wav2vec2-large-xlsr-facebook-300m-texts-exp-1
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7400
- Wer: 0.5455
- Cer: 0.2311
- Per: 0.5289
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 200
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Per |
---|---|---|---|---|---|---|
38.9028 | 1.0 | 14 | 18.5048 | 1.0 | 0.9671 | 1.0 |
38.9028 | 2.0 | 28 | 9.8810 | 1.0 | 0.9671 | 1.0 |
38.9028 | 3.0 | 42 | 7.7650 | 1.0 | 0.9671 | 1.0 |
38.9028 | 4.0 | 56 | 6.9159 | 1.0 | 0.9671 | 1.0 |
38.9028 | 5.0 | 70 | 6.3930 | 1.0 | 0.9671 | 1.0 |
38.9028 | 6.0 | 84 | 5.9372 | 1.0 | 0.9671 | 1.0 |
38.9028 | 7.0 | 98 | 5.5319 | 1.0 | 0.9671 | 1.0 |
12.9708 | 8.0 | 112 | 5.1820 | 1.0 | 0.9671 | 1.0 |
12.9708 | 9.0 | 126 | 4.8767 | 1.0 | 0.9671 | 1.0 |
12.9708 | 10.0 | 140 | 4.6011 | 1.0 | 0.9671 | 1.0 |
12.9708 | 11.0 | 154 | 4.3649 | 1.0 | 0.9671 | 1.0 |
12.9708 | 12.0 | 168 | 4.1568 | 1.0 | 0.9671 | 1.0 |
12.9708 | 13.0 | 182 | 3.9743 | 1.0 | 0.9671 | 1.0 |
12.9708 | 14.0 | 196 | 3.8195 | 1.0 | 0.9671 | 1.0 |
4.98 | 15.0 | 210 | 3.6889 | 1.0 | 0.9671 | 1.0 |
4.98 | 16.0 | 224 | 3.5786 | 1.0 | 0.9671 | 1.0 |
4.98 | 17.0 | 238 | 3.4828 | 1.0 | 0.9671 | 1.0 |
4.98 | 18.0 | 252 | 3.4061 | 1.0 | 0.9671 | 1.0 |
4.98 | 19.0 | 266 | 3.3420 | 1.0 | 0.9671 | 1.0 |
4.98 | 20.0 | 280 | 3.2863 | 1.0 | 0.9671 | 1.0 |
4.98 | 21.0 | 294 | 3.2379 | 1.0 | 0.9671 | 1.0 |
3.5425 | 22.0 | 308 | 3.1723 | 1.0 | 0.9671 | 1.0 |
3.5425 | 23.0 | 322 | 3.1202 | 1.0 | 0.9671 | 1.0 |
3.5425 | 24.0 | 336 | 3.0854 | 1.0 | 0.9671 | 1.0 |
3.5425 | 25.0 | 350 | 3.0373 | 1.0 | 0.9671 | 1.0 |
3.5425 | 26.0 | 364 | 3.0513 | 1.0 | 0.9671 | 1.0 |
3.5425 | 27.0 | 378 | 3.0163 | 1.0 | 0.9671 | 1.0 |
3.5425 | 28.0 | 392 | 2.9870 | 1.0 | 0.9671 | 1.0 |
3.0988 | 29.0 | 406 | 2.9741 | 1.0 | 0.9671 | 1.0 |
3.0988 | 30.0 | 420 | 2.9698 | 1.0 | 0.9671 | 1.0 |
3.0988 | 31.0 | 434 | 2.9717 | 1.0 | 0.9671 | 1.0 |
3.0988 | 32.0 | 448 | 2.9575 | 1.0 | 0.9671 | 1.0 |
3.0988 | 33.0 | 462 | 2.9537 | 1.0 | 0.9671 | 1.0 |
3.0988 | 34.0 | 476 | 2.9581 | 1.0 | 0.9671 | 1.0 |
3.0988 | 35.0 | 490 | 2.9491 | 1.0 | 0.9671 | 1.0 |
2.9753 | 36.0 | 504 | 2.9414 | 1.0 | 0.9671 | 1.0 |
2.9753 | 37.0 | 518 | 2.9396 | 1.0 | 0.9671 | 1.0 |
2.9753 | 38.0 | 532 | 2.9386 | 1.0 | 0.9671 | 1.0 |
2.9753 | 39.0 | 546 | 2.9313 | 1.0 | 0.9671 | 1.0 |
