wav2vec2-large-xlsr-coraa-words-exp-5
This model is a fine-tuned version of Edresson/wav2vec2-large-xlsr-coraa-portuguese on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5522
- Wer: 0.3858
- Cer: 0.1683
- Per: 0.3792
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 200
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Per |
---|---|---|---|---|---|---|
37.2852 | 0.98 | 21 | 8.6659 | 1.0 | 0.9606 | 1.0 |
37.2852 | 2.0 | 43 | 4.1178 | 1.0 | 0.9606 | 1.0 |
37.2852 | 2.98 | 64 | 3.6499 | 1.0 | 0.9606 | 1.0 |
37.2852 | 4.0 | 86 | 3.4506 | 1.0 | 0.9606 | 1.0 |
9.8089 | 4.98 | 107 | 3.2834 | 1.0 | 0.9606 | 1.0 |
9.8089 | 6.0 | 129 | 3.1707 | 1.0 | 0.9606 | 1.0 |
9.8089 | 6.98 | 150 | 3.1196 | 1.0 | 0.9606 | 1.0 |
9.8089 | 8.0 | 172 | 3.0800 | 1.0 | 0.9606 | 1.0 |
9.8089 | 8.98 | 193 | 3.0656 | 1.0 | 0.9606 | 1.0 |
3.0165 | 10.0 | 215 | 3.0600 | 1.0 | 0.9606 | 1.0 |
3.0165 | 10.98 | 236 | 3.0494 | 1.0 | 0.9606 | 1.0 |
3.0165 | 12.0 | 258 | 3.0276 | 1.0 | 0.9606 | 1.0 |
3.0165 | 12.98 | 279 | 3.0055 | 1.0 | 0.9606 | 1.0 |
2.9518 | 14.0 | 301 | 2.8756 | 1.0 | 0.9606 | 1.0 |
2.9518 | 14.98 | 322 | 2.7060 | 1.0 | 0.9559 | 1.0 |
2.9518 | 16.0 | 344 | 2.3252 | 1.0 | 0.7022 | 1.0 |
2.9518 | 16.98 | 365 | 1.7212 | 1.0 | 0.5119 | 1.0 |
2.9518 | 18.0 | 387 | 1.1926 | 0.9981 | 0.3489 | 0.9981 |
2.0753 | 18.98 | 408 | 0.8904 | 0.6717 | 0.2300 | 0.6481 |
2.0753 | 20.0 | 430 | 0.7190 | 0.5038 | 0.1892 | 0.4896 |
2.0753 | 20.98 | 451 | 0.6968 | 0.4358 | 0.1814 | 0.4283 |
2.0753 | 22.0 | 473 | 0.6706 | 0.4 | 0.1756 | 0.3915 |
2.0753 | 22.98 | 494 | 0.6523 | 0.4104 | 0.1759 | 0.4038 |
0.6009 | 24.0 | 516 | 0.6112 | 0.4009 | 0.1725 | 0.3934 |
0.6009 | 24.98 | 537 | 0.6001 | 0.4019 | 0.1714 | 0.3943 |
0.6009 | 26.0 | 559 | 0.6171 | 0.3849 | 0.1713 | 0.3811 |
0.6009 | 26.98 | 580 | 0.5733 | 0.3877 | 0.1713 | 0.3821 |
0.3421 | 28.0 | 602 | 0.5823 | 0.3934 | 0.1710 | 0.3877 |
0.3421 | 28.98 | 623 | 0.5912 | 0.3877 | 0.1699 | 0.3802 |
0.3421 | 30.0 | 645 | 0.5539 | 0.3802 | 0.1664 | 0.3726 |
0.3421 | 30.98 | 666 | 0.5964 | 0.3745 | 0.1685 | 0.3679 |
0.3421 | 32.0 | 688 | 0.6107 | 0.3811 | 0.1692 | 0.3745 |
0.2715 | 32.98 | 709 | 0.5522 | 0.3858 | 0.1683 | 0.3792 |
0.2715 | 34.0 | 731 | 0.5745 | 0.3830 | 0.1693 | 0.3736 |
0.2715 | 34.98 | 752 | 0.6193 | 0.3830 | 0.1725 | 0.3764 |
0.2715 | 36.0 | 774 | 0.5876 | 0.3811 | 0.1690 | 0.3736 |
0.2715 | 36.98 | 795 | 0.5938 | 0.3858 | 0.1707 | 0.3802 |
0.2325 | 38.0 | 817 | 0.5815 | 0.3868 | 0.1710 | 0.3802 |
0.2325 | 38.98 | 838 | 0.5850 | 0.3802 | 0.1685 | 0.3736 |
0.2325 | 40.0 | 860 | 0.5995 | 0.3783 | 0.1697 | 0.3726 |
0.2325 | 40.98 | 881 | 0.5876 | 0.3783 | 0.1669 | 0.3708 |
0.2133 | 42.0 | 903 | 0.6039 | 0.3858 | 0.1693 | 0.3792 |
0.2133 | 42.98 | 924 | 0.5655 | 0.3755 | 0.1641 | 0.3651 |
0.2133 | 44.0 | 946 | 0.5673 | 0.3736 | 0.1655 | 0.3651 |
0.2133 | 44.98 | 967 | 0.6071 | 0.3613 | 0.1629 | 0.3528 |
0.2133 | 46.0 | 989 | 0.5673 | 0.3726 | 0.1650 | 0.3670 |
0.1754 | 46.98 | 1010 | 0.5796 | 0.3745 | 0.1636 | 0.3679 |
0.1754 | 48.0 | 1032 | 0.5837 | 0.3670 | 0.1652 | 0.3613 |
0.1754 | 48.98 | 1053 | 0.6056 | 0.3745 | 0.1678 | 0.3679 |
0.1754 | 50.0 | 1075 | 0.5833 | 0.3708 | 0.1644 | 0.3651 |
0.1754 | 50.98 | 1096 | 0.5853 | 0.3736 | 0.1655 | 0.3660 |
0.1569 | 52.0 | 1118 | 0.5841 | 0.3679 | 0.1631 | 0.3613 |
0.1569 | 52.98 | 1139 | 0.5640 | 0.3698 | 0.1620 | 0.3632 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.4.1+cu121
- Datasets 3.2.0
- Tokenizers 0.13.3
- Downloads last month
- 2,188
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support