Liu-Hy's picture
Add files using upload-large-folder tool
324058b verified
raw
history blame contribute delete
6.01 kB
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Autism_spectrum_disorder_(ASD)"
cohort = "GSE42133"
# Input paths
in_trait_dir = "../DATA/GEO/Autism_spectrum_disorder_(ASD)"
in_cohort_dir = "../DATA/GEO/Autism_spectrum_disorder_(ASD)/GSE42133"
# Output paths
out_data_file = "./output/preprocess/3/Autism_spectrum_disorder_(ASD)/GSE42133.csv"
out_gene_data_file = "./output/preprocess/3/Autism_spectrum_disorder_(ASD)/gene_data/GSE42133.csv"
out_clinical_data_file = "./output/preprocess/3/Autism_spectrum_disorder_(ASD)/clinical_data/GSE42133.csv"
json_path = "./output/preprocess/3/Autism_spectrum_disorder_(ASD)/cohort_info.json"
# Get file paths for SOFT and matrix files
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Create dictionary of unique values for each feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print the information
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in unique_values_dict.items():
print(f"\n{feature}:")
print(values)
# 1. Gene Expression Data
is_gene_available = True # Based on background info showing leukocyte gene expression data
# 2.1 Data Availability
trait_row = 0 # Diagnosis info in row 0
gender_row = None # Gender is constant (all male) so considered unavailable
age_row = None # No age data available
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
"""Convert diagnosis to binary: Control=0, ASD=1"""
if not isinstance(value, str):
return None
value = value.split(': ')[-1].strip().upper()
if value == 'CONTROL':
return 0
elif value == 'ASD':
return 1
return None
def convert_age(value: str) -> float:
"""Convert age to float (unused as age not available)"""
return None
def convert_gender(value: str) -> int:
"""Convert gender to binary (unused as gender not available)"""
return None
# 3. Save initial metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# 4. Extract clinical features since trait data is available
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
print("Preview of clinical features:")
print(preview_df(clinical_features))
# Save clinical data
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 row IDs and some data preview to verify structure
print("First 20 gene/probe IDs:")
print(list(genetic_data.index[:20]))
print("\nData preview:")
preview_subset = genetic_data.iloc[:5, :5]
print(preview_subset)
# The identifiers starting with "ILMN_" are Illumina probe IDs, not human gene symbols
# These need to be mapped to gene symbols for proper analysis
requires_gene_mapping = True
# Try different prefix combinations to extract platform annotation
prefixes_to_try = [
['!Platform_table_begin'], # Standard platform table marker
['^PLATFORM'], # Platform section marker
['!Platform_'] # Platform metadata
]
gene_metadata = None
for prefixes in prefixes_to_try:
data, _ = filter_content_by_prefix(
source=soft_file_path,
prefixes_a=prefixes,
unselect=False,
source_type='file',
return_df_a=True
)
# Check if we got meaningful data (non-empty and has some non-NaN symbols)
if not data.empty and 'Symbol' in data.columns and not data['Symbol'].isna().all():
gene_metadata = data.iloc[1:] if prefixes[0].endswith('begin') else data
break
# Preview column names and first few values
preview = preview_df(gene_metadata if gene_metadata is not None else pd.DataFrame())
print("\nGene annotation columns and sample values:")
print(preview)
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file_path)
# Preview column names and first few values
preview = preview_df(gene_metadata)
print("\nGene annotation columns and sample values:")
print(preview)
# Create gene mapping from probe IDs to gene symbols
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Symbol')
# Convert probe expression to gene expression
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Preview result
print("\nConverted gene expression data preview:")
preview = preview_df(gene_data)
print(preview)
# 1. Normalize gene symbols and save gene data
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Judge bias in features and remove biased ones
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Gene expression data from peripheral blood. Sample size adequate. Clinical data includes ASD diagnosis and gender."
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)