2.9753 | 40.0 | 560 | 2.9585 | 1.0 | 0.9671 | 1.0 |
2.9753 | 41.0 | 574 | 2.9350 | 1.0 | 0.9671 | 1.0 |
2.9753 | 42.0 | 588 | 2.9248 | 1.0 | 0.9671 | 1.0 |
2.9468 | 43.0 | 602 | 2.9306 | 1.0 | 0.9671 | 1.0 |
2.9468 | 44.0 | 616 | 2.9244 | 1.0 | 0.9671 | 1.0 |
2.9468 | 45.0 | 630 | 2.9234 | 1.0 | 0.9671 | 1.0 |
2.9468 | 46.0 | 644 | 2.9226 | 1.0 | 0.9671 | 1.0 |
2.9468 | 47.0 | 658 | 2.9173 | 1.0 | 0.9671 | 1.0 |
2.9468 | 48.0 | 672 | 2.9177 | 1.0 | 0.9671 | 1.0 |
2.9468 | 49.0 | 686 | 2.9207 | 1.0 | 0.9671 | 1.0 |
2.9258 | 50.0 | 700 | 2.9186 | 1.0 | 0.9671 | 1.0 |
2.9258 | 51.0 | 714 | 2.9123 | 1.0 | 0.9671 | 1.0 |
2.9258 | 52.0 | 728 | 2.9160 | 1.0 | 0.9671 | 1.0 |
2.9258 | 53.0 | 742 | 2.9112 | 1.0 | 0.9671 | 1.0 |
2.9258 | 54.0 | 756 | 2.8988 | 1.0 | 0.9671 | 1.0 |
2.9258 | 55.0 | 770 | 2.9045 | 1.0 | 0.9671 | 1.0 |
2.9258 | 56.0 | 784 | 2.9132 | 1.0 | 0.9671 | 1.0 |
2.9258 | 57.0 | 798 | 2.8828 | 1.0 | 0.9671 | 1.0 |
2.9114 | 58.0 | 812 | 2.8750 | 1.0 | 0.9671 | 1.0 |
2.9114 | 59.0 | 826 | 2.8658 | 1.0 | 0.9671 | 1.0 |
2.9114 | 60.0 | 840 | 2.8470 | 1.0 | 0.9671 | 1.0 |
2.9114 | 61.0 | 854 | 2.8315 | 1.0 | 0.9671 | 1.0 |
2.9114 | 62.0 | 868 | 2.8104 | 1.0 | 0.9671 | 1.0 |
2.9114 | 63.0 | 882 | 2.7643 | 1.0 | 0.9671 | 1.0 |
2.9114 | 64.0 | 896 | 2.7412 | 1.0 | 0.9671 | 1.0 |
2.8525 | 65.0 | 910 | 2.7178 | 1.0 | 0.9671 | 1.0 |
2.8525 | 66.0 | 924 | 2.6887 | 1.0 | 0.9668 | 1.0 |
2.8525 | 67.0 | 938 | 2.6267 | 1.0 | 0.9670 | 1.0 |
2.8525 | 68.0 | 952 | 2.5971 | 0.9995 | 0.9575 | 0.9995 |
2.8525 | 69.0 | 966 | 2.5567 | 0.9997 | 0.9243 | 0.9997 |
2.8525 | 70.0 | 980 | 2.5002 | 1.0 | 0.8266 | 1.0 |
2.8525 | 71.0 | 994 | 2.4290 | 1.0 | 0.7585 | 1.0 |
2.6546 | 72.0 | 1008 | 2.3754 | 1.0 | 0.7096 | 1.0 |
2.6546 | 73.0 | 1022 | 2.3152 | 1.0 | 0.6939 | 1.0 |
2.6546 | 74.0 | 1036 | 2.2623 | 1.0 | 0.6643 | 1.0 |
2.6546 | 75.0 | 1050 | 2.1567 | 1.0 | 0.6488 | 1.0 |
2.6546 | 76.0 | 1064 | 2.0693 | 1.0 | 0.6107 | 1.0 |
2.6546 | 77.0 | 1078 | 1.9740 | 1.0 | 0.5911 | 1.0 |
2.6546 | 78.0 | 1092 | 1.9123 | 0.9997 | 0.5685 | 0.9997 |
2.2421 | 79.0 | 1106 | 1.8264 | 1.0 | 0.5500 | 1.0 |
2.2421 | 80.0 | 1120 | 1.7678 | 0.9997 | 0.5253 | 0.9997 |
2.2421 | 81.0 | 1134 | 1.6755 | 1.0 | 0.5180 | 1.0 |
2.2421 | 82.0 | 1148 | 1.6509 | 1.0 | 0.4988 | 1.0 |
