|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Autism_spectrum_disorder_(ASD)" |
|
cohort = "GSE113842" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Autism_spectrum_disorder_(ASD)" |
|
in_cohort_dir = "../DATA/GEO/Autism_spectrum_disorder_(ASD)/GSE113842" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Autism_spectrum_disorder_(ASD)/GSE113842.csv" |
|
out_gene_data_file = "./output/preprocess/3/Autism_spectrum_disorder_(ASD)/gene_data/GSE113842.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Autism_spectrum_disorder_(ASD)/clinical_data/GSE113842.csv" |
|
json_path = "./output/preprocess/3/Autism_spectrum_disorder_(ASD)/cohort_info.json" |
|
|
|
|
|
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Dataset Background Information:") |
|
print(background_info) |
|
print("\nSample Characteristics:") |
|
for feature, values in unique_values_dict.items(): |
|
print(f"\n{feature}:") |
|
print(values) |
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = 0 |
|
def convert_trait(value: str) -> int: |
|
if not value or ':' not in value: |
|
return None |
|
value = value.split(':')[1].strip() |
|
if 'CTRL' in value: |
|
return 0 |
|
elif 'ASD' in value: |
|
return 1 |
|
return None |
|
|
|
|
|
age_row = 2 |
|
def convert_age(value: str) -> float: |
|
if not value or ':' not in value: |
|
return None |
|
value = value.split(':')[1].strip() |
|
if '/' in value: |
|
ages = value.split('/') |
|
return sum(float(age) for age in ages) / len(ages) |
|
return float(value) |
|
|
|
|
|
gender_row = None |
|
def convert_gender(value: str) -> int: |
|
return None |
|
|
|
|
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=(trait_row is not None) |
|
) |
|
|
|
|
|
clinical_df = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
|
|
print("Clinical data preview:") |
|
print(preview_df(clinical_df)) |
|
clinical_df.to_csv(out_clinical_data_file) |
|
|
|
genetic_data = get_genetic_data(matrix_file_path) |
|
|
|
|
|
print("First 20 gene/probe IDs:") |
|
print(list(genetic_data.index[:20])) |
|
|
|
print("\nData preview:") |
|
preview_subset = genetic_data.iloc[:5, :5] |
|
print(preview_subset) |
|
|
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
gene_metadata = get_gene_annotation(soft_file_path) |
|
|
|
|
|
print("\nGene annotation preview showing ID and Gene Symbol columns:") |
|
preview = preview_df(gene_metadata[['ID', 'Gene Symbol']]) |
|
print(preview) |
|
|
|
print("Available columns in gene_metadata:") |
|
print(gene_metadata.columns.tolist()) |
|
|
|
|
|
print("\nSample probe IDs from genetic data:") |
|
print(genetic_data.index[:5].tolist()) |
|
|
|
|
|
mapping_data = gene_metadata.loc[:, ['ID_REF', 'Gene Symbol']] |
|
mapping_data = mapping_data.rename(columns={'ID_REF': 'ID'}) |
|
mapping_data = mapping_data.dropna() |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_data, mapping_data) |
|
|
|
|
|
print("\nGene expression data preview:") |
|
print(preview_df(gene_data)) |
|
|
|
|
|
if len(gene_data) > 0: |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
print("Expression data probe IDs:") |
|
print(list(genetic_data.index[:5])) |
|
print("\nAnnotation data probe IDs:") |
|
print(gene_metadata['ID'].head().tolist()) |
|
|
|
|
|
|
|
mapping_data = gene_metadata[['ID', 'Gene Symbol']].copy() |
|
|
|
|
|
print("\nUnique patterns in expression data probes:") |
|
print(set([x.split('_', 1)[1] for x in genetic_data.index[:20]])) |
|
print("\nUnique patterns in annotation probes:") |
|
print(set([x.split('_', 1)[1] for x in mapping_data['ID'].head(20)])) |
|
|
|
|
|
|
|
mapping_data['ID'] = mapping_data['ID'].str.replace('_PM', '') |
|
mapping_data['ID'] = '117' + mapping_data['ID'].str.split('_').str[0].str[2:] + '_' + mapping_data['ID'].str.split('_').str[1] |
|
|
|
|
|
mapping_data = get_gene_mapping(mapping_data, 'ID', 'Gene Symbol') |
|
|
|
|
|
print("\nTransformed mapping sample:") |
|
print(mapping_data.head().to_dict('records')) |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_data, mapping_data) |
|
|
|
|
|
print("\nGene expression data preview:") |
|
print(preview_df(gene_data)) |
|
|
|
|
|
if len(gene_data) > 0: |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
genetic_data = normalize_gene_symbols_in_index(genetic_data) |
|
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) |
|
genetic_data.to_csv(out_gene_data_file) |
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(clinical_df, genetic_data) |
|
|
|
|
|
print("\nSample verification:") |
|
print("Clinical data columns:", clinical_df.index.tolist()) |
|
print("Clinical data shape:", clinical_df.shape) |
|
print("Genetic data shape:", genetic_data.shape) |
|
print("Linked data shape:", linked_data.shape) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=linked_data, |
|
note="Gene expression data from brain tissue. Sample size adequate for analysis." |
|
) |
|
|
|
|
|
if is_usable: |
|
os.makedirs(os.path.dirname(out_data_file), exist_ok=True) |
|
linked_data.to_csv(out_data_file) |