albertus-sussex's picture
Add new SentenceTransformer model
d41194b verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:7134
  - loss:TripletLoss
base_model: Alibaba-NLP/gte-base-en-v1.5
widget:
  - source_sentence: NIKON - PHOTO
    sentences:
      - from
      - manufacturer
      - price
      - Pentax Imaging
  - source_sentence: $108.99
    sentences:
      - model
      - $87.99
      - price
      - Coolpix S80 Compact Camera
  - source_sentence: ': Casio'
    sentences:
      - Casio Exlim EX-Z1200 12MP Digtial Camera with 3x Anti Shake Optical Zoom
      - model
      - ': Fuji'
      - manufacturer
  - source_sentence: >-
      Panasonic Dmc-fx37s 10mp Digital Camera 5x Optical Zoom 2.5" Lcd 25mm
      Leica Lens (dmcfx37s)
    sentences:
      - model
      - $84.62
      - price
      - >-
        Ge C1033 Point & Shoot Digital Camera - 10.1 Megapixel - 2.40" Active
        Matrix Tft Color Lcd - Black 3x Optical Zoom - 5.7x - Ge C1033-bk
        (c1033bk)
  - source_sentence: $108.99
    sentences:
      - price
      - Panasonic
      - manufacturer
      - $123.99
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy
  - silhouette_cosine
  - silhouette_euclidean
model-index:
  - name: SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5
    results:
      - task:
          type: triplet
          name: Triplet
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: cosine_accuracy
            value: 0.9974779486656189
            name: Cosine Accuracy
          - type: cosine_accuracy
            value: 0.9988649487495422
            name: Cosine Accuracy
      - task:
          type: silhouette
          name: Silhouette
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: silhouette_cosine
            value: 0.9446604251861572
            name: Silhouette Cosine
          - type: silhouette_euclidean
            value: 0.838313102722168
            name: Silhouette Euclidean
          - type: silhouette_cosine
            value: 0.9412728548049927
            name: Silhouette Cosine
          - type: silhouette_euclidean
            value: 0.832588791847229
            name: Silhouette Euclidean

SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5

This is a sentence-transformers model finetuned from Alibaba-NLP/gte-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Alibaba-NLP/gte-base-en-v1.5
  • Maximum Sequence Length: 64 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 64, 'do_lower_case': False}) with Transformer model: NewModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("albertus-sussex/veriscrape-sbert-camera-wo-ref-deepseek-chat-0324")
# Run inference
sentences = [
    '$108.99',
    '$123.99',
    'Panasonic',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Triplet

Metric Value
cosine_accuracy 0.9975

Silhouette

  • Evaluated with veriscrape.training.SilhouetteEvaluator
Metric Value
silhouette_cosine 0.9447
silhouette_euclidean 0.8383

Triplet

Metric Value
cosine_accuracy 0.9989

Silhouette

  • Evaluated with veriscrape.training.SilhouetteEvaluator
Metric Value
silhouette_cosine 0.9413
silhouette_euclidean 0.8326

Training Details

Training Dataset

Unnamed Dataset

  • Size: 7,134 training samples
  • Columns: anchor, positive, negative, pos_attr_name, neg_attr_name, and website_id
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative pos_attr_name neg_attr_name website_id
    type string string string string string int
    details
    • min: 3 tokens
    • mean: 12.12 tokens
    • max: 64 tokens
    • min: 3 tokens
    • mean: 12.28 tokens
    • max: 64 tokens
    • min: 3 tokens
    • mean: 11.66 tokens
    • max: 64 tokens
    • min: 3 tokens
    • mean: 3.0 tokens
    • max: 3 tokens
    • min: 3 tokens
    • mean: 3.0 tokens
    • max: 3 tokens
    • 0: ~8.80%
    • 1: ~9.40%
    • 2: ~12.30%
    • 3: ~9.60%
    • 4: ~11.00%
    • 5: ~6.50%
    • 6: ~10.00%
    • 7: ~11.00%
    • 8: ~10.70%
    • 9: ~10.70%
  • Samples:
    anchor positive negative pos_attr_name neg_attr_name website_id
    Sakar International, Inc Fuji Photo Film Co. Ltd Coolpix S1100pj Compact Camera manufacturer model 9
    Olympus Stylus Tough 3000 Point & Shoot Digital Camera - 12 Megapixel - 2.70" Lcd - Pink 3.6x Optical Zoom - 5x (227625) Canon Powershot A470 Digital Camera With Selphy Cp760 Compact Photo Printer - Blue - 7.1 Megapixel - 16:9 - 3.4x Optical Zoom - 4x Digital Zoom - 2.5" Active Matrix Tft Color Lcd - 32mb Secure Digital Olympus Corporation model manufacturer 1
    $204.95 $89.00 Fujifilm Z800EXR 12 MP Digital Point and Shoot Camera (Red) BigVALUEInc 8PC Saver Bundle! price model 0
  • Loss: TripletLoss with these parameters:
    {
        "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
        "triplet_margin": 5
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 793 evaluation samples
  • Columns: anchor, positive, negative, pos_attr_name, neg_attr_name, and website_id
  • Approximate statistics based on the first 793 samples:
    anchor positive negative pos_attr_name neg_attr_name website_id
    type string string string string string int
    details
    • min: 3 tokens
    • mean: 12.85 tokens
    • max: 64 tokens
    • min: 3 tokens
    • mean: 12.51 tokens
    • max: 64 tokens
    • min: 3 tokens
    • mean: 11.06 tokens
    • max: 64 tokens
    • min: 3 tokens
    • mean: 3.0 tokens
    • max: 3 tokens
    • min: 3 tokens
    • mean: 3.0 tokens
    • max: 3 tokens
    • 0: ~9.33%
    • 1: ~10.72%
    • 2: ~12.86%
    • 3: ~10.84%
    • 4: ~8.95%
    • 5: ~5.93%
    • 6: ~13.11%
    • 7: ~10.34%
    • 8: ~8.70%
    • 9: ~9.21%
  • Samples:
    anchor positive negative pos_attr_name neg_attr_name website_id
    VistaQuest Corporation General Electric Company EasyShare C142 Compact Camera manufacturer model 3
    Kodak EasyShare Z1485 IS Point & Shoot Digital Camera - Pink Nikon Coolpix S1100pj 14.1 Megapixel Compact Camera - 5 mm-25 mm - Violet Kodak model manufacturer 2
    Panasonic Lumix DMC-ZS7 Point & Shoot Digital Camera - 12.1 Megapixel - 3" Active Matrix TFT Color LCD - Black Memorex Flash Micro Point & Shoot Digital Camera Pentax Imaging model manufacturer 2
  • Loss: TripletLoss with these parameters:
    {
        "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
        "triplet_margin": 5
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • num_train_epochs: 5
  • warmup_ratio: 0.1

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss cosine_accuracy silhouette_cosine
-1 -1 - - 0.9180 0.3826
1.0 56 0.2179 0.0492 0.9975 0.9327
2.0 112 0.0169 0.0601 0.9975 0.9443
3.0 168 0.0191 0.0394 0.9962 0.9398
4.0 224 0.0126 0.0457 0.9975 0.9419
5.0 280 0.0135 0.0444 0.9975 0.9447
-1 -1 - - 0.9989 0.9413

Framework Versions

  • Python: 3.10.16
  • Sentence Transformers: 4.1.0
  • Transformers: 4.45.2
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.6.0
  • Datasets: 3.1.0
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

TripletLoss

@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification},
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}