Dataset Viewer
Auto-converted to Parquet
doc_string
stringlengths
20
1.14k
suffix
stringlengths
1
482
src_lang
stringclasses
1 value
test_cases
sequencelengths
0
100
import_str
sequencelengths
0
1
dataset_name
stringclasses
1 value
prefix
stringlengths
65
1.27k
solution
stringlengths
3
417
demos
sequencelengths
0
8
tgt_lang
stringclasses
1 value
entry_func
stringlengths
1
30
compare_func
sequencelengths
0
0
task_name
stringclasses
1 value
data_id
stringlengths
38
40
Check if in given list of numbers, are any two numbers closer to each other than given threshold.
if distance < threshold: return True return False
python
[ [ "[1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3", "True" ], [ "[1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05", "False" ], [ "[1.0, 2.0, 5.9, 4.0, 5.0], 0.95", "True" ], [ "[1.0, 2.0, 5.9, 4.0, 5.0], 0.8", "False" ], [ "[1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1", "True" ], [ "[1.1, 2.2, 3.1, 4.1, 5.1], 1.0", "True" ], [ "[1.1, 2.2, 3.1, 4.1, 5.1], 0.5", "False" ] ]
[ "from typing import List" ]
HumanEval_RandomSpanInfillingLight
from typing import List def has_close_elements(numbers: List[float], threshold: float) -> bool: """ Check if in given list of numbers, are any two numbers closer to each other than given threshold. """ for idx, elem in enumerate(numbers): for idx2, elem2 in enumerate(numbers):
if idx != idx2: distance = abs(elem - elem2)
[ [ "[1.0, 2.0, 3.0], 0.5", "False" ], [ "[1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3", "True" ] ]
python
has_close_elements
[]
code_infilling
RandomSpanInfillingLight/HumanEval/0/1
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to separate those group into separate strings and return the list of those. Separate groups are balanced (each open brace is properly closed) and not nested within each other Ignore any spaces in the input string.
elif c == ')': current_depth -= 1 current_string.append(c) if current_depth == 0: result.append(''.join(current_string)) current_string.clear() return result
python
[ [ "'(()()) ((())) () ((())()())'", "[\n '(()())', '((()))', '()', '((())()())'\n ]" ], [ "'() (()) ((())) (((())))'", "[\n '()', '(())', '((()))', '(((())))'\n ]" ], [ "'(()(())((())))'", "[\n '(()(())((())))'\n ]" ], [ "'( ) (( )) (( )( ))'", "['()', '(())', '(()())']" ] ]
[ "from typing import List" ]
HumanEval_RandomSpanInfillingLight
from typing import List def separate_paren_groups(paren_string: str) -> List[str]: """ Input to this function is a string containing multiple groups of nested parentheses. Your goal is to separate those group into separate strings and return the list of those. Separate groups are balanced (each open brace is properly closed) and not nested within each other Ignore any spaces in the input string. """
result = [] current_string = [] current_depth = 0 for c in paren_string: if c == '(': current_depth += 1 current_string.append(c)
[ [ "'( ) (( )) (( )( ))'", "['()', '(())', '(()())']" ] ]
python
separate_paren_groups
[]
code_infilling
RandomSpanInfillingLight/HumanEval/1/1
Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). Return the decimal part of the number.
python
[ [ "3.5", "0.5" ] ]
[]
HumanEval_RandomSpanInfillingLight
def truncate_number(number: float) -> float: """ Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). Return the decimal part of the number. """ return number
% 1.0
[ [ "3.5", "0.5" ], [ "1.33", "0.33" ], [ "123.456", "0.456" ] ]
python
truncate_number
[]
code_infilling
RandomSpanInfillingLight/HumanEval/2/1
You're given a list of deposit and withdrawal operations on a bank account that starts with zero balance. Your task is to detect if at any point the balance of account fallls below zero, and at that point function should return True. Otherwise it should return False.
return False
python
[ [ "[]", "False" ], [ "[1, 2, -3, 1, 2, -3]", "False" ], [ "[1, 2, -4, 5, 6]", "True" ], [ "[1, -1, 2, -2, 5, -5, 4, -4]", "False" ], [ "[1, -1, 2, -2, 5, -5, 4, -5]", "True" ], [ "[1, -2, 2, -2, 5, -5, 4, -4]", "True" ] ]
[ "from typing import List" ]
HumanEval_RandomSpanInfillingLight
from typing import List def below_zero(operations: List[int]) -> bool: """ You're given a list of deposit and withdrawal operations on a bank account that starts with zero balance. Your task is to detect if at any point the balance of account fallls below zero, and at that point function should return True. Otherwise it should return False. """ balance = 0 for op in o
perations: balance += op if balance < 0: return True
[ [ "[1, 2, 3]", "False" ], [ "[1, 2, -4, 5]", "True" ] ]
python
below_zero
[]
code_infilling
RandomSpanInfillingLight/HumanEval/3/1
For a given list of input numbers, calculate Mean Absolute Deviation around the mean of this dataset. Mean Absolute Deviation is the average absolute difference between each element and a centerpoint (mean in this case): MAD = average | x - x_mean |
return sum(abs(x - mean) for x in numbers) / len(numbers)
python
[ [ "[1.0, 2.0, 3.0]", "2.0/3.0" ], [ "[1.0, 2.0, 3.0, 4.0]", "1.0" ], [ "[1.0, 2.0, 3.0, 4.0, 5.0]", "6.0/5.0" ] ]
[ "from typing import List" ]
HumanEval_RandomSpanInfillingLight
from typing import List def mean_absolute_deviation(numbers: List[float]) -> float: """ For a given list of input numbers, calculate Mean Absolute Deviation around the mean of this dataset. Mean Absolute Deviation is the average absolute difference between each element and a centerpoint (mean in this case): MAD = average | x - x_mean | """
mean = sum(numbers) / len(numbers)
[ [ "[1.0, 2.0, 3.0, 4.0]", "1.0" ] ]
python
mean_absolute_deviation
[]
code_infilling
RandomSpanInfillingLight/HumanEval/4/1
Insert a number 'delimeter' between every two consecutive elements of input list `numbers'
result.append(numbers[-1]) return result
python
[ [ "[], 7", "[]" ], [ "[5, 6, 3, 2], 8", "[5, 8, 6, 8, 3, 8, 2]" ], [ "[2, 2, 2], 2", "[2, 2, 2, 2, 2]" ] ]
[ "from typing import List" ]
HumanEval_RandomSpanInfillingLight
from typing import List def intersperse(numbers: List[int], delimeter: int) -> List[int]: """ Insert a number 'delimeter' between every two consecutive elements of input list `numbers' """ if not numbers: return [] result = [] for n in numbers
[:-1]: result.append(n) result.append(delimeter)
[ [ "[], 4", "[]" ], [ "[1, 2, 3], 4", "[1, 4, 2, 4, 3]" ] ]
python
intersperse
[]
code_infilling
RandomSpanInfillingLight/HumanEval/5/1
Input to this function is a string represented multiple groups for nested parentheses separated by spaces. For each of the group, output the deepest level of nesting of parentheses. E.g. (()()) has maximum two levels of nesting while ((())) has three.
return [parse_paren_group(x) for x in paren_string.split(' ') if x]
python
[ [ "'(()()) ((())) () ((())()())'", "[2, 3, 1, 3]" ], [ "'() (()) ((())) (((())))'", "[1, 2, 3, 4]" ], [ "'(()(())((())))'", "[4]" ] ]
[ "from typing import List" ]
HumanEval_RandomSpanInfillingLight
from typing import List def parse_nested_parens(paren_string: str) -> List[int]: """ Input to this function is a string represented multiple groups for nested parentheses separated by spaces. For each of the group, output the deepest level of nesting of parentheses. E.g. (()()) has maximum two levels of nesting while ((())) has three. """
def parse_paren_group(s): depth = 0 max_depth = 0 for c in s: if c == '(': depth += 1 max_depth = max(depth, max_depth) else: depth -= 1 return max_depth
[ [ "'(()()) ((())) () ((())()())'", "[2, 3, 1, 3]" ] ]
python
parse_nested_parens
[]
code_infilling
RandomSpanInfillingLight/HumanEval/6/1
Filter an input list of strings only for ones that contain given substring
]
python
[ [ "[], 'john'", "[]" ], [ "['xxx', 'asd', 'xxy', 'john doe', 'xxxAAA', 'xxx'], 'xxx'", "['xxx', 'xxxAAA', 'xxx']" ], [ "['xxx', 'asd', 'aaaxxy', 'john doe', 'xxxAAA', 'xxx'], 'xx'", "['xxx', 'aaaxxy', 'xxxAAA', 'xxx']" ], [ "['grunt', 'trumpet', 'prune', 'gruesome'], 'run'", "['grunt', 'prune']" ] ]
[ "from typing import List" ]
HumanEval_RandomSpanInfillingLight
from typing import List def filter_by_substring(strings: List[str], substring: str) -> List[str]: """ Filter an input list of strings only for ones that contain given substring """ return [x for x in strings
if substring in x
[ [ "[], 'a'", "[]" ], [ "['abc', 'bacd', 'cde', 'array'], 'a'", "['abc', 'bacd', 'array']" ] ]
python
filter_by_substring
[]
code_infilling
RandomSpanInfillingLight/HumanEval/7/1
For a given list of integers, return a tuple consisting of a sum and a product of all the integers in a list. Empty sum should be equal to 0 and empty product should be equal to 1. >>> sum_product([]) (0, 1)
return sum_value, prod_value
python
[ [ "[]", "(0, 1)" ], [ "[1, 1, 1]", "(3, 1)" ], [ "[100, 0]", "(100, 0)" ], [ "[3, 5, 7]", "(3 + 5 + 7, 3 * 5 * 7)" ], [ "[10]", "(10, 10)" ] ]
[ "from typing import List, Tuple" ]
HumanEval_RandomSpanInfillingLight
from typing import List, Tuple def sum_product(numbers: List[int]) -> Tuple[int, int]: """ For a given list of integers, return a tuple consisting of a sum and a product of all the integers in a list. Empty sum should be equal to 0 and empty product should be equal to 1. >>> sum_product([]) (0, 1) """
sum_value = 0 prod_value = 1 for n in numbers: sum_value += n prod_value *= n
[ [ "[]", "(0, 1)" ], [ "[1, 2, 3, 4]", "(10, 24)" ] ]
python
sum_product
[]
code_infilling
RandomSpanInfillingLight/HumanEval/8/1
From a given list of integers, generate a list of rolling maximum element found until given moment in the sequence.
result.append(running_max) return result
python
[ [ "[]", "[]" ], [ "[1, 2, 3, 4]", "[1, 2, 3, 4]" ], [ "[4, 3, 2, 1]", "[4, 4, 4, 4]" ], [ "[3, 2, 3, 100, 3]", "[3, 3, 3, 100, 100]" ] ]
[ "from typing import List, Tuple" ]
HumanEval_RandomSpanInfillingLight
from typing import List, Tuple def rolling_max(numbers: List[int]) -> List[int]: """ From a given list of integers, generate a list of rolling maximum element found until given moment in the sequence. """ running_max = None result = [] for n in numbers:
if running_max is None: running_max = n else: running_max = max(running_max, n)
[ [ "[1, 2, 3, 2, 3, 4, 2]", "[1, 2, 3, 3, 3, 4, 4]" ] ]
python
rolling_max
[]
code_infilling
RandomSpanInfillingLight/HumanEval/9/1
Test if given string is a palindrome
python
[ [ "''", "''" ], [ "'x'", "'x'" ], [ "'xyz'", "'xyzyx'" ], [ "'xyx'", "'xyx'" ], [ "'jerry'", "'jerryrrej'" ] ]
[]
HumanEval_RandomSpanInfillingLight
def is_palindrome(string: str) -> bool: """ Test if given string is a palindrome """ return string == string[::-1] def make_palindrome(string: str) -> str: """ Find the shortest palindrome that begins with a supplied string. Algorithm idea is simple: - Find the longest postfix of supplied string that is a palindrome. - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix. >>> make_palindrome('') '' >>> make_palindrome('cat') 'catac' >>> make_palindrome('cata') 'catac' """ if not string: return '' beginning_of_suffix = 0 while not is_palindrome(string[beginning_of_suffix:]): beginning_of_suffix += 1 return string +
string[:beginning_of_suffix][::-1]
[ [ "''", "''" ], [ "'cat'", "'catac'" ], [ "'cata'", "'catac'" ] ]
python
make_palindrome
[]
code_infilling
RandomSpanInfillingLight/HumanEval/10/1
Input are two strings a and b consisting only of 1s and 0s. Perform binary XOR on these inputs and return result also as a string.
return ''.join(xor(x, y) for x, y in zip(a, b))
python
[ [ "'111000', '101010'", "'010010'" ], [ "'1', '1'", "'0'" ], [ "'0101', '0000'", "'0101'" ] ]
[ "from typing import List" ]
HumanEval_RandomSpanInfillingLight
from typing import List def string_xor(a: str, b: str) -> str: """ Input are two strings a and b consisting only of 1s and 0s. Perform binary XOR on these inputs and return result also as a string. """
def xor(i, j): if i == j: return '0' else: return '1'
[ [ "'010', '110'", "'100'" ] ]
python
string_xor
[]
code_infilling
RandomSpanInfillingLight/HumanEval/11/1
Out of list of strings, return the longest one. Return the first one in case of multiple strings of the same length. Return None in case the input list is empty.
