wav2vec2-large-xlsr-coraa-words-exp-2
This model is a fine-tuned version of Edresson/wav2vec2-large-xlsr-coraa-portuguese on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5347
- Wer: 0.3764
- Cer: 0.1666
- Per: 0.3689
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 200
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Per |
---|---|---|---|---|---|---|
37.5783 | 0.98 | 21 | 12.5136 | 1.0 | 0.9606 | 1.0 |
37.5783 | 2.0 | 43 | 4.6324 | 1.0 | 0.9606 | 1.0 |
37.5783 | 2.98 | 64 | 3.9199 | 1.0 | 0.9606 | 1.0 |
37.5783 | 4.0 | 86 | 3.6333 | 1.0 | 0.9606 | 1.0 |
10.8343 | 4.98 | 107 | 3.3986 | 1.0 | 0.9606 | 1.0 |
10.8343 | 6.0 | 129 | 3.2632 | 1.0 | 0.9606 | 1.0 |
10.8343 | 6.98 | 150 | 3.1944 | 1.0 | 0.9606 | 1.0 |
10.8343 | 8.0 | 172 | 3.1359 | 1.0 | 0.9606 | 1.0 |
10.8343 | 8.98 | 193 | 3.1062 | 1.0 | 0.9606 | 1.0 |
3.0686 | 10.0 | 215 | 3.0914 | 1.0 | 0.9606 | 1.0 |
3.0686 | 10.98 | 236 | 3.0769 | 1.0 | 0.9606 | 1.0 |
3.0686 | 12.0 | 258 | 3.0595 | 1.0 | 0.9606 | 1.0 |
3.0686 | 12.98 | 279 | 3.0485 | 1.0 | 0.9606 | 1.0 |
2.9771 | 14.0 | 301 | 3.0664 | 1.0 | 0.9606 | 1.0 |
2.9771 | 14.98 | 322 | 3.0457 | 1.0 | 0.9606 | 1.0 |
2.9771 | 16.0 | 344 | 3.0246 | 1.0 | 0.9606 | 1.0 |
2.9771 | 16.98 | 365 | 3.0020 | 1.0 | 0.9606 | 1.0 |
2.9771 | 18.0 | 387 | 2.9227 | 1.0 | 0.9606 | 1.0 |
2.9246 | 18.98 | 408 | 2.8106 | 1.0 | 0.9606 | 1.0 |
2.9246 | 20.0 | 430 | 2.6933 | 1.0 | 0.9172 | 1.0 |
2.9246 | 20.98 | 451 | 2.4785 | 1.0 | 0.8042 | 1.0 |
2.9246 | 22.0 | 473 | 2.1101 | 1.0 | 0.6433 | 1.0 |
2.9246 | 22.98 | 494 | 1.6137 | 1.0 | 0.5067 | 1.0 |
2.3792 | 24.0 | 516 | 1.1653 | 0.9991 | 0.3579 | 0.9991 |
2.3792 | 24.98 | 537 | 0.9528 | 0.9991 | 0.3145 | 0.9991 |
2.3792 | 26.0 | 559 | 0.8157 | 0.9991 | 0.3004 | 0.9991 |
2.3792 | 26.98 | 580 | 0.7607 | 0.9962 | 0.2891 | 0.9962 |
0.8858 | 28.0 | 602 | 0.7309 | 0.9783 | 0.2836 | 0.9783 |
0.8858 | 28.98 | 623 | 0.6736 | 0.6830 | 0.2156 | 0.6811 |
0.8858 | 30.0 | 645 | 0.6378 | 0.4274 | 0.1760 | 0.4198 |
0.8858 | 30.98 | 666 | 0.5986 | 0.4217 | 0.1756 | 0.4151 |
0.8858 | 32.0 | 688 | 0.6263 | 0.3934 | 0.1721 | 0.3840 |
0.4514 | 32.98 | 709 | 0.6369 | 0.4189 | 0.1777 | 0.4123 |
0.4514 | 34.0 | 731 | 0.5785 | 0.3887 | 0.1713 | 0.3802 |
0.4514 | 34.98 | 752 | 0.5779 | 0.3925 | 0.1713 | 0.3840 |
0.4514 | 36.0 | 774 | 0.5766 | 0.3792 | 0.1682 | 0.3717 |
0.4514 | 36.98 | 795 | 0.5598 | 0.3755 | 0.1654 | 0.3670 |
0.3178 | 38.0 | 817 | 0.5604 | 0.3698 | 0.1662 | 0.3632 |
0.3178 | 38.98 | 838 | 0.5347 | 0.3764 | 0.1666 | 0.3689 |
0.3178 | 40.0 | 860 | 0.5741 | 0.3726 | 0.1683 | 0.3642 |
0.3178 | 40.98 | 881 | 0.5516 | 0.3736 | 0.1685 | 0.3660 |
0.2722 | 42.0 | 903 | 0.5712 | 0.3679 | 0.1669 | 0.3623 |
0.2722 | 42.98 | 924 | 0.5592 | 0.3755 | 0.1666 | 0.3670 |
0.2722 | 44.0 | 946 | 0.5517 | 0.3679 | 0.1648 | 0.3613 |
0.2722 | 44.98 | 967 | 0.5622 | 0.3566 | 0.1627 | 0.35 |
0.2722 | 46.0 | 989 | 0.5663 | 0.3651 | 0.1659 | 0.3575 |
0.2191 | 46.98 | 1010 | 0.5639 | 0.3679 | 0.1652 | 0.3623 |
0.2191 | 48.0 | 1032 | 0.5749 | 0.3538 | 0.1640 | 0.3453 |
0.2191 | 48.98 | 1053 | 0.5537 | 0.3642 | 0.1633 | 0.3566 |
0.2191 | 50.0 | 1075 | 0.5536 | 0.3736 | 0.1662 | 0.3679 |
0.2191 | 50.98 | 1096 | 0.5671 | 0.3774 | 0.1669 | 0.3717 |
0.1935 | 52.0 | 1118 | 0.5730 | 0.3670 | 0.1661 | 0.3594 |
0.1935 | 52.98 | 1139 | 0.5711 | 0.3717 | 0.1659 | 0.3632 |
0.1935 | 54.0 | 1161 | 0.5680 | 0.3623 | 0.1634 | 0.3528 |
0.1935 | 54.98 | 1182 | 0.5692 | 0.3575 | 0.1630 | 0.35 |
0.1755 | 56.0 | 1204 | 0.6076 | 0.3651 | 0.1675 | 0.3585 |
0.1755 | 56.98 | 1225 | 0.5917 | 0.3651 | 0.1655 | 0.3575 |
0.1755 | 58.0 | 1247 | 0.5720 | 0.3566 | 0.1636 | 0.3519 |
0.1755 | 58.98 | 1268 | 0.5759 | 0.3651 | 0.1641 | 0.3594 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.4.1+cu121
- Datasets 3.2.0
- Tokenizers 0.13.3
- Downloads last month
- 105
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support