archita091234 commited on
Commit
200c96e
·
verified ·
1 Parent(s): 5b407ae

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +77 -191
README.md CHANGED
@@ -11,199 +11,85 @@ base_model:
11
  - aryaumesh/english-to-telugu
12
  ---
13
 
14
- # Model Card for Model ID
15
 
16
- <!-- Provide a quick summary of what the model is/does. -->
17
- Text-to-Text Transformer (Language Translation) English->Telugu
18
 
 
19
 
20
- ## Model Details
21
-
22
- ### Model Description
23
-
24
- <!-- Provide a longer summary of what this model is. -->
25
- Sahodari is designed to translate English Text into Telugu with maximum accuracy, preserving the context and meaning. It is suitable for Educational tools, for non-local native speaker. Thus dealing with multilingual apraches and making communication process more effective and easy.
26
-
27
-
28
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
29
-
30
- - **Developed by:** [More Information Needed]
31
- - **Funded by [optional]:** [More Information Needed]
32
- - **Shared by [optional]:** [More Information Needed]
33
- - **Model type:** [More Information Needed]
34
- - **Language(s) (NLP):** [More Information Needed]
35
- - **License:** [More Information Needed]
36
- - **Finetuned from model [optional]:** [More Information Needed]
37
-
38
- ### Model Sources [optional]
39
-
40
- <!-- Provide the basic links for the model. -->
41
-
42
- - **Repository:** [More Information Needed]
43
- - **Paper [optional]:** [More Information Needed]
44
- - **Demo [optional]:** [More Information Needed]
45
-
46
- ## Uses
47
-
48
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
49
-
50
- ### Direct Use
51
-
52
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
53
-
54
- [More Information Needed]
55
-
56
- ### Downstream Use [optional]
57
-
58
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
59
-
60
- [More Information Needed]
61
-
62
- ### Out-of-Scope Use
63
-
64
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
65
-
66
- [More Information Needed]
67
-
68
- ## Bias, Risks, and Limitations
69
-
70
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
71
-
72
- [More Information Needed]
73
-
74
- ### Recommendations
75
-
76
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
77
-
78
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
79
-
80
- ## How to Get Started with the Model
81
-
82
- Use the code below to get started with the model.
83
-
84
- [More Information Needed]
85
-
86
- ## Training Details
87
-
88
- ### Training Data
89
-
90
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
91
-
92
- [More Information Needed]
93
-
94
- ### Training Procedure
95
-
96
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
97
-
98
- #### Preprocessing [optional]
99
-
100
- [More Information Needed]
101
-
102
-
103
- #### Training Hyperparameters
104
-
105
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
106
-
107
- #### Speeds, Sizes, Times [optional]
108
-
109
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
110
-
111
- [More Information Needed]
112
-
113
- ## Evaluation
114
-
115
- <!-- This section describes the evaluation protocols and provides the results. -->
116
-
117
- ### Testing Data, Factors & Metrics
118
-
119
- #### Testing Data
120
-
121
- <!-- This should link to a Dataset Card if possible. -->
122
-
123
- [More Information Needed]
124
-
125
- #### Factors
126
-
127
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
128
-
129
- [More Information Needed]
130
-
131
- #### Metrics
132
-
133
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
134
-
135
- [More Information Needed]
136
-
137
- ### Results
138
-
139
- [More Information Needed]
140
-
141
- #### Summary
142
-
143
-
144
-
145
- ## Model Examination [optional]
146
-
147
- <!-- Relevant interpretability work for the model goes here -->
148
-
149
- [More Information Needed]
150
-
151
- ## Environmental Impact
152
-
153
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
154
-
155
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
156
-
157
- - **Hardware Type:** [More Information Needed]
158
- - **Hours used:** [More Information Needed]
159
- - **Cloud Provider:** [More Information Needed]
160
- - **Compute Region:** [More Information Needed]
161
- - **Carbon Emitted:** [More Information Needed]
162
-
163
- ## Technical Specifications [optional]
164
-
165
- ### Model Architecture and Objective
166
-
167
- [More Information Needed]
168
-
169
- ### Compute Infrastructure
170
-
171
- [More Information Needed]
172
-
173
- #### Hardware
174
-
175
- [More Information Needed]
176
-
177
- #### Software
178
-
179
- [More Information Needed]
180
-
181
- ## Citation [optional]
182
-
183
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
184
-
185
- **BibTeX:**
186
-
187
- [More Information Needed]
188
-
189
- **APA:**
190
-
191
- [More Information Needed]
192
-
193
- ## Glossary [optional]
194
-
195
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
196
-
197
- [More Information Needed]
198
-
199
- ## More Information [optional]
200
-
201
- [More Information Needed]
202
-
203
- ## Model Card Authors [optional]
204
-
205
- [More Information Needed]
206
 