for s in strings: if len(s) == maxlen: return s
python
[ [ "[]", "None" ], [ "['x', 'y', 'z']", "'x'" ], [ "['x', 'yyy', 'zzzz', 'www', 'kkkk', 'abc']", "'zzzz'" ] ]
[ "from typing import List, Optional" ]
HumanEval_RandomSpanInfillingLight
from typing import List, Optional def longest(strings: List[str]) -> Optional[str]: """ Out of list of strings, return the longest one. Return the first one in case of multiple strings of the same length. Return None in case the input list is empty. """ if not strings: return None
maxlen = max(len(x) for x in strings)
[ [ "[]", "" ], [ "['a', 'b', 'c']", "'a'" ], [ "['a', 'bb', 'ccc']", "'ccc'" ] ]
python
longest
[]
code_infilling
RandomSpanInfillingLight/HumanEval/12/1
Return a greatest common divisor of two integers a and b
return a
python
[ [ "3, 7", "1" ], [ "10, 15", "5" ], [ "49, 14", "7" ], [ "144, 60", "12" ] ]
[]
HumanEval_RandomSpanInfillingLight
def greatest_common_divisor(a: int, b: int) -> int: """ Return a greatest common divisor of two integers a and b """
while b: a, b = b, a % b
[ [ "3, 5", "1" ], [ "25, 15", "5" ] ]
python
greatest_common_divisor
[]
code_infilling
RandomSpanInfillingLight/HumanEval/13/1
Return list of all prefixes from shortest to longest of the input string
return result
python
[ [ "''", "[]" ], [ "'asdfgh'", "['a', 'as', 'asd', 'asdf', 'asdfg', 'asdfgh']" ], [ "'WWW'", "['W', 'WW', 'WWW']" ] ]
[ "from typing import List" ]
HumanEval_RandomSpanInfillingLight
from typing import List def all_prefixes(string: str) -> List[str]: """ Return list of all prefixes from shortest to longest of the input string """ result = []
for i in range(len(string)): result.append(string[:i+1])
[ [ "'abc'", "['a', 'ab', 'abc']" ] ]
python
all_prefixes
[]
code_infilling
RandomSpanInfillingLight/HumanEval/14/1
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
)
python
[ [ "0", "'0'" ], [ "3", "'0 1 2 3'" ], [ "10", "'0 1 2 3 4 5 6 7 8 9 10'" ] ]
[]
HumanEval_RandomSpanInfillingLight
def string_sequence(n: int) -> str: """ Return a string containing space-delimited numbers starting from 0 upto n inclusive. """ return ' '.join(
[str(x) for x in range(n + 1)]
[ [ "0", "'0'" ], [ "5", "'0 1 2 3 4 5'" ] ]
python
string_sequence
[]
code_infilling
RandomSpanInfillingLight/HumanEval/15/1
Given a string, find out how many distinct characters (regardless of case) does it consist of
)
python
[ [ "''", "0" ], [ "'abcde'", "5" ], [ "'abcde' + 'cade' + 'CADE'", "5" ], [ "'aaaaAAAAaaaa'", "1" ], [ "'Jerry jERRY JeRRRY'", "5" ] ]
[]
HumanEval_RandomSpanInfillingLight
def count_distinct_characters(string: str) -> int: """ Given a string, find out how many distinct characters (regardless of case) does it consist of """ return len(
set(string.lower())
[ [ "'xyzXYZ'", "3" ], [ "'Jerry'", "4" ] ]
python
count_distinct_characters
[]
code_infilling
RandomSpanInfillingLight/HumanEval/16/1
Input to this function is a string representing musical notes in a special ASCII format. Your task is to parse this string and return list of integers corresponding to how many beats does each not last. Here is a legend: 'o' - whole note, lasts four beats 'o|' - half note, lasts two beats '.|' - quater note, lasts one beat
return [note_map[x] for x in music_string.split(' ') if x]
python
[ [ "''", "[]" ], [ "'o o o o'", "[4, 4, 4, 4]" ], [ "'.| .| .| .|'", "[1, 1, 1, 1]" ], [ "'o| o| .| .| o o o o'", "[2, 2, 1, 1, 4, 4, 4, 4]" ], [ "'o| .| o| .| o o| o o|'", "[2, 1, 2, 1, 4, 2, 4, 2]" ] ]
[ "from typing import List" ]
HumanEval_RandomSpanInfillingLight
from typing import List def parse_music(music_string: str) -> List[int]: """ Input to this function is a string representing musical notes in a special ASCII format. Your task is to parse this string and return list of integers corresponding to how many beats does each not last. Here is a legend: 'o' - whole note, lasts four beats 'o|' - half note, lasts two beats '.|' - quater note, lasts one beat """
note_map = {'o': 4, 'o|': 2, '.|': 1}
[ [ "'o o| .| o| o| .| .| .| .| o o'", "[4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]" ] ]
python
parse_music
[]
code_infilling
RandomSpanInfillingLight/HumanEval/17/1
Find how many times a given substring can be found in the original string. Count overlaping cases.
return times
python
[ [ "'', 'x'", "0" ], [ "'xyxyxyx', 'x'", "4" ], [ "'cacacacac', 'cac'", "4" ], [ "'john doe', 'john'", "1" ] ]
[]
HumanEval_RandomSpanInfillingLight
def how_many_times(string: str, substring: str) -> int: """ Find how many times a given substring can be found in the original string. Count overlaping cases. """ times = 0 for i in range(
len(string) - len(substring) + 1): if string[i:i+len(substring)] == substring: times += 1
[ [ "'', 'a'", "0" ], [ "'aaa', 'a'", "3" ], [ "'aaaa', 'aa'", "3" ] ]
python
how_many_times
[]
code_infilling
RandomSpanInfillingLight/HumanEval/18/1
Input is a space-delimited string of numberals from 'zero' to 'nine'. Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'. Return the string with numbers sorted from smallest to largest
))
python
[ [ "''", "''" ], [ "'three'", "'three'" ], [ "'three five nine'", "'three five nine'" ], [ "'five zero four seven nine eight'", "'zero four five seven eight nine'" ], [ "'six five four three two one zero'", "'zero one two three four five six'" ] ]
[ "from typing import List" ]
HumanEval_RandomSpanInfillingLight
from typing import List def sort_numbers(numbers: str) -> str: """ Input is a space-delimited string of numberals from 'zero' to 'nine'. Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'. Return the string with numbers sorted from smallest to largest """ value_map = { 'zero': 0, 'one': 1, 'two': 2, 'three': 3, 'four': 4, 'five': 5, 'six': 6, 'seven': 7, 'eight': 8, 'nine': 9 } return ' '.join(sorted([x for x in numbers.split(' ') if x]
, key=lambda x: value_map[x]
[ [ "'three one five'", "'one three five'" ] ]
python
sort_numbers
[]
code_infilling
RandomSpanInfillingLight/HumanEval/19/1
From a supplied list of numbers (of length at least two) select and return two that are the closest to each other and return them in order (smaller number, larger number).
return closest_pair
python
[ [ "[1.0, 2.0, 3.9, 4.0, 5.0, 2.2]", "(3.9, 4.0)" ], [ "[1.0, 2.0, 5.9, 4.0, 5.0]", "(5.0, 5.9)" ], [ "[1.0, 2.0, 3.0, 4.0, 5.0, 2.2]", "(2.0, 2.2)" ], [ "[1.0, 2.0, 3.0, 4.0, 5.0, 2.0]", "(2.0, 2.0)" ], [ "[1.1, 2.2, 3.1, 4.1, 5.1]", "(2.2, 3.1)" ] ]
[ "from typing import List, Tuple" ]
HumanEval_RandomSpanInfillingLight
from typing import List, Tuple def find_closest_elements(numbers: List[float]) -> Tuple[float, float]: """ From a supplied list of numbers (of length at least two) select and return two that are the closest to each other and return them in order (smaller number, larger number). """ closest_pair = None distance = None for idx, elem in enumerate(numbers): for idx2, elem2 in enumerate(numbers):
if idx != idx2: if distance is None: distance = abs(elem - elem2) closest_pair = tuple(sorted([elem, elem2])) else: new_distance = abs(elem - elem2) if new_distance < distance: distance = new_distance closest_pair = tuple(sorted([elem, elem2]))
[ [ "[1.0, 2.0, 3.0, 4.0, 5.0, 2.2]", "(2.0, 2.2)" ], [ "[1.0, 2.0, 3.0, 4.0, 5.0, 2.0]", "(2.0, 2.0)" ] ]
python
find_closest_elements
[]
code_infilling
RandomSpanInfillingLight/HumanEval/20/1
Given list of numbers (of at least two elements), apply a linear transform to that list, such that the smallest number will become 0 and the largest will become 1
for x in numbers]
python
[ [ "[2.0, 49.9]", "[0.0, 1.0]" ], [ "[100.0, 49.9]", "[1.0, 0.0]" ], [ "[1.0, 2.0, 3.0, 4.0, 5.0]", "[0.0, 0.25, 0.5, 0.75, 1.0]" ], [ "[2.0, 1.0, 5.0, 3.0, 4.0]", "[0.25, 0.0, 1.0, 0.5, 0.75]" ], [ "[12.0, 11.0, 15.0, 13.0, 14.0]", "[0.25, 0.0, 1.0, 0.5, 0.75]" ] ]
[ "from typing import List" ]
HumanEval_RandomSpanInfillingLight
from typing import List def rescale_to_unit(numbers: List[float]) -> List[float]: """ Given list of numbers (of at least two elements), apply a linear transform to that list, such that the smallest number will become 0 and the largest will become 1 """ min_number = min(numbers) max_number = max(numbers) return [
(x - min_number) / (max_number - min_number)
[ [ "[1.0, 2.0, 3.0, 4.0, 5.0]", "[0.0, 0.25, 0.5, 0.75, 1.0]" ] ]
python
rescale_to_unit
[]
code_infilling
RandomSpanInfillingLight/HumanEval/21/1
Filter given list of any python values only for integers
]
python
[ [ "[]", "[]" ], [ "[4, {}, [], 23.2, 9, 'adasd']", "[4, 9]" ], [ "[3, 'c', 3, 3, 'a', 'b']", "[3, 3, 3]" ] ]
[ "from typing import List, Any" ]
HumanEval_RandomSpanInfillingLight
from typing import List, Any def filter_integers(values: List[Any]) -> List[int]: """ Filter given list of any python values only for integers """ return [x
for x in values if isinstance(x, int)
[ [ "['a', 3.14, 5]", "[5]" ], [ "[1, 2, 3, 'abc', {}, []]", "[1, 2, 3]" ] ]
python
filter_integers
[]
code_infilling
RandomSpanInfillingLight/HumanEval/22/1
Return length of given string
string)
python
[ [ "''", "0" ], [ "'x'", "1" ], [ "'asdasnakj'", "9" ] ]
[]
HumanEval_RandomSpanInfillingLight
def strlen(string: str) -> int: """ Return length of given string """ return
len(
[ [ "''", "0" ], [ "'abc'", "3" ] ]
python
strlen
[]
code_infilling
RandomSpanInfillingLight/HumanEval/23/1
For a given number n, find the largest number that divides n evenly, smaller than n
python
[ [ "3", "1" ], [ "7", "1" ], [ "10", "5" ], [ "100", "50" ], [ "49", "7" ] ]
[]
HumanEval_RandomSpanInfillingLight
def largest_divisor(n: int) -> int: """ For a given number n, find the largest number that divides n evenly, smaller than n """ for i in r
eversed(range(n)): if n % i == 0: return i
[ [ "15", "5" ] ]
python
largest_divisor
[]
code_infilling
RandomSpanInfillingLight/HumanEval/24/1
Return list of prime factors of given integer in the order from smallest to largest. Each of the factors should be listed number of times corresponding to how many times it appeares in factorization. Input number should be equal to the product of all factors
if n % i == 0: fact.append(i) n //= i else: i += 1 if n > 1: fact.append(n) return fact
python
[ [ "2", "[2]" ], [ "4", "[2, 2]" ], [ "8", "[2, 2, 2]" ], [ "3 * 19", "[3, 19]" ], [ "3 * 19 * 3 * 19", "[3, 3, 19, 19]" ], [ "3 * 19 * 3 * 19 * 3 * 19", "[3, 3, 3, 19, 19, 19]" ], [ "3 * 19 * 19 * 19", "[3, 19, 19, 19]" ], [ "3 * 2 * 3", "[2, 3, 3]" ] ]
[ "from typing import List" ]
HumanEval_RandomSpanInfillingLight
from typing import List def factorize(n: int) -> List[int]: """ Return list of prime factors of given integer in the order from smallest to largest. Each of the factors should be listed number of times corresponding to how many times it appeares in factorization. Input number should be equal to the product of all factors """ import math fact = [] i = 2 while
i <= int(math.sqrt(n) + 1):
[ [ "8", "[2, 2, 2]" ], [ "25", "[5, 5]" ], [ "70", "[2, 5, 7]" ] ]
python
factorize
[]
code_infilling
RandomSpanInfillingLight/HumanEval/25/1
From a list of integers, remove all elements that occur more than once. Keep order of elements left the same as in the input.
return [n for n in numbers if c[n] <= 1]
python
[ [ "[]", "[]" ], [ "[1, 2, 3, 4]", "[1, 2, 3, 4]" ], [ "[1, 2, 3, 2, 4, 3, 5]", "[1, 4, 5]" ] ]
[ "from typing import List" ]
HumanEval_RandomSpanInfillingLight
from typing import List def remove_duplicates(numbers: List[int]) -> List[int]: """ From a list of integers, remove all elements that occur more than once. Keep order of elements left the same as in the input. """
import collections c = collections.Counter(numbers)
[ [ "[1, 2, 3, 2, 4]", "[1, 3, 4]" ] ]
python
remove_duplicates
[]
code_infilling
RandomSpanInfillingLight/HumanEval/26/1
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
python
[ [ "''", "''" ], [ "'Hello!'", "'hELLO!'" ], [ "'These violent delights have violent ends'", "'tHESE VIOLENT DELIGHTS HAVE VIOLENT ENDS'" ] ]
[]
HumanEval_RandomSpanInfillingLight
def flip_case(string: str) -> str: """ For a given string, flip lowercase characters to uppercase and uppercase to lowercase. """ return string
.swapcase()
[ [ "'Hello'", "'hELLO'" ] ]
python
flip_case
[]
code_infilling
RandomSpanInfillingLight/HumanEval/27/1
Concatenate list of strings into a single string
join(strings)
python
[ [ "[]", "''" ], [ "['x', 'y', 'z']", "'xyz'" ], [ "['x', 'y', 'z', 'w', 'k']", "'xyzwk'" ] ]
[ "from typing import List" ]
HumanEval_RandomSpanInfillingLight
from typing import List def concatenate(strings: List[str]) -> str: """ Concatenate list of strings into a single string """ return
''.
[ [ "[]", "''" ], [ "['a', 'b', 'c']", "'abc'" ] ]
python
concatenate
[]
code_infilling
RandomSpanInfillingLight/HumanEval/28/1
Filter an input list of strings only for ones that start with a given prefix.
]
python
[ [ "[], 'john'", "[]" ], [ "['xxx', 'asd', 'xxy', 'john doe', 'xxxAAA', 'xxx'], 'xxx'", "['xxx', 'xxxAAA', 'xxx']" ] ]
[ "from typing import List" ]
HumanEval_RandomSpanInfillingLight
from typing import List def filter_by_prefix(strings: List[str], prefix: str) -> List[str]: """ Filter an input list of strings only for ones that start with a given prefix. """ return [x for x in strings
if x.startswith(prefix)
[ [ "[], 'a'", "[]" ], [ "['abc', 'bcd', 'cde', 'array'], 'a'", "['abc', 'array']" ] ]
python
filter_by_prefix
[]
code_infilling
RandomSpanInfillingLight/HumanEval/29/1
Return only positive numbers in the list.
