PyLate model based on answerdotai/ModernBERT-base
This is a PyLate model finetuned from answerdotai/ModernBERT-base. It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.
Model Details
Model Description
- Model Type: PyLate model
- Base model: answerdotai/ModernBERT-base
- Document Length: 180 tokens
- Query Length: 32 tokens
- Output Dimensionality: 128 tokens
- Similarity Function: MaxSim
Model Sources
- Documentation: PyLate Documentation
- Repository: PyLate on GitHub
- Hugging Face: PyLate models on Hugging Face
Full Model Architecture
ColBERT(
(0): Transformer({'max_seq_length': 31, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Dense({'in_features': 768, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
)
Usage
First install the PyLate library:
pip install -U pylate
Retrieval
PyLate provides a streamlined interface to index and retrieve documents using ColBERT models. The index leverages the Voyager HNSW index to efficiently handle document embeddings and enable fast retrieval.
Indexing documents
First, load the ColBERT model and initialize the Voyager index, then encode and index your documents:
from pylate import indexes, models, retrieve
# Step 1: Load the ColBERT model
model = models.ColBERT(
model_name_or_path=pylate_model_id,
)
# Step 2: Initialize the Voyager index
index = indexes.Voyager(
index_folder="pylate-index",
index_name="index",
override=True, # This overwrites the existing index if any
)
# Step 3: Encode the documents
documents_ids = ["1", "2", "3"]
documents = ["document 1 text", "document 2 text", "document 3 text"]
documents_embeddings = model.encode(
documents,
batch_size=32,
is_query=False, # Ensure that it is set to False to indicate that these are documents, not queries
show_progress_bar=True,
)
# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
index.add_documents(
documents_ids=documents_ids,
documents_embeddings=documents_embeddings,
)
Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it:
# To load an index, simply instantiate it with the correct folder/name and without overriding it
index = indexes.Voyager(
index_folder="pylate-index",
index_name="index",
)
Retrieving top-k documents for queries
Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries. To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores:
# Step 1: Initialize the ColBERT retriever
retriever = retrieve.ColBERT(index=index)
# Step 2: Encode the queries
queries_embeddings = model.encode(
["query for document 3", "query for document 1"],
batch_size=32,
is_query=True, # # Ensure that it is set to False to indicate that these are queries
show_progress_bar=True,
)
# Step 3: Retrieve top-k documents
scores = retriever.retrieve(
queries_embeddings=queries_embeddings,
k=10, # Retrieve the top 10 matches for each query
)
Reranking
If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:
from pylate import rank, models
queries = [
"query A",
"query B",
]
documents = [
["document A", "document B"],
["document 1", "document C", "document B"],
]
documents_ids = [
[1, 2],
[1, 3, 2],
]
model = models.ColBERT(
model_name_or_path=pylate_model_id,
)
queries_embeddings = model.encode(
queries,
is_query=True,
)
documents_embeddings = model.encode(
documents,
is_query=False,
)
reranked_documents = rank.rerank(
documents_ids=documents_ids,
queries_embeddings=queries_embeddings,
documents_embeddings=documents_embeddings,
)
Evaluation
Metrics
Col BERTTriplet
- Evaluated with
pylate.evaluation.colbert_triplet.ColBERTTripletEvaluator
Metric | Value |
---|---|
accuracy | 0.4484 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,893,947 training samples
- Columns:
question
,answer
, andnegative
- Approximate statistics based on the first 1000 samples:
question answer negative type string string string details - min: 9 tokens
- mean: 12.99 tokens
- max: 23 tokens
- min: 16 tokens
- mean: 31.7 tokens
- max: 32 tokens
- min: 18 tokens
- mean: 31.66 tokens
- max: 32 tokens
- Samples:
question answer negative can you get a kidney infection from drinking too much?
Alcohol and kidney disease Excessive drinking is considered to be more than four drinks per day. This doubles your risk of developing chronic kidney disease or long-term kidney damage. The risk increases if you're a smoker.