2.2421 | 83.0 | 1162 | 1.5905 | 1.0 | 0.4927 | 1.0 |
2.2421 | 84.0 | 1176 | 1.5812 | 1.0 | 0.4782 | 1.0 |
2.2421 | 85.0 | 1190 | 1.4685 | 1.0 | 0.4804 | 1.0 |
1.7467 | 86.0 | 1204 | 1.4286 | 1.0 | 0.4693 | 1.0 |
1.7467 | 87.0 | 1218 | 1.4161 | 0.9995 | 0.4555 | 0.9995 |
1.7467 | 88.0 | 1232 | 1.3703 | 1.0 | 0.4503 | 1.0 |
1.7467 | 89.0 | 1246 | 1.3651 | 0.9980 | 0.4382 | 0.9980 |
1.7467 | 90.0 | 1260 | 1.3306 | 0.9970 | 0.4315 | 0.9967 |
1.7467 | 91.0 | 1274 | 1.2882 | 0.9957 | 0.4274 | 0.9954 |
1.7467 | 92.0 | 1288 | 1.2564 | 0.9939 | 0.4210 | 0.9937 |
1.4044 | 93.0 | 1302 | 1.2472 | 0.9726 | 0.3998 | 0.9695 |
1.4044 | 94.0 | 1316 | 1.2310 | 0.9518 | 0.3813 | 0.9464 |
1.4044 | 95.0 | 1330 | 1.1658 | 0.9563 | 0.3799 | 0.9528 |
1.4044 | 96.0 | 1344 | 1.1555 | 0.9317 | 0.3697 | 0.9264 |
1.4044 | 97.0 | 1358 | 1.1608 | 0.8918 | 0.3573 | 0.8865 |
1.4044 | 98.0 | 1372 | 1.1363 | 0.8720 | 0.3483 | 0.8652 |
1.4044 | 99.0 | 1386 | 1.1085 | 0.8479 | 0.3379 | 0.8405 |
1.191 | 100.0 | 1400 | 1.0848 | 0.8489 | 0.3348 | 0.8426 |
1.191 | 101.0 | 1414 | 1.0706 | 0.8179 | 0.3252 | 0.8106 |
1.191 | 102.0 | 1428 | 1.0839 | 0.7905 | 0.3212 | 0.7824 |
1.191 | 103.0 | 1442 | 1.0419 | 0.8187 | 0.3210 | 0.8121 |
1.191 | 104.0 | 1456 | 1.0630 | 0.7692 | 0.3141 | 0.7593 |
1.191 | 105.0 | 1470 | 1.0117 | 0.7831 | 0.3122 | 0.7743 |
1.191 | 106.0 | 1484 | 1.0035 | 0.7633 | 0.3064 | 0.7529 |
1.191 | 107.0 | 1498 | 1.0035 | 0.7463 | 0.3017 | 0.7364 |
1.0047 | 108.0 | 1512 | 0.9954 | 0.7395 | 0.2974 | 0.7288 |
1.0047 | 109.0 | 1526 | 0.9830 | 0.7438 | 0.2979 | 0.7349 |
1.0047 | 110.0 | 1540 | 0.9699 | 0.7219 | 0.2917 | 0.7115 |
1.0047 | 111.0 | 1554 | 0.9626 | 0.7184 | 0.2901 | 0.7075 |
1.0047 | 112.0 | 1568 | 0.9367 | 0.7176 | 0.2896 | 0.7075 |
1.0047 | 113.0 | 1582 | 0.9550 | 0.7057 | 0.2838 | 0.6960 |
1.0047 | 114.0 | 1596 | 0.9140 | 0.6872 | 0.2769 | 0.6790 |
0.9031 | 115.0 | 1610 | 0.9214 | 0.6851 | 0.2781 | 0.6752 |
0.9031 | 116.0 | 1624 | 0.9040 | 0.6877 | 0.2786 | 0.6767 |
0.9031 | 117.0 | 1638 | 0.9107 | 0.6920 | 0.2811 | 0.6813 |
0.9031 | 118.0 | 1652 | 0.8947 | 0.6699 | 0.2743 | 0.6585 |
0.9031 | 119.0 | 1666 | 0.8975 | 0.6595 | 0.2715 | 0.6480 |
0.9031 | 120.0 | 1680 | 0.8817 | 0.6750 | 0.2729 | 0.6646 |
0.9031 | 121.0 | 1694 | 0.8686 | 0.6529 | 0.2670 | 0.6412 |
