id
stringlengths 2
7
| title
stringlengths 1
182
| text
stringlengths 200
369k
| url
stringlengths 31
212
| timestamp
stringdate 2025-04-05 18:25:13
2025-04-05 23:52:07
|
---|---|---|---|---|
1200 | Atomic physics | Atomic physics is the field of physics that studies atoms as an isolated system of electrons and an atomic nucleus. Atomic physics typically refers to the study of atomic structure and the interaction between atoms. It is primarily concerned with the way in which electrons are arranged around the nucleus and
the processes by which these arrangements change. This comprises ions, neutral atoms and, unless otherwise stated, it can be assumed that the term atom includes ions.
The term atomic physics can be associated with nuclear power and nuclear weapons, due to the synonymous use of atomic and nuclear in standard English. Physicists distinguish between atomic physics—which deals with the atom as a system consisting of a nucleus and electrons—and nuclear physics, which studies nuclear reactions and special properties of atomic nuclei.
As with many scientific fields, strict delineation can be highly contrived and atomic physics is often considered in the wider context of atomic, molecular, and optical physics. Physics research groups are usually so classified.
Isolated atoms
Atomic physics primarily considers atoms in isolation. Atomic models will consist of a single nucleus that may be surrounded by one or more bound electrons. It is not concerned with the formation of molecules (although much of the physics is identical), nor does it examine atoms in a solid state as condensed matter. It is concerned with processes such as ionization and excitation by photons or collisions with atomic particles.
While modelling atoms in isolation may not seem realistic, if one considers atoms in a gas or plasma then the time-scales for atom-atom interactions are huge in comparison to the atomic processes that are generally considered. This means that the individual atoms can be treated as if each were in isolation, as the vast majority of the time they are. By this consideration, atomic physics provides the underlying theory in plasma physics and atmospheric physics, even though both deal with very large numbers of atoms.
Electronic configuration
Electrons form notional shells around the nucleus. These are normally in a ground state but can be excited by the absorption of energy from light (photons), magnetic fields, or interaction with a colliding particle (typically ions or other electrons).
Electrons that populate a shell are said to be in a bound state. The energy necessary to remove an electron from its shell (taking it to infinity) is called the binding energy. Any quantity of energy absorbed by the electron in excess of this amount is converted to kinetic energy according to the conservation of energy. The atom is said to have undergone the process of ionization.
If the electron absorbs a quantity of energy less than the binding energy, it will be transferred to an excited state. After a certain time, the electron in an excited state will "jump" (undergo a transition) to a lower state. In a neutral atom, the system will emit a photon of the difference in energy, since energy is conserved.
If an inner electron has absorbed more than the binding energy (so that the atom ionizes), then a more outer electron may undergo a transition to fill the inner orbital. In this case, a visible photon or a characteristic X-ray is emitted, or a phenomenon known as the Auger effect may take place, where the released energy is transferred to another bound electron, causing it to go into the continuum. The Auger effect allows one to multiply ionize an atom with a single photon.
There are rather strict selection rules as to the electronic configurations that can be reached by excitation by light — however, there are no such rules for excitation by collision processes.
Bohr Model of the Atom
The Bohr model, proposed by Niels Bohr in 1913, is a revolutionary theory describing the structure of the hydrogen atom. It introduced the idea of quantized orbits for electrons, combining classical and quantum physics.
Key Postulates of the Bohr Model
1. Electrons Move in Circular Orbits:
• Electrons revolve around the nucleus in fixed, circular paths called orbits or energy levels.
• These orbits are stable and do not radiate energy.
2. Quantization of Angular Momentum:
• The angular momentum of an electron is quantized and given by:
:<math>\ L m_{e}vr n_{\hbar}, \quad n = 1, 2, 3, \ldots </math>
where:
• <math> m_e : </math> Mass of the electron.
• <math> v : </math> Velocity of the electron.
• <math> r : </math> Radius of the orbit.
• <math> \hbar : </math> Reduced Planck’s constant (<math>\hbar = \frac{h}{2\pi}</math>).
• <math> n : </math> Principal quantum number, representing the orbit.
3. Energy Levels:
• Each orbit has a specific energy. The total energy of an electron in the <math>n</math>th orbit is:
:<math>\ E_n = -\frac{13.6}{n^2} \ \text{eV}, </math>
where <math> 13.6 \ \text{eV} </math> is the ground-state energy of the hydrogen atom.
4. Emission or Absorption of Energy:
• Electrons can transition between orbits by absorbing or emitting energy equal to the difference between the energy levels:
:<math>\ \Delta E E_f - E_i h\nu, </math>
where:
• <math> h : </math> Planck’s constant.
• <math> \nu : </math> Frequency of emitted/absorbed radiation.
• <math> E_f, E_i : </math> Final and initial energy levels.
History and developments
One of the earliest steps towards atomic physics was the recognition that matter was composed
of atoms. It forms a part of the texts written in 6th century BC to 2nd century BC, such as those of Democritus or written by . This theory was later developed in the modern sense of the basic unit of a chemical element by the British chemist and physicist John Dalton in the 18th century. At this stage, it was not clear what atoms were, although they could be described and classified by their properties (in bulk). The invention of the periodic system of elements by Dmitri Mendeleev was another great step forward.
The true beginning of atomic physics is marked by the discovery of spectral lines and attempts to describe the phenomenon, most notably by Joseph von Fraunhofer. The study of these lines led to the Bohr atom model and to the birth of quantum mechanics. In seeking to explain atomic spectra, an entirely new mathematical model of matter was revealed. As far as atoms and their electron shells were concerned, not only did this yield a better overall description, i.e. the atomic orbital model, but it also provided a new theoretical basis for chemistry
(quantum chemistry) and spectroscopy.
Since the Second World War, both theoretical and experimental fields have advanced at a rapid pace. This can be attributed to progress in computing technology, which has allowed larger and more sophisticated models of atomic structure and associated collision processes. Similar technological advances in accelerators, detectors, magnetic field generation and lasers have greatly assisted experimental work.
Beyond the well-known phenomena which can be describe with regular quantum mechanics chaotic processes can occur which need different descriptions.
Significant atomic physicists
; Post quantum mechanics
* Alexander Dalgarno
* David Bates
* Niels Bohr
*
* Clinton Joseph Davisson
* Paul A. M. Dirac
*
* Charlotte Froese Fischer
*
* Douglas Hartree
* Ernest M. Henley
*
* Daniel Kleppner
* Harrie S. Massey
* Nevill Mott
* I. I. Rabi
* Norman Ramsey
* Mike Seaton
* John C. Slater
* George Paget Thomson
}}
See also
*Particle physics
*Isomeric shift
*Atomism
*Ionisation
*Quantum Mechanics
*Electron Correlation
*Quantum Chemistry
*Bound State
Bibliography
*
* Sommerfeld, A. (1923) Atomic structure and spectral lines. (translated from German "Atombau und Spektrallinien" 1921), Dutton Publisher.
*
*Smirnov, B.E. (2003) Physics of Atoms and Ions, Springer. .
*Szász, L. (1992) The Electronic Structure of Atoms, John Willey & Sons. .
*
*Bethe, H.A. & Salpeter E.E. (1957) Quantum Mechanics of One- and Two Electron Atoms. Springer.
*Born, M. (1937) Atomic Physics. Blackie & Son Limited.
*Cox, P.A. (1996) Introduction to Quantum Theory and Atomic Spectra. Oxford University Press. ISBN 0-19-855916
*
*
* ReferencesExternal links
*[http://cuaweb.mit.edu/ MIT-Harvard Center for Ultracold Atoms]
*[https://qfarm.stanford.edu Stanford QFARM Initiative for Quantum Science & Enginneering]
*[http://jqi.umd.edu Joint Quantum Institute at University of Maryland and NIST]
*[https://web.archive.org/web/20031204233636/http://plasma-gate.weizmann.ac.il/API.html Atomic Physics on the Internet]
*[https://web.archive.org/web/20120305214247/http://jila.colorado.edu/research_highlights JILA (Atomic Physics)]
*[http://www.phy.ornl.gov ORNL Physics Division]
Category:Atomic, molecular, and optical physics | https://en.wikipedia.org/wiki/Atomic_physics | 2025-04-05T18:25:35.016328 |
1201 | American Sign Language | |date = 2006
|ref = e25
|speakers2L2 signers: (2006) through resolutions: Alberta, Manitoba.<br />45 US states and DC formally recognize ASL in state law; Five states recognize ASL for educational foreign language requirements, but have not formally recognized ASL as a language in their legislatures.
|iso3 = ase
|glotto=asli1244
|glottoname=ASL family
|glottorefname=ASLic
|glotto2=amer1248
|glottoname2=ASL proper
|glottorefname2=American Sign Language
|map = ASL map (world).svg
|mapcaption =
|map2 = Francosign Languages of North America.svg
|mapcaption2 = Map of the North American Francosign languages. ASL covers the regions enclosed by the dashed line
}}
American Sign Language (ASL) is a natural language that serves as the predominant sign language of Deaf communities in the United States and most of Anglophone Canada. ASL is a complete and organized visual language that is expressed by employing both manual and nonmanual features. Besides North America, dialects of ASL and ASL-based creoles are used in many countries around the world, including much of West Africa and parts of Southeast Asia. ASL is also widely learned as a second language, serving as a lingua franca. ASL is most closely related to French Sign Language (LSF). It has been proposed that ASL is a creole language of LSF, although ASL shows features atypical of creole languages, such as agglutinative morphology.
ASL originated in the early 19th century in the American School for the Deaf (ASD) in Hartford, Connecticut, from a situation of language contact. Since then, ASL use has been propagated widely by schools for the deaf and Deaf community organizations. Despite its wide use, no accurate count of ASL users has been taken. Reliable estimates for American ASL users range from 250,000 to 500,000 persons, including a number of children of deaf adults (CODA) and other hearing individuals.
Signs in ASL have a number of phonemic components, such as movement of the face, the torso, and the hands. ASL is not a form of pantomime, although iconicity plays a larger role in ASL than in spoken languages. English loan words are often borrowed through fingerspelling, although ASL grammar is unrelated to that of English. ASL has verbal agreement and aspectual marking and has a productive system of forming agglutinative classifiers. Many linguists believe ASL to be a subject–verb–object language. However, there are several alternative proposals to account for ASL word order.
Classification
ASL emerged as a language in the American School for the Deaf (ASD), founded by Thomas Gallaudet in 1817, However, that is far less than the standard 80% measure used to determine whether related languages are actually dialects. However, more recent research has shown that modern ASL does not share many of the structural features that characterize creole languages. All three languages show degrees of borrowing from English, but that alone is not sufficient for cross-language comprehension.
American Sign Language is now being accepted by many colleges as a language eligible for foreign language course credit; many states are making it mandatory to accept it as such. In some states however, this is only true with regard to high school coursework. History Prior to the birth of ASL, sign language had been used by various communities in the United States.
In the 19th century, a "triangle" of village sign languages developed in New England: one in Martha's Vineyard, Massachusetts; one in Henniker, New Hampshire, and one in Sandy River Valley, Maine. Martha's Vineyard Sign Language (MVSL), which was particularly important for the history of ASL, was used mainly in Chilmark, Massachusetts.
ASL is thought to have originated in the American School for the Deaf (ASD), founded in Hartford, Connecticut, in 1817. Gallaudet, inspired by his success in demonstrating the learning abilities of a young deaf girl Alice Cogswell, traveled to Europe in order to learn deaf pedagogy from European institutions.}} Upon his return, Gallaudet founded the ASD on April 15, 1817.}} Other students brought knowledge of their own home signs. Linguists did not consider sign language to be true "language" but as something inferior. Stokoe noted that sign language shares the important features that oral languages have as a means of communication, and even devised a transcription system for ASL.
Population
Counting the number of ASL signers is difficult because ASL users have never been counted by the American census..}} The ultimate source for current estimates of the number of ASL users in the United States is a report for the National Census of the Deaf Population (NCDP) by Schein and Delk (1974). Such languages, imported by boarding schools, are often considered by associations to be the official sign languages of their countries and are named accordingly, such as Nigerian Sign Language and Ghanaian Sign Language. (alongside Cambodian Sign Language), the Central African Republic, Chad, China (Hong Kong), the Democratic Republic of the Congo, Gabon, Jamaica, Kenya, Madagascar, the Philippines, Singapore, and Zimbabwe.
Sign production can also vary depending on age and native language. For example, sign production of letters may vary in older signers. Slight differences in finger spelling production can be a signal of age. Additionally, signers who learned American Sign Language as a second language vary in production. For Deaf signers who learned a different sign language before learning American Sign Language, qualities of their native language may show in their ASL production. Some examples of that varied production include fingerspelling towards the body, instead of away from it, and signing certain movement from bottom to top, instead of top to bottom. Hearing people who learn American Sign Language also have noticeable differences in signing production. The most notable production difference of hearing people learning American Sign Language is their rhythm and arm posture.
