|
--- |
|
library_name: transformers |
|
base_model: cahya/NusaBert-v1.3 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- grit-id/id_nergrit_corpus |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: nusabert_nergrit_1.3 |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: grit-id/id_nergrit_corpus ner |
|
type: grit-id/id_nergrit_corpus |
|
config: ner |
|
split: validation |
|
args: ner |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.8010483135824977 |
|
- name: Recall |
|
type: recall |
|
value: 0.8338275412169375 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8171093159760562 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9476653696498054 |
|
pipeline_tag: token-classification |
|
license: mit |
|
language: |
|
- id |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# NusaBert-ner-v1.3 |
|
|
|
This model is a fine-tuned version of [cahya/NusaBert-v1.3](https://huggingface.co/cahya/NusaBert-v1.3) on the grit-id/id_nergrit_corpus ner dataset. |
|
It supports a context length of 8192, the same as the model *cahya/NusaBert-v1.3* which was pre-trained from scratch using ModernBERT architecture. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2174 |
|
- Precision: 0.8010 |
|
- Recall: 0.8338 |
|
- F1: 0.8171 |
|
- Accuracy: 0.9477 |
|
|
|
## Model description |
|
|
|
The dataset contains 19 following entities |
|
``` |
|
'CRD': Cardinal |
|
'DAT': Date |
|
'EVT': Event |
|
'FAC': Facility |
|
'GPE': Geopolitical Entity |
|
'LAW': Law Entity (such as Undang-Undang) |
|
'LOC': Location |
|
'MON': Money |
|
'NOR': Political Organization |
|
'ORD': Ordinal |
|
'ORG': Organization |
|
'PER': Person |
|
'PRC': Percent |
|
'PRD': Product |
|
'QTY': Quantity |
|
'REG': Religion |
|
'TIM': Time |
|
'WOA': Work of Art |
|
'LAN': Language |
|
``` |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 2 |
|
- total_train_batch_size: 64 |
|
- total_eval_batch_size: 64 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3.0 |
|
|
|
### Training results |
|
|
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.49.0 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.21.0 |
|
|
|
## Usage |
|
``` |
|
from transformers import pipeline |
|
ner = pipeline("ner", model="cahya/NusaBert-ner-v1.3", grouped_entities=True) |
|
text = "Jakarta, April 2025 - Polisi mengungkap sosok teman pemberi uang palsu kepada artis Sekar Arum Widara. Sosok tersebut ternyata adalah Bayu Setio Aribowo (BS), pegawai nonaktif Garuda yang ditangkap Polsek Tanah Abang di kasus serupa." |
|
result = ner(text) |
|
print(result) |
|
``` |