metadata
library_name: transformers
license: apache-2.0
base_model: EleutherAI/gpt-j-6b
tags:
- generated_from_trainer
datasets:
- ToastyPigeon/disco-chat
model-index:
- name: ckpts
results: []
See axolotl config
axolotl version: 0.6.0
base_model: EleutherAI/gpt-j-6b
load_in_8bit: false
load_in_4bit: false
#plugins:
# - axolotl.integrations.liger.LigerPlugin
#liger_rope: true
#liger_rms_norm: true
#liger_glu_activation: true
#liger_fused_linear_cross_entropy: true
#unsloth_lora_mlp: true
#unsloth_lora_qkv: true
#unsloth_lora_o: true
strict: false
datasets:
- path: ToastyPigeon/disco-chat
type: completion
field: text
split: train
dataset_prepared_path: last_run_prepared
#val_set_size: 0.02
output_dir: ./ckpts
sequence_len: 2048
sample_packing: false
pad_to_sequence_len: true
#wandb_project: teleut-7b-rp
#wandb_entity:
#wandb_watch:
#wandb_name:
#wandb_log_model: checkpoint
# mlflow configuration if you're using it
#mlflow_tracking_uri: https://public-tracking.mlflow-e00zzfjq11ky6jcgtv.backbone-e00bgn6e63256prmhq.msp.eu-north1.nebius.cloud
#mlflow_experiment_name: gpt-j-6b-disco-chat
#mlflow_run_name: v1
#hf_mlflow_log_artifacts: true
gradient_accumulation_steps: 4
micro_batch_size: 4
num_epochs: 2
optimizer: paged_ademamix_8bit
lr_scheduler: cosine
learning_rate: 1e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: unsloth
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
#deepspeed: deepspeed_configs/zero3_bf16.json
warmup_steps: 25
#evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 1
debug:
weight_decay: 0.01
special_tokens:
pad_token: "<|endoftext|>"
ckpts
This model is a fine-tuned version of EleutherAI/gpt-j-6b on the ToastyPigeon/disco-chat dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use paged_ademamix_8bit and the args are: No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 25
- num_epochs: 2.0
Training results
Framework versions
- Transformers 4.48.1
- Pytorch 2.5.0+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0