wav2vec2-large-xlsr-grosman-53-texts-exp-1
This model is a fine-tuned version of jonatasgrosman/wav2vec2-large-xlsr-53-portuguese on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 6.9233
- Wer: 0.9898
- Cer: 0.8761
- Per: 0.9896
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 200
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Per |
---|---|---|---|---|---|---|
103.0605 | 1.0 | 14 | 22.9419 | 1.0 | 4.5340 | 1.0 |
103.0605 | 2.0 | 28 | 11.7027 | 1.0 | 0.9520 | 1.0 |
103.0605 | 3.0 | 42 | 10.4194 | 1.0 | 0.9536 | 1.0 |
103.0605 | 4.0 | 56 | 10.1827 | 1.0094 | 0.9144 | 1.0094 |
103.0605 | 5.0 | 70 | 9.3103 | 1.0 | 0.9537 | 1.0 |
103.0605 | 6.0 | 84 | 10.7017 | 0.9990 | 0.8930 | 0.9990 |
103.0605 | 7.0 | 98 | 9.0149 | 0.9914 | 0.8884 | 0.9914 |
20.3215 | 8.0 | 112 | 8.8777 | 1.0079 | 0.8647 | 1.0079 |
20.3215 | 9.0 | 126 | 8.3998 | 0.9980 | 0.8853 | 0.9980 |
20.3215 | 10.0 | 140 | 8.5023 | 0.9873 | 0.8483 | 0.9873 |
20.3215 | 11.0 | 154 | 10.3925 | 0.9919 | 0.8857 | 0.9919 |
20.3215 | 12.0 | 168 | 8.0281 | 0.9868 | 0.8428 | 0.9868 |
20.3215 | 13.0 | 182 | 7.4940 | 0.9837 | 0.8383 | 0.9837 |
20.3215 | 14.0 | 196 | 8.3053 | 0.9985 | 0.8501 | 0.9985 |
8.131 | 15.0 | 210 | 9.6699 | 0.9873 | 0.8626 | 0.9873 |
8.131 | 16.0 | 224 | 9.2462 | 1.0018 | 0.8801 | 1.0018 |
8.131 | 17.0 | 238 | 7.6267 | 1.0152 | 0.8154 | 1.0152 |
8.131 | 18.0 | 252 | 7.4720 | 0.9904 | 0.8806 | 0.9904 |
8.131 | 19.0 | 266 | 7.2126 | 1.0015 | 0.8390 | 1.0015 |
8.131 | 20.0 | 280 | 8.0197 | 0.9947 | 0.8710 | 0.9947 |
8.131 | 21.0 | 294 | 7.7732 | 0.9924 | 0.8575 | 0.9924 |
5.9777 | 22.0 | 308 | 7.2334 | 0.9947 | 0.8547 | 0.9947 |
5.9777 | 23.0 | 322 | 8.4644 | 0.9924 | 0.8911 | 0.9924 |
5.9777 | 24.0 | 336 | 6.9233 | 0.9898 | 0.8761 | 0.9896 |
5.9777 | 25.0 | 350 | 9.3194 | 1.0 | 0.9350 | 1.0 |
5.9777 | 26.0 | 364 | 8.0294 | 0.9987 | 0.9365 | 0.9987 |
5.9777 | 27.0 | 378 | 9.5686 | 0.9992 | 0.9281 | 0.9992 |
5.9777 | 28.0 | 392 | 9.3024 | 1.0 | 0.9418 | 1.0 |
4.8478 | 29.0 | 406 | 9.2086 | 0.9972 | 0.9184 | 0.9972 |
4.8478 | 30.0 | 420 | 9.6811 | 0.9995 | 0.9388 | 0.9995 |
4.8478 | 31.0 | 434 | 10.2141 | 0.9992 | 0.9401 | 0.9992 |
4.8478 | 32.0 | 448 | 10.5870 | 0.9990 | 0.9359 | 0.9990 |
4.8478 | 33.0 | 462 | 9.7545 | 0.9977 | 0.9197 | 0.9977 |
4.8478 | 34.0 | 476 | 9.9550 | 0.9987 | 0.9412 | 0.9987 |
4.8478 | 35.0 | 490 | 10.3337 | 0.9975 | 0.9280 | 0.9975 |
4.0401 | 36.0 | 504 | 10.0079 | 0.9997 | 0.9336 | 0.9997 |
4.0401 | 37.0 | 518 | 11.0687 | 0.9982 | 0.9373 | 0.9982 |
4.0401 | 38.0 | 532 | 9.6581 | 1.0 | 0.9502 | 1.0 |
4.0401 | 39.0 | 546 | 9.3628 | 0.9987 | 0.9310 | 0.9987 |
4.0401 | 40.0 | 560 | 9.5577 | 0.9985 | 0.9305 | 0.9985 |
4.0401 | 41.0 | 574 | 10.5525 | 0.9997 | 0.9465 | 0.9997 |
4.0401 | 42.0 | 588 | 9.8161 | 0.9995 | 0.9411 | 0.9995 |
3.8322 | 43.0 | 602 | 10.0675 | 0.9997 | 0.9461 | 0.9997 |
3.8322 | 44.0 | 616 | 9.8196 | 0.9997 | 0.9358 | 0.9997 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.4.1+cu121
- Datasets 3.2.0
- Tokenizers 0.13.3
- Downloads last month
- 25
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support