Sign variants
Most popularly, there are variants of the signs for English words such as "birthday", "pizza", "Halloween", "early", and "soon", just a sample of the most commonly recognized signs with variants based on regional change. The sign for "school" is commonly varied between black and white signers; the variants used by black signers are sometimes called Black American Sign Language.
History and implications
The prevalence of residential Deaf schools can account for much of the regional variance of signs and sign productions across the United States. Deaf schools often serve students of the state in which the school resides. That limited access to signers from other regions, combined with the residential quality of Deaf Schools promoted specific use of certain sign variants. Native signers did not have much access to signers from other regions during the beginning years of their education. It is hypothesized that because of that seclusion, certain variants of a sign prevailed over others due to the choice of variant used by the student of the school/signers in the community.
However, American Sign Language does not appear to be vastly varied in comparison to other signed languages. That is because when Deaf education was beginning in the United States, many educators flocked to the American School for the Deaf in Hartford, Connecticut, whose central location for the first generation of educators in Deaf education to learn American Sign Language allows ASL to be more standardized than its variant.
|image2 = About- Atlantic Variation.ogv
|caption2 About – Atlantic Variation (Canadian ASL)
There is also a distinct variety of ASL used by the Black Deaf community. Black ASL differs from standard ASL in vocabulary, phonology, and some grammatical structure. On the other hand, it is also known that some imported ASL varieties have diverged to the extent of being separate languages. For example, Malaysian Sign Language, which has ASL origins, is no longer mutually comprehensible with ASL and must be considered its own language. For some imported ASL varieties, such as those used in West Africa, it is still an open question how similar they are to American ASL. Various types of PSE exist, ranging from highly English-influenced PSE (practically relexified English) to PSE which is quite close to ASL lexically and grammatically, but may alter some subtle features of ASL grammar. TASL differs from ASL in that signs are produced by touching the palms, and there are some grammatical differences from standard ASL in order to compensate for the lack of nonmanual signing. The development of telephones with screens has also changed ASL, encouraging the use of signs that can be seen on small screens. Scholars such as Beth S. Benedict advocate not only for bilingualism (using ASL and English training) but also for early childhood intervention for children who are deaf. York University psychologist Ellen Bialystok has also campaigned for bilingualism, arguing that those who are bilingual acquire cognitive skills that may help to prevent dementia later in life.
Most children born to deaf parents are hearing. Known as CODAs ("Children of Deaf Adults"), they are often more culturally Deaf than deaf children, most of whom are born to hearing parents. written sign language dates back almost two centuries. The first systematic writing system for a sign language seems to be that of Roch-Ambroise Auguste Bébian, developed in 1825. However, written sign language remained marginal among the public. Stokoe used that system for his 1965 A Dictionary of American Sign Language on Linguistic Principles.
]]
SignWriting, proposed in 1974 by Valerie Sutton, SignWriting consists of more than 5000 distinct iconic graphs/glyphs. According to some researchers, SignWriting is not a phonemic orthography and does not have a one-to-one map from phonological forms to written forms. The SignWriting community has an open project on Wikimedia Labs to support the various Wikimedia projects on Wikimedia Incubator and elsewhere involving SignWriting. The ASL Wikipedia request was marked as eligible in 2008 and the test ASL Wikipedia has 50 articles written in ASL using SignWriting.
The most widely used transcription system among academics is HamNoSys, developed at the University of Hamburg. Changing any one of them may change the meaning of a sign, as illustrated by the ASL signs THINK and DISAPPOINTED:
{|
|
{| class="wikitable"
|+ THINK which may include movement of the eyebrows, the cheeks, the nose, the head, the torso, and the eyes. The movement root consists of a path, a direction and a manner. It is rather a representation of the English alphabet, and not a unique alphabet of ASL, although commonly labeled as the "ASL alphabet". It is borrowed from French Sign Language (LSF), as much of ASL is derived from LSF. Such signs make use of the 19 handshapes of ASL. For example, the signs for 'p' and 'k' use the same handshape but different orientations. A common misconception is that ASL consists only of fingerspelling; although such a method (Rochester Method) has been used, it is not ASL.
Fingerspelling is a form of borrowing, a linguistic process wherein words from one language are incorporated into another. Basic SVO sentences are signed without any pauses:
References
Bibliography
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
External links
* [http://www.spreadthesign.com Accessible American Sign Language vocabulary site]
* [http://www.signlanguageforum.com/asl/ American Sign Language discussion forum]
* [http://www.handspeak.com/ One-stop resource American Sign Language and video dictionary]
* [https://www.nidcd.nih.gov/health/american-sign-language National Institute of Deafness ASL section]
* [http://www.nad.org/issues/american-sign-language National Association of the Deaf ASL information]
* [http://www.lifeprint.com/ American Sign Language]
* [http://www.bu.edu/asllrp/ The American Sign Language Linguistics Research Project]
* [http://commtechlab.msu.edu/sites/aslweb/browser.htm Video Dictionary of ASL]
* [https://www.signasl.org American Sign Language Dictionary]
Category:American Sign Language family
Category:Articles containing video clips
Category:Deaf culture in the United States
Category:French Sign Language family
Category:Fusional languages
Category:Languages of Barbados
Category:Languages of Belize
Category:Languages of Botswana
Category:Languages of Burundi
Category:Sign languages of Canada
Category:Languages of Grenada
Category:Languages of Guyana
Category:Languages of Haiti
Category:Languages of Saint Kitts and Nevis
Category:Languages of Saint Vincent and the Grenadines
Category:Languages of the United States Virgin Islands
Category:Sign languages of the United States
Category:Languages of Zimbabwe
Category:Subject–verb–object languages
Category:1817 introductions
Category:Languages attested from the 19th century
Category:Languages of Canada
Category:Languages of the United States | https://en.wikipedia.org/wiki/American_Sign_Language | 2025-04-05T18:25:35.057546 |
1202 | Applet | In computing, an applet is any small application that performs one specific task that runs within the scope of a dedicated widget engine or a larger program, often as a plug-in. The term is frequently used to refer to a Java applet, a program written in the Java programming language that is designed to be placed on a web page. Applets are typical examples of transient and auxiliary applications that do not monopolize the user's attention. Applets are not full-featured application programs, and are intended to be easily accessible.
History
The word applet was first used in 1990 in PC Magazine. However, the concept of an applet, or more broadly a small interpreted program downloaded and executed by the user, dates at least to RFC 5 (1969) by Jeff Rulifson, which described the Decode-Encode Language, which was designed to allow remote use of the oN-Line System over ARPANET, by downloading small programs to enhance the interaction. This has been specifically credited as a forerunner of Java's downloadable programs in RFC 2555.
Applet as an extension of other software
In some cases, an applet does not run independently. These applets must run either in a container provided by a host program, through a plugin, or a variety of other applications including mobile devices that support the applet programming model.
Web-based applets
Applets were used to provide interactive features to web applications that historically could not be provided by HTML alone. They could capture mouse input and also had controls like buttons or check boxes. In response to the user action, an applet could change the provided graphic content. This made applets well suited for demonstration, visualization, and teaching. There were online applet collections for studying various subjects, from physics to heart physiology. Applets were also used to create online game collections that allowed players to compete against live opponents in real-time.
An applet could also be a text area only, providing, for instance, a cross-platform command-line interface to some remote system. If needed, an applet could leave the dedicated area and run as a separate window. However, applets had very little control over web page content outside the applet dedicated area, so they were less useful for improving the site appearance in general (while applets like news tickers or WYSIWYG editors are also known). Applets could also play media in formats that are not natively supported by the browser.
HTML pages could embed parameters that were passed to the applet. Hence, the same applet could appear differently depending on the parameters that were passed.
Examples of Web-based applets include:
QuickTime movies
Flash movies
Windows Media Player applets, used to display embedded video files in Internet Explorer (and other browsers that supported the plugin)
3D modeling display applets, used to rotate and zoom a model
Browser games that were applet-based, though some developed into fully functional applications that required installation.
Applet Vs. Subroutine
A larger application distinguishes its applets through several features:
Applets execute only on the "client" platform environment of a system, as contrasted from "Servlet". As such, an applet provides functionality or performance beyond the default capabilities of its container (the browser).
The container restricts applets' capabilities.
Applets are written in a language different from the scripting or HTML language that invokes it. The applet is written in a compiled language, whereas the scripting language of the container is an interpreted language, hence the greater performance or functionality of the applet. Unlike a subroutine, a complete web component can be implemented as an applet.
Java applets
A Java applet is a Java program that is launched from HTML and run in a web browser. It takes code from server and run in a web browser. It can provide web applications with interactive features that cannot be provided by HTML. Since Java's bytecode is platform-independent, Java applets can be executed by browsers running under many platforms, including Windows, Unix, macOS, and Linux. When a Java technology-enabled web browser processes a page that contains an applet, the applet's code is transferred to the client's system and executed by the browser's Java virtual machine. An HTML page references an applet either via the deprecated tag or via its replacement, the tag.
Security
Recent developments in the coding of applications, including mobile and embedded systems, have led to the awareness of the security of applets.
Open platform applets
Applets in an open platform environment should provide secure interactions between different applications. A compositional approach can be used to provide security for open platform applets. Advanced compositional verification methods have been developed for secure applet interactions. A typical solution for malicious applets is to make the web browser to monitor applets' activities. This will result in a web browser that will enable the manual or automatic stopping of malicious applets.
See also
Application posture
Bookmarklet
Java applet
Widget engine
Abstract Window Toolkit
References
External links
Category:Technology neologisms
Category:Component-based software engineering
Category:Java (programming language) libraries | https://en.wikipedia.org/wiki/Applet | 2025-04-05T18:25:35.083343 |
1203 | Alternate history | depicts an alternate history of the 1920s in Iron Harvest, in which rural peasants must contend with giant mechanical walking tanks.]]
Alternate history (also referred to as alternative history, allohistory, althist, or simply AH) is a subgenre of speculative fiction in which one or more historical events have occurred but are resolved differently than in actual history. As conjecture based upon historical fact, alternate history stories propose What if? scenarios about crucial events in human history, and present outcomes very different from the historical record. Some alternate histories are considered a subgenre of science fiction, or historical fiction.
Since the 1950s, as a subgenre of science fiction, some alternative history stories have featured the tropes of time travel between histories, the psychic awareness of the existence of an alternative universe by the inhabitants of a given universe, and time travel that divides history into various timestreams.
Definition
Often described as a subgenre of science fiction, alternative history is a genre of fiction wherein the author speculates upon how the course of history might have been altered if a particular historical event had an outcome different from the real life outcome. An alternate history requires three conditions: (i) A point of divergence from the historical record, before the time in which the author is writing; (ii) A change that would alter known history; and (iii) An examination of the ramifications of that alteration to history. Occasionally, some types of genre fiction are misidentified as alternative history, specifically science fiction stories set in a time that was the future for the writer, but now is the past for the reader, such as the novels 2001: A Space Odyssey (1968) by Arthur C. Clarke, 1984 (1949) by George Orwell and the movie 2012 (2009) because the authors did not alter the real history of the past when they wrote the stories. Alternative history also is thematically related to, but distinct from, counterfactual history, which is a form of historiography that explores historical events in an extrapolated timeline in which key historical events either did not occur or had an outcome different from the historical record, in order to understand what did happen.
History of literature
}}
Antiquity and medieval
translation of Joanot Martorell's Tirant lo Blanch (originally in Valencian)]]
The earliest example of alternate (or counterfactual) history is found in Livy's Ab Urbe Condita Libri (book IX, sections 17–19). Livy contemplated an alternative 4th century BC in which Alexander the Great had survived to attack Europe as he had planned; asking, "What would have been the results for Rome if she had been engaged in a war with Alexander?" Livy concluded that the Romans would likely have defeated Alexander. An even earlier possibility is Herodotus's Histories, which contains speculative material.
Another example of counterfactual history was posited by cardinal and Doctor of the Church Peter Damian in the 11th century. In his famous work De Divina Omnipotentia, a long letter in which he discusses God's omnipotence, he treats questions related to the limits of divine power, including the question of whether God can change the past, for example, bringing about that Rome was never founded:<blockquote>I see I must respond finally to what many people, on the basis of your holiness's [own] judgment, raise as an objection on the topic of this dispute. For they say: If, as you assert, God is omnipotent in all things, can he manage this, that things that have been made were not made? He can certainly destroy all things that have been made, so that they do not exist now. But it cannot be seen how he can bring it about that things that have been made were not made. To be sure, it can come about that from now on and hereafter Rome does not exist; for it can be destroyed. But no opinion can grasp how it can come about that it was not founded long ago...</blockquote>One early work of fiction detailing an alternate history is Joanot Martorell's 1490 epic romance Tirant lo Blanch, which was written when the fall of Constantinople to the Turks was still a recent and traumatic memory for Christian Europe. It tells the story of the knight Tirant the White from Brittany who travels to the embattled remnants of the Byzantine Empire. He becomes a Megaduke and commander of its armies and manages to fight off the invading Ottoman armies of . He saves the city from Islamic conquest, and even chases the Turks deeper into lands they had previously conquered.
