rag-topic-model

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("apostolosfilippas/rag-topic-model")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 5
  • Number of training documents: 168
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 for - klarna - to - my - the 15 -1_for_klarna_to_my
0 klarna - my - declined - for - ve 51 0_klarna_my_declined_for
1 payment - to - the - my - for 50 1_payment_to_the_my
2 my - klarna - and - details - account 28 2_my_klarna_and_details
3 store - the - it - refund - back 24 3_store_the_it_refund

Training hyperparameters

  • calculate_probabilities: False
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: auto
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.26.4
  • HDBSCAN: 0.8.40
  • UMAP: 0.5.7
  • Pandas: 2.2.3
  • Scikit-Learn: 1.6.1
  • Sentence-transformers: 3.4.1
  • Transformers: 4.50.1
  • Numba: 0.61.2
  • Plotly: 6.0.1
  • Python: 3.11.7
Downloads last month
2
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support