wav2vec2-large-xlsr-coraa-words-exp-4
This model is a fine-tuned version of Edresson/wav2vec2-large-xlsr-coraa-portuguese on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5520
- Wer: 0.3792
- Cer: 0.1634
- Per: 0.3736
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- num_epochs: 200
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Per |
---|---|---|---|---|---|---|
36.9896 | 0.98 | 21 | 11.5637 | 1.0 | 0.9606 | 1.0 |
36.9896 | 2.0 | 43 | 4.4906 | 1.0 | 0.9606 | 1.0 |
36.9896 | 2.98 | 64 | 3.8521 | 1.0 | 0.9606 | 1.0 |
36.9896 | 4.0 | 86 | 3.6001 | 1.0 | 0.9606 | 1.0 |
10.4512 | 4.98 | 107 | 3.3694 | 1.0 | 0.9606 | 1.0 |
10.4512 | 6.0 | 129 | 3.2463 | 1.0 | 0.9606 | 1.0 |
10.4512 | 6.98 | 150 | 3.1842 | 1.0 | 0.9606 | 1.0 |
10.4512 | 8.0 | 172 | 3.1160 | 1.0 | 0.9606 | 1.0 |
10.4512 | 8.98 | 193 | 3.0945 | 1.0 | 0.9606 | 1.0 |
3.0577 | 10.0 | 215 | 3.0865 | 1.0 | 0.9606 | 1.0 |
3.0577 | 10.98 | 236 | 3.0657 | 1.0 | 0.9606 | 1.0 |
3.0577 | 12.0 | 258 | 3.0591 | 1.0 | 0.9606 | 1.0 |
3.0577 | 12.98 | 279 | 3.0367 | 1.0 | 0.9606 | 1.0 |
2.9732 | 14.0 | 301 | 3.0339 | 1.0 | 0.9606 | 1.0 |
2.9732 | 14.98 | 322 | 3.0231 | 1.0 | 0.9606 | 1.0 |
2.9732 | 16.0 | 344 | 2.9633 | 1.0 | 0.9606 | 1.0 |
2.9732 | 16.98 | 365 | 2.8554 | 1.0 | 0.9606 | 1.0 |
2.9732 | 18.0 | 387 | 2.7109 | 1.0 | 0.9606 | 1.0 |
2.8449 | 18.98 | 408 | 2.3843 | 1.0 | 0.7400 | 1.0 |
2.8449 | 20.0 | 430 | 1.8336 | 1.0 | 0.5582 | 1.0 |
2.8449 | 20.98 | 451 | 1.3493 | 1.0 | 0.3643 | 1.0 |
2.8449 | 22.0 | 473 | 1.0668 | 0.9991 | 0.3247 | 0.9991 |
2.8449 | 22.98 | 494 | 0.8907 | 0.9991 | 0.3030 | 0.9991 |
1.5487 | 24.0 | 516 | 0.8101 | 0.9972 | 0.2923 | 0.9972 |
1.5487 | 24.98 | 537 | 0.7335 | 0.9802 | 0.2799 | 0.9792 |
1.5487 | 26.0 | 559 | 0.7279 | 0.9623 | 0.2740 | 0.9623 |
1.5487 | 26.98 | 580 | 0.6539 | 0.5264 | 0.1914 | 0.5236 |
0.5979 | 28.0 | 602 | 0.6419 | 0.4472 | 0.1821 | 0.4387 |
0.5979 | 28.98 | 623 | 0.6303 | 0.4179 | 0.1775 | 0.4085 |
0.5979 | 30.0 | 645 | 0.6278 | 0.4047 | 0.1739 | 0.3962 |
0.5979 | 30.98 | 666 | 0.6249 | 0.3896 | 0.1727 | 0.3830 |
0.5979 | 32.0 | 688 | 0.6010 | 0.3962 | 0.1700 | 0.3868 |
0.3815 | 32.98 | 709 | 0.5864 | 0.3943 | 0.1710 | 0.3868 |
0.3815 | 34.0 | 731 | 0.5773 | 0.3887 | 0.1703 | 0.3811 |
0.3815 | 34.98 | 752 | 0.5817 | 0.3792 | 0.1693 | 0.3708 |
0.3815 | 36.0 | 774 | 0.5911 | 0.3887 | 0.1723 | 0.3792 |
