pretty_name: MicroGen3D
tags:
- GenAI
- LDM
- 3d
- microstructure
- diffusion-model
- materials-science
- synthetic-data
- voxel
license: mit
datasets:
- microgen3D
language:
- en
microgen3D
Dataset Summary
microgen3D is a dataset of 3D voxelized microstructures designed for training, evaluation, and benchmarking of generative models—especially Conditional Latent Diffusion Models (LDMs). It includes both synthetic (Cahn-Hilliard) and experimental microstructures with multiple phases (2 to 3). The voxel grids range from 64³
up to 128×128×64
.
The dataset consists of three microstructure types:
- Experimental microstructures
- 2-phase Cahn-Hilliard microstructures
- 3-phase Cahn-Hilliard microstructures
The two Cahn-Hilliard datasets are thresholded versions of the same simulation source. For each dataset type, we also provide pretrained generative model weights, comprising:
vae.ckpt
– Variational Autoencoderfp.ckpt
– Feature Predictorddpm.ckpt
– Denoising Diffusion Probabilistic Model
📁 Repository Structure
microgen3D/
├── data/
│ └── sample_data.h5 # Experimental or synthetic HDF5 microstructure file
├── models/
│ └── weights/
│ ├── experimental/
│ │ ├── vae.ckpt
│ │ ├── fp.ckpt
│ │ └── ddpm.ckpt
│ ├── two_phase/
│ └── three_phase/
└── ...
🚀 Quick Start
🔧 Setup Instructions
# 1. Clone the repo
git clone https://github.com/baskargroup/MicroGen3D.git
cd MicroGen3D
# 2. Set up environment
python -m venv venv
source venv/bin/activate # On Windows use: venv\Scripts\activate
# 3. Install dependencies
pip install -r requirements.txt
# 4. Download dataset and weights (Hugging Face)
# Make sure HF CLI is installed and you're logged in: `huggingface-cli login`
from huggingface_hub import hf_hub_download
# Download sample data
hf_hub_download(repo_id="BGLab/microgen3D", filename="sample_data.h5", repo_type="dataset", local_dir="data")
# Download model weights
hf_hub_download(repo_id="BGLab/microgen3D", filename="vae.ckpt", local_dir="models/weights/experimental")
hf_hub_download(repo_id="BGLab/microgen3D", filename="fp.ckpt", local_dir="models/weights/experimental")
hf_hub_download(repo_id="BGLab/microgen3D", filename="ddpm.ckpt", local_dir="models/weights/experimental")
⚙️ Configuration
Training Config (config.yaml
)
- task: Auto-generated if left null
- data_path: Path to training dataset (
../data/sample_train.h5
) - model_dir: Directory to save model weights
- batch_size: Batch size for training
- image_shape: Shape of the 3D images
[C, D, H, W]
VAE Settings:
latent_dim_channels
: Latent space channels size.kld_loss_weight
: Weight of KL divergence lossmax_epochs
: Training epochspretrained
: Whether to use pretrained VAEpretrained_path
: Path to pretrained VAE model
FP Settings:
dropout
: Dropout ratemax_epochs
: Training epochspretrained
: Whether to use pretrained FPpretrained_path
: Path to pretrained FP model
DDPM Settings:
timesteps
: Number of diffusion timestepsn_feat
: Number of feature channels for Unet. Higher the channels more model capacity.learning_rate
: Learning ratemax_epochs
: Training epochs
Inference Parameters (params.yaml
)
- data_path: Path to inference/test dataset (
../data/sample_test.h5
)
Training (for model init only):
batch_size
,num_batches
,num_timesteps
,learning_rate
,max_epochs
: Optional parameters
Model:
latent_dim_channels
: Latent space channels size.n_feat
: Number of feature channels for Unet.image_shape
: Expected image input shape
Attributes:
- List of features/targets to predict:
ABS_f_D
CT_f_D_tort1
CT_f_A_tort1
Paths:
ddpm_path
: Path to trained DDPM modelvae_path
: Path to trained VAE modelfc_path
: Path to trained FP modeloutput_dir
: Where to store inference results
🏋️ Training
Navigate to the training folder and run:
cd training
python training.py
🧠 Inference
After training, switch to the inference folder and run:
cd ../inference
python inference.py
📜 Citation
If you use this dataset or models, please cite:
@article{baishnab2025microgen3d,
title={3D Multiphase Heterogeneous Microstructure Generation Using Conditional Latent Diffusion Models},
author={Baishnab, Nirmal and Herron, Ethan and Balu, Aditya and Sarkar, Soumik and Krishnamurthy, Adarsh and Ganapathysubramanian, Baskar},
journal={arXiv preprint arXiv:2503.10711},
year={2025}
}
⚖️ License
This project is licensed under the MIT License.