PyLate model based on answerdotai/answerai-colbert-small-v1

This is a PyLate model finetuned from answerdotai/answerai-colbert-small-v1. It maps sentences & paragraphs to sequences of 96-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.

Model Details

Model Description

  • Model Type: PyLate model
  • Base model: answerdotai/answerai-colbert-small-v1
  • Document Length: 300 tokens
  • Query Length: 32 tokens
  • Output Dimensionality: 96 tokens
  • Similarity Function: MaxSim

Model Sources

Full Model Architecture

ColBERT(
  (0): Transformer({'max_seq_length': 31, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Dense({'in_features': 384, 'out_features': 96, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
)

Usage

First install the PyLate library:

pip install -U pylate

Retrieval

PyLate provides a streamlined interface to index and retrieve documents using ColBERT models. The index leverages the Voyager HNSW index to efficiently handle document embeddings and enable fast retrieval.

Indexing documents

First, load the ColBERT model and initialize the Voyager index, then encode and index your documents:

from pylate import indexes, models, retrieve

# Step 1: Load the ColBERT model
model = models.ColBERT(
    model_name_or_path=ayushexel/colbert-answerai-colbert-small-v1-1-neg-1-epoch-gooaq-1995000,
)

# Step 2: Initialize the Voyager index
index = indexes.Voyager(
    index_folder="pylate-index",
    index_name="index",
    override=True,  # This overwrites the existing index if any
)

# Step 3: Encode the documents
documents_ids = ["1", "2", "3"]
documents = ["document 1 text", "document 2 text", "document 3 text"]

documents_embeddings = model.encode(
    documents,
    batch_size=32,
    is_query=False,  # Ensure that it is set to False to indicate that these are documents, not queries
    show_progress_bar=True,
)

# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
index.add_documents(
    documents_ids=documents_ids,
    documents_embeddings=documents_embeddings,
)

Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it:

# To load an index, simply instantiate it with the correct folder/name and without overriding it
index = indexes.Voyager(
    index_folder="pylate-index",
    index_name="index",
)

Retrieving top-k documents for queries

Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries. To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores:

# Step 1: Initialize the ColBERT retriever
retriever = retrieve.ColBERT(index=index)

# Step 2: Encode the queries
queries_embeddings = model.encode(
    ["query for document 3", "query for document 1"],
    batch_size=32,
    is_query=True,  #  # Ensure that it is set to False to indicate that these are queries
    show_progress_bar=True,
)

# Step 3: Retrieve top-k documents
scores = retriever.retrieve(
    queries_embeddings=queries_embeddings,
    k=10,  # Retrieve the top 10 matches for each query
)

Reranking

If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:

from pylate import rank, models

queries = [
    "query A",
    "query B",
]

documents = [
    ["document A", "document B"],
    ["document 1", "document C", "document B"],
]

documents_ids = [
    [1, 2],
    [1, 3, 2],
]

model = models.ColBERT(
    model_name_or_path=ayushexel/colbert-answerai-colbert-small-v1-1-neg-1-epoch-gooaq-1995000,
)

queries_embeddings = model.encode(
    queries,
    is_query=True,
)

documents_embeddings = model.encode(
    documents,
    is_query=False,
)

reranked_documents = rank.rerank(
    documents_ids=documents_ids,
    queries_embeddings=queries_embeddings,
    documents_embeddings=documents_embeddings,
)

Evaluation

Metrics

Col BERTTriplet

  • Evaluated with pylate.evaluation.colbert_triplet.ColBERTTripletEvaluator
Metric Value
accuracy 0.5194

Training Details

Training Dataset

Unnamed Dataset

  • Size: 1,893,947 training samples
  • Columns: question, answer, and negative
  • Approximate statistics based on the first 1000 samples:
    question answer negative
    type string string string
    details
    • min: 9 tokens
    • mean: 12.91 tokens
    • max: 24 tokens
    • min: 16 tokens
    • mean: 31.72 tokens
    • max: 32 tokens
    • min: 12 tokens
    • mean: 31.75 tokens
    • max: 32 tokens
  • Samples:
    question answer negative
    what are girl names that start with g? ['Grace. Grace is one of those classic girl names that never seems to go out of style. ... ', 'Gabriella. Hebrew Origin. ... ', 'Gabrielle. French Origin. ... ', 'Genevieve. French: White wave. ... ', 'Giselle. French: Pledge. ... ', 'Gloria. Latin: Glory, renown, and respect. ... ', 'Gina. English: Abbreviation of names ending in "gina" ... ', 'Gabriela.']
    is wheat healthier than white bread? Whole wheat is processed to include all three nutritious parts, but white flour uses only the endosperm. When put head-to-head with whole wheat bread, white is a nutritional lightweight. Whole wheat is much higher in fiber, vitamins B6 and E, magnesium, zinc, folic acid and chromium. Very Strong White. Made from a blend of premium wheat, Allinson Very Strong White Bread Flour has a higher protein content and gluten strength than our strong flour. ... You can use this flour whenever your recipes call for strong white bread flour and it will produce a higher rise and a better texture.
    are the mtv vmas live? The annual VMA ceremony occurs before the end of summer and held either in late August or mid-September, and broadcast live on MTV, along with a "roadblock" simulcast across MTV's sister networks since 2014, which is utilized to maximize the ceremony's ratings. TIL MTV and VH1 were always a part of the same company and are in fact SISTER CHANNELS. Viacom is huge, they also own Comedy Central. Viacom bought MTV, VH1, BET, Nickelodeon (MTV Networks) and Showtime from Warner in 1985.
  • Loss: pylate.losses.contrastive.Contrastive

