-NLP/new-impl--modeling.NewForTokenClassification"
15
+ },
16
+ "classifier_dropout": null,
17
+ "hidden_act": "gelu",
18
+ "hidden_dropout_prob": 0.1,
19
+ "hidden_size": 768,
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 3072,
22
+ "layer_norm_eps": 1e-12,
23
+ "layer_norm_type": "layer_norm",
24
+ "logn_attention_clip1": false,
25
+ "logn_attention_scale": false,
26
+ "max_position_embeddings": 8192,
27
+ "model_type": "new",
28
+ "num_attention_heads": 12,
29
+ "num_hidden_layers": 12,
30
+ "pack_qkv": true,
31
+ "pad_token_id": 0,
32
+ "position_embedding_type": "rope",
33
+ "rope_scaling": {
34
+ "factor": 2.0,
35
+ "type": "ntk"
36
+ },
37
+ "rope_theta": 500000,
38
+ "torch_dtype": "float32",
39
+ "transformers_version": "4.45.2",
40
+ "type_vocab_size": 0,
41
+ "unpad_inputs": false,
42
+ "use_memory_efficient_attention": false,
43
+ "vocab_size": 30528
44
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91fc3dbe93a1ff796ec41feb7cafe4c19f9488a4aa50cbdc24db4d2f9e75433c
3
+ size 547119128
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 64,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "max_length": 512,
49
+ "model_max_length": 64,
50
+ "pad_to_multiple_of": null,
51
+ "pad_token": "[PAD]",
52
+ "pad_token_type_id": 0,
53
+ "padding_side": "right",
54
+ "sep_token": "[SEP]",
55
+ "stride": 0,
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "BertTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "[UNK]"
62
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff