|
import pandas as pd |
|
from datasets import DatasetInfo, Features, GeneratorBasedBuilder, Sequence, Split, SplitGenerator, Value |
|
|
|
|
|
class PodcastConversationsWithMetadataAndEmbedding(GeneratorBasedBuilder): |
|
def _info(self): |
|
return DatasetInfo( |
|
features=Features( |
|
{ |
|
"c_guid": Value("string"), |
|
"participants": Sequence(Value("string")), |
|
"transcript": Sequence({"chunk": Value("string"), "speaker": Value("string"), "text": Value("string")}), |
|
} |
|
) |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_files = self.config.data_files |
|
|
|
return [ |
|
SplitGenerator( |
|
name=Split.TRAIN, |
|
gen_kwargs={"filepath": data_files["train"][0]}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
df = pd.read_parquet(filepath) |
|
|
|
for idx, row in df.iterrows(): |
|
record = row.to_dict() |
|
|
|
|
|
if "vector" in record: |
|
if isinstance(record["vector"], (list, tuple)): |
|
record["vector"] = list(map(float, record["vector"])) |
|
else: |
|
record["vector"] = [] |
|
|
|
yield idx, record |
|
|