]
python
[ [ "[-1, -2, 4, 5, 6]", "[4, 5, 6]" ], [ "[5, 3, -5, 2, 3, 3, 9, 0, 123, 1, -10]", "[5, 3, 2, 3, 3, 9, 123, 1]" ], [ "[-1, -2]", "[]" ], [ "[]", "[]" ] ]
[]
HumanEval_RandomSpanInfillingLight
def get_positive(l: list): """Return only positive numbers in the list. """ return [e
for e in l if e > 0
[ [ "[-1, 2, -4, 5, 6]", "[2, 5, 6]" ], [ "[5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]", "[5, 3, 2, 3, 9, 123, 1]" ] ]
python
get_positive
[]
code_infilling
RandomSpanInfillingLight/HumanEval/30/1
Return true if a given number is prime, and false otherwise.
return True
python
[ [ "6", "False" ], [ "101", "True" ], [ "11", "True" ], [ "13441", "True" ], [ "61", "True" ], [ "4", "False" ], [ "1", "False" ], [ "5", "True" ], [ "11", "True" ], [ "17", "True" ], [ "5 * 17", "False" ], [ "11 * 7", "False" ], [ "13441 * 19", "False" ] ]
[]
HumanEval_RandomSpanInfillingLight
def is_prime(n): """Return true if a given number is prime, and false otherwise. """ if n < 2: return False
for k in range(2, n - 1): if n % k == 0: return False
[ [ "6", "False" ], [ "101", "True" ], [ "11", "True" ], [ "13441", "True" ], [ "61", "True" ], [ "4", "False" ], [ "1", "False" ] ]
python
is_prime
[]
code_infilling
RandomSpanInfillingLight/HumanEval/31/1
Evaluates polynomial with coefficients xs at point x. return xs[0] + xs[1] * x + xs[1] * x^2 + .... xs[n] * x^n
: begin = center else: end = center return begin
python
[]
[ "import math" ]
HumanEval_RandomSpanInfillingLight
import math def poly(xs: list, x: float): """ Evaluates polynomial with coefficients xs at point x. return xs[0] + xs[1] * x + xs[1] * x^2 + .... xs[n] * x^n """ return sum([coeff * math.pow(x, i) for i, coeff in enumerate(xs)]) def find_zero(xs: list): """ xs are coefficients of a polynomial. find_zero find x such that poly(x) = 0. find_zero returns only only zero point, even if there are many. Moreover, find_zero only takes list xs having even number of coefficients and largest non zero coefficient as it guarantees a solution. >>> round(find_zero([1, 2]), 2) # f(x) = 1 + 2x -0.5 >>> round(find_zero([-6, 11, -6, 1]), 2) # (x - 1) * (x - 2) * (x - 3) = -6 + 11x - 6x^2 + x^3 1.0 """ begin, end = -1., 1. while poly(xs, begin) * poly(xs, end) > 0: begin *= 2.0 end *= 2.0 while end - begin > 1e-10: center = (begin + end) / 2.0 if
poly(xs, center) * poly(xs, begin) > 0
[ [ "x", "0." ], [ "find_zero([1, 2]), 2) # f(x", "1 + 2x" ], [ "find_zero([-6, 11, -6, 1]), 2) # (x - 1) * (x - 2) * (x - 3", "-6 + 11x - 6x^2 + x^3" ] ]
python
find_zero
[]
code_infilling
RandomSpanInfillingLight/HumanEval/32/1
This function takes a list l and returns a list l' such that l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal to the values of the corresponding indicies of l, but sorted.
return l
python
[]
[]
HumanEval_RandomSpanInfillingLight
def sort_third(l: list): """This function takes a list l and returns a list l' such that l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal to the values of the corresponding indicies of l, but sorted. """ l = list(l)
l[::3] = sorted(l[::3])
[ [ "[1, 2, 3]", "[1, 2, 3]" ], [ "[5, 6, 3, 4, 8, 9, 2]", "[2, 6, 3, 4, 8, 9, 5]" ] ]
python
sort_third
[]
code_infilling
RandomSpanInfillingLight/HumanEval/33/1
Return sorted unique elements in a list
set(l)))
python
[ [ "[5, 3, 5, 2, 3, 3, 9, 0, 123]", "[0, 2, 3, 5, 9, 123]" ] ]
[]
HumanEval_RandomSpanInfillingLight
def unique(l: list): """Return sorted unique elements in a list """ return
sorted(list(
[ [ "[5, 3, 5, 2, 3, 3, 9, 0, 123]", "[0, 2, 3, 5, 9, 123]" ] ]
python
unique
[]
code_infilling
RandomSpanInfillingLight/HumanEval/34/1
Return maximum element in the list.
return m
python
[ [ "[1, 2, 3]", "3" ], [ "[5, 3, -5, 2, -3, 3, 9, 0, 124, 1, -10]", "124" ] ]
[]
HumanEval_RandomSpanInfillingLight
def max_element(l: list): """Return maximum element in the list. """ m = l[0] for e in l:
if e > m: m = e
[ [ "[1, 2, 3]", "3" ], [ "[5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]", "123" ] ]
python
max_element
[]
code_infilling
RandomSpanInfillingLight/HumanEval/35/1
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
: ns.append(i) s = ''.join(list(map(str, ns))) ans = 0 for c in s: ans += (c == '7') return ans
python
[ [ "50", "0" ], [ "78", "2" ], [ "79", "3" ], [ "100", "3" ], [ "200", "6" ], [ "4000", "192" ], [ "10000", "639" ], [ "100000", "8026" ] ]
[]
HumanEval_RandomSpanInfillingLight
def fizz_buzz(n: int): """Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13. """ ns = [] for i in range(n): if
i % 11 == 0 or i % 13 == 0
[ [ "50", "0" ], [ "78", "2" ], [ "79", "3" ] ]
python
fizz_buzz
[]
code_infilling
RandomSpanInfillingLight/HumanEval/36/1
This function takes a list l and returns a list l' such that l' is identical to l in the odd indicies, while its values at the even indicies are equal to the values of the even indicies of l, but sorted.
if len(evens) > len(odds): ans.append(evens[-1]) return ans
python
[]
[]
HumanEval_RandomSpanInfillingLight
def sort_even(l: list): """This function takes a list l and returns a list l' such that l' is identical to l in the odd indicies, while its values at the even indicies are equal to the values of the even indicies of l, but sorted. """ evens = l[::2] odds = l[1::2] evens.sort()
ans = [] for e, o in zip(evens, odds): ans.extend([e, o])
[ [ "[1, 2, 3]", "[1, 2, 3]" ], [ "[5, 6, 3, 4]", "[3, 6, 5, 4]" ] ]
python
sort_even
[]
code_infilling
RandomSpanInfillingLight/HumanEval/37/1
returns encoded string by cycling groups of three characters.
encode_cyclic(s))
python
[ [ "'eaztdrcpoojjs'", "'zeartdocpjojs'" ], [ "'fcsasgmhiqc'", "'sfcgasimhqc'" ], [ "'avmirjdeqbylxuau'", "'mavjirqdelbyaxuu'" ], [ "'azhacmsfsnfsg'", "'hazmacssfsnfg'" ], [ "'zbvkvwoatdccvw'", "'vzbwkvtoacdcvw'" ], [ "'mqzfshjknuz'", "'zmqhfsnjkuz'" ], [ "'bgpjjqmghur'", "'pbgqjjhmgur'" ], [ "'skuuqfixmobqarshlnfv'", "'uskfuqmixqobsarnhlfv'" ], [ "'bwcoqbjzilceuidscgn'", "'cbwboqijzelcduigscn'" ], [ "'lpoyfvzavtysssduxn'", "'olpvyfvzastydssnux'" ], [ "'rguzukgsizsrmvrnt'", "'urgkzuigsrzsrmvnt'" ], [ "'orjrnmyozyhwc'", "'jormrnzyowyhc'" ], [ "'egkdzdeufufsupt'", "'kegddzfeusuftup'" ], [ "'kuqnvecsetyvdfero'", "'qkuenvecsvtyedfro'" ], [ "'rglvlgjtgesicfkcmkm'", "'lrggvlgjtieskcfkcmm'" ], [ "'jpdxznnaqylzmmh'", "'djpnxzqnazylhmm'" ], [ "'zwmgzcntpbawwlfbex'", "'mzwcgzpntwbafwlxbe'" ], [ "'unjdpwbxpxkpqdopaalb'", "'junwdppbxpxkoqdapalb'" ], [ "'zeukiguxndy'", "'uzegkinuxdy'" ], [ "'sjnaktdnbnokqjg'", "'nsjtakbdnknogqj'" ], [ "'vrmtirlygzhf'", "'mvrrtiglyfzh'" ], [ "'mhtgmpslldrhjl'", "'tmhpgmlslhdrjl'" ], [ "'mpvjpdatrmhtdx'", "'vmpdjprattmhdx'" ], [ "'jimzixallctnnsg'", "'mjixzilalnctgns'" ], [ "'gahjootuomivad'", "'hgaojootuvmiad'" ], [ "'ulilcmoplpsqqoyrppbh'", "'iulmlclopqpsyqoprpbh'" ], [ "'oznykgwonynglp'", "'nozgyknwogynlp'" ], [ "'fzvyarmdbmeogatu'", "'vfzryabmdometgau'" ], [ "'mfnngxdggewb'", "'nmfxnggdgbew'" ], [ "'qvacnekscjxe'", "'aqvecncksejx'" ], [ "'nmcapqndnkuh'", "'cnmqapnndhku'" ], [ "'nnennffezagabnfa'", "'ennfnnzfeaagfbna'" ], [ "'ifgknbekvs'", "'gifbknveks'" ], [ "'drtekkfffj'", "'tdrkekfffj'" ], [ "'tswtymazbcejja'", "'wtsmtybazjceja'" ], [ "'vlcyvzwvjbrc'", "'cvlzyvjwvcbr'" ], [ "'jvlybcuhdjhoixz'", "'ljvcybduhojhzix'" ], [ "'gtpwuynlrwoimpersbri'", "'pgtywurnliwoempbrsri'" ], [ "'gxkyyxeiltkdiuq'", "'kgxxyyleidtkqiu'" ], [ "'lsxrlnsbrxispzf'", "'xlsnrlrsbsxifpz'" ], [ "'hkwqbehapilpgesmj'", "'whkeqbphapilsgemj'" ], [ "'qgxkrqvsvsrwesnwot'", "'xqgqkrvvswsrnestwo'" ], [ "'tkjskkxoqalpnajqidr'", "'jtkkskqxopaljnadqir'" ], [ "'djekkirzcafg'", "'edjikkcrzgaf'" ], [ "'srfgcpgexwdbajohros'", "'fsrpgcxgebwdoajohrs'" ], [ "'sfckdzevjqezdxmcso'", "'csfzkdjevzqemdxocs'" ], [ "'aaikokcghtbyunigyq'", "'iaakkohcgytbiunqgy'" ], [ "'jaldcwbuxzqvlsff'", "'ljawdcxbuvzqflsf'" ], [ "'hyjfibztlplww'", "'jhybfilztwplw'" ], [ "'irsuppaksqoxgkyak'", "'sirpupsakxqoygkak'" ], [ "'rvhlirxndd'", "'hrvrlidxnd'" ], [ "'fwofairkckdyffng'", "'ofwifacrkykdnffg'" ], [ "'idmgovtowjfmf'", "'midvgowtomjff'" ], [ "'ovfdtilllkla'", "'fovidtlllakl'" ], [ "'kmmlbgisttsjhpgeo'", "'mkmglbtisjtsghpeo'" ], [ "'wvnqidnuhafydcdqqbzv'", "'nwvdqihnuyafddcbqqzv'" ], [ "'suhgzhdxuwp'", "'hsuhgzudxwp'" ], [ "'wovjwmvixtut'", "'vwomjwxvittu'" ], [ "'cghripgisjeihgsbkme'", "'hcgprisgiijeshgmbke'" ], [ "'vpnnwihekt'", "'nvpinwkhet'" ], [ "'oakdzvyxwcubs'", "'koavdzwyxbcus'" ], [ "'yiizrtxhhmazu'", "'iyitzrhxhzmau'" ], [ "'ykzsucdlyah'", "'zykcsuydlah'" ], [ "'wikxqjfoudburqasd'", "'kwijxqufoudbarqsd'" ], [ "'cssoeuoaspnhxaeipsc'", "'scsuoesoahpnexasipc'" ], [ "'yiztlakgbpfqpnvrwxl'", "'zyiatlbkgqpfvpnxrwl'" ], [ "'faljwqdqsyeghhccnrvz'", "'lfaqjwsdqgyechhrcnvz'" ], [ "'okdezkfuvnml'", "'dokkezvfulnm'" ], [ "'klkbfzkqofdmtcg'", "'kklzbfokqmfdgtc'" ], [ "'uqzurwhizdjvr'", "'zuqwurzhivdjr'" ], [ "'jrgrscrapvjpfqj'", "'gjrcrsprapvjjfq'" ], [ "'nwenxrwcrfaeb'", "'enwrnxrwcefab'" ], [ "'pldrrczxefqs'", "'dplcrrezxsfq'" ], [ "'ksvouegvkjyfecan'", "'vkseoukgvfjyaecn'" ], [ "'ijqaxfmbwjkevttzbxk'", "'qijfaxwmbejktvtxzbk'" ], [ "'irewkmbwkh'", "'eirmwkkbwh'" ], [ "'mhqhodamvtgiev'", "'qmhdhovamitgev'" ], [ "'ryjpgtgwucmyeulwhydh'", "'jrytpgugwycmleuywhdh'" ], [ "'ttkwvupppyakk'", "'kttuwvpppkyak'" ], [ "'dsgidvchdrln'", "'gdsviddchnrl'" ], [ "'nklhmphxejdcwx'", "'lnkphmehxcjdwx'" ], [ "'plwenneudaqxtwheh'", "'wplnendeuxaqhtweh'" ], [ "'pasolfzaalcs'", "'spafolazaslc'" ], [ "'mvohmjdjtvggijdbxbnh'", "'omvjhmtdjgvgdijbbxnh'" ], [ "'olbcwcvbnhh'", "'bolccwnvbhh'" ], [ "'nttkuqayrlcuxioymcl'", "'tntqkurayulcoxicyml'" ], [ "'jxhrreunodmezni'", "'hjxerrounedmizn'" ], [ "'wsrxjpqyzkxhbxc'", "'rwspxjzqyhkxcbx'" ], [ "'kxkqlaosighdfirrgd'", "'kkxaqliosdghrfidrg'" ], [ "'jwlphbvzsosmfdq'", "'ljwbphsvzmosqfd'" ], [ "'osdfiyiitm'", "'dosyfitiim'" ], [ "'yndqfrdeuthbcwhhvizq'", "'dynrqfudebthhcwihvzq'" ], [ "'cmqnxmwxnrv'", "'qcmmnxnwxrv'" ], [ "'qvfdfgsgqkwa'", "'fqvgdfqsgakw'" ], [ "'zzuimcybadfunvwd'", "'uzzcimaybudfwnvd'" ], [ "'bsrzyntvnvsppnz'", "'rbsnzyntvpvszpn'" ], [ "'mjrvpbrpqemkws'", "'rmjbvpqrpkemws'" ], [ "'ekwvxxlganvrot'", "'wekxvxalgrnvot'" ], [ "'onlzsrfkdqfuvl'", "'lonrzsdfkuqfvl'" ], [ "'rcwvivhovywyfnqsefv'", "'wrcvvivhoyywqfnfsev'" ] ]
[]
HumanEval_RandomSpanInfillingLight
def encode_cyclic(s: str): """ returns encoded string by cycling groups of three characters. """ # split string to groups. Each of length 3. groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)] # cycle elements in each group. Unless group has fewer elements than 3. groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups] return "".join(groups) def decode_cyclic(s: str): """ takes as input string encoded with encode_cyclic function. Returns decoded string. """ return
encode_cyclic(
[ [ "group", "3 else group for group in groups]" ] ]
python
decode_cyclic
[]
code_infilling
RandomSpanInfillingLight/HumanEval/38/1
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
if n == 0: return f[-1]
python
[ [ "1", "2" ], [ "2", "3" ], [ "3", "5" ], [ "4", "13" ], [ "5", "89" ], [ "6", "233" ], [ "7", "1597" ], [ "8", "28657" ], [ "9", "514229" ], [ "10", "433494437" ] ]
[]
HumanEval_RandomSpanInfillingLight
def prime_fib(n: int): """ prime_fib returns n-th number that is a Fibonacci number and it's also prime. """ import math def is_prime(p): if p < 2: return False for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)): if p % k == 0: return False return True f = [0, 1] while True:
f.append(f[-1] + f[-2]) if is_prime(f[-1]): n -= 1
[ [ "1", "2" ], [ "2", "3" ], [ "3", "5" ], [ "4", "13" ], [ "5", "89" ] ]
python
prime_fib
[]
code_infilling
RandomSpanInfillingLight/HumanEval/39/1
triples_sum_to_zero takes a list of integers as an input. it returns True if there are three distinct elements in the list that sum to zero, and False otherwise.
return False
python
[ [ "[1, 3, 5, 0]", "False" ], [ "[1, 3, 5, -1]", "False" ], [ "[1, 3, -2, 1]", "True" ], [ "[1, 2, 3, 7]", "False" ], [ "[1, 2, 5, 7]", "False" ], [ "[2, 4, -5, 3, 9, 7]", "True" ], [ "[1]", "False" ], [ "[1, 3, 5, -100]", "False" ], [ "[100, 3, 5, -100]", "False" ] ]
[]
HumanEval_RandomSpanInfillingLight
def triples_sum_to_zero(l: list): """ triples_sum_to_zero takes a list of integers as an input. it returns True if there are three distinct elements in the list that sum to zero, and False otherwise. """ for i in range(len(l)): for j in range(i + 1, len(l)):
for k in range(j + 1, len(l)): if l[i] + l[j] + l[k] == 0: return True
[ [ "[1, 3, 5, 0]", "False" ], [ "[1, 3, -2, 1]", "True" ], [ "[1, 2, 3, 7]", "False" ], [ "[2, 4, -5, 3, 9, 7]", "True" ], [ "[1]", "False" ] ]
python
triples_sum_to_zero
[]
code_infilling
RandomSpanInfillingLight/HumanEval/40/1
Imagine a road that's a perfectly straight infinitely long line. n cars are driving left to right; simultaneously, a different set of n cars are driving right to left. The two sets of cars start out being very far from each other. All cars move in the same speed. Two cars are said to collide when a car that's moving left to right hits a car that's moving right to left. However, the cars are infinitely sturdy and strong; as a result, they continue moving in their trajectory as if they did not collide. This function outputs the number of such collisions.
python
[ [ "2", "4" ], [ "3", "9" ], [ "4", "16" ], [ "8", "64" ], [ "10", "100" ] ]
[]
HumanEval_RandomSpanInfillingLight
def car_race_collision(n: int): """ Imagine a road that's a perfectly straight infinitely long line. n cars are driving left to right; simultaneously, a different set of n cars are driving right to left. The two sets of cars start out being very far from each other. All cars move in the same speed. Two cars are said to collide when a car that's moving left to right hits a car that's moving right to left. However, the cars are infinitely sturdy and strong; as a result, they continue moving in their trajectory as if they did not collide. This function outputs the number of such collisions. """ return
n**2
[]
python
car_race_collision
[]
code_infilling
RandomSpanInfillingLight/HumanEval/41/1
Return list with elements incremented by 1.
