Configuration Parsing Warning: In adapter_config.json: "peft.base_model_name_or_path" must be a string

my-lora-local-combined-sum

This model is a fine-tuned version of google/mt5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 5.3239
  • Rouge1: 3.1309
  • Rouge2: 0.1383
  • Rougel: 2.9320
  • Rougelsum: 2.9324

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
23.652 0.0160 5 11.7543 0.5335 0.0402 0.4991 0.4949
21.4941 0.0319 10 11.7207 0.5200 0.0374 0.4762 0.4711
19.422 0.0479 15 11.6789 0.6095 0.0500 0.5583 0.5571
22.1389 0.0639 20 11.6402 0.6042 0.0481 0.5449 0.5407
20.0441 0.0799 25 11.5933 0.6250 0.0374 0.5482 0.5459
19.8832 0.0958 30 11.5414 0.6758 0.0517 0.5900 0.5834
19.6299 0.1118 35 11.4640 0.6860 0.0464 0.6029 0.6038
21.9358 0.1278 40 11.4154 0.6940 0.0536 0.6154 0.6163
22.2149 0.1438 45 11.3558 0.6759 0.0489 0.6079 0.6052
21.5263 0.1597 50 11.2812 0.6470 0.0584 0.5696 0.5700
20.7417 0.1757 55 11.2026 0.6474 0.0542 0.5906 0.5867
23.6982 0.1917 60 11.1133 0.5920 0.0661 0.5417 0.5435
17.6926 0.2077 65 11.0459 0.6807 0.0713 0.6018 0.5990
21.006 0.2236 70 10.9396 0.5966 0.0472 0.5545 0.5506
16.5991 0.2396 75 10.8254 0.6446 0.0594 0.5795 0.5795
16.2146 0.2556 80 10.7155 0.6542 0.0608 0.5892 0.5876
22.3505 0.2716 85 10.6118 0.6909 0.0519 0.6129 0.6082
21.3726 0.2875 90 10.4817 0.6439 0.0595 0.5608 0.5584
16.7014 0.3035 95 10.3467 0.6685 0.0720 0.5853 0.5847
18.2504 0.3195 100 10.2216 0.7344 0.0705 0.6395 0.6370
17.9526 0.3355 105 10.1161 0.7135 0.0850 0.6213 0.6190
19.2727 0.3514 110 10.0225 0.6474 0.0965 0.5498 0.5467
17.3108 0.3674 115 9.8542 0.6541 0.0800 0.5539 0.5547
14.8073 0.3834 120 9.7522 0.6335 0.0599 0.5548 0.5489
16.2244 0.3994 125 9.6181 0.7317 0.0618 0.6425 0.6337
14.5446 0.4153 130 9.5206 0.7480 0.0618 0.6331 0.6282
15.6145 0.4313 135 9.4280 0.7840 0.0915 0.6683 0.6591
14.5598 0.4473 140 9.3180 0.7976 0.0747 0.6857 0.6803
16.626 0.4633 145 9.1933 0.7144 0.0680 0.6037 0.6026
15.2717 0.4792 150 9.0056 0.6882 0.0764 0.5920 0.5917
13.4159 0.4952 155 8.8481 0.7891 0.0724 0.6943 0.6895
14.1487 0.5112 160 8.6840 0.8197 0.0542 0.7087 0.7051
16.2853 0.5272 165 8.5537 0.8577 0.0479 0.7464 0.7425
13.7284 0.5431 170 8.4408 0.8904 0.0404 0.8066 0.8058
13.035 0.5591 175 8.3316 0.9318 0.0634 0.8208 0.8100
12.7887 0.5751 180 8.2053 1.0418 0.0625 0.9095 0.9066
12.2665 0.5911 185 8.0928 1.0168 0.0567 0.8907 0.8891
12.7005 0.6070 190 7.9882 1.1973 0.0850 1.0934 1.0860