19th century
One of the earliest works of alternate history published in large quantities for the reception of a large audience may be Louis Geoffroy's Histoire de la Monarchie universelle : Napoléon et la conquête du monde (1812–1832) (History of the Universal Monarchy: Napoleon and the Conquest of the World) (1836), which imagines Napoleon's First French Empire emerging victorious in the French invasion of Russia in 1812 and in an invasion of England in 1814, later unifying the world under Bonaparte's rule.
In the English language, the first known complete alternate history may be Nathaniel Hawthorne's short story "P.'s Correspondence", published in 1845. It recounts the tale of a man who is considered "a madman" due to his perceptions of a different 1845, a reality in which long-dead famous people, such as the poets Robert Burns, Lord Byron, Percy Bysshe Shelley, and John Keats, the actor Edmund Kean, the British politician George Canning, and Napoleon Bonaparte, are still alive.
The first novel-length alternate history in English would seem to be Castello Holford's Aristopia (1895). While not as nationalistic as Geoffroy's Napoléon et la conquête du monde, 1812–1823, Aristopia is another attempt to portray a Utopian society. In Aristopia, the earliest settlers in Virginia discover a reef made of solid gold and are able to build a Utopian society in North America.
Early 20th century and the era of the pulps
In 1905, H. G. Wells published A Modern Utopia. As explicitly noted in the book itself, Wells's main aim in writing it was to set out his social and political ideas, the plot serving mainly as a vehicle to expound them. This book introduced the idea of a person being transported from a point in our familiar world to the precise geographical equivalent point in an alternate world in which history had gone differently. The protagonists undergo various adventures in the alternate world, and then are finally transported back to our world, again to the precise geographical equivalent point. Since then, that has become a staple of the alternate history genre.
A number of alternate history stories and novels appeared in the late 19th and early 20th centuries (see, for example, Joseph Edgar Chamberlin's The Ifs of History [1907] and Charles Petrie's If: A Jacobite Fantasy [1926]). In 1931, British historian Sir John Squire collected a series of essays from some of the leading historians of the period for his anthology If It Had Happened Otherwise. In that work, scholars from major universities, as well as important non-academic authors, turned their attention to such questions as "If the Moors in Spain Had Won" and "If Louis XVI Had Had an Atom of Firmness". The essays range from serious scholarly efforts to Hendrik Willem van Loon's fanciful and satiric portrayal of an independent 20th-century New Amsterdam, a Dutch city-state on the island of Manhattan. Among the authors included were Hilaire Belloc, André Maurois, and Winston Churchill.
One of the entries in Squire's volume was Churchill's "If Lee Had Not Won the Battle of Gettysburg", written from the viewpoint of a historian in a world in which the Confederacy had won the American Civil War. The entry considers what would have happened if the North had been victorious (in other words, a character from an alternate world imagines a world more like the real one we live in, although it is not identical in every detail). Speculative work that narrates from the point of view of an alternate history is variously known as "recursive alternate history", a "double-blind what-if", or an "alternate-alternate history". Churchill's essay was one of the influences behind Ward Moore's alternate history novel Bring the Jubilee in which General Robert E. Lee won the Battle of Gettysburg and paved the way for the eventual victory of the Confederacy in the American Civil War (named the "War of Southron<!--Southron, with two os is the word used in the novel, not a misspelling.--> Independence" in this timeline). The protagonist, the autodidact Hodgins Backmaker, travels back to the aforementioned battle and inadvertently changes history, which results in the emergence of our own timeline and the consequent victory of the Union instead.
The American humorist author James Thurber parodied alternate history stories about the American Civil War in his 1930 story "If Grant Had Been Drinking at Appomattox", which he accompanied with this very brief introduction: "''Scribner's'' magazine is publishing a series of three articles: 'If Booth Had Missed Lincoln', 'If Lee Had Won the Battle of Gettysburg', and 'If Napoleon Had Escaped to America'. This is the fourth".
Another example of alternate history from this period (and arguably the first that explicitly posited cross-time travel from one universe to another as anything more than a visionary experience) is H.G. Wells' Men Like Gods (1923) in which the London-based journalist Mr. Barnstable, along with two cars and their passengers, is mysteriously teleported into "another world", which the "Earthlings" call Utopia. Being far more advanced than Earth, Utopia is some 3000 years ahead of humanity in its development. Wells describes a multiverse of alternative worlds, complete with the paratime travel machines that would later become popular with American pulp writers. However, since his hero experiences only a single alternate world, the story is not very different from conventional alternate history.
In the 1930s, alternate history moved into a new arena. The December 1933 issue of Astounding published Nat Schachner's "Ancestral Voices", which was quickly followed by Murray Leinster's "Sidewise in Time" (1934). While earlier alternate histories examined reasonably-straightforward divergences, Leinster attempted something completely different. In his "World gone mad", pieces of Earth traded places with their analogs from different timelines. The story follows Professor Minott and his students from a fictitious Robinson College as they wander through analogues of worlds that followed a different history. "Sidewise in Time" has been described as "the point at which the alternate history narrative first enters science fiction as a plot device" and is the story for which the Sidewise Award for Alternate History is named.
in which the Nazis won World War II]]
A somewhat similar approach was taken by Robert A. Heinlein in his 1941 novelette Elsewhen in which a professor trains his mind to move his body across timelines. He then hypnotizes his students so that they can explore more of them. Eventually, each settles into the reality that is most suitable for him or her. Some of the worlds they visit are mundane, some are very odd, and others follow science fiction or fantasy conventions.
World War II produced alternate history for propaganda: both British and American authors wrote works depicting Nazi invasions of their respective countries as cautionary tales.Time travel to create historical divergences
The period around World War II also saw the publication of the time travel novel Lest Darkness Fall'' by L. Sprague de Camp in which an American academic travels to Italy at the time of the Byzantine invasion of the Ostrogoths. De Camp's time traveler, Martin Padway, is depicted as making permanent historical changes and implicitly forming a new time branch, thereby making the work an alternate history.
In William Tenn's short story Brooklyn Project (1948), a tyrannical US Government brushes aside the warnings of scientists about the dangers of time travel and goes on with a planned experiment - with the result that minor changes to the prehistoric past cause Humanity to never have existed, its place taken by tentacled underwater intelligent creatures - who also have a tyrannical government which also insists on experimenting with time-travel.
In Ray Bradbury's classic short story "A Sound of Thunder" (1952) a group of hunters travel to the Late Cretaceous to hunt dinosaurs whose death would not be considered consequential as they are about to die a natural death within two minutes of the encounter. To minimize risking changes history they are told to stay on a levitating antigravity path that touches nothing. However one of the hunters stumbles off the path, inadvertently crushing a butterfly. When the group returns they find that history became significantly harsher and a fascist is now President.
Time travel as the cause of a point of divergence (POD), which can denote either the bifurcation of a historical timeline or a simple replacement of the future that existed before the time-travelling event, has continued to be a popular theme. In Ward Moore's Bring the Jubilee (1953), the protagonist lives in an alternate history in which the Confederacy has won the American Civil War. He travels backward through time and brings about a Union victory at the Battle of Gettysburg.
When a story's assumptions about the nature of time travel lead to the complete replacement of the visited time's future, rather than just the creation of an additional time line, the device of a "time patrol" is often used where guardians move through time to preserve the "correct" history.
A more recent example is Making History by Stephen Fry in which a time machine is used to alter history so that Adolf Hitler was never born. That ironically results in a more competent leader of Nazi Germany and results in the country's ascendancy and longevity in the altered timeline.
Quantum theory of many worlds
While many justifications for alternate histories involve a multiverse, the "many world" theory would naturally involve many worlds, in fact a continually exploding array of universes. In quantum theory, new worlds would proliferate with every quantum event, and even if the writer uses human decisions, every decision that could be made differently would result in a different timeline. A writer's fictional multiverse may, in fact, preclude some decisions as humanly impossible, as when, in Night Watch, Terry Pratchett depicts a character informing Vimes that while anything that can happen, has happened, nevertheless there is no history whatsoever in which Vimes has ever murdered his wife. When the writer explicitly maintains that all possible decisions are made in all possible ways, one possible conclusion is that the characters were neither brave, nor clever, nor skilled, but simply lucky enough to happen on the universe in which they did not choose the cowardly route, take the stupid action, fumble the crucial activity, etc.; few writers focus on this idea, although it has been explored in stories such as Larry Niven's story All the Myriad Ways, where the reality of all possible universes leads to an epidemic of suicide and crime because people conclude their choices have no moral import.
In any case, even if it is true that every possible outcome occurs in some world, it can still be argued that traits such as bravery and intelligence might still affect the relative frequency of worlds in which better or worse outcomes occurred (even if the total number of worlds with each type of outcome is infinite, it is still possible to assign a different measure to different infinite sets). The physicist David Deutsch, a strong advocate of the many-worlds interpretation of quantum mechanics, has argued along these lines, saying that "By making good choices, doing the right thing, we thicken the stack of universes in which versions of us live reasonable lives. When you succeed, all the copies of you who made the same decision succeed too. What you do for the better increases the portion of the multiverse where good things happen." This view is perhaps somewhat too abstract to be explored directly in science fiction stories, but a few writers have tried, such as Greg Egan in his short story The Infinite Assassin, where an agent is trying to contain reality-scrambling "whirlpools" that form around users of a certain drug, and the agent is constantly trying to maximize the consistency of behavior among his alternate selves, attempting to compensate for events and thoughts he experiences, he guesses are of low measure relative to those experienced by most of his other selves.
Many writers—perhaps the majority—avoid the discussion entirely. In one novel of this type, H. Beam Piper's Lord Kalvan of Otherwhen, a Pennsylvania State Police officer, who knows how to make gunpowder, is transported from our world to an alternate universe where the recipe for gunpowder is a tightly held secret and saves a country that is about to be conquered by its neighbors. The paratime patrol members are warned against going into the timelines immediately surrounding it, where the country will be overrun, but the book never depicts the slaughter of the innocent thus entailed, remaining solely in the timeline where the country is saved.
The cross-time theme was further developed in the 1960s by Keith Laumer in the first three volumes of his Imperium sequence, which would be completed in Zone Yellow (1990). Piper's politically more sophisticated variant was adopted and adapted by Michael Kurland and Jack Chalker in the 1980s; Chalker's G.O.D. Inc trilogy (1987–89), featuring paratime detectives Sam and Brandy Horowitz, marks the first attempt at merging the paratime thriller with the police procedural. Kurland's Perchance (1988), the first volume of the never-completed "Chronicles of Elsewhen", presents a multiverse of secretive cross-time societies that utilize a variety of means for cross-time travel, ranging from high-tech capsules to mutant powers. Crosstime Traffic is a 6-book series written by Harry aimed at teenagers featuring a variant of H. Beam Piper's paratime trading empire. While the home timeline appears to be the same in each of the books there is no overlap in characters or repetition of the alternative worlds.Rival paratime worlds
The concept of a cross-time version of a world war, involving rival paratime empires, was developed in Fritz Leiber's Change War series, starting with the Hugo Award winning The Big Time (1958); followed by Richard C. Meredith's Timeliner trilogy in the 1970s, Michael McCollum's A Greater Infinity (1982) and John Barnes' Timeline Wars trilogy in the 1990s.
Such "paratime" stories may include speculation that the laws of nature can vary from one universe to the next, providing a science fictional explanation—or veneer—for what is normally fantasy. Aaron Allston's Doc Sidhe and Sidhe Devil take place between our world, the "grim world" and an alternate "fair world" where the Sidhe retreated to. Although technology is clearly present in both worlds, and the "fair world" parallels our history, about fifty years out of step, there is functional magic in the fair world. Even with such explanation, the more explicitly the alternate world resembles a normal fantasy world, the more likely the story is to be labelled fantasy, as in Poul Anderson's "House Rule" and "Loser's Night". In both science fiction and fantasy, whether a given parallel universe is an alternate history may not be clear. The writer might allude to a POD only to explain the existence and make no use of the concept, or may present the universe without explanation of its existence.