The main difference in a bladder and kidney infection is the location where bacteria has built up and infected the urinary tract system. Although most kidney infections are the result of untreated bladder infections that migrate to the kidneys, a kidney infection can occur in other ways as well.
is raw better for dogs?
Dog owners who support a raw diet claim that it promotes shinier coats and healthier skin, improved energy levels and fewer digestive problems.
Oranges, tangerines, and clementines are not toxic to dogs. However, they are high in sugars and can potentially cause GI upset if your pet eats too many of them. The citric acid in these fruits is not a concern to dogs. It can be a problem in some cats.
is bano masculine or feminine?
baño = bath masculine noun 2 ENTRIES FOUND: baño (Spanish masculine noun)
A noun is either masculine or feminine. As you might have guessed, the word for 'woman,' femme, is feminine. To say 'a woman' we say une femme. And yes, the word for 'man,' homme, is masculine.
- Loss:
pylate.losses.contrastive.Contrastive
Evaluation Dataset
Unnamed Dataset
- Size: 5,000 evaluation samples
- Columns:
question
,answer
, andnegative_1
- Approximate statistics based on the first 1000 samples:
question answer negative_1 type string string string details - min: 9 tokens
- mean: 12.97 tokens
- max: 21 tokens
- min: 17 tokens
- mean: 31.71 tokens
- max: 32 tokens
- min: 14 tokens
- mean: 31.44 tokens
- max: 32 tokens
- Samples:
question answer negative_1 who is tom holland dating?
Tom Holland seems to have confirmed his new romance with girlfriend Nadia Parkes by taking their relationship Instagram official. The Spider-Man star, 24, is said to have been dating Nadia, also 24, for the past few months, with the pair isolating together at Tom's home in London during the coronavirus pandemic.
Patrick Holland is Tom Holland's younger brother. He is the youngest in the family.
what is iops in azure?
IOPS is the number of requests that your application is sending to the storage disks in one second. ... On an azure vm you get two paths to the disks a cached and uncached path, a DS14_v2 can get a max of 512 MB/sec cached (the disks are attached using read only or write caching) and 768 MB/sec uncached.
What is an Azure resource? In Azure, the term resource refers to an entity managed by Azure. For example, virtual machines, virtual networks, and storage accounts are all referred to as Azure resources.
how do i convert excel to csv file?
['In your Excel spreadsheet, click File.', 'Click Save As.', 'Click Browse to choose where you want to save your file.', 'Select "CSV" from the "Save as type" drop-down menu.', 'Click Save.']
['Upload CSV-file. Click "Choose File" button to select a csv file on your computer. CSV file size can be up to 50 Mb.', 'Convert CSV to TXT. Click "Convert" button to start conversion.', 'Download your TXT. When the conversion process is complete, you can download the TXT file.']