0.8165 | 122.0 | 1708 | 0.8622 | 0.6442 | 0.2653 | 0.6323 |
0.8165 | 123.0 | 1722 | 0.8741 | 0.6437 | 0.2653 | 0.6320 |
0.8165 | 124.0 | 1736 | 0.8656 | 0.6399 | 0.2636 | 0.6282 |
0.8165 | 125.0 | 1750 | 0.8582 | 0.6366 | 0.2628 | 0.6249 |
0.8165 | 126.0 | 1764 | 0.8547 | 0.6366 | 0.2624 | 0.6249 |
0.8165 | 127.0 | 1778 | 0.8515 | 0.6275 | 0.2606 | 0.6158 |
0.8165 | 128.0 | 1792 | 0.8515 | 0.6272 | 0.2603 | 0.6153 |
0.7588 | 129.0 | 1806 | 0.8351 | 0.6204 | 0.2565 | 0.6089 |
0.7588 | 130.0 | 1820 | 0.8311 | 0.6216 | 0.2573 | 0.6089 |
0.7588 | 131.0 | 1834 | 0.8403 | 0.6188 | 0.2579 | 0.6061 |
0.7588 | 132.0 | 1848 | 0.8281 | 0.6153 | 0.2562 | 0.6036 |
0.7588 | 133.0 | 1862 | 0.8210 | 0.6130 | 0.2560 | 0.6008 |
0.7588 | 134.0 | 1876 | 0.8312 | 0.6107 | 0.2566 | 0.5990 |
0.7588 | 135.0 | 1890 | 0.8171 | 0.6122 | 0.2547 | 0.6013 |
0.723 | 136.0 | 1904 | 0.8264 | 0.6056 | 0.2551 | 0.5940 |
0.723 | 137.0 | 1918 | 0.8117 | 0.6084 | 0.2540 | 0.5957 |
0.723 | 138.0 | 1932 | 0.8066 | 0.6018 | 0.2511 | 0.5886 |
0.723 | 139.0 | 1946 | 0.8022 | 0.6023 | 0.2525 | 0.5899 |
0.723 | 140.0 | 1960 | 0.7986 | 0.6034 | 0.2518 | 0.5912 |
0.723 | 141.0 | 1974 | 0.7937 | 0.5945 | 0.2486 | 0.5820 |
0.723 | 142.0 | 1988 | 0.8014 | 0.5950 | 0.2504 | 0.5828 |
0.6458 | 143.0 | 2002 | 0.7933 | 0.5907 | 0.2492 | 0.5759 |
0.6458 | 144.0 | 2016 | 0.7918 | 0.5922 | 0.2478 | 0.5777 |
0.6458 | 145.0 | 2030 | 0.7814 | 0.5876 | 0.2456 | 0.5734 |
0.6458 | 146.0 | 2044 | 0.7851 | 0.5866 | 0.2455 | 0.5716 |
0.6458 | 147.0 | 2058 | 0.7908 | 0.5884 | 0.2462 | 0.5741 |
0.6458 | 148.0 | 2072 | 0.7968 | 0.5894 | 0.2475 | 0.5749 |
0.6458 | 149.0 | 2086 | 0.7879 | 0.5851 | 0.2458 | 0.5698 |
0.6326 | 150.0 | 2100 | 0.7997 | 0.5835 | 0.2466 | 0.5681 |
0.6326 | 151.0 | 2114 | 0.7859 | 0.5841 | 0.2454 | 0.5683 |
0.6326 | 152.0 | 2128 | 0.7836 | 0.5785 | 0.2431 | 0.5620 |
0.6326 | 153.0 | 2142 | 0.7778 | 0.5769 | 0.2408 | 0.5617 |
0.6326 | 154.0 | 2156 | 0.7653 | 0.5731 | 0.2394 | 0.5574 |
0.6326 | 155.0 | 2170 | 0.7690 | 0.5790 | 0.2407 | 0.5627 |
0.6326 | 156.0 | 2184 | 0.7688 | 0.5731 | 0.2389 | 0.5574 |
0.6326 | 157.0 | 2198 | 0.7631 | 0.5703 | 0.2383 | 0.5546 |
0.583 | 158.0 | 2212 | 0.7584 | 0.5744 | 0.2396 | 0.5587 |
0.583 | 159.0 | 2226 | 0.7607 | 0.5691 | 0.2385 | 0.5531 |
