GotThatData's picture
Create
50fef92 verified
import tensorflow as tf
from tensorflow.keras import layers
import pandas as pd
import numpy as np
from typing import Tuple, List
import logging
from datetime import datetime
from pathlib import Path
import json
from sklearn.preprocessing import MinMaxScaler
from ta.trend import SMAIndicator, EMAIndicator, MACD
from ta.momentum import RSIIndicator
from ta.volatility import BollingerBands
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
class DataPreprocessor:
"""Handles data loading and preprocessing"""
def __init__(self, config_path: str = 'training_config/hyperparameters.json'):
with open(config_path) as f:
self.config = json.load(f)
self.scalers = {}
def load_data(self, data_path: str) -> pd.DataFrame:
"""Load data from CSV and add technical indicators"""
df = pd.read_csv(data_path)
df['timestamp'] = pd.to_datetime(df['timestamp'])
df = df.sort_values('timestamp')
# Add technical indicators
df = self.add_technical_indicators(df)
return df
def add_technical_indicators(self, df: pd.DataFrame) -> pd.DataFrame:
"""Add technical analysis indicators"""
# SMA
df['sma_20'] = SMAIndicator(close=df['price'], window=20).sma_indicator()
df['sma_50'] = SMAIndicator(close=df['price'], window=50).sma_indicator()
# EMA
df['ema_20'] = EMAIndicator(close=df['price'], window=20).ema_indicator()
# MACD
macd = MACD(close=df['price'])
df['macd'] = macd.macd()
df['macd_signal'] = macd.macd_signal()
# RSI
df['rsi'] = RSIIndicator(close=df['price']).rsi()
# Bollinger Bands
bb = BollingerBands(close=df['price'])
df['bb_high'] = bb.bollinger_hband()
df['bb_low'] = bb.bollinger_lband()
return df
def prepare_sequences(self, df: pd.DataFrame) -> Tuple[np.ndarray, np.ndarray]:
"""Create sequences for training"""
sequence_length = self.config['data']['sequence_length']
# Scale features
for column in df.select_dtypes(include=[np.number]).columns:
if column not in self.scalers:
self.scalers[column] = MinMaxScaler()
df[column] = self.scalers[column].fit_transform(df[[column]])
# Create sequences
sequences = []
targets = []
for i in range(len(df) - sequence_length):
sequence = df.iloc[i:i + sequence_length]
target = df.iloc[i + sequence_length]['price']
sequences.append(sequence)
targets.append(target)
return np.array(sequences), np.array(targets)
class TransformerBlock(layers.Layer):
"""Transformer block with multi-head attention"""
def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1):
super().__init__()
self.att = layers.MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim)
self.ffn = tf.keras.Sequential([
layers.Dense(ff_dim, activation="relu"),
layers.Dense(embed_dim),
])
self.layernorm1 = layers.LayerNormalization(epsilon=1e-6)
self.layernorm2 = layers.LayerNormalization(epsilon=1e-6)
self.dropout1 = layers.Dropout(rate)
self.dropout2 = layers.Dropout(rate)
def call(self, inputs, training):
attn_output = self.att(inputs, inputs)
attn_output = self.dropout1(attn_output, training=training)
out1 = self.layernorm1(inputs + attn_output)
ffn_output = self.ffn(out1)
ffn_output = self.dropout2(ffn_output, training=training)
return self.layernorm2(out1 + ffn_output)
class CryptoTransformer(tf.keras.Model):
"""Main transformer model for cryptocurrency prediction"""
def __init__(self, config_path: str = 'training_config/hyperparameters.json'):
super().__init__()
with open(config_path) as f:
self.config = json.load(f)
# Model parameters
self.num_layers = self.config['model']['n_layers']
self.d_model = self.config['model']['d_model']
self.num_heads = self.config['model']['n_heads']
self.ff_dim = self.config['model']['d_ff']
self.dropout = self.config['model']['dropout']
# Layers
self.transformer_blocks = [
TransformerBlock(self.d_model, self.num_heads, self.ff_dim, self.dropout)
for _ in range(self.num_layers)
]
self.dropout = layers.Dropout(self.dropout)
self.dense = layers.Dense(1) # Final prediction layer
def call(self, inputs):
x = inputs
for transformer_block in self.transformer_blocks:
x = transformer_block(x)
x = layers.GlobalAveragePooling1D()(x)
x = self.dropout(x)
return self.dense(x)
def train_model():
"""Main training function"""
logger.info("Starting model training")
# Initialize preprocessor and load data
preprocessor = DataPreprocessor()
df = preprocessor.load_data('data/training/kraken_trades.csv')
# Prepare sequences
X, y = preprocessor.prepare_sequences(df)
# Split data
train_size = int(0.8 * len(X))
X_train, X_test = X[:train_size], X[train_size:]
y_train, y_test = y[:train_size], y[train_size:]
# Initialize model
model = CryptoTransformer()
# Compile model
optimizer = tf.keras.optimizers.Adam(learning_rate=1e-4)
model.compile(
optimizer=optimizer,
loss='mse',
metrics=['mae']
)
# Train model
history = model.fit(
X_train, y_train,
epochs=100,
batch_size=32,
validation_data=(X_test, y_test),
callbacks=[
tf.keras.callbacks.EarlyStopping(
monitor='val_loss',
patience=10,
restore_best_weights=True
),
tf.keras.callbacks.ModelCheckpoint(
'models/crypto_transformer_{epoch}.h5',
save_best_only=True,
monitor='val_loss'
),
tf.keras.callbacks.TensorBoard(log_dir='logs')
]
)
# Save final model
model.save('models/crypto_transformer_final')
# Save training history
pd.DataFrame(history.history).to_csv('models/training_history.csv')
logger.info("Training completed")
return model, history
if __name__ == "__main__":
# Create necessary directories
Path('models').mkdir(exist_ok=True)
Path('logs').mkdir(exist_ok=True)
# Train model
model, history = train_model()