12.7293 0.6230 195 7.8489 1.2476 0.0833 1.1583 1.1515
12.1713 0.6390 200 7.6980 1.6482 0.1230 1.4793 1.4661
11.501 0.6550 205 7.5613 1.6241 0.1111 1.4590 1.4586
11.6457 0.6709 210 7.4689 1.8776 0.1296 1.6991 1.6871
11.7026 0.6869 215 7.3935 1.9311 0.1224 1.7739 1.7714
10.5877 0.7029 220 7.3031 2.1049 0.1427 1.8897 1.8797
10.9339 0.7188 225 7.2184 2.2620 0.1604 2.0377 2.0331
9.8031 0.7348 230 7.1438 2.3388 0.1500 2.1312 2.1271
10.2145 0.7508 235 7.0725 2.4207 0.1572 2.1943 2.1750
10.0909 0.7668 240 7.0029 2.4045 0.1427 2.1776 2.1770
9.8222 0.7827 245 6.9333 2.3929 0.1324 2.1964 2.1889
9.0728 0.7987 250 6.8557 2.4630 0.1364 2.2430 2.2337
9.308 0.8147 255 6.7682 2.5453 0.1473 2.3249 2.3172
9.0191 0.8307 260 6.6723 2.6619 0.1206 2.4392 2.4277
9.2552 0.8466 265 6.5731 2.5866 0.1098 2.3381 2.3322
8.7318 0.8626 270 6.4862 2.5568 0.1112 2.3082 2.3006
8.9958 0.8786 275 6.4084 2.5543 0.1102 2.3193 2.3160
8.2857 0.8946 280 6.3348 2.5717 0.1146 2.3284 2.3330
8.3112 0.9105 285 6.2517 2.7736 0.1357 2.5063 2.5098
8.8349 0.9265 290 6.1757 2.7153 0.1111 2.4674 2.4641
8.6952 0.9425 295 6.1052 2.7401 0.1081 2.5038 2.5073
8.5782 0.9585 300 6.0515 2.7391 0.1211 2.5241 2.5096
8.6426 0.9744 305 6.0058 2.7657 0.1443 2.5530 2.5519
8.1808 0.9904 310 5.9701 2.7706 0.1457 2.5485 2.5441
8.3015 1.0064 315 5.9410 2.7316 0.1531 2.5080 2.5072
8.3451 1.0224 320 5.9180 2.6415 0.1317 2.4510 2.4458
7.873 1.0383 325 5.8935 2.6211 0.1097 2.4057 2.4020
7.8035 1.0543 330 5.8663 2.5718 0.0779 2.3788 2.3755
7.4984 1.0703 335 5.8367 2.4868 0.0582 2.3166 2.3104
7.3556 1.0863 340 5.8020 2.4792 0.0550 2.3044 2.2916
8.0786 1.1022 345 5.7732 2.4080 0.0420 2.2622 2.2553
7.5338 1.1182 350 5.7436 2.4495 0.0461 2.2676 2.2592
7.5628 1.1342 355 5.7189 2.5874 0.0641 2.3737 2.3701
7.4467 1.1502 360 5.6907 2.5347 0.0413 2.3525 2.3482
7.6056 1.1661 365 5.6671 2.5697 0.0448 2.3524 2.3528
7.463 1.1821 370 5.6491 2.6025 0.0448 2.3822 2.3773
7.1363 1.1981 375 5.6348 2.5469 0.0357 2.3393 2.3311
7.0927 1.2141 380 5.6140 2.5685 0.0589 2.3623 2.3654
7.0816 1.2300 385 5.5978 2.6166 0.0589 2.4159 2.4212
6.8517 1.2460 390 5.5818 2.6452 0.0499 2.4727 2.4786
8.0498 1.2620 395 5.5675 2.7419 0.0512 2.5631 2.5606
7.0932 1.2780 400 5.5517 2.6195 0.0476 2.4942 2.4895
6.8587 1.2939 405 5.5344 2.5747 0.0391 2.4363 2.4312
6.9344 1.3099 410 5.5205 2.6110 0.0351 2.4583 2.4549
6.7229 1.3259 415 5.5108 2.6736 0.0334 2.5078 2.5052
