File size: 2,444 Bytes
0313936 46813c3 0313936 46813c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
datasets:
- voxpopuli
model-index:
- name: speecht5_finetuned_voxpopuli_fr
results: []
pipeline_tag: text-to-speech
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# speecht5_finetuned_voxpopuli_fr
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the voxpopuli dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4697
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.765 | 0.23 | 50 | 0.6575 |
| 0.687 | 0.47 | 100 | 0.6106 |
| 0.6423 | 0.7 | 150 | 0.5548 |
| 0.5792 | 0.94 | 200 | 0.5300 |
| 0.5658 | 1.17 | 250 | 0.5186 |
| 0.5558 | 1.41 | 300 | 0.5078 |
| 0.5484 | 1.64 | 350 | 0.5029 |
| 0.5427 | 1.87 | 400 | 0.4981 |
| 0.5349 | 2.11 | 450 | 0.4921 |
| 0.524 | 2.34 | 500 | 0.4906 |
| 0.5243 | 2.58 | 550 | 0.4857 |
| 0.5238 | 2.81 | 600 | 0.4835 |
| 0.5104 | 3.05 | 650 | 0.4796 |
| 0.516 | 3.28 | 700 | 0.4769 |
| 0.5084 | 3.51 | 750 | 0.4763 |
| 0.5029 | 3.75 | 800 | 0.4749 |
| 0.5015 | 3.98 | 850 | 0.4725 |
| 0.5045 | 4.22 | 900 | 0.4716 |
| 0.503 | 4.45 | 950 | 0.4706 |
| 0.5013 | 4.69 | 1000 | 0.4697 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.2
- Tokenizers 0.13.3 |