Major writers explore alternate histories
Isaac Asimov's short story "What If—" (1952) is about a couple who can explore alternate realities by means of a television-like device. This idea can also be found in Asimov's novel The End of Eternity (1955), in which the "Eternals" can change the realities of the world, without people being aware of it. Poul Anderson's Time Patrol stories feature conflicts between forces intent on changing history and the Patrol who work to preserve it. One story, Delenda Est, describes a world in which Carthage triumphed over the Roman Republic. The Big Time, by Fritz Leiber, describes a Change War ranging across all of history.
Keith Laumer's Worlds of the Imperium is one of the earliest alternate history novels; it was published by Fantastic Stories of the Imagination in 1961, in magazine form, and reprinted by Ace Books in 1962 as one half of an Ace Double. Besides our world, Laumer describes a world ruled by an Imperial aristocracy formed by the merger of European empires, in which the American Revolution never happened, and a third world in post-war chaos ruled by the protagonist's doppelganger.
TV series, based on Philip K. Dick's The Man in the High Castle]]
Philip K. Dick's novel, The Man in the High Castle (1962), is an alternate history in which Nazi Germany and Imperial Japan won World War II. This book contains an example of "alternate-alternate" history, in that one of its characters authored a book depicting a reality in which the Allies won the war, itself divergent from real-world history in several aspects. The several characters live within a divided United States, in which the Empire of Japan takes the Pacific states, governing them as a puppet, Nazi Germany takes the East Coast of the United States and parts of the Midwest, with the remnants of the old United States' government as the Neutral Zone, a buffer state between the two superpowers. The book has inspired an Amazon series of the same name.
Vladimir Nabokov's novel, Ada or Ardor: A Family Chronicle (1969), is a story of incest that takes place within an alternate North America settled in part by Czarist Russia and that borrows from Dick's idea of "alternate-alternate" history (the world of Nabokov's hero is wracked by rumors of a "counter-earth" that apparently is ours). Some critics believe that the references to a counter-earth suggest that the world portrayed in Ada is a delusion in the mind of the hero (another favorite theme of Dick's novels). Strikingly, the characters in Ada seem to acknowledge their own world as the copy or negative version, calling it "Anti-Terra", while its mythical twin is the real "Terra". Like history, science has followed a divergent path on Anti-Terra: it boasts all the same technology as our world, but all based on water instead of electricity; e.g., when a character in Ada makes a long-distance call, all the toilets in the house flush at once to provide hydraulic power.
Guido Morselli described the defeat of Italy (and subsequently France) in World War I in his novel, Past Conditional (1975; ), wherein the static Alpine front line which divided Italy from Austria during that war collapses when the Germans and the Austrians forsake trench warfare and adopt blitzkrieg twenty years in advance.
Kingsley Amis set his novel, The Alteration (1976), in the 20th century, but major events in the Reformation did not take place, and Protestantism is limited to the breakaway Republic of New England. Martin Luther was reconciled to the Roman Catholic Church and later became Pope Germanian I.
In Nick Hancock and Chris England's 1997 book ''What Didn't Happen Next: An Alternative History of Football'' it is suggested that, had Gordon Banks been fit to play in the 1970 FIFA World Cup quarter-final, there would have been no Thatcherism and the post-war consensus would have continued indefinitely.
Kim Stanley Robinson's novel, The Years of Rice and Salt (2002), starts at the point of divergence with Timur turning his army away from Europe, and the Black Death has killed 99% of Europe's population, instead of only a third. Robinson explores world history from that point in AD 1405 (807 AH) to about AD 2045 (1467 AH). Rather than following the great man theory of history, focusing on leaders, wars, and major events, Robinson writes more about social history, similar to the Annales School of history theory and Marxist historiography, focusing on the lives of ordinary people living in their time and place.
Philip Roth's novel, The Plot Against America (2004), looks at an America where Franklin D. Roosevelt is defeated in 1940 in his bid for a third term as President of the United States, and Charles Lindbergh is elected, leading to a US that features increasing fascism and anti-Semitism.
Michael Chabon, occasionally an author of speculative fiction, contributed to the genre with his novel ''The Yiddish Policemen's Union'' (2007), which explores a world in which the State of Israel was destroyed in its infancy and many of the world's Jews instead live in a small strip of Alaska set aside by the US government for Jewish settlement. The story follows a Jewish detective solving a murder case in the Yiddish-speaking semi-autonomous city state of Sitka. Stylistically, Chabon borrows heavily from the noir and detective fiction genres, while exploring social issues related to Jewish history and culture. Apart from the alternate history of the Jews and Israel, Chabon also plays with other common tropes of alternate history fiction; in the book, Germany actually loses the war even harder than they did in reality, getting hit with a nuclear bomb instead of just simply losing a ground war (subverting the common "what if Germany won WWII?" trope).
Contemporary alternate history in popular literature
's The Domination series]]
's Southern Victory ("Timeline 191") series]]
The late 1980s and the 1990s saw a boom in popular-fiction versions of alternate history, fueled by the emergence of the prolific alternate history author Harry Turtledove, as well as the development of the steampunk genre and two series of anthologies—the What Might Have Been series edited by Gregory Benford and the Alternate ... series edited by Mike Resnick. This period also saw alternate history works by S. M. Stirling, Kim Stanley Robinson, Harry Harrison, Howard Waldrop, Peter Tieryas, and others.
In 1986, a sixteen-part epic comic book series called Captain Confederacy began examining a world where the Confederate States of America won the American Civil War. In the series, the Captain and others heroes are staged government propaganda events featuring the feats of these superheroes.
Since the late 1990s, Harry Turtledove has been the most prolific practitioner of alternate history and has been given the title "Master of Alternate History" by some. His books include those of Timeline 191 (a.k.a. Southern Victory, also known as TL-191), in which, while the Confederate States of America won the American Civil War, the Union and Imperial Germany defeat the Entente Powers in the two "Great War"s of the 1910s and 1940s (with a Nazi-esque Confederate government attempting to exterminate its black population), and the Worldwar series, in which aliens invaded Earth during World War II. Other stories by Turtledove include A Different Flesh, in which the Americas were not populated from Asia during the last ice age; In the Presence of Mine Enemies, in which the Nazis won World War II; and Ruled Britannia, in which the Spanish Armada succeeded in conquering England in the Elizabethan era, with William Shakespeare being given the task of writing the play that will motivate the Britons to rise up against their Spanish conquerors. He also co-authored a book with actor Richard Dreyfuss, The Two Georges, in which the United Kingdom retained the American colonies, with George Washington and King George III making peace. He did a two-volume series in which the Japanese not only bombed Pearl Harbor but also invaded and occupied the Hawaiian Islands.
Perhaps the most incessantly explored theme in popular alternate history focuses on the aftermath of an Axis victory in World War II. In some versions, the Nazis and/or Axis Powers win; or in others, they conquer most of the world but a "Fortress America" exists under siege; while in others, there is a Nazi/Japanese Cold War comparable to the US/Soviet equivalent in 'our' timeline. Fatherland (1992), by Robert Harris, is set in Europe following the Nazi victory. The novel Dominion by C.J. Sansom (2012) is similar in concept but is set in England, with Churchill the leader of an anti-German Resistance and other historic persons in various fictional roles. In the Mecha Samurai Empire series (2016), Peter Tieryas focuses on the Asian-American side of the alternate history, exploring an America ruled by the Japanese Empire while integrating elements of Asian pop culture like mechas and videogames.
Several writers have posited points of departure for such a world but then have injected time splitters from the future. For instance James P. Hogan's The Proteus Operation. Norman Spinrad wrote The Iron Dream in 1972, which is intended to be a science fiction novel written by Adolf Hitler after fleeing from Europe to North America in the 1920s.
In Jo Walton's "Small Change" series, the United Kingdom made peace with Hitler before the involvement of the United States in World War II, and slowly collapses due to severe economic depression. Former House Speaker Newt Gingrich and William R. Forstchen have written a novel, 1945, in which the US defeated Japan but not Germany in World War II, resulting in a Cold War with Germany rather than the Soviet Union. Gingrich and Forstchen neglected to write the promised sequel; instead, they wrote a trilogy about the American Civil War, starting with Gettysburg: A Novel of the Civil War, in which the Confederates win a victory at the Battle of Gettysburg - however, after Lincoln responds by bringing Grant and his forces to the eastern theater, the Army of Northern Virginia is soon trapped and destroyed in Maryland, and the war ends within weeks.
While World War II has been a common point of divergence in alternate history literature, several works have been based on other points of divergence. For example, Martin Cruz Smith, in his first novel, posited an independent American Indian nation following the defeat of Custer in The Indians Won (1970). Beginning with The Probability Broach in 1980, L. Neil Smith wrote several novels that postulated the disintegration of the US Federal Government after Albert Gallatin joins the Whiskey Rebellion in 1794 and eventually leads to the creation of a libertarian utopia. In the 2022 novel Poutine and Gin by Steve Rhinelander, the point of divergence is the Battle of the Plains of Abraham of the French and Indian War. That novel is a mystery set in 1940 of that time line.
A recent time traveling splitter variant involves entire communities being shifted elsewhere to become the unwitting creators of new time branches. These communities are transported from the present (or the near-future) to the past or to another timeline via a natural disaster, the action of technologically advanced aliens, or a human experiment gone wrong. S. M. Stirling wrote the Island in the Sea of Time trilogy, in which Nantucket Island and all its modern inhabitants are transported to Bronze Age times to become the world's first superpower. In Eric Flint's 1632 series, a small town in West Virginia is transported to 17th century central Europe and drastically changes the course of the Thirty Years' War, which was then underway. John Birmingham's Axis of Time trilogy deals with the culture shock when a United Nations naval task force from 2021 finds itself back in 1942 helping the Allies against the Empire of Japan and the Germans (and doing almost as much harm as good in spite of its advanced weapons). The series also explores the cultural impacts of people with 2021 ideals interacting with 1940s culture. Similarly, Robert Charles Wilson's Mysterium depicts a failed US government experiment which transports a small American town into an alternative version of the US run by Gnostics, who are engaged in a bitter war with the "Spanish" in Mexico (the chief scientist at the laboratory where the experiment occurred is described as a Gnostic, and references to Christian Gnosticism appear repeatedly in the book).
Although not dealing in physical time travel, in his alt-history novel Marx Returns, Jason Barker introduces anachronisms into the life and times of Karl Marx, such as when his wife Jenny sings a verse from the Sex Pistols's song "Anarchy in the U.K.", or in the games of chess she plays with the Marxes' housekeeper Helene Demuth, which on one occasion involves a Caro–Kann Defence. In her review of the novel, Nina Power writes of "Jenny's 'utopian' desire for an end to time", an attitude which, according to Power, is inspired by her husband's co-authored book The German Ideology. However, in keeping with the novel's anachronisms, the latter was not published until 1932. By contrast, the novel's timeline ends in 1871.
In the 2022 novel Hydrogen Wars: Atomic Sunrise by R.M. Christianson, a small change in post-war Japanese history leads to the election of General Douglas MacArthur as President of the United States. This minor change ultimately leads to all-out atomic war between the major Cold War powers.
Through crowdfunding on Kickstarter, Alan Jenkins and Gan Golan produced a graphic novel series called 1/6 depicting a dystopian alternate reality in which the January 6 United States Capitol attack was successful. What follows is the burning down of the Capitol building and the hanging of Vice President Mike Pence. Under Donald Trump's second term as president, a solid gold statue of him is erected and armed thugs patrol the streets of Washington DC suppressing civilian resistance with brutal violence under the banner of the Confederate flag.In fantasy genre
in 1172, before the point of divergence of Randall Garrett's Lord Darcy series]]
Many works of straight fantasy and science fantasy take place in historical settings, though with the addition of, for example, magic or mythological beasts. Some present a secret history in which the modern day world no longer believes that these elements ever existed. Many ambiguous alternate/secret histories are set in Renaissance or pre-Renaissance times, and may explicitly include a "retreat" from the world, which would explain the current absence of such phenomena. Other stories make plan a divergence of some kind.
In Poul Anderson's Three Hearts and Three Lions in which the Matter of France is history and the fairy folk are real and powerful. The same author's A Midsummer Tempest occurs in a world in which the plays of William Shakespeare (called here "the Great Historian"), presented the literal truth in every instance. The novel itself takes place in the era of Oliver Cromwell and Charles I. Here, the English Civil War had a different outcome, and the Industrial Revolution has occurred early.
Randall Garrett's "Lord Darcy" series presents a point of divergence: a monk systemizes magic rather than science, so the use of foxglove to treat heart disease is regarded as superstition. Another point of divergence occurs in 1199, when Richard the Lionheart survives the Siege of Chaluz and returns to England and makes the Angevin Empire so strong that it survives into the 20th century.