- Loss:
pylate.losses.contrastive.Contrastive
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 128per_device_eval_batch_size
: 128learning_rate
: 3e-06num_train_epochs
: 1warmup_ratio
: 0.1seed
: 12bf16
: Truedataloader_num_workers
: 12load_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 128per_device_eval_batch_size
: 128per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 3e-06weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 12data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 12dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | accuracy |
---|---|---|---|
0 | 0 | - | 0.4484 |
0.0001 | 1 | 21.3973 | - |
0.0135 | 200 | 15.2155 | - |
0.0270 | 400 | 6.7412 | - |
0.0405 | 600 | 4.5786 | - |
0.0541 | 800 | 2.0501 | - |
0.0676 | 1000 | 1.2267 | - |
0.0811 | 1200 | 0.9833 | - |
0.0946 | 1400 | 0.8401 | - |
0.1081 | 1600 | 0.7528 | - |
0.1216 | 1800 | 0.6987 | - |
0.1352 | 2000 | 0.6581 | - |
0.1487 | 2200 | 0.6151 | - |
0.1622 | 2400 | 0.5728 | - |
0.1757 | 2600 | 0.553 | - |
0.1892 | 2800 | 0.5239 | - |
0.2027 | 3000 | 0.5197 | - |
0.2163 | 3200 | 0.4953 | - |
0.2298 | 3400 | 0.4798 | - |
0.2433 | 3600 | 0.4668 | - |
0.2568 | 3800 | 0.4491 | - |
0.2703 | 4000 | 0.4574 | - |
0.2838 | 4200 | 0.4403 | - |
0.2974 | 4400 | 0.4219 | - |
0.3109 | 4600 | 0.4192 | - |
0.3244 | 4800 | 0.4082 | - |
0.3379 | 5000 | 0.4084 | - |
0.3514 | 5200 | 0.4073 | - |
0.3649 | 5400 | 0.3949 | - |
0.3785 | 5600 | 0.3844 | - |
0.3920 | 5800 | 0.3852 | - |
0.4055 | 6000 | 0.3645 | - |
0.4190 | 6200 | 0.3757 | - |
0.4325 | 6400 | 0.3635 | - |
0.4460 | 6600 | 0.3646 | - |
0.4596 | 6800 | 0.3606 | - |
0.4731 | 7000 | 0.3527 | - |
0.4866 | 7200 | 0.3448 | - |
0.5001 | 7400 | 0.3405 | - |
0.5136 | 7600 | 0.3386 | - |
0.5271 | 7800 | 0.3331 | - |
0.5407 | 8000 | 0.3356 | - |
0.5542 | 8200 | 0.3341 | - |
0.5677 | 8400 | 0.3317 | - |
0.5812 | 8600 | 0.3256 | - |
0.5947 | 8800 | 0.3202 | - |
0.6082 | 9000 | 0.3231 | - |
0.6217 | 9200 | 0.3217 | - |
0.6353 | 9400 | 0.3286 | - |
0.6488 | 9600 | 0.3126 | - |
0.6623 | 9800 | 0.3169 | - |
0.6758 | 10000 | 0.3165 | - |
0.6893 | 10200 | 0.3045 | - |
0.7028 | 10400 | 0.3047 | - |
0.7164 | 10600 | 0.3059 | - |
0.7299 | 10800 | 0.3055 | - |
0.7434 | 11000 | 0.3021 | - |
0.7569 | 11200 | 0.3023 | - |
0.7704 | 11400 | 0.3016 | - |
0.7839 | 11600 | 0.2959 | - |
0.7975 | 11800 | 0.3044 | - |
0.8110 | 12000 | 0.3014 | - |
0.8245 | 12200 | 0.2936 | - |
0.8380 | 12400 | 0.3006 | - |
0.8515 | 12600 | 0.2868 | - |
0.8650 | 12800 | 0.289 | - |
0.8786 | 13000 | 0.2898 | - |
0.8921 | 13200 | 0.2959 | - |
0.9056 | 13400 | 0.2853 | - |
0.9191 | 13600 | 0.2941 | - |
0.9326 | 13800 | 0.3021 | - |
0.9461 | 14000 | 0.2841 | - |
0.9597 | 14200 | 0.2855 | - |
0.9732 | 14400 | 0.288 | - |
0.9867 | 14600 | 0.2892 | - |
Framework Versions
- Python: 3.11.0
- Sentence Transformers: 4.0.1
- PyLate: 1.1.7
- Transformers: 4.48.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084"
}
PyLate
@misc{PyLate,
title={PyLate: Flexible Training and Retrieval for Late Interaction Models},
author={Chaffin, Antoine and Sourty, Raphaël},
url={https://github.com/lightonai/pylate},
year={2024}
}
- Downloads last month
- 10
Model tree for ayushexel/colbert-ModernBERT-base-1-neg-1-epoch-gooaq-1995000-final
Base model
answerdotai/ModernBERT-base