From civitai/fannon: https://civitai.com/models/989367/wai-shuffle-noob
Based on my experience, Q4_K_S and Q4_K_M are usually the balance points between model size, quantization, and speed.
In some benchmarks, selecting a large-parameter low-quantization LLM tends to perform better than a small-parameter high-quantization LLM.
根据我的经验,通常Q4_K_S、Q4_K_M是模型尺寸/量化/速度的平衡点
在某些基准测试中,选择大参数低量化模型往往比选择小参数高量化模型表现更好。
You have amazing hardware?!
I'm using 16GB DDR RAM and an R5 5600 for interest-based quantization work, along with a 50Mbps bandwidth speed. It might not be able to quantize models with higher parameters.
您有惊人的硬件??!
我正在使用16G DDR内存和R5 5600进行基于兴趣的量化工作,以及50Mbps的带宽速度,可能会无法为更高参数的模型进行量化。
- Downloads last month
- 23
Hardware compatibility
Log In
to view the estimation
8-bit
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for btaskel/wai-shuffle-noob-v20-GGUF
Base model
Laxhar/noobai-XL-0.6
Finetuned
Laxhar/noobai-XL-0.75
Finetuned
Laxhar/noobai-XL-0.77
Finetuned
Laxhar/noobai-XL-1.0
Finetuned
Laxhar/noobai-XL-1.1
Finetuned
John6666/wai-shuffle-noob-v20-sdxl