Jonathan Strange & Mr Norrell by Susanna Clarke takes place in an England where a separate Kingdom ruled by the Raven King and founded on magic existed in Northumbria for over 300 years. In Patricia Wrede's Regency fantasies, Great Britain has a Royal Society of Wizards.
The Tales of Alvin Maker series by Orson Scott Card (a parallel to the life of Joseph Smith, founder of the Latter Day Saint movement) takes place in an alternate America, beginning in the early 19th century. Prior to that time, a POD occurred: England, under the rule of Oliver Cromwell, had banished "makers", or anyone else demonstrating "knacks" (an ability to perform seemingly supernatural feats) to the North American continent. Thus the early American colonists embraced these gifts as perfectly ordinary, and counted on them as a part of their daily lives. The political division of the continent is considerably altered, with two large English colonies bookending a smaller "American" nation, one aligned with England, and the other governed by exiled Cavaliers. Actual historical figures are seen in a much different light: Ben Franklin is revered as the continent's finest "maker", George Washington was executed after being captured, and "Tom" Jefferson is the first president of "Appalachia", the result of a compromise between the Continentals and the British Crown.
On the other hand, when the "Old Ones" (fairies) still manifest themselves in England in Keith Roberts's Pavane, which takes place in a technologically backward world after a Spanish assassination of Elizabeth I allowed the Spanish Armada to conquer England, the possibility that the fairies were real but retreated from modern advances makes the POD possible: the fairies really were present all along, in a secret history.
Again, in the English Renaissance fantasy Armor of Light by Melissa Scott and Lisa A. Barnett, the magic used in the book, by Dr. John Dee and others, actually was practiced in the Renaissance; positing a secret history of effective magic makes this an alternate history with a point of departure. Sir Philip Sidney survives the Battle of Zutphen in 1586, and shortly thereafter saving the life of Christopher Marlowe.
When the magical version of our world's history is set in contemporary times, the distinction becomes clear between alternate history on the one hand and contemporary fantasy, using in effect a form of secret history (as when Josepha Sherman's Son of Darkness has an elf living in New York City, in disguise) on the other. In works such as Robert A. Heinlein's Magic, Incorporated where a construction company can use magic to rig up stands at a sporting event and Poul Anderson's Operation Chaos and its sequel Operation Luna, where djinns are serious weapons of war—with atomic bombs—the use of magic throughout the United States and other modern countries makes it clear that this is not secret history—although references in Operation Chaos to degaussing the effects of cold iron make it possible that it is the result of a POD. The sequel clarifies this as the result of a collaboration of Einstein and Planck in 1901, resulting in the theory of "rhea tics". Henry Moseley applies this theory to "degauss the effects of cold iron and release the goetic forces." This results in the suppression of ferromagnetism and the re-emergence of magic and magical creatures.
Alternate history shades off into other fantasy subgenres when the use of actual, though altered, history and geography decreases, although a culture may still be clearly the original source; Barry Hughart's Bridge of Birds and its sequels take place in a fantasy world, albeit one clearly based on China, and with allusions to actual Chinese history, such as the Empress Wu. Richard Garfinkle's Celestial Matters incorporates ancient Chinese physics and Greek Aristotelian physics, using them as if factual.
Alternate history has long been a staple of Japanese speculative fiction with such authors as Futaro Yamada and Ryō Hanmura writing novels set in recognizable historical settings with added supernatural or science fiction elements. Ryō Hanmura's 1973 Musubi no Yama Hiroku which recreated 400 years of Japan's history from the perspective of a secret magical family with psychic abilities. The novel has since come to be recognized as a masterpiece of Japanese speculative fiction. Twelve years later, author Hiroshi Aramata wrote the groundbreaking Teito Monogatari which reimagined the history of Tokyo across the 20th century in a world heavily influenced by the supernatural.
Disney's Pirates of the Caribbean series takes place in an alternate history. The filmmakers of The Curse of the Black Pearl made no secret about taking liberties with the time period in which their story takes place. Producer Jerry Bruckheimer explained that the film is a fantasy, but did want to be true to the overall feel of the era, paying particular attention to the years between 1720 and 1750 "in an effort to find an approximation." Director Gore Verbinski asserted that it takes place "roughly at the tail end of the Golden Age of Piracy, when the Morgans lived. Maybe the late 1720s." The crew went to great lengths to maintain authenticity, such as Jack Sparrow's sword being an original that dates from the 1750s. Ann C. Crispin knew about the Pirates universe being an alternate history writing the prequel novel The Price of Freedom, with Disney's instructions for Crispin being to "stick to historical fact, unless it conflicts with established Pirates of the Caribbean continuity." Crispin made a faithful effort to do this, having done plenty of research, with Under the Black Flag by David Cordingly being one of the four pirate-related books she found herself using the most consistently. According to production designer John Myhre, the filmmakers of the fourth film, On Stranger Tides, picked the date of 1750, or in the range of the mid-1700s. The film also featured Blackbeard, based on the historical figure and an element retained from the novel On Stranger Tides by Tim Powers. The history prior to On Stranger Tides is also slightly different from real-world history, with Blackbeard's death at Ocracoke Inlet in 1718 was considered a legend in the film, with Jack Sparrow saying he was beheaded, and that his headless body swam three times around his ship before climbing back on board. The fifth film, Dead Men Tell No Tales, also took place in the 1750s, with an early draft taking place sometime the Seven Years' War.
Television
1983 is set on a world where the Iron Curtain never fell and the Cold War continues until the present (2003).
''An Englishman's Castle tells the story of the writer of a soap opera in a 1970s England which lost World War II. England is run by a collaborator government which strains to maintain a normal appearance of British life. Slowly, however, the writer begins to uncover the truth.
In the Community episode "Remedial Chaos Theory," each of the six members of the study group rolls a die to decide who has to go downstairs to accept a pizza delivery for the group, creating 6 different alternative worlds. Characters from the worst universe, "darkest timeline," would later appear in the "prime universe".
Confederate was a planned HBO series set on a world where the south won the US Civil War. Social media backlash during pre-production led to the series being cancelled with no episodes produced.
Counterpart tells of a United Nations agency that is responsible for monitoring passage between alternative worlds. Two of the worlds, Alpha and Prime, are locked in a cold war.
The Court-Martial of George Armstrong Custer is a 1977 telemovie where George Custer survives the Battle of Little Bighorn and faces a court martial hearing over his incompetence.
C.S.A.: The Confederate States of America presents itself as a British TV documentary uncovering some of the dark secrets of the Confederacy on a world where the south won the US Civil War.
Dark Skies'' tells that much of history having been shaped since the 1940s by a government conspiracy with aliens. One race of aliens can take over humans, while those immune to the alien's control fight back.
Doctor Who's main character has visited two alternative worlds in the TV show and several in its spin off media. The Third Doctor visits a world with a fascist Great Britain on the brink of destruction in Inferno, while the Tenth Doctor visits a Britain that has a President and blimps are a common form of transportation beset by Cybermen in Rise of the Cybermen / The Age of Steel. The Seventh Doctor faces a threat from an alternative world in Battlefield, where magic is real and the alternative version of The Doctor is hinted to be that reality's Merlin.
flag in the Fallout franchise ]]
Fallout shows a 1950s retro-future world that suffers a global nuclear war on the Amazon streaming service.
Fatherland is a TV movie set in a 1960 alternative world where US President Joseph Kennedy and Adolf Hitler have agreed to meet to discuss an end to their country's Cold War 15 years after the Axis victory in World War II. However, an American reporter has discovered proof of the long denied Final Solution threatens the meeting.
The anime Fena: Pirate Princess featured an alternate 18th century.
For All Mankind depicts an alternate timeline in which the Soviet crewed lunar program successfully lands on the Moon before the US Apollo program, resulting in a continued and intensified Space Race.
Fringe has the father of one of the main characters cross into another reality to steal that world's version of his son after his son dies. The second world has a slightly different history, with a few different states in the United States, such as only one Carolina and Upper Michigan as a state. In addition, the 9/11 attack didn't take down the Twin Towers but the White House. Also, several major DC Comics events are different, such as Superman not Supergirl dying during Crisis on Infinite Earths. The incursion to steal the son has many negative effects on that world, and while the realities start out as antagonist, they eventually work together to repair the damage.
The Man in the High Castle, an adaptation of the novel of the same name, showed a world where the Axis Powers won World War II.
Motherland: Fort Salem explores a female-dominated world in which witchcraft is real. Its world diverged from our timeline when the Salem witch trials are resolved by an agreement between witches and ungifted humans.
Noughts + Crosses is a British TV show set on a world where a powerful West African empire colonizes Europe 700 years before the start of the series.
Parallels was a planned TV show whose pilot was later released as a Netflix movie. The plot concerns a building which can shift realities every 36 hours and those who use the building to travel to other realities.
The Plot Against America is an HBO miniseries where Charles Lindbergh wins the 1940 US presidential election as an anti-war candidate who moves the country toward fascism.
The TV show Sliders explores different possible alternate realities by having the protagonist "slide" into different parallel dimensions of the same planet Earth.
The Great Martian War 1913-1917
An alternate history documentary where giant martians with machines invaded the Earth during WW1, causing huge technological upgrades and the entente and central powers fighting alongside each other.
SS-GB shows a world where the Axis Powers quickly win World War II, killing Churchill and installing a puppet government. However, British resistance fights back.
In the various Star Trek TV shows and spin off media a Mirror Universe has been encountered where Earth has an empire that subjugates other planets. Doppelgängers of the main cast of many the TV shows appear in that reality.
The Watchmen series is set on a world where costumed heroes were initially welcomed but later outlawed. It is set 34 years after the events of the comic book on which the series shares a name.
The Marvel Cinematic Universe series, Loki (2021 & 2023), on Disney+, shows an agency which prevents alterations to the timeline. Alternate versions of Loki from various universes appear.
The Marvel Cinematic Universe series, What If...? (2021–2024), on Disney+, shows alternate universes that depict alternate events from the MCU films.
Online
Fans of alternate history have made use of the internet from a very early point to showcase their own works and provide useful tools for those fans searching for anything alternate history, first in mailing lists and usenet groups, later in web databases and forums. The "Usenet Alternate History List" was first posted on 11 April 1991, to the Usenet newsgroup rec.arts.sf-lovers. In May 1995, the dedicated newsgroup soc.history.what-if was created for showcasing and discussing alternate histories. Its prominence declined with the general migration from unmoderated usenet to moderated web forums, most prominently AlternateHistory.com, the self-described "largest gathering of alternate history fans on the internet" with over 10,000 active members.
In addition to these discussion forums, in 1997 Uchronia: The Alternate History List was created as an online repository, now containing over 2,900 alternate history novels, stories, essays, and other printed materials in several different languages. Uchronia was selected as the Sci Fi Channel's "Sci Fi Site of the Week" twice.Uchronia
In Spanish, French, German, Portuguese, Italian, Catalan, and Galician, the words , , and are native versions of alternate history, from which comes the English loanword uchronia. The English term uchronia is a neologism that is sometimes used in its original meaning as a straightforward synonym for alternate history. However, it may also now refer to other concepts, namely an umbrella genre of fiction that encompasses alternate history, parallel universes in fiction, and fiction based in futuristic or non-temporal settings.
See also
* 20th century in science fiction
* Alien space bats
* Alternate ending
* Alternative future
* American Civil War alternate histories
* Dieselpunk
* Dystopian
* Fictional universe
* Future history
* The Garden of Forking Paths
* Historical revisionism
* Hypothetical Axis victory in World War II
* Invasion literature
* Jonbar hinge
* List of alternate history fiction
* Possible worlds
* Pulp novels
* Ruritanian romance
References
Further reading
* Chapman, Edgar L., and Carl B. Yoke (eds.). Classic and Iconoclastic Alternate History Science Fiction. Mellen, 2003.
* Collins, William Joseph. Paths Not Taken: The Development, Structure, and Aesthetics of the Alternative History. University of California, Davis 1990.
* Darius, Julian. "58 Varieties: Watchmen and Revisionism". In [http://www.sequart.org/books/6/minutes-to-midnight-twelve-essays-on-watchmen/ Minutes to Midnight: Twelve Essays on Watchmen]. Sequart Research & Literacy Organization, 2010. Focuses on Watchmen as alternate history.
* Cowley, Robert, ed., What If? Military Historians Imagine What Might Have Been. Pan Books, 1999.
* Gevers, Nicholas. Mirrors of the Past: Versions of History in Science Fiction and Fantasy. University of Cape Town, 1997
* Hellekson, Karen. The Alternate History: Refiguring Historical Time. Kent State University Press, 2001
* Keen, Antony G. "Alternate Histories of the Roman Empire in Stephen Baxter, Robert Silverberg and Sophia McDougall". Foundation: The International Review of Science Fiction 102, Spring 2008.