6.6704 1.3419 420 5.5011 2.6529 0.0289 2.4826 2.4746
6.6762 1.3578 425 5.4873 2.6323 0.0289 2.4645 2.4530
6.6617 1.3738 430 5.4773 2.6210 0.0211 2.4641 2.4561
6.783 1.3898 435 5.4706 2.6646 0.0226 2.4979 2.4957
6.54 1.4058 440 5.4643 2.6527 0.0170 2.4945 2.4867
6.5901 1.4217 445 5.4572 2.6805 0.0170 2.5278 2.5214
6.6093 1.4377 450 5.4519 2.6769 0.0234 2.5196 2.5075
6.5077 1.4537 455 5.4466 2.6851 0.0274 2.5514 2.5439
6.3797 1.4696 460 5.4402 2.6756 0.0270 2.5497 2.5380
6.64 1.4856 465 5.4353 2.7025 0.0423 2.5647 2.5530
6.9645 1.5016 470 5.4311 2.7576 0.0257 2.6191 2.6132
6.6399 1.5176 475 5.4263 2.7655 0.0217 2.6279 2.6225
7.1064 1.5335 480 5.4224 2.7561 0.0217 2.6194 2.6118
6.5318 1.5495 485 5.4186 2.7226 0.0217 2.5902 2.5744
6.6985 1.5655 490 5.4142 2.7083 0.0217 2.5735 2.5629
6.3787 1.5815 495 5.4100 2.7172 0.0217 2.5852 2.5765
6.4844 1.5974 500 5.4051 2.7730 0.0217 2.6503 2.6442
6.5958 1.6134 505 5.4002 2.8511 0.0384 2.7220 2.7149
6.4135 1.6294 510 5.3951 2.8595 0.0409 2.7355 2.7261
6.3097 1.6454 515 5.3896 2.8092 0.0462 2.6927 2.6906
6.3015 1.6613 520 5.3836 2.8498 0.0579 2.7391 2.7357
6.2501 1.6773 525 5.3776 2.8643 0.0612 2.7585 2.7506
6.4105 1.6933 530 5.3714 2.8698 0.0612 2.7576 2.7500
6.9844 1.7093 535 5.3667 2.9023 0.0698 2.7706 2.7640
6.5541 1.7252 540 5.3623 2.9349 0.0733 2.8098 2.8037
6.2722 1.7412 545 5.3579 2.9333 0.0675 2.8005 2.7961
6.3432 1.7572 550 5.3531 3.0079 0.0698 2.8572 2.8527
6.392 1.7732 555 5.3490 3.0083 0.0728 2.8491 2.8482
6.4564 1.7891 560 5.3457 2.9957 0.0699 2.8449 2.8436
6.1712 1.8051 565 5.3425 3.0035 0.0698 2.8504 2.8484
6.4905 1.8211 570 5.3386 3.0050 0.0741 2.8525 2.8527
6.483 1.8371 575 5.3353 3.0098 0.0848 2.8661 2.8604
6.4069 1.8530 580 5.3333 3.0188 0.0817 2.8816 2.8737
6.3736 1.8690 585 5.3318 3.0172 0.0817 2.8718 2.8651
6.3639 1.8850 590 5.3299 3.0201 0.0847 2.8755 2.8717
6.214 1.9010 595 5.3282 3.0291 0.0847 2.8898 2.8852
6.537 1.9169 600 5.3270 3.0432 0.0847 2.9011 2.8966
6.4734 1.9329 605 5.3260 3.0428 0.0908 2.8934 2.8907
6.298 1.9489 610 5.3251 3.0780 0.1251 2.9044 2.9019
6.4594 1.9649 615 5.3245 3.1170 0.1383 2.9269 2.9250
6.2875 1.9808 620 5.3241 3.1276 0.1383 2.9320 2.9324
6.1948 1.9968 625 5.3239 3.1309 0.1383 2.9320 2.9324

Framework versions

  • PEFT 0.14.0
  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for benitoals/my-lora-local-combined-sum

Base model

google/mt5-small
Adapter
(13)
this model