Hindi-CausalLM

A Hindi language generation model with the following specifications:

Model Architecture

  • Type: Causal Language Model with Transformer architecture
  • Hidden size: 768
  • Layers: 12
  • Attention heads: 16
  • Key-value heads: 4 (using grouped-query attention)
  • Position encoding: Rotary Position Embeddings (RoPE)
  • Vocabulary size: 16000
  • Parameters: ~100M
  • Context window: 512 tokens
  • Trained on: Large corpus of Hindi text

Training

The model was trained on a large corpus of Hindi text using a cosine learning rate schedule with warmup. Training utilized mixed-precision and distributed data parallel across multiple GPUs.

Usage

You can use this model with the following code:

import torch
import math
import os
from hindi_embeddings import SentencePieceTokenizerWrapper
from safetensors.torch import load_file
from torch import nn
from transformers import PreTrainedModel, PretrainedConfig


class ConvaiCausalLMConfig(PretrainedConfig):
    model_type = "convaicausallm"
    
    def __init__(
        self,
        vocab_size=16000,
        hidden_size=768,
        num_hidden_layers=12,
        num_attention_heads=16,
        num_key_value_heads=4,
        intermediate_size=3072,
        hidden_act="silu",
        max_position_embeddings=512,
        rope_theta=10000.0,  # Base parameter for RoPE
        **kwargs
    ):
        super().__init__(**kwargs)
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.num_key_value_heads = num_key_value_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.max_position_embeddings = max_position_embeddings
        self.rope_theta = rope_theta


def precompute_freqs_cis(dim, end, theta=10000.0):
    """Precompute the frequency tensor for complex exponentials (cos, sin)"""
    # Ensure dim is even for complex numbers
    assert dim % 2 == 0, "Dimension must be even"
    
    # Create position indices for caching
    freqs = 1.0 / (theta ** (torch.arange(0, dim, 2).float() / dim))
    t = torch.arange(end).float()
    freqs = torch.outer(t, freqs)  # [end, dim/2]
    
    # Create complex exponentials (cos, sin pairs)
    cos, sin = torch.cos(freqs), torch.sin(freqs)
    return cos, sin


def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None):
    """Apply rotary position embeddings to q and k tensors"""
    # Extract shapes
    batch, seq_len, n_heads, head_dim = q.shape
    _, kv_seq_len, n_kv_heads, _ = k.shape
    
    # Handle position IDs or use sequential positions
    if position_ids is None:
        # Default: Just use sequential positions
        position_ids = torch.arange(seq_len, device=q.device)
        position_ids = position_ids.unsqueeze(0).expand(batch, -1)
        
    # Get the cosine and sine for the positions we're using
    cos = cos[position_ids].unsqueeze(-2)  # [batch, seq, 1, dim/2]
    sin = sin[position_ids].unsqueeze(-2)  # [batch, seq, 1, dim/2]
    
    # q and k must be arranged in pairs for rotation
    q_embed_dim = q.shape[-1]
    q_half_dim = q_embed_dim // 2
    
    # Split the embedding dimensions into pairs
    q_half1, q_half2 = q[..., :q_half_dim], q[..., q_half_dim:]
    k_half1, k_half2 = k[..., :q_half_dim], k[..., q_half_dim:]
    
    # Apply rotary embeddings to each pair of dimensions
    # For each pair (a, b), we compute (a*cos - b*sin, a*sin + b*cos)
    q_out_half1 = q_half1 * cos - q_half2 * sin
    q_out_half2 = q_half1 * sin + q_half2 * cos
    k_out_half1 = k_half1 * cos - k_half2 * sin
    k_out_half2 = k_half1 * sin + k_half2 * cos
    
    # Concatenate back to original shape
    q_out = torch.cat([q_out_half1, q_out_half2], dim=-1)
    k_out = torch.cat([k_out_half1, k_out_half2], dim=-1)
    
    return q_out, k_out


class GroupedQueryAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.num_kv_heads = config.num_key_value_heads
        self.head_dim = config.hidden_size // config.num_attention_heads
        
        # For MQA/GQA support
        self.num_key_value_groups = self.num_heads // self.num_kv_heads
        
        self.q_proj = nn.Linear(config.hidden_size, self.num_heads * self.head_dim)
        self.k_proj = nn.Linear(config.hidden_size, self.num_kv_heads * self.head_dim)
        self.v_proj = nn.Linear(config.hidden_size, self.num_kv_heads * self.head_dim)
        self.o_proj = nn.Linear(config.hidden_size, config.hidden_size)
        
        # Precompute rotary position encoding frequencies
        max_seq_len = config.max_position_embeddings
        self.max_seq_len = max_seq_len
        
        # Register frequencies as buffers
        cos, sin = precompute_freqs_cis(self.head_dim, max_seq_len, config.rope_theta)
        self.register_buffer("cos", cos)  # [max_seq_len, dim/2]
        self.register_buffer("sin", sin)  # [max_seq_len, dim/2]
        