0.3815 | 36.98 | 795 | 0.5546 | 0.3887 | 0.1671 | 0.3792 |
0.3023 | 38.0 | 817 | 0.5548 | 0.3868 | 0.1672 | 0.3774 |
0.3023 | 38.98 | 838 | 0.5555 | 0.3821 | 0.1673 | 0.3745 |
0.3023 | 40.0 | 860 | 0.5582 | 0.3783 | 0.1676 | 0.3689 |
0.3023 | 40.98 | 881 | 0.5644 | 0.3896 | 0.1682 | 0.3811 |
0.2719 | 42.0 | 903 | 0.5822 | 0.3830 | 0.1673 | 0.3774 |
0.2719 | 42.98 | 924 | 0.5649 | 0.3811 | 0.1652 | 0.3717 |
0.2719 | 44.0 | 946 | 0.5553 | 0.3774 | 0.1641 | 0.3698 |
0.2719 | 44.98 | 967 | 0.5777 | 0.3745 | 0.1654 | 0.3660 |
0.2719 | 46.0 | 989 | 0.5868 | 0.3792 | 0.1664 | 0.3726 |
0.2202 | 46.98 | 1010 | 0.5546 | 0.3670 | 0.1626 | 0.3594 |
0.2202 | 48.0 | 1032 | 0.5724 | 0.3632 | 0.1624 | 0.3557 |
0.2202 | 48.98 | 1053 | 0.5851 | 0.3698 | 0.1657 | 0.3613 |
0.2202 | 50.0 | 1075 | 0.5671 | 0.3774 | 0.1637 | 0.3689 |
0.2202 | 50.98 | 1096 | 0.5720 | 0.3726 | 0.1651 | 0.3642 |
0.1995 | 52.0 | 1118 | 0.5672 | 0.3755 | 0.1644 | 0.3670 |
0.1995 | 52.98 | 1139 | 0.5520 | 0.3792 | 0.1634 | 0.3736 |
0.1995 | 54.0 | 1161 | 0.5687 | 0.3613 | 0.1617 | 0.3557 |
0.1995 | 54.98 | 1182 | 0.5597 | 0.3623 | 0.1598 | 0.3566 |
0.1802 | 56.0 | 1204 | 0.5828 | 0.3594 | 0.1605 | 0.3528 |
0.1802 | 56.98 | 1225 | 0.5753 | 0.3717 | 0.1636 | 0.3642 |
0.1802 | 58.0 | 1247 | 0.5592 | 0.3613 | 0.1627 | 0.3547 |
0.1802 | 58.98 | 1268 | 0.5694 | 0.3679 | 0.1650 | 0.3632 |
0.1802 | 60.0 | 1290 | 0.6006 | 0.3679 | 0.1640 | 0.3613 |
0.1642 | 60.98 | 1311 | 0.6042 | 0.3698 | 0.1644 | 0.3613 |
0.1642 | 62.0 | 1333 | 0.5754 | 0.3651 | 0.1633 | 0.3566 |
0.1642 | 62.98 | 1354 | 0.5793 | 0.3670 | 0.1630 | 0.3566 |
0.1642 | 64.0 | 1376 | 0.5941 | 0.3660 | 0.1627 | 0.3557 |
0.1642 | 64.98 | 1397 | 0.5825 | 0.3774 | 0.1624 | 0.3679 |
0.1466 | 66.0 | 1419 | 0.5996 | 0.3689 | 0.1627 | 0.3613 |
0.1466 | 66.98 | 1440 | 0.5777 | 0.3745 | 0.1631 | 0.3679 |
0.1466 | 68.0 | 1462 | 0.5910 | 0.3679 | 0.1620 | 0.3604 |
0.1466 | 68.98 | 1483 | 0.5821 | 0.3698 | 0.1626 | 0.3623 |
0.1398 | 70.0 | 1505 | 0.5960 | 0.3679 | 0.1643 | 0.3613 |
0.1398 | 70.98 | 1526 | 0.5922 | 0.3604 | 0.1640 | 0.3519 |
0.1398 | 72.0 | 1548 | 0.5987 | 0.3698 | 0.1633 | 0.3623 |
0.1398 | 72.98 | 1569 | 0.6110 | 0.3736 | 0.1654 | 0.3651 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.4.1+cu121
- Datasets 3.2.0
- Tokenizers 0.13.3
- Downloads last month
- 75
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support