metadata
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
- gymnasium
model-index:
- name: q-frozen-lake-v1-4x4-no-slippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
Q-Learning Agent playing FrozenLake-v1
This is a trained model of a Q-Learning agent playing to the Gymnasium FrozenLake-v1 reinforcement learning environment.
Usage
model = load_from_hub(repo_id="coding-kelps/q-frozen-lake-v1-4x4-no-slippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
References
You can find the original source code of the model training in the corresponding Coding Kelps aquaqym repository.