wav2vec2-large-xlsr-coraa-words-exp-5

This model is a fine-tuned version of Edresson/wav2vec2-large-xlsr-coraa-portuguese on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5522
  • Wer: 0.3858
  • Cer: 0.1683
  • Per: 0.3792

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 200
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer Per
37.2852 0.98 21 8.6659 1.0 0.9606 1.0
37.2852 2.0 43 4.1178 1.0 0.9606 1.0
37.2852 2.98 64 3.6499 1.0 0.9606 1.0
37.2852 4.0 86 3.4506 1.0 0.9606 1.0
9.8089 4.98 107 3.2834 1.0 0.9606 1.0
9.8089 6.0 129 3.1707 1.0 0.9606 1.0
9.8089 6.98 150 3.1196 1.0 0.9606 1.0
9.8089 8.0 172 3.0800 1.0 0.9606 1.0
9.8089 8.98 193 3.0656 1.0 0.9606 1.0
3.0165 10.0 215 3.0600 1.0 0.9606 1.0
3.0165 10.98 236 3.0494 1.0 0.9606 1.0
3.0165 12.0 258 3.0276 1.0 0.9606 1.0
3.0165 12.98 279 3.0055 1.0 0.9606 1.0
2.9518 14.0 301 2.8756 1.0 0.9606 1.0
2.9518 14.98 322 2.7060 1.0 0.9559 1.0
2.9518 16.0 344 2.3252 1.0 0.7022 1.0
2.9518 16.98 365 1.7212 1.0 0.5119 1.0
2.9518 18.0 387 1.1926 0.9981 0.3489 0.9981
2.0753 18.98 408 0.8904 0.6717 0.2300 0.6481
2.0753 20.0 430 0.7190 0.5038 0.1892 0.4896
2.0753 20.98 451 0.6968 0.4358 0.1814 0.4283
2.0753 22.0 473 0.6706 0.4 0.1756 0.3915
2.0753 22.98 494 0.6523 0.4104 0.1759 0.4038
0.6009 24.0 516 0.6112 0.4009 0.1725 0.3934
0.6009 24.98 537 0.6001 0.4019 0.1714 0.3943
0.6009 26.0 559 0.6171 0.3849 0.1713 0.3811
0.6009 26.98 580 0.5733 0.3877 0.1713 0.3821
0.3421 28.0 602 0.5823 0.3934 0.1710 0.3877
0.3421 28.98 623 0.5912 0.3877 0.1699 0.3802
0.3421 30.0 645 0.5539 0.3802 0.1664 0.3726
0.3421 30.98 666 0.5964 0.3745 0.1685 0.3679
0.3421 32.0 688 0.6107 0.3811 0.1692 0.3745
0.2715 32.98 709 0.5522 0.3858 0.1683 0.3792
0.2715 34.0 731 0.5745 0.3830 0.1693 0.3736
0.2715 34.98 752 0.6193 0.3830 0.1725 0.3764
0.2715 36.0 774 0.5876 0.3811 0.1690 0.3736
0.2715 36.98 795 0.5938 0.3858 0.1707 0.3802
0.2325 38.0 817 0.5815 0.3868 0.1710 0.3802
0.2325 38.98 838 0.5850 0.3802 0.1685 0.3736
0.2325 40.0 860 0.5995 0.3783 0.1697 0.3726
0.2325 40.98 881 0.5876 0.3783 0.1669 0.3708
0.2133 42.0 903 0.6039 0.3858 0.1693 0.3792
0.2133 42.98 924 0.5655 0.3755 0.1641 0.3651
0.2133 44.0 946 0.5673 0.3736 0.1655 0.3651
0.2133 44.98 967 0.6071 0.3613 0.1629 0.3528
0.2133 46.0 989 0.5673 0.3726 0.1650 0.3670
0.1754 46.98 1010 0.5796 0.3745 0.1636 0.3679
0.1754 48.0 1032 0.5837 0.3670 0.1652 0.3613
0.1754 48.98 1053 0.6056 0.3745 0.1678 0.3679
0.1754 50.0 1075 0.5833 0.3708 0.1644 0.3651
0.1754 50.98 1096 0.5853 0.3736 0.1655 0.3660
0.1569 52.0 1118 0.5841 0.3679 0.1631 0.3613
0.1569 52.98 1139 0.5640 0.3698 0.1620 0.3632

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.13.3
Downloads last month
2,188
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support