metadata
tags:
- autotrain
- text-classification
- lam
- metadata
language:
- it
widget:
- text: porta a due battenti.Figure:putti.Animali:aquila.Decorazioni
- text: Elemento di decorazione architettonica a rilievo
datasets:
- biglam/cultural_heritage_metadata_accuracy
co2_eq_emissions:
emissions: 7.171395981202868
metrics:
- f1
- accuracy
- recall
pipeline_tag: text-classification
license: mit
library_name: transformers
Model Card for Cultural Heritage Metadata Accuracy Detection model
This model is trained to detect the quality of Italian cultural heritage metadata, assigning a score of high quality
or low quality
.
Model Trained Using AutoTrain
- Problem type: Multi-class Classification
- Model ID: 48840118272
- CO2 Emissions (in grams): 7.1714
Validation Metrics
- Loss: 0.085
- Accuracy: 0.972
- Macro F1: 0.972
- Micro F1: 0.972
- Weighted F1: 0.972
- Macro Precision: 0.972
- Micro Precision: 0.972
- Weighted Precision: 0.972
- Macro Recall: 0.972
- Micro Recall: 0.972
- Weighted Recall: 0.972
Usage
You can use cURL to access this model:
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/davanstrien/autotrain-cultural_heritage_metadata_accuracy-48840118272
Or Python API:
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("davanstrien/autotrain-cultural_heritage_metadata_accuracy-48840118272", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("davanstrien/autotrain-cultural_heritage_metadata_accuracy-48840118272", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)