English-to-Telugu Translation Model

Overview

This project is a deep learning-based English-to-Telugu translation model trained on a custom dataset. It uses Hugging Face Transformers for NLP and was developed in Google Colab. The model can be used for translating sentences with improved contextual accuracy.

Features

โœ… Translates English text to Telugu
โœ… Trained on a custom bilingual dataset
โœ… Uses Transformer-based model โœ… Implemented and trained in Google Colab
โœ… Can be fine-tuned for better accuracy

Tech Stack

  • Programming Language: Python
  • Framework: Hugging Face Transformers
  • Model: mBART (Fine-tuned)
  • Libraries:
    • transformers (Hugging Face)
    • torch (PyTorch)
    • sentencepiece (Tokenization)
  • Platform: Google Colab

Dataset

  • Used a custom English-Telugu parallel corpus
  • Preprocessed using:
    • Tokenization (SentencePiece / WordPiece)
    • Lowercasing & Cleaning
    • Removing noisy data

Model Training

Training was done in Google Colab using a GPU. Hereโ€™s a snippet of the fine-tuning process:

from transformers import MarianMTModel, MarianTokenizer, Trainer, TrainingArguments

Load pre-trained model & tokenizer

model_name = "aryaumesh/english-to-telugu" # Base model tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name)

Preprocess dataset (example)

def encode_data(texts): return tokenizer(texts, padding=True, truncation=True, return_tensors="pt")

Training arguments

training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=8, num_train_epochs=3, save_steps=1000, save_total_limit=2, )

trainer = Trainer( model=model, args=training_args, train_dataset=custom_dataset, )

trainer.train()

Run the Model

def translate(text): inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) translated = model.generate(**inputs) return tokenizer.decode(translated[0], skip_special_tokens=True)

english_text = "Good morning, how are you?" telugu_translation = translate(english_text) print("Translated Text:", telugu_translation)

Future Improvements

๐Ÿ”น Train on a larger dataset for better accuracy
๐Ÿ”น Optimize inference speed for real-time use
๐Ÿ”น Deploy as a cloud-based API (AWS/GCP)


Downloads last month
0
Safetensors
Model size
611M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for archita091234/fine-tuned-translation

Finetuned
(1)
this model

Dataset used to train archita091234/fine-tuned-translation