Files changed (1) hide show
  1. README.md +169 -155
README.md CHANGED
@@ -1,156 +1,170 @@
1
- ---
2
- library_name: peft
3
- license: apache-2.0
4
- base_model: Qwen/Qwen2.5-14B-Instruct
5
- tags:
6
- - axolotl
7
- - generated_from_trainer
8
- model-index:
9
- - name: 9ee82de8-fcc7-416a-bad1-e9aa6e6e6876
10
- results: []
11
- ---
12
-
13
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
- should probably proofread and complete it, then remove this comment. -->
15
-
16
- [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
- <details><summary>See axolotl config</summary>
18
-
19
- axolotl version: `0.4.1`
20
- ```yaml
21
- adapter: lora
22
- base_model: Qwen/Qwen2.5-14B-Instruct
23
- bf16: true
24
- chat_template: llama3
25
- dataset_prepared_path: null
26
- datasets:
27
- - data_files:
28
- - 437b2ec4d0ba8f5d_train_data.json
29
- ds_type: json
30
- format: custom
31
- path: /workspace/input_data/437b2ec4d0ba8f5d_train_data.json
32
- type:
33
- field_input: conn_state
34
- field_instruction: proto
35
- field_output: label
36
- format: '{instruction} {input}'
37
- no_input_format: '{instruction}'
38
- system_format: '{system}'
39
- system_prompt: ''
40
- debug: null
41
- deepspeed: null
42
- device_map: auto
43
- early_stopping_patience: 3
44
- eval_max_new_tokens: 128
45
- eval_steps: 25
46
- eval_table_size: null
47
- evals_per_epoch: null
48
- flash_attention: false
49
- fp16: false
50
- fsdp: null
51
- fsdp_config: null
52
- gradient_accumulation_steps: 4
53
- gradient_checkpointing: true
54
- group_by_length: false
55
- hub_model_id: bbytxt/9ee82de8-fcc7-416a-bad1-e9aa6e6e6876
56
- hub_repo: null
57
- hub_strategy: checkpoint
58
- hub_token: null
59
- learning_rate: 0.0001
60
- load_in_4bit: false
61
- load_in_8bit: false
62
- local_rank: null
63
- logging_steps: 1
64
- lora_alpha: 128
65
- lora_dropout: 0.05
66
- lora_fan_in_fan_out: null
67
- lora_model_dir: null
68
- lora_r: 64
69
- lora_target_linear: true
70
- lr_scheduler: cosine
71
- max_memory:
72
- 0: 70GB
73
- max_steps: 50
74
- micro_batch_size: 8
75
- mlflow_experiment_name: /tmp/437b2ec4d0ba8f5d_train_data.json
76
- model_type: AutoModelForCausalLM
77
- num_epochs: 3
78
- optimizer: adamw_bnb_8bit
79
- output_dir: miner_id_24
80
- pad_to_sequence_len: true
81
- resume_from_checkpoint: null
82
- s2_attention: null
83
- sample_packing: false
84
- save_steps: 25
85
- saves_per_epoch: null
86
- sequence_len: 1024
87
- strict: false
88
- tf32: false
89
- tokenizer_type: AutoTokenizer
90
- train_on_inputs: false
91
- trust_remote_code: true
92
- val_set_size: 0.05
93
- wandb_entity: null
94
- wandb_mode: online
95
- wandb_name: 9ee82de8-fcc7-416a-bad1-e9aa6e6e6876
96
- wandb_project: Gradients-On-Demand
97
- wandb_run: your_name
98
- wandb_runid: 9ee82de8-fcc7-416a-bad1-e9aa6e6e6876
99
- warmup_steps: 20
100
- weight_decay: 0.0
101
- xformers_attention: null
102
-
103
- ```
104
-
105
- </details><br>
106
-
107
- # 9ee82de8-fcc7-416a-bad1-e9aa6e6e6876
108
-
109
- This model is a fine-tuned version of [Qwen/Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) on the None dataset.
