Whisper-Tiny-Java-v8

This model is a fine-tuned version of openai/whisper-tiny on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2450
  • Wer: 0.1763

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 20000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.8116 1.6 1000 0.6226 0.4752
0.4683 3.2 2000 0.4166 0.4165
0.3047 4.8 3000 0.3430 0.3496
0.1679 6.4 4000 0.3180 0.2468
0.1405 8.0 5000 0.2874 0.2118
0.0856 9.6 6000 0.2819 0.2278
0.066 11.2 7000 0.2758 0.2034
0.0534 12.8 8000 0.2712 0.2234
0.044 14.4 9000 0.2690 0.2009
0.0393 16.0 10000 0.2669 0.1931
0.0344 17.6 11000 0.2601 0.1887
0.0292 19.2 12000 0.2627 0.1809
0.0272 20.8 13000 0.2597 0.1832
0.0231 22.4 14000 0.2556 0.1814
0.0223 24.0 15000 0.2562 0.1828
0.0192 25.6 16000 0.2534 0.1802
0.0167 27.2 17000 0.2512 0.1763
0.0178 28.8 18000 0.2496 0.1794
0.0143 30.4 19000 0.2461 0.1748
0.0147 32.0 20000 0.2450 0.1763

Framework versions

  • Transformers 4.50.0.dev0
  • Pytorch 2.7.0+cu128
  • Datasets 2.16.0
  • Tokenizers 0.21.1
Downloads last month
0
Safetensors
Model size
37.8M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for bagasshw/whisper-tiny-javanese-openslr-v8

Finetuned
(1492)
this model