Liu-Hy's picture
Add files using upload-large-folder tool
324058b verified
raw
history blame contribute delete
5.69 kB
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Autism_spectrum_disorder_(ASD)"
cohort = "GSE57802"
# Input paths
in_trait_dir = "../DATA/GEO/Autism_spectrum_disorder_(ASD)"
in_cohort_dir = "../DATA/GEO/Autism_spectrum_disorder_(ASD)/GSE57802"
# Output paths
out_data_file = "./output/preprocess/3/Autism_spectrum_disorder_(ASD)/GSE57802.csv"
out_gene_data_file = "./output/preprocess/3/Autism_spectrum_disorder_(ASD)/gene_data/GSE57802.csv"
out_clinical_data_file = "./output/preprocess/3/Autism_spectrum_disorder_(ASD)/clinical_data/GSE57802.csv"
json_path = "./output/preprocess/3/Autism_spectrum_disorder_(ASD)/cohort_info.json"
# Get file paths for SOFT and matrix files
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Create dictionary of unique values for each feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print the information
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in unique_values_dict.items():
print(f"\n{feature}:")
print(values)
# 1. Gene Expression Data Availability
# Since this is transcriptome profiling data from lymphoblastoid cell lines, gene expression data should be available
is_gene_available = True
# 2. Variable Availability and Type Conversion
# 2.1 Row identification
# Copy number variation is associated with ASD according to background info
# Row 3 contains copy number info that we can use to determine ASD risk
trait_row = 3
# Age data is in row 2
age_row = 2
# Gender data is in row 1
gender_row = 1
# 2.2 Data type conversion functions
def convert_trait(x):
"""Convert copy number to binary ASD risk
Copy number = 2 is normal (control)
Copy number != 2 indicates genetic risk for ASD"""
if not isinstance(x, str):
return None
value = x.split(': ')[-1]
if value == '2':
return 0 # No risk
elif value in ['1', '3']:
return 1 # At risk
return None
def convert_age(x):
"""Convert age string to float"""
if not isinstance(x, str):
return None
value = x.split(': ')[-1]
try:
return float(value)
except:
return None if value == 'NA' else None
def convert_gender(x):
"""Convert gender to binary (0=female, 1=male)"""
if not isinstance(x, str):
return None
value = x.split(': ')[-1]
if value == 'F':
return 0
elif value == 'M':
return 1
return None
# 3. Save metadata for initial filtering
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# 4. Extract clinical features
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
print("Preview of extracted clinical features:")
print(preview_df(clinical_features))
# Save clinical data
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 row IDs and some data preview to verify structure
print("First 20 gene/probe IDs:")
print(list(genetic_data.index[:20]))
print("\nData preview:")
preview_subset = genetic_data.iloc[:5, :5]
print(preview_subset)
# These are probe IDs from Affymetrix arrays, not gene symbols
# The format "XXXX_PM_at" is characteristic of Affymetrix probe identifiers
# They need to be mapped to human gene symbols for analysis
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file_path)
# Preview column names and first few values
preview = preview_df(gene_metadata)
print("\nGene annotation columns and sample values:")
print(preview)
# Create mapping dataframe from the annotation data
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene Symbol')
# Apply gene mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Print preview to verify the conversion
print("Preview of gene expression data:")
print(gene_data.iloc[:5, :5])
# 1. Normalize gene symbols and save gene data
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Judge bias in features and remove biased ones
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Gene expression data from peripheral blood. Sample size adequate. Clinical data includes ASD diagnosis and gender."
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)