Evaluation Dataset

Unnamed Dataset

  • Size: 5,000 evaluation samples
  • Columns: question, answer, and negative_1
  • Approximate statistics based on the first 1000 samples:
    question answer negative_1
    type string string string
    details
    • min: 9 tokens
    • mean: 12.89 tokens
    • max: 24 tokens
    • min: 17 tokens
    • mean: 31.76 tokens
    • max: 32 tokens
    • min: 14 tokens
    • mean: 31.41 tokens
    • max: 32 tokens
  • Samples:
    question answer negative_1
    what season and episode does jon snow come back to life? This is the mother of all Game of Thrones spoilers, so if you haven't watched season 6 episode 2 yet, please click away now. Jon Snow is alive. Then, of course, there is Jon Snow's resurrection in Episode 2 of Season 6, an event that changed everything about Thrones.
    do the rich get richer? It's true, the rich do get richer—here's why... ... The growing wealth of the rich, and the relative stagnation of the middle class, are due in large part to diverging incomes, but investments also play an increasingly important role. And it's not just that the wealthy have more investments. It's true, the rich do get richer—here's why... ... The growing wealth of the rich, and the relative stagnation of the middle class, are due in large part to diverging incomes, but investments also play an increasingly important role. And it's not just that the wealthy have more investments.
    how long can you eat leftover lamb? Store it safely You can safely store cooked lamb for up to three days in the fridge, or for up to two months in the freezer. Make sure it's fully defrosted before using and, if it's been frozen once, don't re-freeze. Lamb. ... The meat of sheep 6 to 10 weeks old is usually sold as baby lamb, and spring lamb is from sheep of five to six months.
  • Loss: pylate.losses.contrastive.Contrastive

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • learning_rate: 3e-06
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • seed: 12
  • bf16: True
  • dataloader_num_workers: 12
  • load_best_model_at_end: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 3e-06
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 12
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 12
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss accuracy
0 0 - 0.5194
0.0001 1 3.319 -
0.0135 200 2.6741 -
0.0270 400 0.6117 -
0.0405 600 0.3176 -
0.0541 800 0.2894 -
0.0676 1000 0.2731 -
0.0811 1200 0.2621 -
0.0946 1400 0.2539 -
0.1081 1600 0.2399 -
0.1216 1800 0.238 -
0.1352 2000 0.2309 -
0.1487 2200 0.2345 -
0.1622 2400 0.2192 -
0.1757 2600 0.2155 -
0.1892 2800 0.2218 -
0.2027 3000 0.2214 -
0.2163 3200 0.2136 -
0.2298 3400 0.2136 -
0.2433 3600 0.2132 -
0.2568 3800 0.2104 -
0.2703 4000 0.212 -
0.2838 4200 0.2156 -
0.2974 4400 0.2034 -
0.3109 4600 0.2083 -
0.3244 4800 0.2082 -
0.3379 5000 0.2126 -
0.3514 5200 0.2098 -
0.3649 5400 0.2055 -
0.3785 5600 0.2024 -
0.3920 5800 0.1974 -
0.4055 6000 0.2005 -
0.4190 6200 0.205 -
0.4325 6400 0.2002 -
0.4460 6600 0.1989 -
0.4596 6800 0.1997 -
0.4731 7000 0.1954 -
0.4866 7200 0.192 -
0.5001 7400 0.2003 -
0.5136 7600 0.1942 -
0.5271 7800 0.1998 -
0.5407 8000 0.1985 -
0.5542 8200 0.1934 -
0.5677 8400 0.1951 -
0.5812 8600 0.1946 -
0.5947 8800 0.1919 -
0.6082 9000 0.2025 -
0.6217 9200 0.1924 -
0.6353 9400 0.1964 -
0.6488 9600 0.192 -
0.6623 9800 0.1884 -
0.6758 10000 0.1921 -
0.6893 10200 0.1922 -
0.7028 10400 0.1973 -
0.7164 10600 0.1911 -
0.7299 10800 0.191 -
0.7434 11000 0.1907 -
0.7569 11200 0.1866 -
0.7704 11400 0.1905 -
0.7839 11600 0.1936 -
0.7975 11800 0.193 -
0.8110 12000 0.1869 -
0.8245 12200 0.192 -
0.8380 12400 0.1889 -
0.8515 12600 0.1923 -
0.8650 12800 0.1902 -
0.8786 13000 0.1879 -
0.8921 13200 0.1918 -
0.9056 13400 0.1938 -
0.9191 13600 0.1927 -
0.9326 13800 0.1926 -
0.9461 14000 0.1939 -
0.9597 14200 0.1909 -
0.9732 14400 0.1878 -
0.9867 14600 0.1919 -

Framework Versions

  • Python: 3.11.0
  • Sentence Transformers: 4.0.1
  • PyLate: 1.1.7
  • Transformers: 4.48.2
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.6.0
  • Datasets: 3.5.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084"
}

PyLate

@misc{PyLate,
title={PyLate: Flexible Training and Retrieval for Late Interaction Models},
author={Chaffin, Antoine and Sourty, Raphaël},
url={https://github.com/lightonai/pylate},
year={2024}
}
Downloads last month
13
Safetensors
Model size
33.4M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for ayushexel/colbert-answerai-colbert-small-v1-1-neg-1-epoch-gooaq-1995000

Finetuned
(2)
this model

Evaluation results