Model Card for gpt2-vietnamese-medium-instruct-bf16
This model is a fine-tuned version of chronopt-research/vietnamese-gpt2-medium. It has been trained using TRL.
Simple chat template
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "binhphap5/gpt2-vietnamese-medium-instruct-bf16"
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="cuda:0",
torch_dtype = torch.bfloat16, # or float16
)
tokenizer = AutoTokenizer.from_pretrained(
model_name,
)
template = """### Instruction:
{}
### Input:
{}
### Response:
{}"""
instructions = 'Trình bày từng bước để học tiếng Anh tốt.'
inputs = ''
response = ''
prompt = template.format(instructions, inputs, response)
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=256,
do_sample=True,
temperature=0.7,
top_k=50,
top_p=0.95,
repetition_penalty=1.1,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
)
print(tokenizer.decode(outputs[0], skip_special_tokens=False))
Here is an example output you can expect from the above code:
Training procedure
This model was trained with SFT.
Framework versions
- TRL: 0.16.1
- Transformers: 4.51.3
- Pytorch: 2.6.0+cu124
- Datasets: 3.0.1
- Tokenizers: 0.21.1
Citations
Cite TRL as:
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
- Downloads last month
- 436
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for binhphap5/gpt2-vietnamese-medium-instruct-bf16
Base model
chronopt-research/vietnamese-gpt2-medium