minersunion's picture
adjusted preview
137e920
raw
history blame contribute delete
1.32 kB
import pandas as pd
from datasets import DatasetInfo, Features, GeneratorBasedBuilder, Sequence, Split, SplitGenerator, Value
class PodcastConversationsWithMetadataAndEmbedding(GeneratorBasedBuilder):
def _info(self):
return DatasetInfo(
features=Features(
{
"c_guid": Value("string"),
"participants": Sequence(Value("string")),
"transcript": Sequence({"chunk": Value("string"), "speaker": Value("string"), "text": Value("string")}),
}
)
)
def _split_generators(self, dl_manager):
data_files = self.config.data_files
return [
SplitGenerator(
name=Split.TRAIN,
gen_kwargs={"filepath": data_files["train"][0]},
),
]
def _generate_examples(self, filepath):
df = pd.read_parquet(filepath)
for idx, row in df.iterrows():
record = row.to_dict()
# Normalize vector field if it exists
if "vector" in record:
if isinstance(record["vector"], (list, tuple)):
record["vector"] = list(map(float, record["vector"]))
else:
record["vector"] = []
yield idx, record