SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5

This is a sentence-transformers model finetuned from Alibaba-NLP/gte-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Alibaba-NLP/gte-base-en-v1.5
  • Maximum Sequence Length: 64 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 64, 'do_lower_case': False}) with Transformer model: NewModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the ๐Ÿค— Hub
model = SentenceTransformer("albertus-sussex/veriscrape-sbert-camera-wo-ref-deepseek-chat-0324")
# Run inference
sentences = [
    '$108.99',
    '$123.99',
    'Panasonic',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Triplet

Metric Value
cosine_accuracy 0.9975

Silhouette

  • Evaluated with veriscrape.training.SilhouetteEvaluator
Metric Value
silhouette_cosine 0.9447
silhouette_euclidean 0.8383

Triplet

Metric Value
cosine_accuracy 0.9989

Silhouette

  • Evaluated with veriscrape.training.SilhouetteEvaluator
Metric Value
silhouette_cosine 0.9413
silhouette_euclidean 0.8326

Training Details

Training Dataset

Unnamed Dataset

  • Size: 7,134 training samples
  • Columns: anchor, positive, negative, pos_attr_name, neg_attr_name, and website_id
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative pos_attr_name neg_attr_name website_id
    type string string string string string int
    details
    • min: 3 tokens
    • mean: 12.12 tokens
    • max: 64 tokens
    • min: 3 tokens
    • mean: 12.28 tokens
    • max: 64 tokens
    • min: 3 tokens
    • mean: 11.66 tokens
    • max: 64 tokens
    • min: 3 tokens
    • mean: 3.0 tokens
    • max: 3 tokens
    • min: 3 tokens
    • mean: 3.0 tokens
    • max: 3 tokens
    • 0: ~8.80%
    • 1: ~9.40%
    • 2: ~12.30%
    • 3: ~9.60%
    • 4: ~11.00%
    • 5: ~6.50%
    • 6: ~10.00%
    • 7: ~11.00%
    • 8: ~10.70%
    • 9: ~10.70%
  • Samples:
    anchor positive negative pos_attr_name neg_attr_name website_id
    Sakar International, Inc Fuji Photo Film Co. Ltd Coolpix S1100pj Compact Camera manufacturer model 9
    Olympus Stylus Tough 3000 Point & Shoot Digital Camera - 12 Megapixel - 2.70" Lcd - Pink 3.6x Optical Zoom - 5x (227625) Canon Powershot A470 Digital Camera With Selphy Cp760 Compact Photo Printer - Blue - 7.1 Megapixel - 16:9 - 3.4x Optical Zoom - 4x Digital Zoom - 2.5" Active Matrix Tft Color Lcd - 32mb Secure Digital Olympus Corporation model manufacturer 1
    $204.95 $89.00 Fujifilm Z800EXR 12 MP Digital Point and Shoot Camera (Red) BigVALUEInc 8PC Saver Bundle! price model 0
  • Loss: TripletLoss with these parameters:
    {
        "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
        "triplet_margin": 5
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 793 evaluation samples
  • Columns: anchor, positive, negative, pos_attr_name, neg_attr_name, and website_id
  • Approximate statistics based on the first 793 samples:
    anchor positive negative pos_attr_name neg_attr_name website_id
    type string string string string string int
    details
    • min: 3 tokens
    • mean: 12.85 tokens
    • max: 64 tokens
    • min: 3 tokens
    • mean: 12.51 tokens
    • max: 64 tokens
    • min: 3 tokens
    • mean: 11.06 tokens
    • max: 64 tokens
    • min: 3 tokens
    • mean: 3.0 tokens
    • max: 3 tokens
    • min: 3 tokens
    • mean: 3.0 tokens
    • max: 3 tokens
    • 0: ~9.33%
    • 1: ~10.72%
    • 2: ~12.86%
    • 3: ~10.84%
    • 4: ~8.95%
    • 5: ~5.93%
    • 6: ~13.11%
    • 7: ~10.34%
    • 8: ~8.70%
    • 9: ~9.21%
  • Samples:
    anchor positive negative pos_attr_name neg_attr_name website_id
    VistaQuest Corporation General Electric Company EasyShare C142 Compact Camera manufacturer model 3
    Kodak EasyShare Z1485 IS Point & Shoot Digital Camera - Pink Nikon Coolpix S1100pj 14.1 Megapixel Compact Camera - 5 mm-25 mm - Violet Kodak model manufacturer 2
    Panasonic Lumix DMC-ZS7 Point & Shoot Digital Camera - 12.1 Megapixel - 3" Active Matrix TFT Color LCD - Black Memorex Flash Micro Point & Shoot Digital Camera Pentax Imaging model manufacturer 2
  • Loss: TripletLoss with these parameters:
    {
        "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
        "triplet_margin": 5
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • num_train_epochs: 5
  • warmup_ratio: 0.1

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss cosine_accuracy silhouette_cosine
-1 -1 - - 0.9180 0.3826
1.0 56 0.2179 0.0492 0.9975 0.9327
2.0 112 0.0169 0.0601 0.9975 0.9443
3.0 168 0.0191 0.0394 0.9962 0.9398
4.0 224 0.0126 0.0457 0.9975 0.9419
5.0 280 0.0135 0.0444 0.9975 0.9447
-1 -1 - - 0.9989 0.9413

Framework Versions

  • Python: 3.10.16
  • Sentence Transformers: 4.1.0
  • Transformers: 4.45.2
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.6.0
  • Datasets: 3.1.0
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

TripletLoss

@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification},
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
Downloads last month
2
Safetensors
Model size
137M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for albertus-sussex/veriscrape-sbert-camera-wo-ref-deepseek-chat-0324

Finetuned
(824)
this model

Evaluation results