110
- It achieves the following results on the evaluation set:
111
- - Loss: 0.2032
112
-
113
- ## Model description
114
-
115
- More information needed
116
-
117
- ## Intended uses & limitations
118
-
119
- More information needed
120
-
121
- ## Training and evaluation data
122
-
123
- More information needed
124
-
125
- ## Training procedure
126
-
127
- ### Training hyperparameters
128
-
129
- The following hyperparameters were used during training:
130
- - learning_rate: 0.0001
131
- - train_batch_size: 8
132
- - eval_batch_size: 8
133
- - seed: 42
134
- - gradient_accumulation_steps: 4
135
- - total_train_batch_size: 32
136
- - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
137
- - lr_scheduler_type: cosine
138
- - lr_scheduler_warmup_steps: 20
139
- - training_steps: 50
140
-
141
- ### Training results
142
-
143
- | Training Loss | Epoch | Step | Validation Loss |
144
- |:-------------:|:------:|:----:|:---------------:|
145
- | 12.9006 | 0.0000 | 1 | 12.9733 |
146
- | 0.2192 | 0.0010 | 25 | 0.2792 |
147
- | 0.2113 | 0.0021 | 50 | 0.2032 |
148
-
149
-
150
- ### Framework versions
151
-
152
- - PEFT 0.13.2
153
- - Transformers 4.46.0
154
- - Pytorch 2.5.0+cu124
155
- - Datasets 3.0.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
156
  - Tokenizers 0.20.1
 
1
+ ---
2
+ library_name: peft
3
+ license: apache-2.0
4
+ base_model: Qwen/Qwen2.5-14B-Instruct
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ language:
9
+ - zho
10
+ - eng
11
+ - fra
12
+ - spa
13
+ - por
14
+ - deu
15
+ - ita
16
+ - rus
17
+ - jpn
18
+ - kor
19
+ - vie
20
+ - tha
21
+ - ara
22
+ model-index:
23
+ - name: 9ee82de8-fcc7-416a-bad1-e9aa6e6e6876
24
+ results: []
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
31
+ <details><summary>See axolotl config</summary>
32
+
33
+ axolotl version: `0.4.1`
34
+ ```yaml
35
+ adapter: lora
36
+ base_model: Qwen/Qwen2.5-14B-Instruct
37
+ bf16: true
38
+ chat_template: llama3
39
+ dataset_prepared_path: null
40
+ datasets:
41
+ - data_files:
42
+ - 437b2ec4d0ba8f5d_train_data.json
43
+ ds_type: json
44
+ format: custom
45
+ path: /workspace/input_data/437b2ec4d0ba8f5d_train_data.json
46
+ type:
47
+ field_input: conn_state
48
+ field_instruction: proto
49
+ field_output: label
50
+ format: '{instruction} {input}'
51
+ no_input_format: '{instruction}'
52
+ system_format: '{system}'
53
+ system_prompt: ''
54
+ debug: null
55
+ deepspeed: null
56
+ device_map: auto
57
+ early_stopping_patience: 3
58
+ eval_max_new_tokens: 128
59
+ eval_steps: 25
60
+ eval_table_size: null
61
+ evals_per_epoch: null
62
+ flash_attention: false
63
+ fp16: false
64
+ fsdp: null
65
+ fsdp_config: null
66
+ gradient_accumulation_steps: 4
67
+ gradient_checkpointing: true
68
+ group_by_length: false
69
+ hub_model_id: bbytxt/9ee82de8-fcc7-416a-bad1-e9aa6e6e6876
70
+ hub_repo: null
71
+ hub_strategy: checkpoint
72
+ hub_token: null
73
+ learning_rate: 0.0001
74
+ load_in_4bit: false
75
+ load_in_8bit: false
76
+ local_rank: null
77
+ logging_steps: 1
78
+ lora_alpha: 128
79
+ lora_dropout: 0.05
80
+ lora_fan_in_fan_out: null
81
+ lora_model_dir: null
82
+ lora_r: 64
83
+ lora_target_linear: true
84
+ lr_scheduler: cosine
85
+ max_memory:
86
+ 0: 70GB
87
+ max_steps: 50
88
+ micro_batch_size: 8
89
+ mlflow_experiment_name: /tmp/437b2ec4d0ba8f5d_train_data.json
90
+ model_type: AutoModelForCausalLM
91
+ num_epochs: 3
92
+ optimizer: adamw_bnb_8bit
93
+ output_dir: miner_id_24
94
+ pad_to_sequence_len: true
95
+ resume_from_checkpoint: null
96
+ s2_attention: null
97
+ sample_packing: false
98
+ save_steps: 25
99
+ saves_per_epoch: null
100
+ sequence_len: 1024
101
+ strict: false
102
+ tf32: false
103
+ tokenizer_type: AutoTokenizer
104
+ train_on_inputs: false
105
+ trust_remote_code: true
106
+ val_set_size: 0.05
107
+ wandb_entity: null
108
+ wandb_mode: online
109
+ wandb_name: 9ee82de8-fcc7-416a-bad1-e9aa6e6e6876
110
+ wandb_project: Gradients-On-Demand
111
+ wandb_run: your_name
112
+ wandb_runid: 9ee82de8-fcc7-416a-bad1-e9aa6e6e6876
113
+ warmup_steps: 20
114
+ weight_decay: 0.0
115
+ xformers_attention: null
116
+
117
+ ```
118
+
119
+ </details><br>
120
+
121
+ # 9ee82de8-fcc7-416a-bad1-e9aa6e6e6876
122
+
123
+ This model is a fine-tuned version of [Qwen/Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) on the None dataset.
124
+ It achieves the following results on the evaluation set:
125
+ - Loss: 0.2032
126
+
127
+ ## Model description
128
+
129
+ More information needed
130
+
131
+ ## Intended uses & limitations
132
+
133
+ More information needed
134
+
135
+ ## Training and evaluation data
136
+
137
+ More information needed
138
+
139
+ ## Training procedure
140
+
141
+ ### Training hyperparameters
142
+
143
+ The following hyperparameters were used during training:
144
+ - learning_rate: 0.0001
145
+ - train_batch_size: 8
146
+ - eval_batch_size: 8
147
+ - seed: 42
148
+ - gradient_accumulation_steps: 4
149
+ - total_train_batch_size: 32
150
+ - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
151
+ - lr_scheduler_type: cosine
152
+ - lr_scheduler_warmup_steps: 20
153
+ - training_steps: 50
154
+
155
+ ### Training results
156
+
157
+ | Training Loss | Epoch | Step | Validation Loss |
158
+ |:-------------:|:------:|:----:|:---------------:|
159
+ | 12.9006 | 0.0000 | 1 | 12.9733 |
160
+ | 0.2192 | 0.0010 | 25 | 0.2792 |
161
+ | 0.2113 | 0.0021 | 50 | 0.2032 |
162
+
163
+
164
+ ### Framework versions
165
+
166
+ - PEFT 0.13.2
167
+ - Transformers 4.46.0
168
+ - Pytorch 2.5.0+cu124
169
+ - Datasets 3.0.1
170
  - Tokenizers 0.20.1