]
python
[ [ "[]", "[]" ], [ "[3, 2, 1]", "[4, 3, 2]" ], [ "[5, 2, 5, 2, 3, 3, 9, 0, 123]", "[6, 3, 6, 3, 4, 4, 10, 1, 124]" ] ]
[]
HumanEval_RandomSpanInfillingLight
def incr_list(l: list): """Return list with elements incremented by 1. """ return [(e
+ 1) for e in l
[ [ "[1, 2, 3]", "[2, 3, 4]" ], [ "[5, 3, 5, 2, 3, 3, 9, 0, 123]", "[6, 4, 6, 3, 4, 4, 10, 1, 124]" ] ]
python
incr_list
[]
code_infilling
RandomSpanInfillingLight/HumanEval/42/1
pairs_sum_to_zero takes a list of integers as an input. it returns True if there are two distinct elements in the list that sum to zero, and False otherwise.
return False
python
[ [ "[1, 3, 5, 0]", "False" ], [ "[1, 3, -2, 1]", "False" ], [ "[1, 2, 3, 7]", "False" ], [ "[2, 4, -5, 3, 5, 7]", "True" ], [ "[1]", "False" ], [ "[-3, 9, -1, 3, 2, 30]", "True" ], [ "[-3, 9, -1, 3, 2, 31]", "True" ], [ "[-3, 9, -1, 4, 2, 30]", "False" ], [ "[-3, 9, -1, 4, 2, 31]", "False" ] ]
[]
HumanEval_RandomSpanInfillingLight
def pairs_sum_to_zero(l): """ pairs_sum_to_zero takes a list of integers as an input. it returns True if there are two distinct elements in the list that sum to zero, and False otherwise. """ for i, l1 in enumerate(l):
for j in range(i + 1, len(l)): if l1 + l[j] == 0: return True
[ [ "[1, 3, 5, 0]", "False" ], [ "[1, 3, -2, 1]", "False" ], [ "[1, 2, 3, 7]", "False" ], [ "[2, 4, -5, 3, 5, 7]", "True" ], [ "[1]", "False" ] ]
python
pairs_sum_to_zero
[]
code_infilling
RandomSpanInfillingLight/HumanEval/43/1
Change numerical base of input number x to base. return string representation after the conversion. base numbers are less than 10.
return ret
python
[ [ "8, 3", "\"22\"" ], [ "9, 3", "\"100\"" ], [ "234, 2", "\"11101010\"" ], [ "16, 2", "\"10000\"" ], [ "8, 2", "\"1000\"" ], [ "7, 2", "\"111\"" ] ]
[]
HumanEval_RandomSpanInfillingLight
def change_base(x: int, base: int): """Change numerical base of input number x to base. return string representation after the conversion. base numbers are less than 10. """ ret = "" while x > 0:
ret = str(x % base) + ret x //= base
[ [ "8, 3", "'22'" ], [ "8, 2", "'1000'" ], [ "7, 2", "'111'" ] ]
python
change_base
[]
code_infilling
RandomSpanInfillingLight/HumanEval/44/1
Given length of a side and high return area for a triangle.
python
[ [ "5, 3", "7.5" ], [ "2, 2", "2.0" ], [ "10, 8", "40.0" ] ]
[]
HumanEval_RandomSpanInfillingLight
def triangle_area(a, h): """Given length of a side and high return area for a triangle. """ return a * h
/ 2.0
[ [ "5, 3", "7.5" ] ]
python
triangle_area
[]
code_infilling
RandomSpanInfillingLight/HumanEval/45/1
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows: fib4(0) -> 0 fib4(1) -> 0 fib4(2) -> 2 fib4(3) -> 0 fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4). Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion. >>> fib4(5) 4 >>> fib4(6) 8 >>> fib4(7) 14
) results.pop(0) return results[-1]
python
[ [ "5", "4" ], [ "8", "28" ], [ "10", "104" ], [ "12", "386" ] ]
[]
HumanEval_RandomSpanInfillingLight
def fib4(n: int): """The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows: fib4(0) -> 0 fib4(1) -> 0 fib4(2) -> 2 fib4(3) -> 0 fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4). Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion. >>> fib4(5) 4 >>> fib4(6) 8 >>> fib4(7) 14 """ results = [0, 0, 2, 0] if n < 4: return results[n] for _ in range(4, n + 1): results.append(
results[-1] + results[-2] + results[-3] + results[-4]
[ [ "5", "4" ], [ "6", "8" ], [ "7", "14" ] ]
python
fib4
[]
code_infilling
RandomSpanInfillingLight/HumanEval/46/1
Return median of elements in the list l.
return l[len(l) // 2]
python
[ [ "[3, 1, 2, 4, 5]", "3" ], [ "[-10, 4, 6, 1000, 10, 20]", "8.0" ], [ "[5]", "5" ], [ "[6, 5]", "5.5" ], [ "[8, 1, 3, 9, 9, 2, 7]", "7" ] ]
[]
HumanEval_RandomSpanInfillingLight
def median(l: list): """Return median of elements in the list l. """ l = sorted(l) if len(l) % 2 == 0:
return (l[len(l) // 2 - 1] + l[len(l) // 2]) / 2.0 else:
[ [ "[3, 1, 2, 4, 5]", "3" ], [ "[-10, 4, 6, 1000, 10, 20]", "15.0" ] ]
python
median
[]
code_infilling
RandomSpanInfillingLight/HumanEval/47/1
Checks if given string is a palindrome
return True
python
[ [ "''", "True" ], [ "'aba'", "True" ], [ "'aaaaa'", "True" ], [ "'zbcd'", "False" ], [ "'xywyx'", "True" ], [ "'xywyz'", "False" ], [ "'xywzx'", "False" ] ]
[]
HumanEval_RandomSpanInfillingLight
def is_palindrome(text: str): """ Checks if given string is a palindrome """ for i in range(len(text)):
if text[i] != text[len(text) - 1 - i]: return False
[ [ "''", "True" ], [ "'aba'", "True" ], [ "'aaaaa'", "True" ], [ "'zbcd'", "False" ] ]
python
is_palindrome
[]
code_infilling
RandomSpanInfillingLight/HumanEval/48/1
Return 2^n modulo p (be aware of numerics).
return ret
python
[ [ "3, 5", "3" ], [ "1101, 101", "2" ], [ "0, 101", "1" ], [ "3, 11", "8" ], [ "100, 101", "1" ], [ "30, 5", "4" ], [ "31, 5", "3" ] ]
[]
HumanEval_RandomSpanInfillingLight
def modp(n: int, p: int): """Return 2^n modulo p (be aware of numerics). """ ret = 1 for i in range(n): ret =
(2 * ret) % p
[ [ "3, 5", "3" ], [ "1101, 101", "2" ], [ "0, 101", "1" ], [ "3, 11", "8" ], [ "100, 101", "1" ] ]
python
modp
[]
code_infilling
RandomSpanInfillingLight/HumanEval/49/1
returns encoded string by shifting every character by 5 in the alphabet.
for ch in s])
python
[ [ "\"nppetuavkhytds\"", "\"ikkzopvqfctoyn\"" ], [ "\"jkwevzwwetoiui\"", "\"efrzqurrzojdpd\"" ], [ "\"deqhgbmrgyvolvllvgu\"", "\"yzlcbwhmbtqjgqggqbp\"" ], [ "\"adwtpwmzzsba\"", "\"vyrokrhuunwv\"" ], [ "\"kviyfxcqqk\"", "\"fqdtasxllf\"" ], [ "\"owuxsmtkqyi\"", "\"jrpsnhofltd\"" ], [ "\"nnmfgsupnnlfnyke\"", "\"iihabnpkiigaitfz\"" ], [ "\"neklmdclmzoro\"", "\"izfghyxghujmj\"" ], [ "\"lesnecsgpsgcya\"", "\"gznizxnbknbxtv\"" ], [ "\"oxbtwcbwsxinxvdwir\"", "\"jsworxwrnsdisqyrdm\"" ], [ "\"sdghpnyvoqrwpzgvdu\"", "\"nybckitqjlmrkubqyp\"" ], [ "\"jyzljgmjrbquen\"", "\"etugebhemwlpzi\"" ], [ "\"zgyrlfbwabpjhperjslh\"", "\"ubtmgawrvwkeckzmengc\"" ], [ "\"qleffvhomvtyngciggde\"", "\"lgzaaqcjhqotibxdbbyz\"" ], [ "\"qqpicuvmrtkj\"", "\"llkdxpqhmofe\"" ], [ "\"jyyevmecuetxqrirfd\"", "\"ettzqhzxpzoslmdmay\"" ], [ "\"lmbsrqvjevdtb\"", "\"ghwnmlqezqyow\"" ], [ "\"whxcodekelxlmln\"", "\"rcsxjyzfzgsghgi\"" ], [ "\"delrtygeoyvml\"", "\"yzgmotbzjtqhg\"" ], [ "\"apdqbcrttlq\"", "\"vkylwxmoogl\"" ], [ "\"xttskzvkfh\"", "\"soonfuqfac\"" ], [ "\"olbwqqdnru\"", "\"jgwrllyimp\"" ], [ "\"ehdpgbpcwbqsqr\"", "\"zcykbwkxrwlnlm\"" ], [ "\"oxbdypniamafgtsz\"", "\"jswytkidvhvabonu\"" ], [ "\"sdnuydcckyvllunfbxi\"", "\"nyiptyxxftqggpiawsd\"" ], [ "\"antvcacedbucqjmhl\"", "\"vioqxvxzywpxlehcg\"" ], [ "\"zogbormycllavatve\"", "\"ujbwjmhtxggvqvoqz\"" ], [ "\"fuueutygaxwywovpnigy\"", "\"appzpotbvsrtrjqkidbt\"" ], [ "\"jknughmjbqvtcrulb\"", "\"efipbchewlqoxmpgw\"" ], [ "\"xbvxtynbqwz\"", "\"swqsotiwlru\"" ], [ "\"mgctjkezbtnklcsw\"", "\"hbxoefzuwoifgxnr\"" ], [ "\"fmelllajoemkowluz\"", "\"ahzgggvejzhfjrgpu\"" ], [ "\"ptozvzdtyvnhzime\"", "\"kojuquyotqicudhz\"" ], [ "\"xxhgplwbzs\"", "\"sscbkgrwun\"" ], [ "\"rfzoarauxuka\"", "\"maujvmvpspfv\"" ], [ "\"twqnkxildqtbrbjwyqrh\"", "\"orlifsdgylowmwertlmc\"" ], [ "\"eildvqeupsl\"", "\"zdgyqlzpkng\"" ], [ "\"pnzptdzfhzxpn\"", "\"kiukoyuacuski\"" ], [ "\"hbmzwirdoar\"", "\"cwhurdmyjvm\"" ], [ "\"gaqxkjkpnwkca\"", "\"bvlsfefkirfxv\"" ], [ "\"xddhfaftiziqebsa\"", "\"syycavaodudlzwnv\"" ], [ "\"ydyqdhblfckp\"", "\"tytlycwgaxfk\"" ], [ "\"ymypgwmwogoudeq\"", "\"thtkbrhrjbjpyzl\"" ], [ "\"unvmuxgbdyhchso\"", "\"piqhpsbwytcxcnj\"" ], [ "\"dhghjsovcb\"", "\"ycbcenjqxw\"" ], [ "\"piinwbmppf\"", "\"kddirwhkka\"" ], [ "\"zvyoceomaxjcgwprqm\"", "\"uqtjxzjhvsexbrkmlh\"" ], [ "\"eijmnrfqtqudyv\"", "\"zdehimalolpytq\"" ], [ "\"qpeqklfmwnry\"", "\"lkzlfgahrimt\"" ], [ "\"fwnkdnyqbo\"", "\"arifyitlwj\"" ], [ "\"smcxegzdxbfd\"", "\"nhxszbuysway\"" ], [ "\"jvtkgaecmqnpszjvf\"", "\"eqofbvzxhliknueqa\"" ], [ "\"aurjwvkebktdv\"", "\"vpmerqfzwfoyq\"" ], [ "\"nfmmmhjeliakugh\"", "\"iahhhcezgdvfpbc\"" ], [ "\"eyfxptmpshohi\"", "\"ztaskohkncjcd\"" ], [ "\"glaoltrkxsmxspdvow\"", "\"bgvjgomfsnhsnkyqjr\"" ], [ "\"zwyupdxanebym\"", "\"urtpkysvizwth\"" ], [ "\"xkoigfpvcvqcxcgeoq\"", "\"sfjdbakqxqlxsxbzjl\"" ], [ "\"fgizxalyjcpkvkt\"", "\"abdusvgtexkfqfo\"" ], [ "\"zirsuhlzwi\"", "\"udmnpcgurd\"" ], [ "\"zhwqbyhkbqeomarlldcb\"", "\"ucrlwtcfwlzjhvmggyxw\"" ], [ "\"rvshqbrvsxnjfjakul\"", "\"mqnclwmqnsieaevfpg\"" ], [ "\"nktgcnuxplhfsm\"", "\"ifobxipskgcanh\"" ], [ "\"baoiqymypxkvlrn\"", "\"wvjdlthtksfqgmi\"" ], [ "\"nwagelwecafiphlj\"", "\"irvbzgrzxvadkcge\"" ], [ "\"kbqtmzbujxumptcvyl\"", "\"fwlohuwpesphkoxqtg\"" ], [ "\"dujvyrdslwf\"", "\"ypeqtmyngra\"" ], [ "\"vujolzbqoqekvv\"", "\"qpejguwljlzfqq\"" ], [ "\"hbbdoumleckjwhws\"", "\"cwwyjphgzxfercrn\"" ], [ "\"aykhykkfnxckhmzndki\"", "\"vtfctffaisxfchuiyfd\"" ], [ "\"wpidhybggvempzrfa\"", "\"rkdyctwbbqzhkumav\"" ], [ "\"dwgrdroeuiduby\"", "\"yrbmymjzpdypwt\"" ], [ "\"yptrachqjtgrgqxy\"", "\"tkomvxcleobmblst\"" ], [ "\"gjragaaocfbadfbeebky\"", "\"bemvbvvjxawvyawzzwft\"" ], [ "\"rnisigwzqqshj\"", "\"midndbrullnce\"" ], [ "\"gzivhmjtyysqsuqubbur\"", "\"budqcheottnlnplpwwpm\"" ], [ "\"gfmeiuvbyuuiiflplahw\"", "\"bahzdpqwtppddagkgvcr\"" ], [ "\"iczpwzppirpxfm\"", "\"dxukrukkdmksah\"" ], [ "\"hwtxjblmlsikphbivd\"", "\"crosewghgndfkcwdqy\"" ], [ "\"fwzjefnnnjwhv\"", "\"aruezaiiiercq\"" ], [ "\"sysvhbbqkh\"", "\"ntnqcwwlfc\"" ], [ "\"lbwiwpvlcdtvh\"", "\"gwrdrkqgxyoqc\"" ], [ "\"rlehhmhevv\"", "\"mgzcchczqq\"" ], [ "\"qtrfjsocbsldii\"", "\"lomaenjxwngydd\"" ], [ "\"eszhonrsle\"", "\"znucjimngz\"" ], [ "\"jvzxprqiyfqfj\"", "\"equskmldtalae\"" ], [ "\"wdzasevrfyobkbro\"", "\"ryuvnzqmatjwfwmj\"" ], [ "\"hzvhjetyyntxiplf\"", "\"cuqcezottiosdkga\"" ], [ "\"yfskmymfdjqooty\"", "\"tanfhthayeljjot\"" ], [ "\"rrtepprngbbv\"", "\"mmozkkmibwwq\"" ], [ "\"zsqaqzsbxtwpqa\"", "\"unlvlunwsorklv\"" ], [ "\"kneyiarobkgl\"", "\"fiztdvmjwfbg\"" ], [ "\"xxbudxuwlhi\"", "\"sswpysprgcd\"" ], [ "\"fetivyuynb\"", "\"azodqtptiw\"" ], [ "\"syswumgxpgxmcwzgedq\"", "\"ntnrphbskbshxrubzyl\"" ], [ "\"xychwdsfyfoly\"", "\"stxcrynatajgt\"" ], [ "\"nfwrujwavgavutrxuzsg\"", "\"iarmpervqbvqpomspunb\"" ], [ "\"vuhhhndgmzkwplolb\"", "\"qpccciybhufrkgjgw\"" ], [ "\"fwqxfhbqjbgryci\"", "\"arlsacwlewbmtxd\"" ], [ "\"amzcptlnzkor\"", "\"vhuxkogiufjm\"" ] ]
[]
HumanEval_RandomSpanInfillingLight
def encode_shift(s: str): """ returns encoded string by shifting every character by 5 in the alphabet. """ return "".join([chr(((ord(ch) + 5 - ord("a")) % 26) + ord("a")) for ch in s]) def decode_shift(s: str): """ takes as input string encoded with encode_shift function. Returns decoded string. """ return "".join([
chr(((ord(ch) - 5 - ord("a")) % 26) + ord("a"))
[]
python
decode_shift
[]
code_infilling
RandomSpanInfillingLight/HumanEval/50/1
remove_vowels is a function that takes string and returns string without vowels.
