metadata
license: cc-by-sa-4.0
task_categories:
- text-classification
- text2text-generation
- text-generation
tags:
- language-identification
- multilingual
- indic-languages
- text-classification
- India
pretty_name: Multilingual Headlines Language Identification
size_categories:
- 1K<n<10K
language:
- hi
- ur
- bn
- gu
- kn
- ml
- mr
- or
- pa
- ta
Dataset Card for Language Identification Dataset
Dataset Description
- Repository: processvenue/language_identification
- Total Samples: 9627
- Number of Languages: 10
- Splits:
- Train: 6741 samples (70%)
- Validation: 1441 samples (15%)
- Test: 1445 samples (15%)
Dataset Summary
A comprehensive dataset for Indian language identification and text classification. The dataset contains text samples across 10 major Indian languages, making it suitable for developing language identification systems and multilingual NLP applications.
Languages and Distribution
Language Distribution:
Urdu 1000
Hindi 1000
Odia 1000
Tamil 1000
Kannada 1000
Bengali 1000
Gujarati 1000
Malayalam 1000
Marathi 1000
Punjabi 627
Language Details
- Hindi (hi): Major language of India, written in Devanagari script
- Urdu (ur): Written in Perso-Arabic script
- Bengali (bn): Official language of Bangladesh and several Indian states
- Gujarati (gu): Official language of Gujarat
- Kannada (kn): Official language of Karnataka
- Malayalam (ml): Official language of Kerala
- Marathi (mr): Official language of Maharashtra
- Odia (or): Official language of Odisha
- Punjabi (pa): Official language of Punjab
- Tamil (ta): Official language of Tamil Nadu and Singapore
Data Fields
text
: The input text samplelanguage
: The language label (one of the 10 languages listed above)
Usage Example
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("processvenue/language_identification")
# Access splits
train_data = dataset['train']
validation_data = dataset['validation']
test_data = dataset['test']
# Example usage
print(f"Sample text: {train_data[0]['text']}")
print(f"Language: {train_data[0]['language']}")
Applications
Language Identification Systems
- Automatic language detection
- Text routing in multilingual systems
- Content filtering by language
Machine Translation
- Language-pair identification
- Translation system selection
Content Analysis
- Multilingual content categorization
- Language-specific content analysis
Citation
If you use this dataset in your research, please cite:
@dataset{language_identification_2024,
author = {ProcessVenue Team},
title = {Multilingual Headlines Language Identification Dataset},
year = {2024},
publisher = {Hugging Face},
url = {https://huggingface.co/datasets/processvenue/language-identification}
}
###reference
@misc{disisbig_news_datasets,
author = {Gaurav},
title = {Indian Language News Datasets},
year = {2019},
publisher = {Kaggle},
url = {https://www.kaggle.com/datasets/disisbig/}
}