See axolotl config
axolotl version: 0.8.0
base_model: Qwen/Qwen2.5-7B-Instruct
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: false
load_in_8bit: false
load_in_4bit: false
strict: false
output_dir: ./outputs/out
chat_template: qwen_25
datasets:
- path: mb_base.jsonl
type: chat_template
field_messages: messages
message_field_role: role
message_field_content: content
roles:
system:
- system
user:
- user
assistant:
- assistant
dataset_prepared_path: last_run_prepared
val_set_size: 0.005
output_dir: ./outputs/out
eval_sample_packing: False
sequence_len: 8192
sample_packing: False
pad_to_sequence_len: False
wandb_project: mergedbench
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
hub_model_id: amphora/merged-bench-train-base
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
gradient_accumulation_steps: 2
micro_batch_size: 8
eval_batch_size: 4
num_epochs: 3
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 30
evals_per_epoch: 3
eval_max_new_tokens: 128
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed: deepspeed_configs/zero3_bf16.json
weight_decay: 0.01
fsdp:
fsdp_config:
special_tokens:
merged-bench-train-base
This model is a fine-tuned version of Qwen/Qwen2.5-7B-Instruct on the mb_base.jsonl dataset. It achieves the following results on the evaluation set:
- Loss: 0.3173
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 30
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.0382 | 0.0059 | 1 | 1.0319 |
0.3455 | 0.3373 | 57 | 0.3270 |
0.3169 | 0.6746 | 114 | 0.3173 |
0.2116 | 1.0118 | 171 | 0.3009 |
0.2064 | 1.3491 | 228 | 0.3020 |
0.1871 | 1.6864 | 285 | 0.2955 |
0.1069 | 2.0237 | 342 | 0.2880 |
0.1014 | 2.3609 | 399 | 0.3192 |
0.0955 | 2.6982 | 456 | 0.3173 |
Framework versions
- Transformers 4.51.0
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 22
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support