not in ["a", "e", "i", "o", "u"]])
python
[ [ "''", "''" ], [ "\"abcdef\\nghijklm\"", "'bcdf\\nghjklm'" ], [ "'fedcba'", "'fdcb'" ], [ "'eeeee'", "''" ], [ "'acBAA'", "'cB'" ], [ "'EcBOO'", "'cB'" ], [ "'ybcd'", "'ybcd'" ] ]
[]
HumanEval_RandomSpanInfillingLight
def remove_vowels(text): """ remove_vowels is a function that takes string and returns string without vowels. """ return "".join([s for s in text if s
.lower()
[ [ "''", "''" ], [ "\"abcdef\\nghijklm\"", "'bcdf\\nghjklm'" ], [ "'abcdef'", "'bcdf'" ], [ "'aaaaa'", "''" ], [ "'aaBAA'", "'B'" ], [ "'zbcd'", "'zbcd'" ] ]
python
remove_vowels
[]
code_infilling
RandomSpanInfillingLight/HumanEval/51/1
Return True if all numbers in the list l are below threshold t.
return True
python
[]
[]
HumanEval_RandomSpanInfillingLight
def below_threshold(l: list, t: int): """Return True if all numbers in the list l are below threshold t. """ for e in l: i
f e >= t: return False
[ [ "[1, 2, 4, 10], 100", "True" ], [ "[1, 20, 4, 10], 5", "False" ] ]
python
below_threshold
[]
code_infilling
RandomSpanInfillingLight/HumanEval/52/1
Add two numbers x and y
python
[ [ "0, 1", "1" ], [ "1, 0", "1" ], [ "2, 3", "5" ], [ "5, 7", "12" ], [ "7, 5", "12" ] ]
[]
HumanEval_RandomSpanInfillingLight
def add(x: int, y: int): """Add two numbers x and y """ return x
+ y
[ [ "2, 3", "5" ], [ "5, 7", "12" ] ]
python
add
[]
code_infilling
RandomSpanInfillingLight/HumanEval/53/1
Check if two words have the same characters.
python
[ [ "'eabcdzzzz', 'dddzzzzzzzddeddabc'", "True" ], [ "'abcd', 'dddddddabc'", "True" ], [ "'dddddddabc', 'abcd'", "True" ], [ "'eabcd', 'dddddddabc'", "False" ], [ "'abcd', 'dddddddabcf'", "False" ], [ "'eabcdzzzz', 'dddzzzzzzzddddabc'", "False" ], [ "'aabb', 'aaccc'", "False" ] ]
[]
HumanEval_RandomSpanInfillingLight
def same_chars(s0: str, s1: str): """ Check if two words have the same characters. """ ret
urn set(s0) == set(s1)
[ [ "'eabcdzzzz', 'dddzzzzzzzddeddabc'", "True" ], [ "'abcd', 'dddddddabc'", "True" ], [ "'dddddddabc', 'abcd'", "True" ], [ "'eabcd', 'dddddddabc'", "False" ], [ "'abcd', 'dddddddabce'", "False" ], [ "'eabcdzzzz', 'dddzzzzzzzddddabc'", "False" ] ]
python
same_chars
[]
code_infilling
RandomSpanInfillingLight/HumanEval/54/1
Return n-th Fibonacci number.
return fib(n - 1) + fib(n - 2)
python
[ [ "10", "55" ], [ "1", "1" ], [ "8", "21" ], [ "11", "89" ], [ "12", "144" ] ]
[]
HumanEval_RandomSpanInfillingLight
def fib(n: int): """Return n-th Fibonacci number. """
if n == 0: return 0 if n == 1: return 1
[ [ "10", "55" ], [ "1", "1" ], [ "8", "21" ] ]
python
fib
[]
code_infilling
RandomSpanInfillingLight/HumanEval/55/1
brackets is a string of "<" and ">". return True if every opening bracket has a corresponding closing bracket.
return depth == 0
python
[]
[]
HumanEval_RandomSpanInfillingLight
def correct_bracketing(brackets: str): """ brackets is a string of "<" and ">". return True if every opening bracket has a corresponding closing bracket. """ depth = 0 for b in brackets:
if b == "<": depth += 1 else: depth -= 1 if depth < 0: return False
[ [ "\"<\"", "False" ], [ "\"<>\"", "True" ], [ "\"<<><>>\"", "True" ], [ "\"><<>\"", "False" ] ]
python
correct_bracketing
[]
code_infilling
RandomSpanInfillingLight/HumanEval/56/1
Return True is list elements are monotonically increasing or decreasing.
: return True return False
python
[ [ "[1, 2, 4, 10]", "True" ], [ "[1, 2, 4, 20]", "True" ], [ "[1, 20, 4, 10]", "False" ], [ "[4, 1, 0, -10]", "True" ], [ "[4, 1, 1, 0]", "True" ], [ "[1, 2, 3, 2, 5, 60]", "False" ], [ "[1, 2, 3, 4, 5, 60]", "True" ], [ "[9, 9, 9, 9]", "True" ] ]
[]
HumanEval_RandomSpanInfillingLight
def monotonic(l: list): """Return True is list elements are monotonically increasing or decreasing. """ if l == sorted(l)
or l == sorted(l, reverse=True)
[ [ "[1, 2, 4, 20]", "True" ], [ "[1, 20, 4, 10]", "False" ], [ "[4, 1, 0, -10]", "True" ] ]
python
monotonic
[]
code_infilling
RandomSpanInfillingLight/HumanEval/57/1
Return sorted unique common elements for two lists.
ret))
python
[ [ "[1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]", "[1, 5, 653]" ], [ "[5, 3, 2, 8], [3, 2]", "[2, 3]" ], [ "[4, 3, 2, 8], [3, 2, 4]", "[2, 3, 4]" ], [ "[4, 3, 2, 8], []", "[]" ] ]
[]
HumanEval_RandomSpanInfillingLight
def common(l1: list, l2: list): """Return sorted unique common elements for two lists. """ ret = set() for e1 in l1: for e2 in l2: if e1 == e2: ret.add(e1) return
sorted(list(
[ [ "[1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]", "[1, 5, 653]" ], [ "[5, 3, 2, 8], [3, 2]", "[2, 3]" ] ]
python
common
[]
code_infilling
RandomSpanInfillingLight/HumanEval/58/1
Return the largest prime factor of n. Assume n > 1 and is not a prime.
: largest = max(largest, j) return largest
python
[ [ "15", "5" ], [ "27", "3" ], [ "63", "7" ], [ "330", "11" ], [ "13195", "29" ] ]
[]
HumanEval_RandomSpanInfillingLight
def largest_prime_factor(n: int): """Return the largest prime factor of n. Assume n > 1 and is not a prime. """ def is_prime(k): if k < 2: return False for i in range(2, k - 1): if k % i == 0: return False return True largest = 1 for j in range(2, n + 1): if
n % j == 0 and is_prime(j)
[ [ "13195", "29" ], [ "2048", "2" ] ]
python
largest_prime_factor
[]
code_infilling
RandomSpanInfillingLight/HumanEval/59/1
sum_to_n is a function that sums numbers from 1 to n.
)
python
[ [ "1", "1" ], [ "6", "21" ], [ "11", "66" ], [ "30", "465" ], [ "100", "5050" ] ]
[]
HumanEval_RandomSpanInfillingLight
def sum_to_n(n: int): """sum_to_n is a function that sums numbers from 1 to n. """ return sum(
range(n + 1)
[ [ "30", "465" ], [ "100", "5050" ], [ "5", "15" ], [ "10", "55" ], [ "1", "1" ] ]
python
sum_to_n
[]
code_infilling
RandomSpanInfillingLight/HumanEval/60/1
brackets is a string of "(" and ")". return True if every opening bracket has a corresponding closing bracket.
if depth < 0: return False return depth == 0
python
[]
[]
HumanEval_RandomSpanInfillingLight
def correct_bracketing(brackets: str): """ brackets is a string of "(" and ")". return True if every opening bracket has a corresponding closing bracket. """ depth = 0 for b in brackets:
if b == "(": depth += 1 else: depth -= 1
[ [ "\"(\"", "False" ], [ "\"()\"", "True" ], [ "\"(()())\"", "True" ], [ "\")(()\"", "False" ] ]
python
correct_bracketing
[]
code_infilling
RandomSpanInfillingLight/HumanEval/61/1
xs represent coefficients of a polynomial. xs[0] + xs[1] * x + xs[2] * x^2 + .... Return derivative of this polynomial in the same form.
python
[ [ "[3, 1, 2, 4, 5]", "[1, 4, 12, 20]" ], [ "[1, 2, 3]", "[2, 6]" ], [ "[3, 2, 1]", "[2, 2]" ], [ "[3, 2, 1, 0, 4]", "[2, 2, 0, 16]" ], [ "[1]", "[]" ] ]
[]
HumanEval_RandomSpanInfillingLight
def derivative(xs: list): """ xs represent coefficients of a polynomial. xs[0] + xs[1] * x + xs[2] * x^2 + .... Return derivative of this polynomial in the same form. """ return [(i * x) for i, x in enumerate(xs)]
[1:]
[ [ "[3, 1, 2, 4, 5]", "[1, 4, 12, 20]" ], [ "[1, 2, 3]", "[2, 6]" ] ]
python
derivative
[]
code_infilling
RandomSpanInfillingLight/HumanEval/62/1
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows: fibfib(0) == 0 fibfib(1) == 0 fibfib(2) == 1 fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3). Please write a function to efficiently compute the n-th element of the fibfib number sequence.
python
[ [ "2", "1" ], [ "1", "0" ], [ "5", "4" ], [ "8", "24" ], [ "10", "81" ], [ "12", "274" ], [ "14", "927" ] ]
[]
HumanEval_RandomSpanInfillingLight
def fibfib(n: int): """The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows: fibfib(0) == 0 fibfib(1) == 0 fibfib(2) == 1 fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3). Please write a function to efficiently compute the n-th element of the fibfib number sequence. """ if n == 0: return 0 if n == 1: return 0 if n == 2: return 1
return fibfib(n - 1) + fibfib(n - 2) + fibfib(n - 3)
[ [ "1", "0" ], [ "5", "4" ], [ "8", "24" ] ]
python
fibfib
[]
code_infilling
RandomSpanInfillingLight/HumanEval/63/1
Add more test cases.
return n_vowels
python
[ [ "\"abcde\"", "2" ], [ "\"Alone\"", "3" ], [ "\"key\"", "2" ], [ "\"bye\"", "1" ], [ "\"keY\"", "2" ], [ "\"bYe\"", "1" ], [ "\"ACEDY\"", "3" ] ]
[]
HumanEval_RandomSpanInfillingLight
FIX = """ Add more test cases. """ def vowels_count(s): """Write a function vowels_count which takes a string representing a word as input and returns the number of vowels in the string. Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a vowel, but only when it is at the end of the given word. Example: >>> vowels_count("abcde") 2 >>> vowels_count("ACEDY") 3 """ vowels = "aeiouAEIOU" n_vowels = sum(c in vowels for c in s)
if s[-1] == 'y' or s[-1] == 'Y': n_vowels += 1
[ [ "\"abcde\"", "2" ], [ "\"ACEDY\"", "3" ] ]
python
vowels_count
[]
code_infilling
RandomSpanInfillingLight/HumanEval/64/1
Circular shift the digits of the integer x, shift the digits right by shift and return the result as a string. If shift > number of digits, return digits reversed.
python
[ [ "100, 2", "\"001\"" ], [ "12, 2", "\"12\"" ], [ "97, 8", "\"79\"" ], [ "12, 1", "\"21\"" ], [ "11, 101", "\"11\"" ] ]
[]
HumanEval_RandomSpanInfillingLight
def circular_shift(x, shift): """Circular shift the digits of the integer x, shift the digits right by shift and return the result as a string. If shift > number of digits, return digits reversed. """ s = str(x) if shift > len(s): return s[::-1] else: retu
rn s[len(s) - shift:] + s[:len(s) - shift]
[ [ "12, 1", "\"21\"" ], [ "12, 2", "\"12\"" ] ]
python
circular_shift
[]
code_infilling
RandomSpanInfillingLight/HumanEval/65/1
Task Write a function that takes a string as input and returns the sum of the upper characters only' ASCII codes.