        # Create causal mask for attention
        self.register_buffer(
            "causal_mask", 
            torch.triu(torch.ones(max_seq_len, max_seq_len) * -1e9, diagonal=1)
        )

    def forward(self, hidden_states, attention_mask=None):
        batch_size, seq_len, _ = hidden_states.size()
        
        # Project queries, keys, values
        q = self.q_proj(hidden_states)
        k = self.k_proj(hidden_states)
        v = self.v_proj(hidden_states)
        
        # Reshape for attention computation
        q = q.view(batch_size, seq_len, self.num_heads, self.head_dim)
        k = k.view(batch_size, seq_len, self.num_kv_heads, self.head_dim)
        v = v.view(batch_size, seq_len, self.num_kv_heads, self.head_dim)
        
        # Apply rotary position embeddings
        q_rotary, k_rotary = apply_rotary_pos_emb(q, k, self.cos, self.sin)
        
        # Reshape for attention computation
        q_rotary = q_rotary.transpose(1, 2)  # [batch, heads, seq, dim]
        k_rotary = k_rotary.transpose(1, 2)  # [batch, kv_heads, seq, dim]
        v = v.transpose(1, 2)  # [batch, kv_heads, seq, dim]
        
        # Handle Multi-Query Attention / Grouped-Query Attention
        if self.num_key_value_groups > 1:
            # Repeat k, v for each query in the group
            k_rotary = k_rotary.repeat_interleave(self.num_key_value_groups, dim=1)
            v = v.repeat_interleave(self.num_key_value_groups, dim=1)
        
        # Compute attention scores
        attn_scores = torch.matmul(q_rotary, k_rotary.transpose(-1, -2)) / (self.head_dim ** 0.5)
        
        # Apply causal mask - only attend to previous tokens
        causal_mask = self.causal_mask[:seq_len, :seq_len]
        attn_scores = attn_scores + causal_mask
        
        # Apply attention mask if provided
        if attention_mask is not None:
            attn_scores = attn_scores + attention_mask
            
        # Normalize the attention scores to probabilities
        attn_probs = torch.softmax(attn_scores, dim=-1)
        
        # Apply attention to values
        context = torch.matmul(attn_probs, v)  # [b, n_heads, seq, head_dim]
        
        # Reshape back to [batch_size, seq_length, hidden_size]
        context = context.transpose(1, 2).contiguous()
        context = context.view(batch_size, seq_len, -1)
        
        # Final projection
        output = self.o_proj(context)
        
        return output


class ConvaiCausalLM(PreTrainedModel):
    config_class = ConvaiCausalLMConfig
    
    def __init__(self, config):
        super().__init__(config)
        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
        self.layers = nn.ModuleList([
            nn.ModuleDict({
                "self_attn": GroupedQueryAttention(config),
                "mlp": nn.Sequential(
                    nn.Linear(config.hidden_size, config.intermediate_size),
                    nn.SiLU(),
                    nn.Linear(config.intermediate_size, config.hidden_size)
                ),
                "input_layernorm": nn.LayerNorm(config.hidden_size),
                "post_attention_layernorm": nn.LayerNorm(config.hidden_size)
            }) for _ in range(config.num_hidden_layers)
        ])
        self.norm = nn.LayerNorm(config.hidden_size)
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        
        # Initialize weights
        self.apply(self._init_weights)
        
    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
    
    def _prepare_attention_mask(self, attention_mask, input_shape, device):
        # Prepare masks for attention
        if attention_mask is None:
            attention_mask = torch.ones(input_shape, device=device)
            
        # Make broadcastable shape: [batch, 1, 1, seq_len]
        extended_mask = attention_mask.unsqueeze(1).unsqueeze(2)
        
        # Convert to additive mask (0 for valid, -10000 for masked)
        extended_mask = (1.0 - extended_mask) * -10000.0
        
        return extended_mask
    
    def forward(self, input_ids, attention_mask=None):
        batch_size, seq_len = input_ids.shape
        device = input_ids.device
        
        # Prepare attention mask
        if attention_mask is not None:
            attention_mask = self._prepare_attention_mask(
                attention_mask, (batch_size, seq_len), device
            )
        
        # Get embeddings
        hidden_states = self.embed_tokens(input_ids)
        
        # Apply each layer
        for layer in self.layers:
            residual = hidden_states
            
            # First norm and attention
            hidden_states = layer["input_layernorm"](hidden_states)
            hidden_states = layer["self_attn"](hidden_states, attention_mask)
            hidden_states = residual + hidden_states
            
            # Second norm and MLP
            residual = hidden_states
            hidden_states = layer["post_attention_layernorm"](hidden_states)
            hidden_states = layer["mlp"](hidden_states)
            hidden_states = residual + hidden_states
            
        # Final norm
        hidden_states = self.norm(hidden_states)
        
        # Compute logits
        logits = self.lm_head(hidden_states)
        
        return logits


class HindiLLMGenerator:
    def __init__(self, model_path, device=None):
        # Set device
        if device is None:
            self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        else:
            self.device = torch.device(device)
            
        print(f"Using device: {self.device}")
        
