Upload Hindi CausalLM model with RoPE
Browse files- README.md +2 -132
- config.json +1 -0
- model.safetensors +2 -2
- pytorch_model.bin +2 -2
README.md
CHANGED
@@ -6,6 +6,7 @@ tags:
|
|
6 |
- text-generation
|
7 |
- causal-lm
|
8 |
- lm
|
|
|
9 |
license: mit
|
10 |
datasets:
|
11 |
- custom_hindi_corpus
|
@@ -14,145 +15,14 @@ datasets:
|
|
14 |
# Hindi-CausalLM
|
15 |
|
16 |
A Hindi language generation model with the following specifications:
|
17 |
-
## Usage
|
18 |
|
19 |
-
You can use this model with the following code:
|
20 |
-
|
21 |
-
```python
|
22 |
-
import torch
|
23 |
-
from hindi_embeddings import SentencePieceTokenizerWrapper
|
24 |
-
from convaicausallm_model import ConvaiCausalLM, ConvaiCausalLMConfig
|
25 |
-
from safetensors.torch import load_file
|
26 |
-
import os
|
27 |
-
class HindiLLMGenerator:
|
28 |
-
def __init__(self, model_path, device=None):
|
29 |
-
# Set device
|
30 |
-
if device is None:
|
31 |
-
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
32 |
-
else:
|
33 |
-
self.device = torch.device(device)
|
34 |
-
|
35 |
-
print(f"Using device: {self.device}")
|
36 |
-
|
37 |
-
# Load tokenizer
|
38 |
-
tokenizer_path = os.path.join(model_path, "tokenizer.model")
|
39 |
-
self.tokenizer = SentencePieceTokenizerWrapper(tokenizer_path)
|
40 |
-
|
41 |
-
# Load model config
|
42 |
-
config_path = os.path.join(model_path, "config.json")
|
43 |
-
import json
|
44 |
-
with open(config_path, 'r') as f:
|
45 |
-
config_dict = json.load(f)
|
46 |
-
|
47 |
-
self.config = ConvaiCausalLMConfig(**config_dict)
|
48 |
-
|
49 |
-
# Load model - try safetensors first, fall back to PyTorch bin if needed
|
50 |
-
safetensors_path = os.path.join(model_path, "model.safetensors")
|
51 |
-
pytorch_path = os.path.join(model_path, "pytorch_model.bin")
|
52 |
-
|
53 |
-
self.model = ConvaiCausalLM(self.config)
|
54 |
-
|
55 |
-
# Check which format is available and load accordingly
|
56 |
-
if os.path.exists(safetensors_path):
|
57 |
-
print(f"Loading model from SafeTensors")
|
58 |
-
state_dict = load_file(safetensors_path, device="cpu")
|
59 |
-
self.model.load_state_dict(state_dict)
|
60 |
-
elif os.path.exists(pytorch_path):
|
61 |
-
print(f"Loading model from PyTorch bin")
|
62 |
-
self.model.load_state_dict(torch.load(pytorch_path, map_location="cpu"))
|
63 |
-
|
64 |
-
# Move model to device and set to evaluation mode
|
65 |
-
self.model.to(self.device)
|
66 |
-
self.model.eval()
|
67 |
-
|
68 |
-
def generate(self, prompt, max_length=100, temperature=0.8, top_k=50, top_p=0.9,
|
69 |
-
repetition_penalty=1.1, do_sample=True):
|
70 |
-
# Tokenize the prompt
|
71 |
-
input_ids = self.tokenizer.sp_model.EncodeAsIds(prompt)
|
72 |
-
input_tensor = torch.tensor([input_ids], dtype=torch.long).to(self.device)
|
73 |
-
|
74 |
-
# Start with the input tensor
|
75 |
-
output_sequence = input_tensor.clone()
|
76 |
-
|
77 |
-
# Generate tokens one by one
|
78 |
-
for _ in range(max_length - len(input_ids)):
|
79 |
-
with torch.no_grad():
|
80 |
-
# Get the model's output for the current sequence
|
81 |
-
outputs = self.model(output_sequence)
|
82 |
-
next_token_logits = outputs[0, -1, :]
|
83 |
-
|
84 |
-
# Apply temperature
|
85 |
-
if temperature > 0:
|
86 |
-
next_token_logits = next_token_logits / temperature
|
87 |
-
|
88 |
-
# Apply repetition penalty
|
89 |
-
if repetition_penalty > 1.0:
|
90 |
-
for token_id in output_sequence[0].tolist():
|
91 |
-
next_token_logits[token_id] /= repetition_penalty
|
92 |
-
|
93 |
-
# Filter with top-k sampling
|
94 |
-
if top_k > 0:
|
95 |
-
top_k_values, top_k_indices = torch.topk(next_token_logits, top_k)
|
96 |
-
next_token_logits = torch.full_like(next_token_logits, float('-inf'))
|
97 |
-
next_token_logits.scatter_(0, top_k_indices, top_k_values)
|
98 |
-
|
99 |
-
# Filter with top-p/nucleus sampling
|
100 |
-
if top_p < 1.0 and do_sample:
|
101 |
-