else 0 for char in s)
python
[ [ "\"\"", "0" ], [ "\"abAB\"", "131" ], [ "\"abcCd\"", "67" ], [ "\"helloE\"", "69" ], [ "\"woArBld\"", "131" ], [ "\"aAaaaXa\"", "153" ], [ "\" How are yOu?\"", "151" ], [ "\"You arE Very Smart\"", "327" ] ]
[]
HumanEval_RandomSpanInfillingLight
def digitSum(s): """Task Write a function that takes a string as input and returns the sum of the upper characters only' ASCII codes. """ if s == "": return 0 return sum(ord(char) if char
.isupper()
[ [ "\"\"", "0" ], [ "\"abAB\"", "131" ], [ "\"abcCd\"", "67" ], [ "\"helloE\"", "69" ], [ "\"woArBld\"", "131" ], [ "\"aAaaaXa\"", "153" ] ]
python
digitSum
[]
code_infilling
RandomSpanInfillingLight/HumanEval/66/1
In this task, you will be given a string that represents a number of apples and oranges that are distributed in a basket of fruit this basket contains apples, oranges, and mango fruits. Given the string that represents the total number of the oranges and apples and an integer that represent the total number of the fruits in the basket return the number of the mango fruits in the basket.
return n - sum(lis)
python
[ [ "\"5 apples and 6 oranges\", 19", "8" ], [ "\"5 apples and 6 oranges\", 21", "10" ], [ "\"0 apples and 1 oranges\", 3", "2" ], [ "\"1 apples and 0 oranges\", 3", "2" ], [ "\"2 apples and 3 oranges\", 100", "95" ], [ "\"2 apples and 3 oranges\", 5", "0" ], [ "\"1 apples and 100 oranges\", 120", "19" ] ]
[]
HumanEval_RandomSpanInfillingLight
def fruit_distribution(s,n): """ In this task, you will be given a string that represents a number of apples and oranges that are distributed in a basket of fruit this basket contains apples, oranges, and mango fruits. Given the string that represents the total number of the oranges and apples and an integer that represent the total number of the fruits in the basket return the number of the mango fruits in the basket. """ lis = list()
for i in s.split(' '): if i.isdigit(): lis.append(int(i))
[ [ "\"5 apples and 6 oranges\", 19", "19 - 5 - 6 = 8" ], [ "\"0 apples and 1 oranges\",3", "3 - 0 - 1 = 2" ], [ "\"2 apples and 3 oranges\", 100", "100 - 2 - 3 = 95" ], [ "\"100 apples and 1 oranges\",120", "120 - 100 - 1 = 19" ] ]
python
fruit_distribution
[]
code_infilling
RandomSpanInfillingLight/HumanEval/67/1
"Given an array representing a branch of a tree that has non-negative integer nodes your task is to pluck one of the nodes and return it. The plucked node should be the node with the smallest even value. If multiple nodes with the same smallest even value are found return the node that has smallest index. The plucked node should be returned in a list, [ smalest_value, its index ], If there are no even values or the given array is empty, return [].
if(evens == []): return [] return [min(evens), arr.index(min(evens))]
python
[ [ "[4,2,3]", "[2, 1]" ], [ "[1,2,3]", "[2, 1]" ], [ "[]", "[]" ], [ "[5, 0, 3, 0, 4, 2]", "[0, 1]" ], [ "[1, 2, 3, 0, 5, 3]", "[0, 3]" ], [ "[5, 4, 8, 4 ,8]", "[4, 1]" ], [ "[7, 6, 7, 1]", "[6, 1]" ], [ "[7, 9, 7, 1]", "[]" ] ]
[]
HumanEval_RandomSpanInfillingLight
def pluck(arr): """ "Given an array representing a branch of a tree that has non-negative integer nodes your task is to pluck one of the nodes and return it. The plucked node should be the node with the smallest even value. If multiple nodes with the same smallest even value are found return the node that has smallest index. The plucked node should be returned in a list, [ smalest_value, its index ], If there are no even values or the given array is empty, return []. """ if(len(arr) == 0): return []
evens = list(filter(lambda x: x%2 == 0, arr))
[ [ "[4,2,3]", "[2, 1]" ], [ "[1,2,3]", "[2, 1]" ], [ "[]", "[]" ], [ "[5, 0, 3, 0, 4, 2]", "[0, 1]" ] ]
python
pluck
[]
code_infilling
RandomSpanInfillingLight/HumanEval/68/1
You are given a non-empty list of positive integers. Return the greatest integer that is greater than zero, and has a frequency greater than or equal to the value of the integer itself. The frequency of an integer is the number of times it appears in the list. If no such a value exist, return -1. Examples: search([4, 1, 2, 2, 3, 1]) == 2 search([1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3 search([5, 5, 4, 4, 4]) == -1
return ans
python
[ [ "[5, 5, 5, 5, 1]", "1" ], [ "[4, 1, 4, 1, 4, 4]", "4" ], [ "[3, 3]", "-1" ], [ "[8, 8, 8, 8, 8, 8, 8, 8]", "8" ], [ "[2, 3, 3, 2, 2]", "2" ], [ "[2, 7, 8, 8, 4, 8, 7, 3, 9, 6, 5, 10, 4, 3, 6, 7, 1, 7, 4, 10, 8, 1]", "1" ], [ "[3, 2, 8, 2]", "2" ], [ "[6, 7, 1, 8, 8, 10, 5, 8, 5, 3, 10]", "1" ], [ "[8, 8, 3, 6, 5, 6, 4]", "-1" ], [ "[6, 9, 6, 7, 1, 4, 7, 1, 8, 8, 9, 8, 10, 10, 8, 4, 10, 4, 10, 1, 2, 9, 5, 7, 9]", "1" ], [ "[1, 9, 10, 1, 3]", "1" ], [ "[6, 9, 7, 5, 8, 7, 5, 3, 7, 5, 10, 10, 3, 6, 10, 2, 8, 6, 5, 4, 9, 5, 3, 10]", "5" ], [ "[1]", "1" ], [ "[8, 8, 10, 6, 4, 3, 5, 8, 2, 4, 2, 8, 4, 6, 10, 4, 2, 1, 10, 2, 1, 1, 5]", "4" ], [ "[2, 10, 4, 8, 2, 10, 5, 1, 2, 9, 5, 5, 6, 3, 8, 6, 4, 10]", "2" ], [ "[1, 6, 10, 1, 6, 9, 10, 8, 6, 8, 7, 3]", "1" ], [ "[9, 2, 4, 1, 5, 1, 5, 2, 5, 7, 7, 7, 3, 10, 1, 5, 4, 2, 8, 4, 1, 9, 10, 7, 10, 2, 8, 10, 9, 4]", "4" ], [ "[2, 6, 4, 2, 8, 7, 5, 6, 4, 10, 4, 6, 3, 7, 8, 8, 3, 1, 4, 2, 2, 10, 7]", "4" ], [ "[9, 8, 6, 10, 2, 6, 10, 2, 7, 8, 10, 3, 8, 2, 6, 2, 3, 1]", "2" ], [ "[5, 5, 3, 9, 5, 6, 3, 2, 8, 5, 6, 10, 10, 6, 8, 4, 10, 7, 7, 10, 8]", "-1" ], [ "[10]", "-1" ], [ "[9, 7, 7, 2, 4, 7, 2, 10, 9, 7, 5, 7, 2]", "2" ], [ "[5, 4, 10, 2, 1, 1, 10, 3, 6, 1, 8]", "1" ], [ "[7, 9, 9, 9, 3, 4, 1, 5, 9, 1, 2, 1, 1, 10, 7, 5, 6, 7, 6, 7, 7, 6]", "1" ], [ "[3, 10, 10, 9, 2]", "-1" ] ]
[]
HumanEval_RandomSpanInfillingLight
def search(lst): """ You are given a non-empty list of positive integers. Return the greatest integer that is greater than zero, and has a frequency greater than or equal to the value of the integer itself. The frequency of an integer is the number of times it appears in the list. If no such a value exist, return -1. Examples: search([4, 1, 2, 2, 3, 1]) == 2 search([1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3 search([5, 5, 4, 4, 4]) == -1 """ frq = [0] * (max(lst) + 1) for i in lst: frq[i] += 1;
ans = -1 for i in range(1, len(frq)): if frq[i] >= i: ans = i
[ [ "[4, 1, 2, 2, 3, 1]", "2" ], [ "[1, 2, 2, 3, 3, 3, 4, 4, 4]", "3" ], [ "[5, 5, 4, 4, 4]", "-1" ] ]
python
search
[]
code_infilling
RandomSpanInfillingLight/HumanEval/69/1
Given list of integers, return list in strange order. Strange sorting, is when you start with the minimum value, then maximum of the remaining integers, then minimum and so on.
switch = not switch return res
python
[ [ "[1, 2, 3, 4]", "[1, 4, 2, 3]" ], [ "[5, 6, 7, 8, 9]", "[5, 9, 6, 8, 7]" ], [ "[1, 2, 3, 4, 5]", "[1, 5, 2, 4, 3]" ], [ "[5, 6, 7, 8, 9, 1]", "[1, 9, 5, 8, 6, 7]" ], [ "[5, 5, 5, 5]", "[5, 5, 5, 5]" ], [ "[]", "[]" ], [ "[1,2,3,4,5,6,7,8]", "[1, 8, 2, 7, 3, 6, 4, 5]" ], [ "[0,2,2,2,5,5,-5,-5]", "[-5, 5, -5, 5, 0, 2, 2, 2]" ], [ "[111111]", "[111111]" ] ]
[]
HumanEval_RandomSpanInfillingLight
def strange_sort_list(lst): """ Given list of integers, return list in strange order. Strange sorting, is when you start with the minimum value, then maximum of the remaining integers, then minimum and so on. """ res, switch = [], True while lst:
res.append(min(lst) if switch else max(lst)) lst.remove(res[-1])
[ [ "[1, 2, 3, 4]", "[1, 4, 2, 3]" ], [ "[5, 5, 5, 5]", "[5, 5, 5, 5]" ], [ "[]", "[]" ] ]
python
strange_sort_list
[]
code_infilling
RandomSpanInfillingLight/HumanEval/70/1
Given the lengths of the three sides of a triangle. Return the area of the triangle rounded to 2 decimal points if the three sides form a valid triangle. Otherwise return -1 Three sides make a valid triangle when the sum of any two sides is greater than the third side.
area = round(area, 2) return area
python
[ [ "3, 4, 5", "6.00" ], [ "1, 2, 10", "-1" ], [ "4, 8, 5", "8.18" ], [ "2, 2, 2", "1.73" ], [ "1, 2, 3", "-1" ], [ "10, 5, 7", "16.25" ], [ "2, 6, 3", "-1" ], [ "1, 1, 1", "0.43" ], [ "2, 2, 10", "-1" ] ]
[]
HumanEval_RandomSpanInfillingLight
def triangle_area(a, b, c): """ Given the lengths of the three sides of a triangle. Return the area of the triangle rounded to 2 decimal points if the three sides form a valid triangle. Otherwise return -1 Three sides make a valid triangle when the sum of any two sides is greater than the third side. """ if a + b <= c or a + c <= b or b + c <= a: return -1
s = (a + b + c)/2 area = (s * (s - a) * (s - b) * (s - c)) ** 0.5
[ [ "3, 4, 5", "6.00" ], [ "1, 2, 10", "-1" ] ]
python
triangle_area
[]
code_infilling
RandomSpanInfillingLight/HumanEval/71/1
Write a function that returns True if the object q will fly, and False otherwise. The object q will fly if it's balanced (it is a palindromic list) and the sum of its elements is less than or equal the maximum possible weight w.
i+=1 j-=1 return True
python
[ [ "[3, 2, 3], 9", "True" ], [ "[1, 2], 5", "False" ], [ "[3], 5", "True" ], [ "[3, 2, 3], 1", "False" ], [ "[1, 2, 3], 6", "False" ], [ "[5], 5", "True" ] ]
[]
HumanEval_RandomSpanInfillingLight
def will_it_fly(q,w): """ Write a function that returns True if the object q will fly, and False otherwise. The object q will fly if it's balanced (it is a palindromic list) and the sum of its elements is less than or equal the maximum possible weight w. """ if sum(q) > w: return False
i, j = 0, len(q)-1 while i<j: if q[i] != q[j]: return False
[ [ "[1, 2], 5", "False" ], [ "[3, 2, 3], 1", "False" ], [ "[3, 2, 3], 9", "True" ], [ "[3], 5", "True" ] ]
python
will_it_fly
[]
code_infilling
RandomSpanInfillingLight/HumanEval/72/1
Given an array arr of integers, find the minimum number of elements that need to be changed to make the array palindromic. A palindromic array is an array that is read the same backwards and forwards. In one change, you can change one element to any other element.
return ans
python
[ [ "[1,2,3,5,4,7,9,6]", "4" ], [ "[1, 2, 3, 4, 3, 2, 2]", "1" ], [ "[1, 4, 2]", "1" ], [ "[1, 4, 4, 2]", "1" ], [ "[1, 2, 3, 2, 1]", "0" ], [ "[3, 1, 1, 3]", "0" ], [ "[1]", "0" ], [ "[0, 1]", "1" ] ]
[]
HumanEval_RandomSpanInfillingLight
def smallest_change(arr): """ Given an array arr of integers, find the minimum number of elements that need to be changed to make the array palindromic. A palindromic array is an array that is read the same backwards and forwards. In one change, you can change one element to any other element. """ ans = 0 for i in range(len(arr) // 2):
if arr[i] != arr[len(arr) - i - 1]: ans += 1
[ [ "[1,2,3,5,4,7,9,6]", "4" ], [ "[1, 2, 3, 4, 3, 2, 2]", "1" ], [ "[1, 2, 3, 2, 1]", "0" ] ]
python
smallest_change
[]
code_infilling
RandomSpanInfillingLight/HumanEval/73/1
Write a function that accepts two lists of strings and returns the list that has total number of chars in the all strings of the list less than the other list. if the two lists have the same number of chars, return the first list.
if l1 <= l2: return lst1 else: return lst2
python
[ [ "[], []", "[]" ], [ "['hi', 'admin'], ['hi', 'hi']", "['hi', 'hi']" ], [ "['hi', 'admin'], ['hi', 'hi', 'admin', 'project']", "['hi', 'admin']" ], [ "['4'], ['1', '2', '3', '4', '5']", "['4']" ], [ "['hi', 'admin'], ['hI', 'Hi']", "['hI', 'Hi']" ], [ "['hi', 'admin'], ['hI', 'hi', 'hi']", "['hI', 'hi', 'hi']" ], [ "['hi', 'admin'], ['hI', 'hi', 'hii']", "['hi', 'admin']" ], [ "[], ['this']", "[]" ], [ "['this'], []", "[]" ] ]
[]
HumanEval_RandomSpanInfillingLight
def total_match(lst1, lst2): """ Write a function that accepts two lists of strings and returns the list that has total number of chars in the all strings of the list less than the other list. if the two lists have the same number of chars, return the first list. """
l1 = 0 for st in lst1: l1 += len(st) l2 = 0 for st in lst2: l2 += len(st)
[ [ "[], []", "[]" ], [ "['hi', 'admin'], ['hI', 'Hi']", "['hI', 'Hi']" ], [ "['hi', 'admin'], ['hi', 'hi', 'admin', 'project']", "['hi', 'admin']" ], [ "['hi', 'admin'], ['hI', 'hi', 'hi']", "['hI', 'hi', 'hi']" ], [ "['4'], ['1', '2', '3', '4', '5']", "['4']" ] ]
python
total_match
[]
code_infilling
RandomSpanInfillingLight/HumanEval/74/1
Write a function that returns true if the given number is the multiplication of 3 prime numbers and false otherwise. Knowing that (a) is less then 100.
