Whisper-Large-V2-Java-v1

This model is a fine-tuned version of openai/whisper-large-v2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1591
  • Wer: 0.1198

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 20000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4753 0.0541 1000 0.4285 0.3084
0.413 0.1081 2000 0.3664 0.2545
0.4282 0.1622 3000 0.3684 0.2546
0.4007 0.2163 4000 0.3713 0.2529
0.4538 0.2703 5000 0.3791 0.2584
0.4111 0.3244 6000 0.3602 0.2457
0.3969 0.3785 7000 0.3437 0.2315
0.3393 0.4325 8000 0.3217 0.2244
0.3356 0.4866 9000 0.2984 0.2049
0.3161 0.5407 10000 0.2903 0.2001
0.3198 0.5947 11000 0.2882 0.2004
0.3023 0.6488 12000 0.2731 0.1889
0.2368 0.7029 13000 0.2201 0.1572
0.2348 0.7569 14000 0.2022 0.1488
0.2062 0.8110 15000 0.1923 0.1403
0.1859 0.8651 16000 0.1798 0.1331
0.1808 0.9191 17000 0.1700 0.1283
0.1689 0.9732 18000 0.1635 0.1253
0.0984 1.0272 19000 0.1606 0.1211
0.0853 1.0813 20000 0.1591 0.1198

Framework versions

  • Transformers 4.50.0.dev0
  • Pytorch 2.6.0+cu126
  • Datasets 2.16.0
  • Tokenizers 0.21.1
Downloads last month
14
Safetensors
Model size
1.54B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for bagasshw/whisper-large-v2-javanese-openslr-v1

Finetuned
(192)
this model