* McKnight, Edgar Vernon Jr. Alternative History: The Development of a Literary Genre. University of North Carolina at Chapel Hill, 1994.
* Morgan, Glyn, and C. Palmer-Patel (eds.). Sideways in Time: Critical Essays on Alternate History Fiction. Liverpool University Press, 2019.
* Nedelkovh, Aleksandar B. British and American Science Fiction Novel 1950–1980 with the Theme of Alternative History (an Axiological Approach). 1994 , 1999 .
* Rosenfeld, Gavriel David. The World Hitler Never Made: Alternate History and the Memory of Nazism. 2005
* Rosenfeld, Gavriel David. "Why Do We Ask 'What If?' Reflections on the Function of Alternate History." History and Theory 41, Theme Issue 41: Unconventional History (December 2002), 90–103. .
* Schneider-Mayerson, Matthew. "[https://journals.ku.edu/index.php/amerstud/article/view/4177/3947 What Almost Was: The Politics of the Contemporary Alternate History Novel]". American Studies 30, 3–4 (Summer 2009), 63–83.
* Singles, Kathleen. Alternate History: Playing with Contingency and Necessity. De Gruyter, 2013.
External links
*[https://tvtropes.org/pmwiki/pmwiki.php/Main/AlternateHistory Alternate History] on TV Tropes
Category:Alternate history
Category:Science fiction genres
Category:Speculative fiction | https://en.wikipedia.org/wiki/Alternate_history | 2025-04-05T18:25:35.123038 |
1206 | Atomic orbital | Orbital shell (spaceflight)}}
of a <!--Please don't italicize a bracket. --> function which depends on the coordinates of one electron. To see the elongated shape of functions that show probability density more directly, see pictures of d-orbitals below.]]
In quantum mechanics, an atomic orbital () is a function describing the location and wave-like behavior of an electron in an atom. This function describes an electron's charge distribution around the atom's nucleus, and can be used to calculate the probability of finding an electron in a specific region around the nucleus.
Each orbital in an atom is characterized by a set of values of three quantum numbers , , and , which respectively correspond to electron's energy, its orbital angular momentum, and its orbital angular momentum projected along a chosen axis (magnetic quantum number). The orbitals with a well-defined magnetic quantum number are generally complex-valued. Real-valued orbitals can be formed as linear combinations of and orbitals, and are often labeled using associated harmonic polynomials (e.g., xy, ) which describe their angular structure.
An orbital can be occupied by a maximum of two electrons, each with its own projection of spin <math>m_s</math>. The simple names s orbital, p orbital, d orbital, and f orbital refer to orbitals with angular momentum quantum number and respectively. These names, together with their n values, are used to describe electron configurations of atoms. They are derived from description by early spectroscopists of certain series of alkali metal spectroscopic lines as sharp, principal, diffuse, and fundamental. Orbitals for continue alphabetically (g, h, i, k, ...), omitting j because some languages do not distinguish between letters "i" and "j".
Atomic orbitals are basic building blocks of the atomic orbital model (or electron cloud or wave mechanics model), a modern framework for visualizing submicroscopic behavior of electrons in matter. In this model, the electron cloud of an atom may be seen as being built up (in approximation) in an electron configuration that is a product of simpler hydrogen-like atomic orbitals. The repeating periodicity of blocks of 2, 6, 10, and 14 elements within sections of periodic table arises naturally from total number of electrons that occupy a complete set of s, p, d, and f orbitals, respectively, though for higher values of quantum number , particularly when the atom bears a positive charge, energies of certain sub-shells become very similar and so, order in which they are said to be populated by electrons (e.g., Cr [Ar]4s<sup>1</sup>3d<sup>5</sup> and Cr<sup>2+</sup> [Ar]3d<sup>4</sup>) can be rationalized only somewhat arbitrarily.
Electron properties
With the development of quantum mechanics and experimental findings (such as the two slit diffraction of electrons), it was found that the electrons orbiting a nucleus could not be fully described as particles, but needed to be explained by wave–particle duality. In this sense, electrons have the following properties:
Wave-like properties:
# Electrons do not orbit a nucleus in the manner of a planet orbiting a star, but instead exist as standing waves. Thus the lowest possible energy an electron can take is similar to the fundamental frequency of a wave on a string. Higher energy states are similar to harmonics of that fundamental frequency.
# The electrons are never in a single point location, though the probability of interacting with the electron at a single point can be found from the electron's wave function. The electron's charge acts like it is smeared out in space in a continuous distribution, proportional at any point to the squared magnitude of the electron's wave function.
Particle-like properties:
# The number of electrons orbiting a nucleus can be only an integer.
# Electrons jump between orbitals like particles. For example, if one photon strikes the electrons, only one electron changes state as a result.
# Electrons retain particle-like properties such as: each wave state has the same electric charge as its electron particle. Each wave state has a single discrete spin (spin up or spin down) depending on its superposition.
Thus, electrons cannot be described simply as solid particles. An analogy might be that of a large and often oddly shaped "atmosphere" (the electron), distributed around a relatively tiny planet (the nucleus). Atomic orbitals exactly describe the shape of this "atmosphere" only when one electron is present. When more electrons are added, the additional electrons tend to more evenly fill in a volume of space around the nucleus so that the resulting collection ("electron cloud") tends toward a generally spherical zone of probability describing the electron's location, because of the uncertainty principle.
One should remember that these orbital 'states', as described here, are merely eigenstates of an electron in its orbit. An actual electron exists in a superposition of states, which is like a weighted average, but with complex number weights. So, for instance, an electron could be in a pure eigenstate (2, 1, 0), or a mixed state (2, 1, 0) + <math>i</math> (2, 1, 1), or even the mixed state (2, 1, 0) + <math>i</math> (2, 1, 1). For each eigenstate, a property has an eigenvalue. So, for the three states just mentioned, the value of <math>n</math> is 2, and the value of <math>l</math> is 1. For the second and third states, the value for <math>m_l</math> is a superposition of 0 and 1. As a superposition of states, it is ambiguous—either exactly 0 or exactly 1—not an intermediate or average value like the fraction . A superposition of eigenstates (2, 1, 1) and (3, 2, 1) would have an ambiguous <math>n</math> and <math>l</math>, but <math>m_l</math> would definitely be 1. Eigenstates make it easier to deal with the math. You can choose a different basis of eigenstates by superimposing eigenstates from any other basis (see Real orbitals below).
Formal quantum mechanical definition
Atomic orbitals may be defined more precisely in formal quantum mechanical language. They are approximate solutions to the Schrödinger equation for the electrons bound to the atom by the electric field of the atom's nucleus. Specifically, in quantum mechanics, the state of an atom, i.e., an eigenstate of the atomic Hamiltonian, is approximated by an expansion (see configuration interaction expansion and basis set) into linear combinations of anti-symmetrized products (Slater determinants) of one-electron functions. The spatial components of these one-electron functions are called atomic orbitals. (When one considers also their spin component, one speaks of atomic spin orbitals.) A state is actually a function of the coordinates of all the electrons, so that their motion is correlated, but this is often approximated by this independent-particle model of products of single electron wave functions. (The London dispersion force, for example, depends on the correlations of the motion of the electrons.)
In atomic physics, the atomic spectral lines correspond to transitions (quantum leaps) between quantum states of an atom. These states are labeled by a set of quantum numbers summarized in the term symbol and usually associated with particular electron configurations, i.e., by occupation schemes of atomic orbitals (for example, 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> for the ground state of neon-term symbol: <sup>1</sup>S<sub>0</sub>).
This notation means that the corresponding Slater determinants have a clear higher weight in the configuration interaction expansion. The atomic orbital concept is therefore a key concept for visualizing the excitation process associated with a given transition. For example, one can say for a given transition that it corresponds to the excitation of an electron from an occupied orbital to a given unoccupied orbital. Nevertheless, one has to keep in mind that electrons are fermions ruled by the Pauli exclusion principle and cannot be distinguished from each other. Moreover, it sometimes happens that the configuration interaction expansion converges very slowly and that one cannot speak about simple one-determinant wave function at all. This is the case when electron correlation is large.
Fundamentally, an atomic orbital is a one-electron wave function, even though many electrons are not in one-electron atoms, and so the one-electron view is an approximation. When thinking about orbitals, we are often given an orbital visualization heavily influenced by the Hartree–Fock approximation, which is one way to reduce the complexities of molecular orbital theory.
Types of orbital
atomic orbitals showing probability density and phase (g orbitals and higher not shown)]]
Atomic orbitals can be the hydrogen-like "orbitals" which are exact solutions to the Schrödinger equation for a hydrogen-like "atom" (i.e., atom with one electron). Alternatively, atomic orbitals refer to functions that depend on the coordinates of one electron (i.e., orbitals) but are used as starting points for approximating wave functions that depend on the simultaneous coordinates of all the electrons in an atom or molecule. The coordinate systems chosen for orbitals are usually spherical coordinates in atoms and Cartesian in polyatomic molecules. The advantage of spherical coordinates here is that an orbital wave function is a product of three factors each dependent on a single coordinate: . The angular factors of atomic orbitals generate s, p, d, etc. functions as real combinations of spherical harmonics (where and are quantum numbers). There are typically three mathematical forms for the radial functions which can be chosen as a starting point for the calculation of the properties of atoms and molecules with many electrons:
# The hydrogen-like orbitals are derived from the exact solutions of the Schrödinger equation for one electron and a nucleus, for a hydrogen-like atom. The part of the function that depends on distance r from the nucleus has radial nodes and decays as <math> e^{-\alpha r} </math>.
# The Slater-type orbital (STO) is a form without radial nodes but decays from the nucleus as does a hydrogen-like orbital.
# The form of the Gaussian type orbital (Gaussians) has no radial nodes and decays as <math> e^{-\alpha r^2} </math>.
Although hydrogen-like orbitals are still used as pedagogical tools, the advent of computers has made STOs preferable for atoms and diatomic molecules since combinations of STOs can replace the nodes in hydrogen-like orbitals. Gaussians are typically used in molecules with three or more atoms. Although not as accurate by themselves as STOs, combinations of many Gaussians can attain the accuracy of hydrogen-like orbitals.
History
The term orbital was introduced by Robert S. Mulliken in 1932 as short for one-electron orbital wave function. Niels Bohr explained around 1913 that electrons might revolve around a compact nucleus with definite angular momentum. Bohr's model was an improvement on the 1911 explanations of Ernest Rutherford, that of the electron moving around a nucleus. Japanese physicist Hantaro Nagaoka published an orbit-based hypothesis for electron behavior as early as 1904. These theories were each built upon new observations starting with simple understanding and becoming more correct and complex. Explaining the behavior of these electron "orbits" was one of the driving forces behind the development of quantum mechanics.
Early models
With J. J. Thomson's discovery of the electron in 1897, it became clear that atoms were not the smallest building blocks of nature, but were rather composite particles. The newly discovered structure within atoms tempted many to imagine how the atom's constituent parts might interact with each other. Thomson theorized that multiple electrons revolve in orbit-like rings within a positively charged jelly-like substance, and between the electron's discovery and 1909, this "plum pudding model" was the most widely accepted explanation of atomic structure.
Shortly after Thomson's discovery, Hantaro Nagaoka predicted a different model for electronic structure. and Nagaoka himself recognized a fundamental defect in the theory even at its conception, namely that a classical charged object cannot sustain orbital motion because it is accelerating and therefore loses energy due to electromagnetic radiation. Nevertheless, the Saturnian model turned out to have more in common with modern theory than any of its contemporaries. Bohr atom In 1909, Ernest Rutherford discovered that the bulk of the atomic mass was tightly condensed into a nucleus, which was also found to be positively charged. It became clear from his analysis in 1911 that the plum pudding model could not explain atomic structure. In 1913, Rutherford's post-doctoral student, Niels Bohr, proposed a new model of the atom, wherein electrons orbited the nucleus with classical periods, but were permitted to have only discrete values of angular momentum, quantized in units ħ. Bohr noted that the existence of any sort of wave packet implies uncertainty in the wave frequency and wavelength, since a spread of frequencies is needed to create the packet itself. In quantum mechanics, where all particle momenta are associated with waves, it is the formation of such a wave packet which localizes the wave, and thus the particle, in space. In states where a quantum mechanical particle is bound, it must be localized as a wave packet, and the existence of the packet and its minimum size implies a spread and minimal value in particle wavelength, and thus also momentum and energy. In quantum mechanics, as a particle is localized to a smaller region in space, the associated compressed wave packet requires a larger and larger range of momenta, and thus larger kinetic energy. Thus the binding energy to contain or trap a particle in a smaller region of space increases without bound as the region of space grows smaller. Particles cannot be restricted to a geometric point in space, since this would require infinite particle momentum.