return False
python
[ [ "5", "False" ], [ "30", "True" ], [ "8", "True" ], [ "10", "False" ], [ "125", "True" ], [ "3 * 5 * 7", "True" ], [ "3 * 6 * 7", "False" ], [ "9 * 9 * 9", "False" ], [ "11 * 9 * 9", "False" ], [ "11 * 13 * 7", "True" ] ]
[]
HumanEval_RandomSpanInfillingLight
def is_multiply_prime(a): """Write a function that returns true if the given number is the multiplication of 3 prime numbers and false otherwise. Knowing that (a) is less then 100. """ def is_prime(n): for j in range(2,n): if n%j == 0: return False return True for i in range(2,101): if not is_prime(i): continue for j in range(2,101):
if not is_prime(j): continue for k in range(2,101): if not is_prime(k): continue if i*j*k == a: return True
[ [ "30", "True" ] ]
python
is_multiply_prime
[]
code_infilling
RandomSpanInfillingLight/HumanEval/75/1
Your task is to write a function that returns true if a number x is a simple power of n and false in other cases. x is a simple power of n if n**int=x
return (power == x)
python
[ [ "16, 2", "True" ], [ "143214, 16", "False" ], [ "4, 2", "True" ], [ "9, 3", "True" ], [ "16, 4", "True" ], [ "24, 2", "False" ], [ "128, 4", "False" ], [ "12, 6", "False" ], [ "1, 1", "True" ], [ "1, 12", "True" ] ]
[]
HumanEval_RandomSpanInfillingLight
def is_simple_power(x, n): """Your task is to write a function that returns true if a number x is a simple power of n and false in other cases. x is a simple power of n if n**int=x """
if (n == 1): return (x == 1) power = 1 while (power < x): power = power * n
[ [ "1, 4", "true" ], [ "2, 2", "true" ], [ "8, 2", "true" ], [ "3, 2", "false" ], [ "3, 1", "false" ], [ "5, 3", "false" ] ]
python
is_simple_power
[]
code_infilling
RandomSpanInfillingLight/HumanEval/76/1
Write a function that takes an integer a and returns True if this ingeger is a cube of some integer number. Note: you may assume the input is always valid.
== a
python
[ [ "1", "True" ], [ "2", "False" ], [ "-1", "True" ], [ "64", "True" ], [ "180", "False" ], [ "1000", "True" ], [ "0", "True" ], [ "1729", "False" ] ]
[]
HumanEval_RandomSpanInfillingLight
def iscube(a): """ Write a function that takes an integer a and returns True if this ingeger is a cube of some integer number. Note: you may assume the input is always valid. """ a = abs(a) return int(
round(a ** (1. / 3))) ** 3
[ [ "1", "> True" ], [ "2", "> False" ], [ "-1", "> True" ], [ "64", "> True" ], [ "0", "> True" ], [ "180", "> False" ] ]
python
iscube
[]
code_infilling
RandomSpanInfillingLight/HumanEval/77/1
You have been tasked to write a function that receives a hexadecimal number as a string and counts the number of hexadecimal digits that are primes (prime number, or a prime, is a natural number greater than 1 that is not a product of two smaller natural numbers). Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Prime numbers are 2, 3, 5, 7, 11, 13, 17,... So you have to determine a number of the following digits: 2, 3, 5, 7, B (=decimal 11), D (=decimal 13). Note: you may assume the input is always correct or empty string, and symbols A,B,C,D,E,F are always uppercase.
total = 0 for i in range(0, len(num)): if num[i] in primes: total += 1 return total
python
[ [ "\"AB\"", "1" ], [ "\"1077E\"", "2" ], [ "\"ABED1A33\"", "4" ], [ "\"2020\"", "2" ], [ "\"123456789ABCDEF0\"", "6" ], [ "\"112233445566778899AABBCCDDEEFF00\"", "12" ], [ "[]", "0" ] ]
[]
HumanEval_RandomSpanInfillingLight
def hex_key(num): """You have been tasked to write a function that receives a hexadecimal number as a string and counts the number of hexadecimal digits that are primes (prime number, or a prime, is a natural number greater than 1 that is not a product of two smaller natural numbers). Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Prime numbers are 2, 3, 5, 7, 11, 13, 17,... So you have to determine a number of the following digits: 2, 3, 5, 7, B (=decimal 11), D (=decimal 13). Note: you may assume the input is always correct or empty string, and symbols A,B,C,D,E,F are always uppercase. """
primes = ('2', '3', '5', '7', 'B', 'D')
[ [ "\"AB\"", "1" ], [ "\"1077E\"", "2" ], [ "\"ABED1A33\"", "4" ], [ "\"123456789ABCDEF0\"", "6" ], [ "\"2020\"", "2" ] ]
python
hex_key
[]
code_infilling
RandomSpanInfillingLight/HumanEval/78/1
You will be given a number in decimal form and your task is to convert it to binary format. The function should return a string, with each character representing a binary number. Each character in the string will be '0' or '1'. There will be an extra couple of characters 'db' at the beginning and at the end of the string. The extra characters are there to help with the format.
"db"
python
[ [ "0", "\"db0db\"" ], [ "32", "\"db100000db\"" ], [ "103", "\"db1100111db\"" ], [ "15", "\"db1111db\"" ] ]
[]
HumanEval_RandomSpanInfillingLight
def decimal_to_binary(decimal): """You will be given a number in decimal form and your task is to convert it to binary format. The function should return a string, with each character representing a binary number. Each character in the string will be '0' or '1'. There will be an extra couple of characters 'db' at the beginning and at the end of the string. The extra characters are there to help with the format. """ return "db" + b
in(decimal)[2:] +
[ [ "15", "\"db1111db\"" ], [ "32", "\"db100000db\"" ] ]
python
decimal_to_binary
[]
code_infilling
RandomSpanInfillingLight/HumanEval/79/1
You are given a string s. Your task is to check if the string is happy or not. A string is happy if its length is at least 3 and every 3 consecutive letters are distinct
return True
python
[ [ "\"a\"", "False" ], [ "\"aa\"", "False" ], [ "\"abcd\"", "True" ], [ "\"aabb\"", "False" ], [ "\"adb\"", "True" ], [ "\"xyy\"", "False" ], [ "\"iopaxpoi\"", "True" ], [ "\"iopaxioi\"", "False" ] ]
[]
HumanEval_RandomSpanInfillingLight
def is_happy(s): """You are given a string s. Your task is to check if the string is happy or not. A string is happy if its length is at least 3 and every 3 consecutive letters are distinct """ if len(s) < 3: return False for i in range(len(s) - 2):
if s[i] == s[i+1] or s[i+1] == s[i+2] or s[i] == s[i+2]: return False
[ [ "a", "False" ], [ "aa", "False" ], [ "abcd", "True" ], [ "aabb", "False" ], [ "adb", "True" ], [ "xyy", "False" ] ]
python
is_happy
[]
code_infilling
RandomSpanInfillingLight/HumanEval/80/1
It is the last week of the semester and the teacher has to give the grades to students. The teacher has been making her own algorithm for grading. The only problem is, she has lost the code she used for grading. She has given you a list of GPAs for some students and you have to write a function that can output a list of letter grades using the following table: GPA | Letter grade 4.0 A+ > 3.7 A > 3.3 A- > 3.0 B+ > 2.7 B > 2.3 B- > 2.0 C+ > 1.7 C > 1.3 C- > 1.0 D+ > 0.7 D > 0.0 D- 0.0 E
elif gpa > 1.0: letter_grade.append("D+") elif gpa > 0.7: letter_grade.append("D") elif gpa > 0.0: letter_grade.append("D-") else: letter_grade.append("E") return letter_grade
python
[ [ "[4.0, 3, 1.7, 2, 3.5]", "['A+', 'B', 'C-', 'C', 'A-']" ], [ "[1.2]", "['D+']" ], [ "[0.5]", "['D-']" ], [ "[0.0]", "['E']" ], [ "[1, 0.3, 1.5, 2.8, 3.3]", "['D', 'D-', 'C-', 'B', 'B+']" ], [ "[0, 0.7]", "['E', 'D-']" ] ]
[]
HumanEval_RandomSpanInfillingLight
def numerical_letter_grade(grades): """It is the last week of the semester and the teacher has to give the grades to students. The teacher has been making her own algorithm for grading. The only problem is, she has lost the code she used for grading. She has given you a list of GPAs for some students and you have to write a function that can output a list of letter grades using the following table: GPA | Letter grade 4.0 A+ > 3.7 A > 3.3 A- > 3.0 B+ > 2.7 B > 2.3 B- > 2.0 C+ > 1.7 C > 1.3 C- > 1.0 D+ > 0.7 D > 0.0 D- 0.0 E """ letter_grade = [] for gpa in grades: if gpa == 4.0: letter_grade.append("A+") elif gpa > 3.7: letter_grade.append("A") elif gpa > 3.3: letter_grade.append("A-") elif gpa > 3.0:
letter_grade.append("B+") elif gpa > 2.7: letter_grade.append("B") elif gpa > 2.3: letter_grade.append("B-") elif gpa > 2.0: letter_grade.append("C+") elif gpa > 1.7: letter_grade.append("C") elif gpa > 1.3: letter_grade.append("C-")
[ [ "[4.0, 3, 1.7, 2, 3.5]", "> ['A+', 'B', 'C-', 'C', 'A-']" ] ]
python
numerical_letter_grade
[]
code_infilling
RandomSpanInfillingLight/HumanEval/81/1
Write a function that takes a string and returns True if the string length is a prime number or False otherwise
if l % i == 0: return False return True
python
[ [ "'Hello'", "True" ], [ "'abcdcba'", "True" ], [ "'kittens'", "True" ], [ "'orange'", "False" ], [ "'wow'", "True" ], [ "'world'", "True" ], [ "'MadaM'", "True" ], [ "'Wow'", "True" ], [ "''", "False" ], [ "'HI'", "True" ], [ "'go'", "True" ], [ "'gogo'", "False" ], [ "'aaaaaaaaaaaaaaa'", "False" ], [ "'Madam'", "True" ], [ "'M'", "False" ], [ "'0'", "False" ] ]
[]
HumanEval_RandomSpanInfillingLight
def prime_length(string): """Write a function that takes a string and returns True if the string length is a prime number or False otherwise """
l = len(string) if l == 0 or l == 1: return False for i in range(2, l):
[ [ "'Hello'", "True" ], [ "'abcdcba'", "True" ], [ "'kittens'", "True" ], [ "'orange'", "False" ] ]
python
prime_length
[]
code_infilling
RandomSpanInfillingLight/HumanEval/82/1
Given a positive integer n, return the count of the numbers of n-digit positive integers that start or end with 1.
(10 ** (n - 2))
python
[ [ "1", "1" ], [ "2", "18" ], [ "3", "180" ], [ "4", "1800" ], [ "5", "18000" ] ]
[]
HumanEval_RandomSpanInfillingLight
def starts_one_ends(n): """ Given a positive integer n, return the count of the numbers of n-digit positive integers that start or end with 1. """
if n == 1: return 1 return 18 *
[]
python
starts_one_ends
[]
code_infilling
RandomSpanInfillingLight/HumanEval/83/1
Given a positive integer N, return the total sum of its digits in binary.
)[2:]
python
[ [ "1000", "\"1\"" ], [ "150", "\"110\"" ], [ "147", "\"1100\"" ], [ "333", "\"1001\"" ], [ "963", "\"10010\"" ] ]
[]
HumanEval_RandomSpanInfillingLight
def solve(N): """Given a positive integer N, return the total sum of its digits in binary. """ return bin(
sum(int(i) for i in str(N))
[ [ "1000", "\"1\"" ], [ "150", "\"110\"" ], [ "147", "\"1100\"" ] ]
python
solve
[]
code_infilling
RandomSpanInfillingLight/HumanEval/84/1
Given a non-empty list of integers lst. add the even elements that are at odd indices..
])
python
[ [ "[4, 88]", "88" ], [ "[4, 5, 6, 7, 2, 122]", "122" ], [ "[4, 0, 6, 7]", "0" ], [ "[4, 4, 6, 8]", "12" ] ]
[]
HumanEval_RandomSpanInfillingLight
def add(lst): """Given a non-empty list of integers lst. add the even elements that are at odd indices.. """ return sum([lst[i] for i in
range(1, len(lst), 2) if lst[i]%2 == 0
[ [ "[4, 2, 6, 7]", "> 2" ] ]
python
add
[]
code_infilling
RandomSpanInfillingLight/HumanEval/85/1
Write a function that takes a string and returns an ordered version of it. Ordered version of string, is a string where all words (separated by space) are replaced by a new word where all the characters arranged in ascending order based on ascii value. Note: You should keep the order of words and blank spaces in the sentence.
])
python
[ [ "'Hi'", "'Hi'" ], [ "'hello'", "'ehllo'" ], [ "'number'", "'bemnru'" ], [ "'abcd'", "'abcd'" ], [ "'Hello World!!!'", "'Hello !!!Wdlor'" ], [ "''", "''" ], [ "'Hi. My name is Mister Robot. How are you?'", "'.Hi My aemn is Meirst .Rboot How aer ?ouy'" ] ]
[]
HumanEval_RandomSpanInfillingLight
def anti_shuffle(s): """ Write a function that takes a string and returns an ordered version of it. Ordered version of string, is a string where all words (separated by space) are replaced by a new word where all the characters arranged in ascending order based on ascii value. Note: You should keep the order of words and blank spaces in the sentence. """ return ' '.join([
''.join(sorted(list(i))) for i in s.split(' ')
[ [ "'Hi'", "'Hi'" ], [ "'hello'", "'ehllo'" ], [ "'Hello World!!!'", "'Hello !!!Wdlor'" ] ]
python
anti_shuffle
[]
code_infilling
RandomSpanInfillingLight/HumanEval/86/1
You are given a 2 dimensional data, as a nested lists, which is similar to matrix, however, unlike matrices, each row may contain a different number of columns. Given lst, and integer x, find integers x in the list, and return list of tuples, [(x1, y1), (x2, y2) ...] such that each tuple is a coordinate - (row, columns), starting with 0. Sort coordinates initially by rows in ascending order. Also, sort coordinates of the row by columns in descending order.
