image
imagewidth (px) 2
3.75k
| material_type
stringclasses 2
values | latex
sequencelengths 1
1
|
---|---|---|
HW | [
"$\\displaystyle Q(-3,6)$"
] |
|
HW | [
"$\\displaystyle \\sqrt{(6+3)^{2}+(3-6)^{2}}=\\sqrt{81+9}=3 \\sqrt{10}$"
] |
|
HW | [
"$\\displaystyle \\sqrt{(6+3)^{2}+(3-6)^{2}}=\\sqrt{81+9}=3 \\sqrt{10}$"
] |
|
HW | [
"$\\displaystyle 3\\sqrt{10}$"
] |
|
HW | [
"$\\displaystyle 3\\sqrt{10}$"
] |
|
HW | [
"$\\displaystyle 3(-y)+2(-x)-3=0$"
] |
|
HW | [
"$\\displaystyle 3(-y)+2(-x)-3=0$"
] |
|
HW | [
"$\\displaystyle 2 x+3 y+3=0$"
] |
|
HW | [
"$\\displaystyle 2 x+3 y+3=0$"
] |
|
HW | [
"$\\displaystyle 2 x+3 y+3=0$"
] |
|
HW | [
"$\\displaystyle 2(-x)+2(-y)+k=0$"
] |
|
HW | [
"$\\displaystyle 2(-x)+2(-y)+k=0$"
] |
|
HW | [
"$\\displaystyle 2 x+2 y-k=0$"
] |
|
HW | [
"$\\displaystyle 2 x+2 y-k=0$"
] |
|
HW | [
"$\\displaystyle \\frac{|2 \\times 5+2 \\times 1-k|}{\\sqrt{2^{2}+2^{2}}}=2$"
] |
|
HW | [
"$\\displaystyle \\frac{|2 \\times 5+2 \\times 1-k|}{\\sqrt{2^{2}+2^{2}}}=2$"
] |
|
HW | [
"$\\displaystyle k=12 \\pm 4 \\sqrt{2}$"
] |
|
HW | [
"$\\displaystyle k=12 \\pm 4 \\sqrt{2}$"
] |
|
HW | [
"$\\displaystyle -3 y-3 x-4=0$"
] |
|
HW | [
"$\\displaystyle 3 x+3 y+4=0$"
] |
|
HW | [
"$\\displaystyle y-3=-(x+2)^{2}+4(x+2)-1$"
] |
|
HW | [
"$\\displaystyle y=-x^{2}+6$"
] |
|
HW | [
"$\\displaystyle y=-x^{2}+6$"
] |
|
HW | [
"$\\displaystyle (x+2)^{2}+(y-4)^{2}=k^{2}$"
] |
|
HW | [
"$\\displaystyle (x+2)^{2}+(y-4)^{2}=k^{2}$"
] |
|
HW | [
"$\\displaystyle k=q$"
] |
|
HW | [
"$\\displaystyle 2-a=25 \\rightarrow a=-23$"
] |
|
HW | [
"$\\displaystyle 2-a=25 \\rightarrow a=-23$"
] |
|
HW | [
"$\\displaystyle b=-2$"
] |
|
HW | [
"$\\displaystyle b=-2$"
] |
|
HW | [
"$\\displaystyle -25$"
] |
|
HW | [
"$\\displaystyle -25$"
] |
|
HW | [
"$\\displaystyle y=-x^{2}+\\frac{1}{6} x-\\frac{1}{6}$"
] |
|
HW | [
"$\\displaystyle y=-x^{2}+\\frac{1}{6} x-\\frac{1}{6}$"
] |
|
HW | [
"$\\displaystyle a=-8, \\quad 8=-1$"
] |
|
HW | [
"$\\displaystyle a=-8, \\quad 8=-1$"
] |
|
HW | [
"$\\displaystyle 4 x+y-6=0$"
] |
|
HW | [
"$\\displaystyle 4 x+y+10=0$"
] |
|
HW | [
"$\\displaystyle 4 x+y+10=0$"
] |
|
HW | [
"11"
] |
|
HW | [
"11"
] |
|
HW | [
"$\\displaystyle (x+1)^{2}+(y-5)^{2}=1$"
] |
|
HW | [
"$\\displaystyle (x+1)^{2}+(y-5)^{2}=1$"
] |
|
HW | [
"$\\displaystyle y=(x-4)-2+m$"
] |
|
HW | [
"$\\displaystyle 3=-3+m, m=6$"
] |
|
HW | [
"$\\displaystyle mn=12$"
] |
|
HW | [
"$\\displaystyle mn=12$"
] |
|
HW | [
"$\\displaystyle 12$"
] |
|
HW | [
"$\\displaystyle 12$"
] |
|
HW | [
"$\\displaystyle \\overline{O A}=\\sqrt{4^{2}+1^{2}}=\\sqrt{17}$"
] |
|
HW | [
"$\\displaystyle \\overline{O A}=\\sqrt{4^{2}+1^{2}}=\\sqrt{17}$"
] |
|
HW | [
"$\\displaystyle (a+4)^{2}=104$"
] |
|
HW | [
"$\\displaystyle a+4=2 \\sqrt{26}(\\because a>0)$"
] |
|
HW | [
"$\\displaystyle a=2 \\sqrt{26}-4$"
] |
|
HW | [
"$\\displaystyle a=2 \\sqrt{26}-4$"
] |
|
HW | [
"$\\displaystyle 2 \\sqrt{26}-4$"
] |
|
HW | [
"$\\displaystyle 5.$"
] |
|
HW | [
"$\\displaystyle 5.$"
] |
|
HW | [
"$\\displaystyle 2 X-2 B=2 A+4 B$"
] |
|
HW | [
"$\\displaystyle =7x^{2}+xy+6 y^{2}+3(-3x^{2}+5xy $"
] |
|
HW | [
"$\\displaystyle =7x^{2}+xy+6 y^{2}+3(-3x^{2}+5xy $"
] |
|
HW | [
"$\\displaystyle \\left.+6 4^{2}\\right)$"
] |
|
HW | [
"$\\displaystyle =-2 x^{2}+16 x y+24 y^{2}$"
] |
|
HW | [
"⑫ $\\displaystyle x^{4}+5x^{3}+11x^{2}+15x+9=A\\left(x^{2}+3x+4\\right)+4x+5$"
] |
|
HW | [
"⑫ $\\displaystyle x^{4}+5x^{3}+11x^{2}+15x+9=A\\left(x^{2}+3x+4\\right)+4x+5$"
] |
|
HW | [
"$\\displaystyle x^{4}+5 x^{3}+11 x^{2}+11 x+4=A\\left(x^{2}+3 x+4\\right) .$"
] |
|
HW | [
"$\\displaystyle A=x^{2}+2 x+1$"
] |
|
HW | [
"$\\displaystyle 5 x-5 x^{2}-2+17 x^{3}$"
] |
|
HW | [
"$\\displaystyle 5 x-5 x^{2}-2+17 x^{3}$"
] |
|
HW | [
"$\\displaystyle 17 x^{3}-5 x^{2}+5 x-2$"
] |
|
HW | [
"$\\displaystyle 17 x^{3}-5 x^{2}+5 x-2$"
] |
|
HW | [
"Good!!"