207
- ## Model Card Contact
208
 
209
- [More Information Needed]
 
11
  - aryaumesh/english-to-telugu
12
  ---
13
 
 
14
 
 
 
15
 
16
+ ---
17
 
18
+ # English-to-Telugu Translation Model
19
+
20
+ ## Overview
21
+ This project is a deep learning-based English-to-Telugu translation model trained on a custom dataset. It uses Hugging Face Transformers for NLP and was developed in Google Colab. The model can be used for translating sentences with improved contextual accuracy.
22
+
23
+ ## Features
24
+ ✅ Translates English text to Telugu
25
+ ✅ Trained on a custom bilingual dataset
26
+ Uses Transformer-based model
27
+ ✅ Implemented and trained in Google Colab
28
+ Can be fine-tuned for better accuracy
29
+
30
+ ## Tech Stack
31
+ - **Programming Language**: Python
32
+ - **Framework**: Hugging Face Transformers
33
+ - **Model**: mBART (Fine-tuned)
34
+ - **Libraries**:
35
+ - transformers (Hugging Face)
36
+ - `torch` (PyTorch)
37
+ - `sentencepiece` (Tokenization)
38
+ - **Platform**: Google Colab
39
+
40
+ ## Dataset
41
+ - Used a custom English-Telugu parallel corpus
42
+ - Preprocessed using:
43
+ - **Tokenization** (SentencePiece / WordPiece)
44
+ - **Lowercasing & Cleaning**
45
+ - **Removing noisy data**
46
+
47
+ ## Model Training
48
+ Training was done in Google Colab using a GPU. Here’s a snippet of the fine-tuning process:
49
+
50
+ from transformers import MarianMTModel, MarianTokenizer, Trainer, TrainingArguments
51
+
52
+ # Load pre-trained model & tokenizer
53
+ model_name = "aryaumesh/english-to-telugu" # Base model
54
+ tokenizer = MarianTokenizer.from_pretrained(model_name)
55
+ model = MarianMTModel.from_pretrained(model_name)
56
+
57
+ # Preprocess dataset (example)
58
+ def encode_data(texts):
59
+ return tokenizer(texts, padding=True, truncation=True, return_tensors="pt")
60
+
61
+ # Training arguments
62
+ training_args = TrainingArguments(
63
+ output_dir="./results",
64
+ per_device_train_batch_size=8,
65
+ num_train_epochs=3,
66
+ save_steps=1000,
67
+ save_total_limit=2,
68
+ )
69
+
70
+ trainer = Trainer(
71
+ model=model,
72
+ args=training_args,
73
+ train_dataset=custom_dataset,
74
+ )
75
+
76
+ trainer.train()
77
+
78
+ ## Run the Model
79
+
80
+ def translate(text):
81
+ inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
82
+ translated = model.generate(**inputs)
83
+ return tokenizer.decode(translated[0], skip_special_tokens=True)
84
+
85
+ english_text = "Good morning, how are you?"
86
+ telugu_translation = translate(english_text)
87
+ print("Translated Text:", telugu_translation)
88
+
89
+ ## Future Improvements
90
+ 🔹 Train on a larger dataset for better accuracy
91
+ 🔹 Optimize inference speed for real-time use
92
+ 🔹 Deploy as a cloud-based API (AWS/GCP)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93
 
94
+ ---
95