|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Autism_spectrum_disorder_(ASD)" |
|
cohort = "GSE87847" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Autism_spectrum_disorder_(ASD)" |
|
in_cohort_dir = "../DATA/GEO/Autism_spectrum_disorder_(ASD)/GSE87847" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Autism_spectrum_disorder_(ASD)/GSE87847.csv" |
|
out_gene_data_file = "./output/preprocess/3/Autism_spectrum_disorder_(ASD)/gene_data/GSE87847.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Autism_spectrum_disorder_(ASD)/clinical_data/GSE87847.csv" |
|
json_path = "./output/preprocess/3/Autism_spectrum_disorder_(ASD)/cohort_info.json" |
|
|
|
|
|
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Dataset Background Information:") |
|
print(background_info) |
|
print("\nSample Characteristics:") |
|
for feature, values in unique_values_dict.items(): |
|
print(f"\n{feature}:") |
|
print(values) |
|
|
|
is_gene_available = True |
|
|
|
|
|
trait_row = 0 |
|
gender_row = 2 |
|
age_row = None |
|
|
|
|
|
def convert_trait(value: str) -> int: |
|
"""Convert ASD status to binary""" |
|
if not isinstance(value, str): |
|
return None |
|
value = value.split(': ')[-1].lower().strip() |
|
if 'autism' in value: |
|
return 1 |
|
elif 'typically developing' in value: |
|
return 0 |
|
return None |
|
|
|
def convert_gender(value: str) -> int: |
|
"""Convert gender to binary (female=0, male=1)""" |
|
if not isinstance(value, str): |
|
return None |
|
value = value.split(': ')[-1].lower().strip() |
|
if 'female' in value: |
|
return 0 |
|
elif 'male' in value: |
|
return 1 |
|
return None |
|
|
|
def convert_age(value: str) -> float: |
|
"""Placeholder function since age data not available""" |
|
return None |
|
|
|
|
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=trait_row is not None |
|
) |
|
|
|
|
|
selected_clinical_df = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
|
|
print(preview_df(selected_clinical_df)) |
|
|
|
|
|
selected_clinical_df.to_csv(out_clinical_data_file) |
|
|
|
genetic_data = get_genetic_data(matrix_file_path) |
|
|
|
|
|
print("First 20 gene/probe IDs:") |
|
print(list(genetic_data.index[:20])) |
|
|
|
print("\nData preview:") |
|
preview_subset = genetic_data.iloc[:5, :5] |
|
print(preview_subset) |
|
|
|
|
|
|
|
requires_gene_mapping = False |
|
|
|
genetic_data = normalize_gene_symbols_in_index(genetic_data) |
|
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) |
|
genetic_data.to_csv(out_gene_data_file) |
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=linked_data, |
|
note="Gene expression data from peripheral blood. Sample size adequate. Clinical data includes ASD diagnosis and gender." |
|
) |
|
|
|
|
|
if is_usable: |
|
os.makedirs(os.path.dirname(out_data_file), exist_ok=True) |
|
linked_data.to_csv(out_data_file) |