wav2vec2-large-xlsr-coraa-words-exp-3
This model is a fine-tuned version of Edresson/wav2vec2-large-xlsr-coraa-portuguese on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5878
- Wer: 0.3943
- Cer: 0.1664
- Per: 0.3858
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 200
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Per |
---|---|---|---|---|---|---|
37.3293 | 0.98 | 21 | 11.1197 | 1.0 | 0.9606 | 1.0 |
37.3293 | 2.0 | 43 | 4.4296 | 1.0 | 0.9606 | 1.0 |
37.3293 | 2.98 | 64 | 3.8433 | 1.0 | 0.9606 | 1.0 |
37.3293 | 4.0 | 86 | 3.6004 | 1.0 | 0.9606 | 1.0 |
10.4132 | 4.98 | 107 | 3.4505 | 1.0 | 0.9606 | 1.0 |
10.4132 | 6.0 | 129 | 3.2447 | 1.0 | 0.9606 | 1.0 |
10.4132 | 6.98 | 150 | 3.1682 | 1.0 | 0.9606 | 1.0 |
10.4132 | 8.0 | 172 | 3.1254 | 1.0 | 0.9606 | 1.0 |
10.4132 | 8.98 | 193 | 3.1141 | 1.0 | 0.9606 | 1.0 |
3.0609 | 10.0 | 215 | 3.0941 | 1.0 | 0.9606 | 1.0 |
3.0609 | 10.98 | 236 | 3.0881 | 1.0 | 0.9606 | 1.0 |
3.0609 | 12.0 | 258 | 3.0595 | 1.0 | 0.9606 | 1.0 |
3.0609 | 12.98 | 279 | 3.0402 | 1.0 | 0.9606 | 1.0 |
2.972 | 14.0 | 301 | 3.0408 | 1.0 | 0.9606 | 1.0 |
2.972 | 14.98 | 322 | 3.0179 | 1.0 | 0.9606 | 1.0 |
2.972 | 16.0 | 344 | 2.9057 | 1.0 | 0.9606 | 1.0 |
2.972 | 16.98 | 365 | 2.7601 | 1.0 | 0.9606 | 1.0 |
2.972 | 18.0 | 387 | 2.6964 | 1.0 | 0.9384 | 1.0 |
2.7812 | 18.98 | 408 | 2.3877 | 1.0 | 0.7817 | 1.0 |
2.7812 | 20.0 | 430 | 1.8978 | 1.0 | 0.6250 | 1.0 |
2.7812 | 20.98 | 451 | 1.4096 | 1.0 | 0.4215 | 1.0 |
2.7812 | 22.0 | 473 | 1.0923 | 0.9991 | 0.3336 | 0.9991 |
2.7812 | 22.98 | 494 | 0.9002 | 0.9991 | 0.3079 | 0.9991 |
1.4929 | 24.0 | 516 | 0.8111 | 0.9991 | 0.2955 | 0.9991 |
1.4929 | 24.98 | 537 | 0.7687 | 0.9953 | 0.2888 | 0.9953 |
1.4929 | 26.0 | 559 | 0.7479 | 0.9811 | 0.2749 | 0.9811 |
1.4929 | 26.98 | 580 | 0.7179 | 0.9698 | 0.2690 | 0.9689 |
0.5434 | 28.0 | 602 | 0.6987 | 0.8028 | 0.2307 | 0.8009 |
0.5434 | 28.98 | 623 | 0.6984 | 0.4547 | 0.1811 | 0.4453 |
0.5434 | 30.0 | 645 | 0.6479 | 0.4283 | 0.1760 | 0.4208 |
0.5434 | 30.98 | 666 | 0.6504 | 0.4387 | 0.1782 | 0.4302 |
0.5434 | 32.0 | 688 | 0.6665 | 0.4217 | 0.1741 | 0.4094 |
0.3255 | 32.98 | 709 | 0.6688 | 0.4292 | 0.1763 | 0.4208 |
0.3255 | 34.0 | 731 | 0.6182 | 0.4179 | 0.1725 | 0.4066 |
0.3255 | 34.98 | 752 | 0.6193 | 0.4066 | 0.1718 | 0.4 |
0.3255 | 36.0 | 774 | 0.6320 | 0.4085 | 0.1716 | 0.3981 |
0.3255 | 36.98 | 795 | 0.6316 | 0.4075 | 0.1718 | 0.4009 |
0.231 | 38.0 | 817 | 0.6636 | 0.3991 | 0.1713 | 0.3896 |
0.231 | 38.98 | 838 | 0.6038 | 0.3953 | 0.1679 | 0.3887 |
0.231 | 40.0 | 860 | 0.6158 | 0.4 | 0.1680 | 0.3915 |
0.231 | 40.98 | 881 | 0.6122 | 0.3896 | 0.1672 | 0.3821 |
0.2015 | 42.0 | 903 | 0.6088 | 0.3877 | 0.1682 | 0.3830 |
0.2015 | 42.98 | 924 | 0.5878 | 0.3943 | 0.1664 | 0.3858 |
0.2015 | 44.0 | 946 | 0.6330 | 0.3811 | 0.1662 | 0.3764 |
0.2015 | 44.98 | 967 | 0.6317 | 0.3887 | 0.1664 | 0.3821 |
0.2015 | 46.0 | 989 | 0.6155 | 0.3906 | 0.1671 | 0.3858 |
0.1617 | 46.98 | 1010 | 0.6348 | 0.3811 | 0.1648 | 0.3774 |
0.1617 | 48.0 | 1032 | 0.6249 | 0.3840 | 0.1655 | 0.3774 |
0.1617 | 48.98 | 1053 | 0.6249 | 0.3915 | 0.1669 | 0.3868 |
0.1617 | 50.0 | 1075 | 0.6070 | 0.3877 | 0.1659 | 0.3811 |
0.1617 | 50.98 | 1096 | 0.6005 | 0.3849 | 0.1637 | 0.3764 |
0.1426 | 52.0 | 1118 | 0.6131 | 0.3868 | 0.1638 | 0.3802 |
0.1426 | 52.98 | 1139 | 0.6216 | 0.3925 | 0.1668 | 0.3868 |
0.1426 | 54.0 | 1161 | 0.6343 | 0.3953 | 0.1672 | 0.3849 |
0.1426 | 54.98 | 1182 | 0.6267 | 0.3896 | 0.1643 | 0.3821 |
0.1273 | 56.0 | 1204 | 0.6093 | 0.3849 | 0.1647 | 0.3792 |
0.1273 | 56.98 | 1225 | 0.6199 | 0.3906 | 0.1654 | 0.3821 |
0.1273 | 58.0 | 1247 | 0.5931 | 0.3915 | 0.1659 | 0.3830 |
0.1273 | 58.98 | 1268 | 0.6227 | 0.3877 | 0.1662 | 0.3802 |
0.1273 | 60.0 | 1290 | 0.6208 | 0.3783 | 0.1652 | 0.3698 |
0.1106 | 60.98 | 1311 | 0.6312 | 0.3802 | 0.1647 | 0.3745 |
0.1106 | 62.0 | 1333 | 0.6203 | 0.3830 | 0.1671 | 0.3764 |
0.1106 | 62.98 | 1354 | 0.6219 | 0.3915 | 0.1673 | 0.3830 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.4.1+cu121
- Datasets 3.2.0
- Tokenizers 0.13.3
- Downloads last month
- 74
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support