In chemistry, Erwin Schrödinger, Linus Pauling, Mulliken and others noted that the consequence of Heisenberg's relation was that the electron, as a wave packet, could not be considered to have an exact location in its orbital. Max Born suggested that the electron's position needed to be described by a probability distribution which was connected with finding the electron at some point in the wave-function which described its associated wave packet. The new quantum mechanics did not give exact results, but only the probabilities for the occurrence of a variety of possible such results. Heisenberg held that the path of a moving particle has no meaning if we cannot observe it, as we cannot with electrons in an atom.
In the quantum picture of Heisenberg, Schrödinger and others, the Bohr atom number n for each orbital became known as an n-sphere in a three-dimensional atom and was pictured as the most probable energy of the probability cloud of the electron's wave packet which surrounded the atom. Orbital names Orbital notation and subshells
Orbitals have been given names, which are usually given in the form:
:<math>X \, \mathrm{type} \ </math>
where X is the energy level corresponding to the principal quantum number ; type is a lower-case letter denoting the shape or subshell of the orbital, corresponding to the angular momentum quantum number .
For example, the orbital 1s (pronounced as the individual numbers and letters: "'one' 'ess'") is the lowest energy level () and has an angular quantum number of , denoted as s. Orbitals with are denoted as p, d and f respectively.
The set of orbitals for a given n and is called a subshell, denoted
:<math>X \, \mathrm{type}^y \ </math>.
The superscript y shows the number of electrons in the subshell. For example, the notation 2p<sup>4</sup> indicates that the 2p subshell of an atom contains 4 electrons. This subshell has 3 orbitals, each with n 2 and 1.
X-ray notation
There is also another, less common system still used in X-ray science known as X-ray notation, which is a continuation of the notations used before orbital theory was well understood. In this system, the principal quantum number is given a letter associated with it. For , the letters associated with those numbers are K, L, M, N, O, ... respectively.
Hydrogen-like orbitals
The simplest atomic orbitals are those that are calculated for systems with a single electron, such as the hydrogen atom. An atom of any other element ionized down to a single electron (He<sup>+</sup>, Li<sup>2+</sup>, etc.) is very similar to hydrogen, and the orbitals take the same form. In the Schrödinger equation for this system of one negative and one positive particle, the atomic orbitals are the eigenstates of the Hamiltonian operator for the energy. They can be obtained analytically, meaning that the resulting orbitals are products of a polynomial series, and exponential and trigonometric functions. (see hydrogen atom).
For atoms with two or more electrons, the governing equations can be solved only with the use of methods of iterative approximation. Orbitals of multi-electron atoms are qualitatively similar to those of hydrogen, and in the simplest models, they are taken to have the same form. For more rigorous and precise analysis, numerical approximations must be used.
A given (hydrogen-like) atomic orbital is identified by unique values of three quantum numbers: , , and . The rules restricting the values of the quantum numbers, and their energies (see below), explain the electron configuration of the atoms and the periodic table.
The stationary states (quantum states) of a hydrogen-like atom are its atomic orbitals. However, in general, an electron's behavior is not fully described by a single orbital. Electron states are best represented by time-depending "mixtures" (linear combinations) of multiple orbitals. See Linear combination of atomic orbitals molecular orbital method.
The quantum number first appeared in the Bohr model where it determines the radius of each circular electron orbit. In modern quantum mechanics however, determines the mean distance of the electron from the nucleus; all electrons with the same value of n lie at the same average distance. For this reason, orbitals with the same value of n are said to comprise a "shell". Orbitals with the same value of n and also the same value of are even more closely related, and are said to comprise a "subshell".
Quantum numbers
Because of the quantum mechanical nature of the electrons around a nucleus, atomic orbitals can be uniquely defined by a set of integers known as quantum numbers. These quantum numbers occur only in certain combinations of values, and their physical interpretation changes depending on whether real or complex versions of the atomic orbitals are employed.
Complex orbitals
In physics, the most common orbital descriptions are based on the solutions to the hydrogen atom, where orbitals are given by the product between a radial function and a pure spherical harmonic. The quantum numbers, together with the rules governing their possible values, are as follows:
The principal quantum number describes the energy of the electron and is always a positive integer. In fact, it can be any positive integer, but for reasons discussed below, large numbers are seldom encountered. Each atom has, in general, many orbitals associated with each value of n; these orbitals together are sometimes called electron shells.
The azimuthal quantum number describes the orbital angular momentum of each electron and is a non-negative integer. Within a shell where is some integer , ranges across all (integer) values satisfying the relation <math>0 \le \ell \le n_0-1</math>. For instance, the shell has only orbitals with <math>\ell0</math>, and the shell has only orbitals with <math>\ell0</math>, and <math>\ell=1</math>. The set of orbitals associated with a particular value of are sometimes collectively called a subshell.
The magnetic quantum number, <math>m_\ell</math>, describes the projection of the orbital angular momentum along a chosen axis. It determines the magnitude of the current circulating around that axis and the orbital contribution to the magnetic moment of an electron via the Ampèrian loop model. Within a subshell <math>\ell</math>, <math>m_\ell</math> obtains the integer values in the range <math>-\ell \le m_\ell \le \ell </math>.
The above results may be summarized in the following table. Each cell represents a subshell, and lists the values of <math>m_\ell</math> available in that subshell. Empty cells represent subshells that do not exist.
{| class="wikitable"
|-
!
!
!
!
!
!
! ...
|-
!
| <math>m_\ell=0</math>
| || || || || ...
|-
!
| 0 || −1, 0, 1
| || || || ...
|-
!
| 0 || −1, 0, 1 || −2, −1, 0, 1, 2
| || || ...
|-
!
| 0 || −1, 0, 1 || −2, −1, 0, 1, 2 || −3, −2, −1, 0, 1, 2, 3
| || ...
|-
!
| 0 || −1, 0, 1 || −2, −1, 0, 1, 2 || −3, −2, −1, 0, 1, 2, 3 || −4, −3, −2, −1, 0, 1, 2, 3, 4
| ...
|-
! ...
| ... || ... || ... || ... || ... || ...
|}
Subshells are usually identified by their <math>n</math>- and <math>\ell</math>-values. <math>n</math> is represented by its numerical value, but <math>\ell</math> is represented by a letter as follows: 0 is represented by 's', 1 by 'p', 2 by 'd', 3 by 'f', and 4 by 'g'. For instance, one may speak of the subshell with <math>n2</math> and <math>\ell0</math> as a '2s subshell'.
Each electron also has angular momentum in the form of quantum mechanical spin given by spin s = . Its projection along a specified axis is given by the spin magnetic quantum number, m<sub>s</sub>, which can be + or −. These values are also called "spin up" or "spin down" respectively.
The Pauli exclusion principle states that no two electrons in an atom can have the same values of all four quantum numbers. If there are two electrons in an orbital with given values for three quantum numbers, (, , ), these two electrons must differ in their spin projection m<sub>s</sub>.
The above conventions imply a preferred axis (for example, the z direction in Cartesian coordinates), and they also imply a preferred direction along this preferred axis. Otherwise there would be no sense in distinguishing from . As such, the model is most useful when applied to physical systems that share these symmetries. The Stern–Gerlach experimentwhere an atom is exposed to a magnetic fieldprovides one such example. Real orbitals Instead of the complex orbitals described above, it is common, especially in the chemistry literature, to use real atomic orbitals. These real orbitals arise from simple linear combinations of complex orbitals. Using the Condon–Shortley phase convention, real orbitals are related to complex orbitals in the same way that the real spherical harmonics are related to complex spherical harmonics. Letting <math>\psi_{n,\ell, m}</math> denote a complex orbital with quantum numbers , , and , the real orbitals <math>\psi_{n, \ell, m}^{\text{real}}</math> may be defined by
<math display="block">\begin{align}
\psi_{n,\ell, m}^{\text{real}} &= \begin{cases}
\sqrt{2} (-1)^m \text{Im}\left\{\psi_{n,\ell,|m|}\right\} &\text{ for } m<0 \\[2pt]
\psi_{n,\ell,|m|} &\text{ for } m=0\\[2pt]
\sqrt{2} (-1)^m \text{Re}\left\{\psi_{n,\ell,|m|}\right\} &\text{ for } m>0
\end{cases} \\[4pt]
&= \begin{cases}
\frac{i}{\sqrt{2}}\left(\psi_{n,\ell, -|m|} - (-1)^m \psi_{n,\ell, |m|}\right) & \text{ for } m<0 \\[2pt]
\psi_{n, \ell, |m|}& \text{ for } m=0 \\[4pt]
\frac{1}{\sqrt{2}}\left(\psi_{n,\ell, -|m|} + (-1)^m \psi_{n,\ell, |m|}\right) & \text{ for } m>0
\end{cases}
\end{align}</math>
If <math>\psi_{n,\ell, m}(r, \theta, \phi) R_{nl}(r) Y_{\ell}^m(\theta, \phi)</math>, with <math>R_{nl}(r)</math> the radial part of the orbital, this definition is equivalent to <math>\psi_{n,\ell, m}^{\text{real}}(r, \theta, \phi) R_{nl}(r) Y_{\ell m}(\theta, \phi)</math> where <math>Y_{\ell m}</math> is the real spherical harmonic related to either the real or imaginary part of the complex spherical harmonic <math>Y_{\ell}^m</math>.
Real spherical harmonics are physically relevant when an atom is embedded in a crystalline solid, in which case there are multiple preferred symmetry axes but no single preferred direction. Real atomic orbitals are also more frequently encountered in introductory chemistry textbooks and shown in common orbital visualizations. In real hydrogen-like orbitals, quantum numbers and have the same interpretation and significance as their complex counterparts, but is no longer a good quantum number (but its absolute value is).
Some real orbitals are given specific names beyond the simple <math>\psi_{n, \ell, m}</math> designation. Orbitals with quantum number are called orbitals. With this one can already assign names to complex orbitals such as <math>2\text{p}_{\pm 1} = \psi_{2, 1, \pm 1}</math>; the first symbol is the quantum number, the second character is the symbol for that particular quantum number and the subscript is the quantum number.
As an example of how the full orbital names are generated for real orbitals, one may calculate <math>\psi_{n, 1, \pm 1}^{\text{real}}</math>. From the table of spherical harmonics, <math display"inline">\psi_{n, 1, \pm1} R_{n, 1}Y_1^{\pm 1} \mp R_{n, 1} \sqrt{3/8\pi} \cdot (x\pm i y)/r</math> with <math displayinline>r = \sqrt{x^2+y^2+z^2}</math>. Then
<math display=block>\begin{align}
\psi_{n, 1, +1}^\text{real} &= R_{n, 1} \sqrt{\frac{3}{4\pi}} \cdot \frac{x}{r}\\
\psi_{n, 1, -1}^\text{real} &= R_{n, 1} \sqrt{\frac{3}{4\pi}} \cdot \frac{y}{r}
\end{align}</math>
Likewise <math display"inline">\psi_{n, 1, 0} R_{n, 1} \sqrt{3/4\pi} \cdot z/r</math>. As a more complicated example:
<math display=block>
\psi_{n, 3, +1}^\text{real} = R_{n, 3} \frac{1}{4} \sqrt{\frac{21}{2\pi}} \cdot \frac{x\cdot (5z^2 - r^2)}{r^3}
</math>
In all these cases we generate a Cartesian label for the orbital by examining, and abbreviating, the polynomial in appearing in the numerator. We ignore any terms in the polynomial except for the term with the highest exponent in .
We then use the abbreviated polynomial as a subscript label for the atomic state, using the same nomenclature as above to indicate the <math>n</math> and <math>\ell</math> quantum numbers.
<math display=block>
\begin{align}
\psi_{n, 1, -1}^\text{real} &n\text{p}_y \frac{i}{\sqrt{2}} \left(n\text{p}_{-1} + n\text{p}_{+1}\right)\\
\psi_{n, 1, 0}^\text{real} &n\text{p}_z 2\text{p}_0\\
\psi_{n, 1, +1}^\text{real} &n\text{p}_x \frac{1}{\sqrt{2}} \left(n\text{p}_{-1} - n\text{p}_{+1}\right)\\
\psi_{n, 3, +1}^\text{real} &nf_{xz^2} \frac{1}{\sqrt{2}} \left(nf_{-1} - nf_{+1}\right)
\end{align}
</math>
The expression above all use the Condon–Shortley phase convention which is favored by quantum physicists. Other conventions exist for the phase of the spherical harmonics. Under these different conventions the <math>\text{p}_x</math> and <math>\text{p}_y</math> orbitals may appear, for example, as the sum and difference of <math>\text{p}_{+1}</math> and <math>\text{p}_{-1}</math>, contrary to what is shown above.