sorted_logits, sorted_indices = torch.sort(next_token_logits, descending=True)
|
102 |
-
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
|
103 |
-
|
104 |
-
# Remove tokens with cumulative probability above the threshold
|
105 |
-
sorted_indices_to_remove = cumulative_probs > top_p
|
106 |
-
# Shift the indices to the right to keep the first token above the threshold
|
107 |
-
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
108 |
-
sorted_indices_to_remove[..., 0] = 0
|
109 |
-
|
110 |
-
indices_to_remove = sorted_indices[sorted_indices_to_remove]
|
111 |
-
next_token_logits[indices_to_remove] = float('-inf')
|
112 |
-
|
113 |
-
# Sample or choose the next token
|
114 |
-
if do_sample:
|
115 |
-
probs = torch.softmax(next_token_logits, dim=-1)
|
116 |
-
next_token = torch.multinomial(probs, num_samples=1)
|
117 |
-
else:
|
118 |
-
next_token = torch.argmax(next_token_logits, dim=-1).unsqueeze(0)
|
119 |
-
|
120 |
-
# Add the next token to the sequence
|
121 |
-
output_sequence = torch.cat([output_sequence, next_token.unsqueeze(0)], dim=1)
|
122 |
-
|
123 |
-
# Check if we've generated an end token
|
124 |
-
if next_token.item() == self.tokenizer.eos_token_id:
|
125 |
-
break
|
126 |
-
|
127 |
-
# Decode the generated sequence
|
128 |
-
generated_ids = output_sequence[0].tolist()
|
129 |
-
generated_text = self.tokenizer.sp_model.DecodeIds(generated_ids)
|
130 |
-
|
131 |
-
return generated_text
|
132 |
-
|
133 |
-
# Example usage
|
134 |
-
if __name__ == "__main__":
|
135 |
-
generator = HindiLLMGenerator("path/to/model")
|
136 |
-
result = generator.generate("भारत एक विशाल देश है")
|
137 |
-
print(result)
|
138 |
-
```
|
139 |
-
|
140 |
-
## Example Prompts
|
141 |
-
|
142 |
-
Try the model with these example prompts:
|
143 |
-
|
144 |
-
```
|
145 |
-
भारत एक विशाल देश है
|
146 |
-
मुझे हिंदी में एक कहानी सुनाओ
|
147 |
-
आज का मौसम बहुत अच्छा है
|
148 |
-
हिंदी साहित्य की प्रमुख विशेषताएं
|
149 |
-
```
|
150 |
## Model Architecture
|
151 |
- **Type**: Causal Language Model with Transformer architecture
|
152 |
- **Hidden size**: 768
|
153 |
- **Layers**: 12
|
154 |
- **Attention heads**: 16
|
155 |
- **Key-value heads**: 4 (using grouped-query attention)
|
|
|
156 |
- **Vocabulary size**: 16000
|
157 |
- **Parameters**: ~74.1M
|
158 |
- **Context window**: 512 tokens
|
|
|
6 |
- text-generation
|
7 |
- causal-lm
|
8 |
- lm
|
9 |
+
- rope
|
10 |
license: mit
|
11 |
datasets:
|
12 |
- custom_hindi_corpus
|
|
|
15 |
# Hindi-CausalLM
|
16 |
|
17 |
A Hindi language generation model with the following specifications:
|
|
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
## Model Architecture
|
20 |
- **Type**: Causal Language Model with Transformer architecture
|
21 |
- **Hidden size**: 768
|
22 |
- **Layers**: 12
|
23 |
- **Attention heads**: 16
|
24 |
- **Key-value heads**: 4 (using grouped-query attention)
|
25 |
+
- **Position encoding**: Rotary Position Embeddings (RoPE)
|
26 |
- **Vocabulary size**: 16000
|
27 |
- **Parameters**: ~74.1M
|
28 |
- **Context window**: 512 tokens
|
config.json
CHANGED
@@ -78,6 +78,7 @@
|
|
78 |
"intermediate_size": 3072,
|
79 |
"hidden_act": "silu",
|
80 |
"max_position_embeddings": 512,
|
|
|
81 |
"model_type": "convaicausallm",
|
82 |
"auto_map": {
|
83 |
"AutoConfig": "configuration_convaicausallm.ConvaiCausalLMConfig",
|
|
|
78 |
"intermediate_size": 3072,
|
79 |
"hidden_act": "silu",
|
80 |
"max_position_embeddings": 512,
|
81 |
+
"rope_theta": 10000.0,
|
82 |
"model_type": "convaicausallm",
|
83 |
"auto_map": {
|
84 |
"AutoConfig": "configuration_convaicausallm.ConvaiCausalLMConfig",
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ba8afe67cfd8a9622ba63f0607352cab2fda4a584a712a941cce9e82946c4a4
|
3 |
+
size 409791136
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c1e3091e78fdc85ef2ed3a1e1bb0e07408327b187fb7bb733f63014a1f6d25a0
|
3 |
+
size 409849254
|