wav2vec2-large-xlsr-grosman-1b-words-aug-exp-1
This model is a fine-tuned version of jonatasgrosman/wav2vec2-xls-r-1b-portuguese on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 17.0754
- Wer: 1.0
- Cer: 0.9215
- Per: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 200
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Per |
---|---|---|---|---|---|---|
18.8645 | 1.0 | 126 | 17.0754 | 1.0 | 0.9215 | 1.0 |
6.2004 | 2.0 | 253 | 27.5514 | 1.0019 | 0.9311 | 1.0019 |
4.7666 | 3.0 | 379 | 26.1635 | 1.0019 | 0.9187 | 1.0019 |
4.1703 | 4.0 | 506 | 29.2433 | 1.0009 | 0.8744 | 1.0009 |
3.8788 | 5.0 | 632 | 26.7764 | 1.0123 | 0.7640 | 1.0123 |
3.4295 | 6.0 | 759 | 24.4870 | 1.0057 | 0.7191 | 1.0057 |
3.4233 | 7.0 | 885 | 27.2557 | 1.0283 | 0.6642 | 1.0283 |
2.85 | 8.0 | 1012 | 20.5990 | 0.9953 | 0.5631 | 0.9877 |
2.4174 | 9.0 | 1138 | 24.5312 | 0.8594 | 0.4160 | 0.8566 |
1.8357 | 10.0 | 1265 | 24.3372 | 0.6840 | 0.3444 | 0.6821 |
1.5625 | 11.0 | 1391 | 25.7571 | 0.6123 | 0.3061 | 0.6057 |
1.5615 | 12.0 | 1518 | 23.9230 | 0.5811 | 0.2910 | 0.5726 |
1.087 | 13.0 | 1644 | 26.9014 | 0.5660 | 0.2785 | 0.5566 |
0.9967 | 14.0 | 1771 | 27.5072 | 0.5868 | 0.2811 | 0.5783 |
1.0407 | 15.0 | 1897 | 24.3373 | 0.5481 | 0.2662 | 0.5396 |
0.8217 | 16.0 | 2024 | 27.1505 | 0.4925 | 0.2625 | 0.4858 |
0.8024 | 17.0 | 2150 | 26.4263 | 0.5208 | 0.2644 | 0.5123 |
0.763 | 18.0 | 2277 | 25.0467 | 0.4792 | 0.2562 | 0.4717 |
0.6881 | 19.0 | 2403 | 26.9578 | 0.5019 | 0.2639 | 0.4934 |
0.5914 | 20.0 | 2530 | 26.7000 | 0.4679 | 0.2552 | 0.4594 |
0.6033 | 21.0 | 2656 | 28.2333 | 0.4623 | 0.2453 | 0.4547 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.13.3
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support