wav2vec2-large-xlsr-grosman-1b-words-aug-exp-1

This model is a fine-tuned version of jonatasgrosman/wav2vec2-xls-r-1b-portuguese on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 17.0754
  • Wer: 1.0
  • Cer: 0.9215
  • Per: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 200
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer Per
18.8645 1.0 126 17.0754 1.0 0.9215 1.0
6.2004 2.0 253 27.5514 1.0019 0.9311 1.0019
4.7666 3.0 379 26.1635 1.0019 0.9187 1.0019
4.1703 4.0 506 29.2433 1.0009 0.8744 1.0009
3.8788 5.0 632 26.7764 1.0123 0.7640 1.0123
3.4295 6.0 759 24.4870 1.0057 0.7191 1.0057
3.4233 7.0 885 27.2557 1.0283 0.6642 1.0283
2.85 8.0 1012 20.5990 0.9953 0.5631 0.9877
2.4174 9.0 1138 24.5312 0.8594 0.4160 0.8566
1.8357 10.0 1265 24.3372 0.6840 0.3444 0.6821
1.5625 11.0 1391 25.7571 0.6123 0.3061 0.6057
1.5615 12.0 1518 23.9230 0.5811 0.2910 0.5726
1.087 13.0 1644 26.9014 0.5660 0.2785 0.5566
0.9967 14.0 1771 27.5072 0.5868 0.2811 0.5783
1.0407 15.0 1897 24.3373 0.5481 0.2662 0.5396
0.8217 16.0 2024 27.1505 0.4925 0.2625 0.4858
0.8024 17.0 2150 26.4263 0.5208 0.2644 0.5123
0.763 18.0 2277 25.0467 0.4792 0.2562 0.4717
0.6881 19.0 2403 26.9578 0.5019 0.2639 0.4934
0.5914 20.0 2530 26.7000 0.4679 0.2552 0.4594
0.6033 21.0 2656 28.2333 0.4623 0.2453 0.4547

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.13.3
Downloads last month
4
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support