] |
|
HW | [
"Good!!"
] |
|
HW | [
"$\\displaystyle (3 x-2)(3 x+2)\\left(3^{2} x^{2}+2^{2}\\right)\\left(3^{4} x^{4}+2^{4}\\right)=\\left(3^{2} x^{2}-2^{2}\\right)\\left(3^{2} x^{2}+2^{2}\\right)\\left(3^{4} x^{4}+2^{4}\\right)=\\left(3^{4}x^{4}-2^{4}\\right)\\left(3^{4} x^{4}+2^{4}\\right)=$"
] |
|
HW | [
"$\\displaystyle (3 x-2)(3 x+2)\\left(3^{2} x^{2}+2^{2}\\right)\\left(3^{4} x^{4}+2^{4}\\right)=\\left(3^{2} x^{2}-2^{2}\\right)\\left(3^{2} x^{2}+2^{2}\\right)\\left(3^{4} x^{4}+2^{4}\\right)=\\left(3^{4}x^{4}-2^{4}\\right)\\left(3^{4} x^{4}+2^{4}\\right)=$"
] |
|
HW | [
"perfect!!"
] |
|
HW | [
"49. ① $\\displaystyle -16ab(4a+4b-4c)$"
] |
|
HW | [
"49. ① $\\displaystyle -16ab(4a+4b-4c)$"
] |
|
HW | [
"$\\displaystyle =-64 a^{2} b-64 a b^{2}+64 a b c$"
] |
|
HW | [
"$\\displaystyle =-64 a^{2} b-64 a b^{2}+64 a b c$"
] |
|
HW | [
"② $\\displaystyle {(4 a)}^{3}+{(4 b)}^{3}+{(-4 c)}^{3}-3(-64 a b c)$"
] |
|
HW | [
"$\\displaystyle =64 a^{3}+64 b^{3}-64 c^{3}+192 a b c$"
] |
|
HW | [
"$\\displaystyle =64 a^{3}+64 b^{3}-64 c^{3}+192 a b c$"
] |
|
HW | [
"$\\displaystyle -64 a b^{2}+236 a b c$"
] |
|
HW | [
"$\\displaystyle x^{3}+\\frac{1}{x^{3}}=\\left(x+\\frac{1}{x}\\right)^{3}-3\\left(x+\\frac{1}{x}\\right)$"
] |
|
HW | [
"$\\displaystyle x^{2}+\\frac{1}{x^{2}}=\\left(x+\\frac{1}{x}\\right)^{2}-2=12$"
] |
|
HW | [
"$\\displaystyle x^{2}+\\frac{1}{x^{2}}=\\left(x+\\frac{1}{x}\\right)^{2}-2=12$"
] |
|
HW | [
"$\\displaystyle \\left(x+\\frac{1}{x}\\right)^{2}=14, ~~x+\\frac{1}{x}=\\sqrt{14} .$"
] |
|
HW | [
"$\\displaystyle x^{3}+\\frac{1}{x^{3}}=14 \\sqrt{14}-3 \\sqrt{14}$"
] |
|
HW | [
"$\\displaystyle x^{3}+\\frac{1}{x^{3}}=14 \\sqrt{14}-3 \\sqrt{14}$"
] |
|
HW | [
"$\\displaystyle =11 \\sqrt{14}$"
] |
|
HW | [
"$\\displaystyle 11 \\sqrt{14}$"
] |
|
HW | [
"$\\displaystyle 11 \\sqrt{14}$"
] |
|
HW | [
"$\\displaystyle x^{3}-9 x^{2}+20 x-12$"
] |
|
HW | [
"$\\displaystyle x^{3}-9 x^{2}+20 x-12$"
] |
|
HW | [
"$\\displaystyle =a^{2}+2 a b+b^{2}-4 a b$"
] |
|
HW | [
"$\\displaystyle =(a+b)^{2}-4 a b$"
] |
|
HW | [
"$\\displaystyle =(a+b)^{2}-4 a b$"
] |
|
HW | [
"$\\displaystyle =16+40=56$"
] |
|
HW | [
"good"
] |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.