jaria_topics

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("caiocof/jaria_topics")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 2
  • Number of training documents: 206
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
0 de - do - da - no - que 182 0_de_do_da_no
1 legalidade - do - ait - da - princípio 24 1_legalidade_do_ait_da

Training hyperparameters

  • calculate_probabilities: False
  • language: portuguese
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.26.4
  • HDBSCAN: 0.8.40
  • UMAP: 0.5.7
  • Pandas: 1.5.3
  • Scikit-Learn: 1.3.0
  • Sentence-transformers: 4.0.1
  • Transformers: 4.48.1
  • Numba: 0.59.1
  • Plotly: 5.22.0
  • Python: 3.12.4
Downloads last month
18
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support