        # Load tokenizer
        tokenizer_path = os.path.join(model_path, "tokenizer.model")
        self.tokenizer = SentencePieceTokenizerWrapper(tokenizer_path)
        
        # Load model config
        config_path = os.path.join(model_path, "config.json")
        import json
        with open(config_path, 'r') as f:
            config_dict = json.load(f)
            
        self.config = ConvaiCausalLMConfig(**config_dict)
        
        # Load model - try safetensors first, fall back to PyTorch bin if needed
        safetensors_path = os.path.join(model_path, "model.safetensors")
        pytorch_path = os.path.join(model_path, "pytorch_model.bin")
        
        self.model = ConvaiCausalLM(self.config)
        
        # Check which format is available and load accordingly
        if os.path.exists(safetensors_path):
            print(f"Loading model from SafeTensors")
            state_dict = load_file(safetensors_path, device="cpu")
            self.model.load_state_dict(state_dict)
        elif os.path.exists(pytorch_path):
            print(f"Loading model from PyTorch bin")
            self.model.load_state_dict(torch.load(pytorch_path, map_location="cpu"))
        
        # Move model to device and set to evaluation mode
        self.model.to(self.device)
        self.model.eval()
    
    def generate(self, prompt, max_length=100, temperature=0.8, top_k=50, top_p=0.9, 
                 repetition_penalty=1.1, do_sample=True):
        # Tokenize the prompt
        input_ids = self.tokenizer.sp_model.EncodeAsIds(prompt)
        input_tensor = torch.tensor([input_ids], dtype=torch.long).to(self.device)
        
        # Start with the input tensor
        output_sequence = input_tensor.clone()
        
        # Generate tokens one by one
        for _ in range(max_length - len(input_ids)):
            with torch.no_grad():
                # Get the model's output for the current sequence
                outputs = self.model(output_sequence)
                next_token_logits = outputs[0, -1, :]
                
                # Apply temperature
                if temperature > 0:
                    next_token_logits = next_token_logits / temperature
                
                # Apply repetition penalty
                if repetition_penalty > 1.0:
                    for token_id in output_sequence[0].tolist():
                        next_token_logits[token_id] /= repetition_penalty
                
                # Filter with top-k sampling
                if top_k > 0:
                    top_k_values, top_k_indices = torch.topk(next_token_logits, top_k)
                    next_token_logits = torch.full_like(next_token_logits, float('-inf'))
                    next_token_logits.scatter_(0, top_k_indices, top_k_values)
                
                # Filter with top-p/nucleus sampling
                if top_p < 1.0 and do_sample:
                    sorted_logits, sorted_indices = torch.sort(next_token_logits, descending=True)
                    cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
                    
                    # Remove tokens with cumulative probability above the threshold
                    sorted_indices_to_remove = cumulative_probs > top_p
                    # Shift the indices to the right to keep the first token above the threshold
                    sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
                    sorted_indices_to_remove[..., 0] = 0
                    
                    indices_to_remove = sorted_indices[sorted_indices_to_remove]
                    next_token_logits[indices_to_remove] = float('-inf')
                
                # Sample or choose the next token
                if do_sample:
                    probs = torch.softmax(next_token_logits, dim=-1)
                    next_token = torch.multinomial(probs, num_samples=1)
                else:
                    next_token = torch.argmax(next_token_logits, dim=-1).unsqueeze(0)
                
                # Add the next token to the sequence
                output_sequence = torch.cat([output_sequence, next_token.unsqueeze(0)], dim=1)
                
                # Check if we've generated an end token
                if next_token.item() == self.tokenizer.eos_token_id:
                    break
        
        # Decode the generated sequence
        generated_ids = output_sequence[0].tolist()
        generated_text = self.tokenizer.sp_model.DecodeIds(generated_ids)
        
        return generated_text

# Example usage
if __name__ == "__main__":
    generator = HindiLLMGenerator("path/to/model")
    result = generator.generate("भारत एक विशाल देश है")
    print(result)

Example Prompts

Try the model with these example prompts:

भारत एक विशाल देश है
मुझे हिंदी में एक कहानी सुनाओ
आज का मौसम बहुत अच्छा है
हिंदी साहित्य की प्रमुख विशेषताएं

Capabilities

This model can:

  • Generate coherent Hindi text
  • Continue text from a given prompt
  • Create stories, explanations, and other content in Hindi

Limitations

  • Performance varies based on the similarity of the input to the training data
  • May occasionally generate repetitive content for longer texts
  • May produce grammatically incorrect Hindi in some contexts
  • Has no knowledge of events beyond its training corpus

Intended Use

This model is intended for Hindi language generation tasks, creative writing assistance, and as a foundation for fine-tuning on specific tasks.

Ethical Considerations

Users should be aware that like all language models, this model may reproduce biases or generate problematic content in certain contexts.

Downloads last month
22
Safetensors
Model size
102M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support