] return sorted(sorted(coords, key=lambda x: x[1], reverse=True), key=lambda x: x[0])
python
[ [ "[\n [1,2,3,4,5,6],\n [1,2,3,4,1,6],\n [1,2,3,4,5,1]\n ], 1", "[(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]" ], [ "[\n [1,2,3,4,5,6],\n [1,2,3,4,5,6],\n [1,2,3,4,5,6],\n [1,2,3,4,5,6],\n [1,2,3,4,5,6],\n [1,2,3,4,5,6]\n ], 2", "[(0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1)]" ], [ "[\n [1,2,3,4,5,6],\n [1,2,3,4,5,6],\n [1,1,3,4,5,6],\n [1,2,1,4,5,6],\n [1,2,3,1,5,6],\n [1,2,3,4,1,6],\n [1,2,3,4,5,1]\n ], 1", "[(0, 0), (1, 0), (2, 1), (2, 0), (3, 2), (3, 0), (4, 3), (4, 0), (5, 4), (5, 0), (6, 5), (6, 0)]" ], [ "[], 1", "[]" ], [ "[[1]], 2", "[]" ], [ "[[], [1], [1, 2, 3]], 3", "[(2, 2)]" ] ]
[]
HumanEval_RandomSpanInfillingLight
def get_row(lst, x): """ You are given a 2 dimensional data, as a nested lists, which is similar to matrix, however, unlike matrices, each row may contain a different number of columns. Given lst, and integer x, find integers x in the list, and return list of tuples, [(x1, y1), (x2, y2) ...] such that each tuple is a coordinate - (row, columns), starting with 0. Sort coordinates initially by rows in ascending order. Also, sort coordinates of the row by columns in descending order. """ coords = [(i, j) for i in range(len(lst))
for j in range(len(lst[i])) if lst[i][j] == x
[ [ "[], 1", "[]" ], [ "[[], [1], [1, 2, 3]], 3", "[(2, 2)]" ] ]
python
get_row
[]
code_infilling
RandomSpanInfillingLight/HumanEval/87/1
Given an array of non-negative integers, return a copy of the given array after sorting, you will sort the given array in ascending order if the sum( first index value, last index value) is odd, or sort it in descending order if the sum( first index value, last index value) is even. Note: * don't change the given array.
sorted(array, reverse= (array[0]+array[-1]) % 2 == 0)
python
[ [ "[]", "[]" ], [ "[5]", "[5]" ], [ "[2, 4, 3, 0, 1, 5]", "[0, 1, 2, 3, 4, 5]" ], [ "[2, 4, 3, 0, 1, 5, 6]", "[6, 5, 4, 3, 2, 1, 0]" ], [ "[2, 1]", "[1, 2]" ], [ "[15, 42, 87, 32 ,11, 0]", "[0, 11, 15, 32, 42, 87]" ], [ "[21, 14, 23, 11]", "[23, 21, 14, 11]" ] ]
[]
HumanEval_RandomSpanInfillingLight
def sort_array(array): """ Given an array of non-negative integers, return a copy of the given array after sorting, you will sort the given array in ascending order if the sum( first index value, last index value) is odd, or sort it in descending order if the sum( first index value, last index value) is even. Note: * don't change the given array. """ return
[] if len(array) == 0 else
[ [ "[]", "[]" ], [ "[5]", "[5]" ], [ "[2, 4, 3, 0, 1, 5]", "[0, 1, 2, 3, 4, 5]" ], [ "[2, 4, 3, 0, 1, 5, 6]", "[6, 5, 4, 3, 2, 1, 0]" ] ]
python
sort_array
[]
code_infilling
RandomSpanInfillingLight/HumanEval/88/1
Create a function encrypt that takes a string as an argument and returns a string encrypted with the alphabet being rotated. The alphabet should be rotated in a manner such that the letters shift down by two multiplied to two places.
else: out += c return out
python
[ [ "'hi'", "'lm'" ], [ "'asdfghjkl'", "'ewhjklnop'" ], [ "'gf'", "'kj'" ], [ "'et'", "'ix'" ], [ "'faewfawefaewg'", "'jeiajeaijeiak'" ], [ "'hellomyfriend'", "'lippsqcjvmirh'" ], [ "'dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh'", "'hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl'" ], [ "'a'", "'e'" ] ]
[]
HumanEval_RandomSpanInfillingLight
def encrypt(s): """Create a function encrypt that takes a string as an argument and returns a string encrypted with the alphabet being rotated. The alphabet should be rotated in a manner such that the letters shift down by two multiplied to two places. """ d = 'abcdefghijklmnopqrstuvwxyz' out = '' for c in s: if c in d: out +=
d[(d.index(c)+2*2) % 26]
[ [ "'hi'", "'lm'" ], [ "'asdfghjkl'", "'ewhjklnop'" ], [ "'gf'", "'kj'" ], [ "'et'", "'ix'" ] ]
python
encrypt
[]
code_infilling
RandomSpanInfillingLight/HumanEval/89/1
You are given a list of integers. Write a function next_smallest() that returns the 2nd smallest element of the list. Return None if there is no such element.
return None if len(lst) < 2 else lst[1]
python
[ [ "[1, 2, 3, 4, 5]", "2" ], [ "[5, 1, 4, 3, 2]", "2" ], [ "[]", "None" ], [ "[1, 1]", "None" ], [ "[1,1,1,1,0]", "1" ], [ "[1, 0**0]", "None" ], [ "[-35, 34, 12, -45]", "-35" ] ]
[]
HumanEval_RandomSpanInfillingLight
def next_smallest(lst): """ You are given a list of integers. Write a function next_smallest() that returns the 2nd smallest element of the list. Return None if there is no such element. """
lst = sorted(set(lst))
[ [ "[1, 2, 3, 4, 5]", "2" ], [ "[5, 1, 4, 3, 2]", "2" ], [ "[]", "None" ], [ "[1, 1]", "None" ] ]
python
next_smallest
[]
code_infilling
RandomSpanInfillingLight/HumanEval/90/1
You'll be given a string of words, and your task is to count the number of boredoms. A boredom is a sentence that starts with the word "I". Sentences are delimited by '.', '?' or '!'.
return sum(sentence[0:2] == 'I ' for sentence in sentences)
python
[ [ "\"Hello world\"", "0" ], [ "\"Is the sky blue?\"", "0" ], [ "\"I love It !\"", "1" ], [ "\"bIt\"", "0" ], [ "\"I feel good today. I will be productive. will kill It\"", "2" ], [ "\"You and I are going for a walk\"", "0" ] ]
[]
HumanEval_RandomSpanInfillingLight
def is_bored(S): """ You'll be given a string of words, and your task is to count the number of boredoms. A boredom is a sentence that starts with the word "I". Sentences are delimited by '.', '?' or '!'. """ import re sentences =
re.split(r'[.?!]\s*', S)
[ [ "\"Hello world\"", "0" ], [ "\"The sky is blue. The sun is shining. I love this weather\"", "1" ] ]
python
is_bored
[]
code_infilling
RandomSpanInfillingLight/HumanEval/91/1
Create a function that takes 3 numbers. Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers. Returns false in any other cases.
return False return False
python
[ [ "2, 3, 1", "True" ], [ "2.5, 2, 3", "False" ], [ "1.5, 5, 3.5", "False" ], [ "2, 6, 2", "False" ], [ "4, 2, 2", "True" ], [ "2.2, 2.2, 2.2", "False" ], [ "-4, 6, 2", "True" ], [ "2, 1, 1", "True" ], [ "3, 4, 7", "True" ], [ "3.0, 4, 7", "False" ] ]
[]
HumanEval_RandomSpanInfillingLight
def any_int(x, y, z): """ Create a function that takes 3 numbers. Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers. Returns false in any other cases. """ if isinstance(x,int) and isinstance(y,int) and isinstance(z,int):
if (x+y==z) or (x+z==y) or (y+z==x): return True
[ [ "5, 2, 7", "True" ], [ "3, 2, 2", "False" ], [ "3, -2, 1", "True" ], [ "3.6, -2.2, 2", "False" ] ]
python
any_int
[]
code_infilling
RandomSpanInfillingLight/HumanEval/92/1
Write a function that takes a message, and encodes in such a way that it swaps case of all letters, replaces all vowels in the message with the letter that appears 2 places ahead of that vowel in the english alphabet. Assume only letters.
return ''.join([vowels_replace[i] if i in vowels else i for i in message])
python
[ [ "'TEST'", "'tgst'" ], [ "'Mudasir'", "'mWDCSKR'" ], [ "'YES'", "'ygs'" ], [ "'This is a message'", "'tHKS KS C MGSSCGG'" ], [ "\"I DoNt KnOw WhAt tO WrItE\"", "'k dQnT kNqW wHcT Tq wRkTg'" ] ]
[]
HumanEval_RandomSpanInfillingLight
def encode(message): """ Write a function that takes a message, and encodes in such a way that it swaps case of all letters, replaces all vowels in the message with the letter that appears 2 places ahead of that vowel in the english alphabet. Assume only letters. """ vowels = "aeiouAEIOU"
vowels_replace = dict([(i, chr(ord(i) + 2)) for i in vowels]) message = message.swapcase()
[ [ "'test'", "'TGST'" ], [ "'This is a message'", "'tHKS KS C MGSSCGG'" ] ]
python
encode
[]
code_infilling
RandomSpanInfillingLight/HumanEval/93/1
You are given a list of integers. You need to find the largest prime value and return the sum of its digits.
result = sum(int(digit) for digit in str(maxx)) return result
python
[ [ "[0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3]", "10" ], [ "[1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1]", "25" ], [ "[1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3]", "13" ], [ "[0,724,32,71,99,32,6,0,5,91,83,0,5,6]", "11" ], [ "[0,81,12,3,1,21]", "3" ], [ "[0,8,1,2,1,7]", "7" ], [ "[8191]", "19" ], [ "[8191, 123456, 127, 7]", "19" ], [ "[127, 97, 8192]", "10" ] ]
[]
HumanEval_RandomSpanInfillingLight
def skjkasdkd(lst): """You are given a list of integers. You need to find the largest prime value and return the sum of its digits. """ def isPrime(n): for i in range(2,int(n**0.5)+1): if n%i==0: return False return True
maxx = 0 i = 0 while i < len(lst): if(lst[i] > maxx and isPrime(lst[i])): maxx = lst[i] i+=1
[ [ "[0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3]", "10" ], [ "[1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1]", "25" ], [ "[1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3]", "13" ], [ "[0,724,32,71,99,32,6,0,5,91,83,0,5,6]", "11" ], [ "[0,81,12,3,1,21]", "3" ], [ "[0,8,1,2,1,7]", "7" ] ]
python
skjkasdkd
[]
code_infilling
RandomSpanInfillingLight/HumanEval/94/1
Given a dictionary, return True if all keys are strings in lower case or all keys are strings in upper case, else return False. The function should return False is the given dictionary is empty.
if state == "start": if key.isupper(): state = "upper" elif key.islower(): state = "lower" else: break elif (state == "upper" and not key.isupper()) or (state == "lower" and not key.islower()): state = "mixed" break else: break return state == "upper" or state == "lower"
python
[ [ "{\"p\":\"pineapple\", \"b\":\"banana\"}", "True" ], [ "{\"p\":\"pineapple\", \"A\":\"banana\", \"B\":\"banana\"}", "False" ], [ "{\"p\":\"pineapple\", 5:\"banana\", \"a\":\"apple\"}", "False" ], [ "{\"Name\":\"John\", \"Age\":\"36\", \"City\":\"Houston\"}", "False" ], [ "{\"STATE\":\"NC\", \"ZIP\":\"12345\" }", "True" ], [ "{\"fruit\":\"Orange\", \"taste\":\"Sweet\" }", "True" ], [ "{}", "False" ] ]
[]
HumanEval_RandomSpanInfillingLight
def check_dict_case(dict): """ Given a dictionary, return True if all keys are strings in lower case or all keys are strings in upper case, else return False. The function should return False is the given dictionary is empty. """
if len(dict.keys()) == 0: return False else: state = "start" for key in dict.keys(): if isinstance(key, str) == False: state = "mixed" break
[ [ "{\"a\":\"apple\", \"b\":\"banana\"}", "True" ], [ "{\"a\":\"apple\", \"A\":\"banana\", \"B\":\"banana\"}", "True" ], [ "{\"a\":\"apple\", 8:\"banana\", \"a\":\"apple\"}", "False" ], [ "{\"Name\":\"John\", \"Age\":\"36\", \"City\":\"Houston\"}", "False" ], [ "{\"STATE\":\"NC\", \"ZIP\":\"12345\" }", "True" ] ]
python
check_dict_case
[]
code_infilling
RandomSpanInfillingLight/HumanEval/95/1
Implement a function that takes an non-negative integer and returns an array of the first n integers that are prime numbers and less than n.
if is_prime: primes.append(i) return primes
python
[ [ "5", "[2,3]" ], [ "6", "[2,3,5]" ], [ "7", "[2,3,5]" ], [ "10", "[2,3,5,7]" ], [ "0", "[]" ], [ "22", "[2,3,5,7,11,13,17,19]" ], [ "1", "[]" ], [ "18", "[2,3,5,7,11,13,17]" ], [ "47", "[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43]" ], [ "101", "[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]" ] ]
[]
HumanEval_RandomSpanInfillingLight
def count_up_to(n): """Implement a function that takes an non-negative integer and returns an array of the first n integers that are prime numbers and less than n. """ primes = [] for i in range(2, n): i
s_prime = True for j in range(2, i): if i % j == 0: is_prime = False break
[ [ "5", "[2,3]" ], [ "11", "[2,3,5,7]" ], [ "0", "[]" ], [ "20", "[2,3,5,7,11,13,17,19]" ], [ "1", "[]" ], [ "18", "[2,3,5,7,11,13,17]" ] ]
python
count_up_to
[]
code_infilling
RandomSpanInfillingLight/HumanEval/96/1
Complete the function that takes two integers and returns the product of their unit digits. Assume the input is always valid.
abs(b % 10)
python
[ [ "148, 412", "16" ], [ "19, 28", "72" ], [ "2020, 1851", "0" ], [ "14, -15", "20" ], [ "76, 67", "42" ], [ "17, 27", "49" ], [ "0, 1", "0" ], [ "0, 0", "0" ] ]
[]
HumanEval_RandomSpanInfillingLight
def multiply(a, b): """Complete the function that takes two integers and returns the product of their unit digits. Assume the input is always valid. """ return
abs(a % 10) *
[ [ "148, 412", "16" ], [ "19, 28", "72" ], [ "2020, 1851", "0" ], [ "14, -15", "20" ] ]
python
multiply
[]
code_infilling
RandomSpanInfillingLight/HumanEval/97/1
Given a string s, count the number of uppercase vowels in even indices.
return count
python
[ [ "'aBCdEf'", "1" ], [ "'abcdefg'", "0" ], [ "'dBBE'", "0" ], [ "'B'", "0" ], [ "'U'", "1" ], [ "''", "0" ], [ "'EEEE'", "2" ] ]
[]
HumanEval_RandomSpanInfillingLight
def count_upper(s): """ Given a string s, count the number of uppercase vowels in even indices. """ count = 0
for i in range(0,len(s),2): if s[i] in "AEIOU": count += 1
[ [ "'aBCdEf'", "1" ], [ "'abcdefg'", "0" ], [ "'dBBE'", "0" ] ]
python
count_upper
[]
code_infilling
RandomSpanInfillingLight/HumanEval/98/1
Create a function that takes a value (string) representing a number and returns the closest integer to it. If the number is equidistant from two integers, round it away from zero.
== 1: # remove trailing zeros while (value[-1] == '0'): value = value[:-1] num = float(value) if value[-2:] == '.5': if num > 0: res = ceil(num) else: res = floor(num) elif len(value) > 0: res = int(round(num)) else: res = 0 return res
python
[ [ "\"10\"", "10" ], [ "\"14.5\"", "15" ], [ "\"-15.5\"", "-16" ], [ "\"15.3\"", "15" ], [ "\"0\"", "0" ] ]
[]
HumanEval_RandomSpanInfillingLight
def closest_integer(value): """ Create a function that takes a value (string) representing a number and returns the closest integer to it. If the number is equidistant from two integers, round it away from zero. """ from math import floor, ceil if value
.count('.')
[ [ "\"10\"", "10" ], [ "\"15.3\"", "15" ] ]
python
closest_integer
[]
code_infilling
RandomSpanInfillingLight/HumanEval/99/1
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
38