tfa_output_2025_m05_d10_t23h_34m_59s
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.0191
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.PAGED_ADAMW with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0 | 0 | 1.1126 |
2.2647 | 0.0101 | 50 | 1.1123 |
2.2524 | 0.0203 | 100 | 1.1094 |
2.072 | 0.0304 | 150 | 1.1027 |
2.3878 | 0.0406 | 200 | 1.0913 |
2.0925 | 0.0507 | 250 | 1.0792 |
2.0948 | 0.0609 | 300 | 1.0673 |
2.136 | 0.0710 | 350 | 1.0587 |
2.0376 | 0.0811 | 400 | 1.0522 |
2.0947 | 0.0913 | 450 | 1.0485 |
2.1447 | 0.1014 | 500 | 1.0452 |
2.1028 | 0.1116 | 550 | 1.0432 |
2.0132 | 0.1217 | 600 | 1.0417 |
2.1878 | 0.1318 | 650 | 1.0401 |
2.0967 | 0.1420 | 700 | 1.0388 |
2.0371 | 0.1521 | 750 | 1.0379 |
2.3369 | 0.1623 | 800 | 1.0371 |
2.017 | 0.1724 | 850 | 1.0361 |
2.0818 | 0.1826 | 900 | 1.0354 |
2.1155 | 0.1927 | 950 | 1.0352 |
2.1819 | 0.2028 | 1000 | 1.0344 |
1.8637 | 0.2130 | 1050 | 1.0338 |
2.0307 | 0.2231 | 1100 | 1.0329 |
2.2259 | 0.2333 | 1150 | 1.0326 |
2.1553 | 0.2434 | 1200 | 1.0321 |
2.1097 | 0.2535 | 1250 | 1.0315 |
2.107 | 0.2637 | 1300 | 1.0310 |
2.0916 | 0.2738 | 1350 | 1.0307 |
1.9564 | 0.2840 | 1400 | 1.0301 |
2.0589 | 0.2941 | 1450 | 1.0294 |
2.0271 | 0.3043 | 1500 | 1.0289 |
2.0601 | 0.3144 | 1550 | 1.0288 |
2.2035 | 0.3245 | 1600 | 1.0284 |
2.1796 | 0.3347 | 1650 | 1.0280 |
2.0038 | 0.3448 | 1700 | 1.0275 |
2.0133 | 0.3550 | 1750 | 1.0275 |
2.2494 | 0.3651 | 1800 | 1.0271 |
1.9862 | 0.3753 | 1850 | 1.0273 |
2.2446 | 0.3854 | 1900 | 1.0269 |
2.241 | 0.3955 | 1950 | 1.0267 |
1.8817 | 0.4057 | 2000 | 1.0264 |
2.3231 | 0.4158 | 2050 | 1.0261 |
2.3223 | 0.4260 | 2100 | 1.0261 |
2.3235 | 0.4361 | 2150 | 1.0259 |
2.0343 | 0.4462 | 2200 | 1.0256 |
2.018 | 0.4564 | 2250 | 1.0253 |
2.1532 | 0.4665 | 2300 | 1.0251 |
2.0791 | 0.4767 | 2350 | 1.0250 |
1.8937 | 0.4868 | 2400 | 1.0249 |
2.0474 | 0.4970 | 2450 | 1.0246 |
1.9105 | 0.5071 | 2500 | 1.0242 |
2.0524 | 0.5172 | 2550 | 1.0241 |
1.829 | 0.5274 | 2600 | 1.0241 |
1.985 | 0.5375 | 2650 | 1.0237 |
2.2954 | 0.5477 | 2700 | 1.0236 |
2.1254 | 0.5578 | 2750 | 1.0235 |
1.9017 | 0.5680 | 2800 | 1.0235 |
2.1831 | 0.5781 | 2850 | 1.0232 |
2.0031 | 0.5882 | 2900 | 1.0231 |
1.9792 | 0.5984 | 2950 | 1.0230 |
1.8149 | 0.6085 | 3000 | 1.0226 |
2.0161 | 0.6187 | 3050 | 1.0225 |
2.1239 | 0.6288 | 3100 | 1.0224 |
1.9753 | 0.6389 | 3150 | 1.0222 |
1.848 | 0.6491 | 3200 | 1.0220 |
2.0922 | 0.6592 | 3250 | 1.0220 |
2.0263 | 0.6694 | 3300 | 1.0218 |
2.0812 | 0.6795 | 3350 | 1.0216 |
2.1709 | 0.6897 | 3400 | 1.0216 |
2.0482 | 0.6998 | 3450 | 1.0218 |
2.0617 | 0.7099 | 3500 | 1.0216 |
2.1892 | 0.7201 | 3550 | 1.0215 |
1.8795 | 0.7302 | 3600 | 1.0215 |
2.0765 | 0.7404 | 3650 | 1.0214 |
2.1375 | 0.7505 | 3700 | 1.0211 |
2.3386 | 0.7606 | 3750 | 1.0210 |
2.1539 | 0.7708 | 3800 | 1.0208 |
2.076 | 0.7809 | 3850 | 1.0210 |
1.9461 | 0.7911 | 3900 | 1.0208 |
1.9757 | 0.8012 | 3950 | 1.0206 |
2.1436 | 0.8114 | 4000 | 1.0207 |
2.0764 | 0.8215 | 4050 | 1.0207 |
2.0771 | 0.8316 | 4100 | 1.0205 |
2.1269 | 0.8418 | 4150 | 1.0207 |
2.211 | 0.8519 | 4200 | 1.0204 |
2.0004 | 0.8621 | 4250 | 1.0203 |
1.9485 | 0.8722 | 4300 | 1.0202 |
1.9821 | 0.8824 | 4350 | 1.0200 |
2.1556 | 0.8925 | 4400 | 1.0200 |
1.9863 | 0.9026 | 4450 | 1.0198 |
1.7163 | 0.9128 | 4500 | 1.0199 |
2.0893 | 0.9229 | 4550 | 1.0197 |
2.1352 | 0.9331 | 4600 | 1.0196 |
1.7597 | 0.9432 | 4650 | 1.0196 |
2.193 | 0.9533 | 4700 | 1.0194 |
2.0867 | 0.9635 | 4750 | 1.0195 |
2.3983 | 0.9736 | 4800 | 1.0192 |
2.1052 | 0.9838 | 4850 | 1.0192 |
1.9144 | 0.9939 | 4900 | 1.0191 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.1.2+cu121
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for brando/tfa_output_2025_m05_d10_t23h_34m_59s
Base model
meta-llama/Meta-Llama-3-8B-Instruct