tfa_output_2025_m05_d10_t23h_57m_54s
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.0111
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.PAGED_ADAMW with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0 | 0 | 1.0491 |
2.0659 | 0.0101 | 50 | 1.0490 |
2.0528 | 0.0203 | 100 | 1.0474 |
1.9051 | 0.0304 | 150 | 1.0446 |
2.2261 | 0.0406 | 200 | 1.0404 |
1.964 | 0.0507 | 250 | 1.0366 |
1.9639 | 0.0609 | 300 | 1.0339 |
2.019 | 0.0710 | 350 | 1.0319 |
1.9149 | 0.0811 | 400 | 1.0304 |
2.0091 | 0.0913 | 450 | 1.0294 |
2.034 | 0.1014 | 500 | 1.0284 |
1.9902 | 0.1116 | 550 | 1.0279 |
1.9344 | 0.1217 | 600 | 1.0271 |
2.0987 | 0.1318 | 650 | 1.0266 |
2.0106 | 0.1420 | 700 | 1.0259 |
1.941 | 0.1521 | 750 | 1.0254 |
2.2107 | 0.1623 | 800 | 1.0248 |
1.9111 | 0.1724 | 850 | 1.0245 |
2.0238 | 0.1826 | 900 | 1.0240 |
2.036 | 0.1927 | 950 | 1.0236 |
2.1114 | 0.2028 | 1000 | 1.0232 |
1.7783 | 0.2130 | 1050 | 1.0226 |
1.9341 | 0.2231 | 1100 | 1.0223 |
2.1325 | 0.2333 | 1150 | 1.0219 |
2.0806 | 0.2434 | 1200 | 1.0216 |
2.0504 | 0.2535 | 1250 | 1.0210 |
2.0203 | 0.2637 | 1300 | 1.0208 |
2.0069 | 0.2738 | 1350 | 1.0205 |
1.873 | 0.2840 | 1400 | 1.0199 |
1.9885 | 0.2941 | 1450 | 1.0195 |
1.9339 | 0.3043 | 1500 | 1.0192 |
1.989 | 0.3144 | 1550 | 1.0190 |
2.1222 | 0.3245 | 1600 | 1.0188 |
2.0869 | 0.3347 | 1650 | 1.0184 |
1.9288 | 0.3448 | 1700 | 1.0184 |
1.9388 | 0.3550 | 1750 | 1.0182 |
2.1451 | 0.3651 | 1800 | 1.0182 |
1.9053 | 0.3753 | 1850 | 1.0180 |
2.167 | 0.3854 | 1900 | 1.0178 |
2.1596 | 0.3955 | 1950 | 1.0177 |
1.7817 | 0.4057 | 2000 | 1.0173 |
2.2397 | 0.4158 | 2050 | 1.0171 |
2.2354 | 0.4260 | 2100 | 1.0170 |
2.2356 | 0.4361 | 2150 | 1.0168 |
1.9626 | 0.4462 | 2200 | 1.0166 |
1.951 | 0.4564 | 2250 | 1.0165 |
2.0802 | 0.4665 | 2300 | 1.0163 |
2.006 | 0.4767 | 2350 | 1.0162 |
1.8284 | 0.4868 | 2400 | 1.0159 |
1.988 | 0.4970 | 2450 | 1.0157 |
1.847 | 0.5071 | 2500 | 1.0156 |
1.9732 | 0.5172 | 2550 | 1.0155 |
1.7898 | 0.5274 | 2600 | 1.0153 |
1.9274 | 0.5375 | 2650 | 1.0153 |
2.2106 | 0.5477 | 2700 | 1.0150 |
2.0584 | 0.5578 | 2750 | 1.0149 |
1.8344 | 0.5680 | 2800 | 1.0148 |
2.1057 | 0.5781 | 2850 | 1.0146 |
1.9237 | 0.5882 | 2900 | 1.0145 |
1.915 | 0.5984 | 2950 | 1.0143 |
1.7266 | 0.6085 | 3000 | 1.0142 |
1.9281 | 0.6187 | 3050 | 1.0139 |
2.0411 | 0.6288 | 3100 | 1.0138 |
1.8999 | 0.6389 | 3150 | 1.0137 |
1.7798 | 0.6491 | 3200 | 1.0138 |
2.0101 | 0.6592 | 3250 | 1.0136 |
1.9544 | 0.6694 | 3300 | 1.0136 |
1.9959 | 0.6795 | 3350 | 1.0137 |
2.1201 | 0.6897 | 3400 | 1.0136 |
1.9713 | 0.6998 | 3450 | 1.0135 |
2.0088 | 0.7099 | 3500 | 1.0133 |
2.104 | 0.7201 | 3550 | 1.0132 |
1.8377 | 0.7302 | 3600 | 1.0133 |
1.9902 | 0.7404 | 3650 | 1.0131 |
2.0546 | 0.7505 | 3700 | 1.0131 |
2.2736 | 0.7606 | 3750 | 1.0127 |
2.0743 | 0.7708 | 3800 | 1.0128 |
1.9913 | 0.7809 | 3850 | 1.0127 |
1.8735 | 0.7911 | 3900 | 1.0126 |
1.8944 | 0.8012 | 3950 | 1.0125 |
2.0803 | 0.8114 | 4000 | 1.0123 |
2.0158 | 0.8215 | 4050 | 1.0125 |
2.0076 | 0.8316 | 4100 | 1.0125 |
2.0613 | 0.8418 | 4150 | 1.0123 |
2.1447 | 0.8519 | 4200 | 1.0123 |
1.9019 | 0.8621 | 4250 | 1.0121 |
1.8704 | 0.8722 | 4300 | 1.0119 |
1.923 | 0.8824 | 4350 | 1.0119 |
2.0632 | 0.8925 | 4400 | 1.0118 |
1.9279 | 0.9026 | 4450 | 1.0118 |
1.6594 | 0.9128 | 4500 | 1.0118 |
2.0336 | 0.9229 | 4550 | 1.0117 |
2.059 | 0.9331 | 4600 | 1.0116 |
1.7 | 0.9432 | 4650 | 1.0114 |
2.1092 | 0.9533 | 4700 | 1.0113 |
2.0094 | 0.9635 | 4750 | 1.0114 |
2.3229 | 0.9736 | 4800 | 1.0114 |
2.0377 | 0.9838 | 4850 | 1.0113 |
1.8479 | 0.9939 | 4900 | 1.0111 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.1.2+cu121
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for brando/tfa_output_2025_m05_d10_t23h_57m_54s
Base model
meta-llama/Meta-Llama-3-8B