0.583 | 160.0 | 2240 | 0.7651 | 0.5675 | 0.2381 | 0.5521 |
0.583 | 161.0 | 2254 | 0.7572 | 0.5625 | 0.2372 | 0.5467 |
0.583 | 162.0 | 2268 | 0.7561 | 0.5637 | 0.2377 | 0.5475 |
0.583 | 163.0 | 2282 | 0.7570 | 0.5602 | 0.2354 | 0.5434 |
0.583 | 164.0 | 2296 | 0.7545 | 0.5571 | 0.2341 | 0.5411 |
0.5626 | 165.0 | 2310 | 0.7548 | 0.5582 | 0.2350 | 0.5416 |
0.5626 | 166.0 | 2324 | 0.7436 | 0.5561 | 0.2324 | 0.5391 |
0.5626 | 167.0 | 2338 | 0.7545 | 0.5546 | 0.2335 | 0.5378 |
0.5626 | 168.0 | 2352 | 0.7469 | 0.5584 | 0.2342 | 0.5416 |
0.5626 | 169.0 | 2366 | 0.7503 | 0.5536 | 0.2333 | 0.5371 |
0.5626 | 170.0 | 2380 | 0.7522 | 0.5472 | 0.2325 | 0.5305 |
0.5626 | 171.0 | 2394 | 0.7434 | 0.5508 | 0.2321 | 0.5348 |
0.5491 | 172.0 | 2408 | 0.7462 | 0.5495 | 0.2328 | 0.5328 |
0.5491 | 173.0 | 2422 | 0.7524 | 0.5482 | 0.2322 | 0.5317 |
0.5491 | 174.0 | 2436 | 0.7400 | 0.5455 | 0.2311 | 0.5289 |
0.5491 | 175.0 | 2450 | 0.7447 | 0.5510 | 0.2334 | 0.5333 |
0.5491 | 176.0 | 2464 | 0.7500 | 0.5500 | 0.2328 | 0.5320 |
0.5491 | 177.0 | 2478 | 0.7471 | 0.5498 | 0.2331 | 0.5322 |
0.5491 | 178.0 | 2492 | 0.7496 | 0.5513 | 0.2328 | 0.5340 |
0.5339 | 179.0 | 2506 | 0.7521 | 0.5505 | 0.2322 | 0.5330 |
0.5339 | 180.0 | 2520 | 0.7461 | 0.5467 | 0.2315 | 0.5289 |
0.5339 | 181.0 | 2534 | 0.7466 | 0.5460 | 0.2312 | 0.5289 |
0.5339 | 182.0 | 2548 | 0.7436 | 0.5470 | 0.2312 | 0.5305 |
0.5339 | 183.0 | 2562 | 0.7439 | 0.5427 | 0.2308 | 0.5254 |
0.5339 | 184.0 | 2576 | 0.7428 | 0.5434 | 0.2309 | 0.5267 |
0.5339 | 185.0 | 2590 | 0.7456 | 0.5439 | 0.2309 | 0.5267 |
0.5208 | 186.0 | 2604 | 0.7444 | 0.5449 | 0.2308 | 0.5272 |
0.5208 | 187.0 | 2618 | 0.7438 | 0.5444 | 0.2306 | 0.5269 |
0.5208 | 188.0 | 2632 | 0.7487 | 0.5439 | 0.2310 | 0.5272 |
0.5208 | 189.0 | 2646 | 0.7471 | 0.5422 | 0.2300 | 0.5254 |
0.5208 | 190.0 | 2660 | 0.7436 | 0.5422 | 0.2304 | 0.5249 |
0.5208 | 191.0 | 2674 | 0.7428 | 0.5414 | 0.2299 | 0.5236 |
0.5208 | 192.0 | 2688 | 0.7454 | 0.5414 | 0.2295 | 0.5239 |
0.5432 | 193.0 | 2702 | 0.7460 | 0.5442 | 0.2299 | 0.5267 |
0.5432 | 194.0 | 2716 | 0.7450 | 0.5409 | 0.2295 | 0.5231 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.4.1+cu121
- Datasets 3.2.0
- Tokenizers 0.13.3
- Downloads last month
- 169
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support