wav2vec2-large-xlsr-grosman-53-texts-exp-1

This model is a fine-tuned version of jonatasgrosman/wav2vec2-large-xlsr-53-portuguese on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 6.9233
  • Wer: 0.9898
  • Cer: 0.8761
  • Per: 0.9896

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 200
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer Per
103.0605 1.0 14 22.9419 1.0 4.5340 1.0
103.0605 2.0 28 11.7027 1.0 0.9520 1.0
103.0605 3.0 42 10.4194 1.0 0.9536 1.0
103.0605 4.0 56 10.1827 1.0094 0.9144 1.0094
103.0605 5.0 70 9.3103 1.0 0.9537 1.0
103.0605 6.0 84 10.7017 0.9990 0.8930 0.9990
103.0605 7.0 98 9.0149 0.9914 0.8884 0.9914
20.3215 8.0 112 8.8777 1.0079 0.8647 1.0079
20.3215 9.0 126 8.3998 0.9980 0.8853 0.9980
20.3215 10.0 140 8.5023 0.9873 0.8483 0.9873
20.3215 11.0 154 10.3925 0.9919 0.8857 0.9919
20.3215 12.0 168 8.0281 0.9868 0.8428 0.9868
20.3215 13.0 182 7.4940 0.9837 0.8383 0.9837
20.3215 14.0 196 8.3053 0.9985 0.8501 0.9985
8.131 15.0 210 9.6699 0.9873 0.8626 0.9873
8.131 16.0 224 9.2462 1.0018 0.8801 1.0018
8.131 17.0 238 7.6267 1.0152 0.8154 1.0152
8.131 18.0 252 7.4720 0.9904 0.8806 0.9904
8.131 19.0 266 7.2126 1.0015 0.8390 1.0015
8.131 20.0 280 8.0197 0.9947 0.8710 0.9947
8.131 21.0 294 7.7732 0.9924 0.8575 0.9924
5.9777 22.0 308 7.2334 0.9947 0.8547 0.9947
5.9777 23.0 322 8.4644 0.9924 0.8911 0.9924
5.9777 24.0 336 6.9233 0.9898 0.8761 0.9896
5.9777 25.0 350 9.3194 1.0 0.9350 1.0
5.9777 26.0 364 8.0294 0.9987 0.9365 0.9987
5.9777 27.0 378 9.5686 0.9992 0.9281 0.9992
5.9777 28.0 392 9.3024 1.0 0.9418 1.0
4.8478 29.0 406 9.2086 0.9972 0.9184 0.9972
4.8478 30.0 420 9.6811 0.9995 0.9388 0.9995
4.8478 31.0 434 10.2141 0.9992 0.9401 0.9992
4.8478 32.0 448 10.5870 0.9990 0.9359 0.9990
4.8478 33.0 462 9.7545 0.9977 0.9197 0.9977
4.8478 34.0 476 9.9550 0.9987 0.9412 0.9987
4.8478 35.0 490 10.3337 0.9975 0.9280 0.9975
4.0401 36.0 504 10.0079 0.9997 0.9336 0.9997
4.0401 37.0 518 11.0687 0.9982 0.9373 0.9982
4.0401 38.0 532 9.6581 1.0 0.9502 1.0
4.0401 39.0 546 9.3628 0.9987 0.9310 0.9987
4.0401 40.0 560 9.5577 0.9985 0.9305 0.9985
4.0401 41.0 574 10.5525 0.9997 0.9465 0.9997
4.0401 42.0 588 9.8161 0.9995 0.9411 0.9995
3.8322 43.0 602 10.0675 0.9997 0.9461 0.9997
3.8322 44.0 616 9.8196 0.9997 0.9358 0.9997

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.13.3
Downloads last month
25
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support