Below is a list of these Cartesian polynomial names for the atomic orbitals. There does not seem to be reference in the literature as to how to abbreviate the long Cartesian spherical harmonic polynomials for <math>\ell>3</math> so there does not seem be consensus on the naming of <math>g</math> orbitals or higher according to this nomenclature.
{| class="wikitable"
|-
!
! <math>\psi_{m-3}+\psi_{m+3}</math>
! <math>\psi_{m-2}+\psi_{m+2}</math>
! <math>\psi_{m-1}+\psi_{m+1}</math>
! <math>\psi_{m=0}</math>
! <math>\psi_{m-1}-\psi_{m+1}</math>
! <math>\psi_{m-2}-\psi_{m+2}</math>
! <math>\psi_{m-3}-\psi_{m+3}</math>
|-
! <math>\ell=0</math>
|| || || || <math>\text{s}</math> || || ||
|-
! <math>\ell=1</math>
|| || || <math>\text{p}_y</math> || <math>\text{p}_z</math> || <math>\text{p}_x</math> || ||
|-
! <math>\ell=2</math>
|| || <math>\text{d}_{xy}</math> || <math>\text{d}_{yz}</math> || <math>\text{d}_{z^2}</math> || <math>\text{d}_{xz}</math> || <math>\text{d}_{x^2-y^2}</math> ||
|-
! <math>\ell=3</math>
|| <math>\text{f}_{y(3x^2-y^2)}</math>|| <math>\text{f}_{xyz}</math> || <math>\text{f}_{yz^2}</math> || <math>\text{f}_{z^3}</math> || <math>\text{f}_{xz^2}</math> || <math>\text{f}_{z(x^2-y^2)}</math> || <math>\text{f}_{x(x^2-3y^2)}</math>
|}
Shapes of orbitals
Simple pictures showing orbital shapes are intended to describe the angular forms of regions in space where the electrons occupying the orbital are likely to be found. The diagrams cannot show the entire region where an electron can be found, since according to quantum mechanics there is a non-zero probability of finding the electron (almost) anywhere in space. Instead the diagrams are approximate representations of boundary or contour surfaces where the probability density ψ(r, θ, φ) <sup>2</sup>}} has a constant value, chosen so that there is a certain probability (for example 90%) of finding the electron within the contour. Although ψ <sup>2</sup>}} as the square of an absolute value is everywhere non-negative, the sign of the wave function is often indicated in each subregion of the orbital picture.
Sometimes the function is graphed to show its phases, rather than ψ(r, θ, φ) <sup>2</sup>}} which shows probability density but has no phase (which is lost when taking absolute value, since is a complex number). <sup>2</sup>}} orbital graphs tend to have less spherical, thinner lobes than graphs, but have the same number of lobes in the same places, and otherwise are recognizable. This article, to show wave function phase, shows mostly graphs.
The lobes can be seen as standing wave interference patterns between the two counter-rotating, ring-resonant traveling wave and modes; the projection of the orbital onto the xy plane has a resonant wavelength around the circumference. Although rarely shown, the traveling wave solutions can be seen as rotating banded tori; the bands represent phase information. For each there are two standing wave solutions and . If , the orbital is vertical, counter rotating information is unknown, and the orbital is z-axis symmetric. If there are no counter rotating modes. There are only radial modes and the shape is spherically symmetric.
Nodal planes and nodal spheres are surfaces on which the probability density vanishes. The number of nodal surfaces is controlled by the quantum numbers and . An orbital with azimuthal quantum number has radial nodal planes passing through the origin. For example, the s orbitals () are spherically symmetric and have no nodal planes, whereas the p orbitals () have a single nodal plane between the lobes. The number of nodal spheres equals , consistent with the restriction on the quantum numbers. The principal quantum number controls the total number of nodal surfaces which is . Loosely speaking, is energy, is analogous to eccentricity, and is orientation.
In general, determines size and energy of the orbital for a given nucleus; as increases, the size of the orbital increases. The higher nuclear charge of heavier elements causes their orbitals to contract by comparison to lighter ones, so that the size of the atom remains very roughly constant, even as the number of electrons increases.
Also in general terms, determines an orbital's shape, and its orientation. However, since some orbitals are described by equations in complex numbers, the shape sometimes depends on also. Together, the whole set of orbitals for a given and fill space as symmetrically as possible, though with increasingly complex sets of lobes and nodes.
The single s orbitals (<math>\ell0</math>) are shaped like spheres. For it is roughly a solid ball (densest at center and fades outward exponentially), but for , each single s orbital is made of spherically symmetric surfaces which are nested shells (i.e., the "wave-structure" is radial, following a sinusoidal radial component as well). See illustration of a cross-section of these nested shells, at right. The s orbitals for all numbers are the only orbitals with an anti-node (a region of high wave function density) at the center of the nucleus. All other orbitals (p, d, f, etc.) have angular momentum, and thus avoid the nucleus (having a wave node at the nucleus). Recently, there has been an effort to experimentally image the 1s and 2p orbitals in a SrTiO<sub>3</sub> crystal using scanning transmission electron microscopy with energy dispersive x-ray spectroscopy.
Although individual orbitals are most often shown independent of each other, the orbitals coexist around the nucleus at the same time. Also, in 1927, Albrecht Unsöld proved that if one sums the electron density of all orbitals of a particular azimuthal quantum number of the same shell (e.g., all three 2p orbitals, or all five 3d orbitals) where each orbital is occupied by an electron or each is occupied by an electron pair, then all angular dependence disappears; that is, the resulting total density of all the atomic orbitals in that subshell (those with the same ) is spherical. This is known as Unsöld's theorem.
Orbitals table
This table shows the real hydrogen-like wave functions for all atomic orbitals up to 7s, and therefore covers the occupied orbitals in the ground state of all elements in the periodic table up to radium and some beyond. "ψ" graphs are shown with − and + wave function phases shown in two different colors (arbitrarily red and blue). The orbital is the same as the orbital, but the and are formed by taking linear combinations of the and orbitals (which is why they are listed under the label). Also, the and are not the same shape as the , since they are pure spherical harmonics.
{| class="wikitable"
|-
!
! s ()
! colspan"3" |p ()
! colspan"5" |d ()
! colspan"7" |f ()
|-
!
!
!
! colspan"2" |
!
! colspan"2" |
! colspan"2" |
!
! colspan"2" |
! colspan"2" |
! colspan"2" |
|-
!
! s
! p<sub>z</sub>
! p<sub>x</sub>
! p<sub>y</sub>
! d<sub>z<sup>2</sup></sub>
! d<sub>xz</sub>
! d<sub>yz</sub>
! d<sub>xy</sub>
! d<sub>x<sup>2</sup>−y<sup>2</sup></sub>
! f<sub>z<sup>3</sup></sub>
! f<sub>xz<sup>2</sup></sub>
! f<sub>yz<sup>2</sup></sub>
! f<sub>xyz</sub>
! f<sub>z(x<sup>2</sup>−y<sup>2</sup>)</sub>
! f<sub>x(x<sup>2</sup>−3y<sup>2</sup>)</sub>
! f<sub>y(3x<sup>2</sup>−y<sup>2</sup>)</sub>
|-
!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|-
!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|-
!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|-
!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|-
!
|
|
|
|
|
|
|
|
|
| . . .
| . . .
| . . .
| . . .
| . . .
| . . .
| . . .
|-
!
|
|
|
|
| . . . ‡
| . . . ‡
| . . . ‡
| . . . ‡
| . . . ‡
| . . . *
| . . . *
| . . . *
| . . . *
| . . . *
| . . . *
| . . . *
|-
!
|
| . . . †
| . . . †
| . . . †
| . . . *
| . . . *
| . . . *
| . . . *
| . . . *
| . . . *
| . . . *
| . . . *
| . . . *
| . . . *
| . . . *
| . . . *
|}
<nowiki>*</nowiki> No elements with 6f, 7d or 7f electrons have been discovered yet.
† Elements with 7p electrons have been discovered, but their electronic configurations are only predicted – save the exceptional Lr, which fills 7p<sup>1</sup> instead of 6d<sup>1</sup>.
‡ For the elements whose highest occupied orbital is a 6d orbital, only some electronic configurations have been confirmed. (Mt, Ds, Rg and Cn are still missing).
These are the real-valued orbitals commonly used in chemistry. Only the <math>m 0</math> orbitals where are eigenstates of the orbital angular momentum operator, <math>\hat L_z</math>. The columns with <math>m \pm 1, \pm 2,\cdots</math> are combinations of two eigenstates. See comparison in the following picture:
Qualitative understanding of shapes
The shapes of atomic orbitals can be qualitatively understood by considering the analogous case of standing waves on a circular drum. To see the analogy, the mean vibrational displacement of each bit of drum membrane from the equilibrium point over many cycles (a measure of average drum membrane velocity and momentum at that point) must be considered relative to that point's distance from the center of the drum head. If this displacement is taken as being analogous to the probability of finding an electron at a given distance from the nucleus, then it will be seen that the many modes of the vibrating disk form patterns that trace the various shapes of atomic orbitals. The basic reason for this correspondence lies in the fact that the distribution of kinetic energy and momentum in a matter-wave is predictive of where the particle associated with the wave will be. That is, the probability of finding an electron at a given place is also a function of the electron's average momentum at that point, since high electron momentum at a given position tends to "localize" the electron in that position, via the properties of electron wave-packets (see the Heisenberg uncertainty principle for details of the mechanism).
This relationship means that certain key features can be observed in both drum membrane modes and atomic orbitals. For example, in all of the modes analogous to s orbitals (the top row in the animated illustration below), it can be seen that the very center of the drum membrane vibrates most strongly, corresponding to the antinode in all s orbitals in an atom. This antinode means the electron is most likely to be at the physical position of the nucleus (which it passes straight through without scattering or striking it), since it is moving (on average) most rapidly at that point, giving it maximal momentum.
A mental "planetary orbit" picture closest to the behavior of electrons in s orbitals, all of which have no angular momentum, might perhaps be that of a Keplerian orbit with the orbital eccentricity of 1 but a finite major axis, not physically possible (because particles were to collide), but can be imagined as a limit of orbits with equal major axes but increasing eccentricity.<!-- could somebody make an illustration? -->
Below, a number of drum membrane vibration modes and the respective wave functions of the hydrogen atom are shown. A correspondence can be considered where the wave functions of a vibrating drum head are for a two-coordinate system and the wave functions for a vibrating sphere are three-coordinate .
<gallery mode"nolines" perrow"3" widths"200px" caption"s-type drum modes and wave functions">
File:Drum vibration mode01.gif|Drum mode <math>u_{01}</math>
File:Drum vibration mode02.gif|Drum mode <math>u_{02}</math>
File:Drum vibration mode03.gif|Drum mode <math>u_{03}</math>
File:Phi 1s.gif|Wave function of 1s orbital (real part, 2D-cut, <math>r_\mathrm{max}=2 a_0</math>)
File:Phi 2s.gif|Wave function of 2s orbital (real part, 2D-cut, <math>r_\mathrm{max}=10 a_0</math>)
File:Phi 3s.gif|Wave function of 3s orbital (real part, 2D-cut, <math>r_\mathrm{max}=20 a_0</math>)
</gallery>
None of the other sets of modes in a drum membrane have a central antinode, and in all of them the center of the drum does not move. These correspond to a node at the nucleus for all non-s orbitals in an atom. These orbitals all have some angular momentum, and in the planetary model, they correspond to particles in orbit with eccentricity less than 1.0, so that they do not pass straight through the center of the primary body, but keep somewhat away from it.
In addition, the drum modes analogous to p and d modes in an atom show spatial irregularity along the different radial directions from the center of the drum, whereas all of the modes analogous to s modes are perfectly symmetrical in radial direction. The non-radial-symmetry properties of non-s orbitals are necessary to localize a particle with angular momentum and a wave nature in an orbital where it must tend to stay away from the central attraction force, since any particle localized at the point of central attraction could have no angular momentum. For these modes, waves in the drum head tend to avoid the central point. Such features again emphasize that the shapes of atomic orbitals are a direct consequence of the wave nature of electrons.
<gallery mode"nolines" perrow"3" widths"200px" caption"p-type drum modes and wave functions">
File:Drum vibration mode11.gif|Drum mode <math>u_{11}</math>
File:Drum vibration mode12.gif|Drum mode <math>u_{12}</math>
File:Drum vibration mode13.gif|Drum mode <math>u_{13}</math>
File:Phi 2p.gif|Wave function of 2p orbital (real part, 2D-cut, <math>r_\mathrm{max}=10 a_0</math>)
File:Phi 3p.gif|Wave function of 3p orbital (real part, 2D-cut, <math>r_\mathrm{max}=20 a_0</math>)
File:Phi 4p.gif|Wave function of 4p orbital (real part, 2D-cut, <math>r_\mathrm{max}=25 a_0</math>)
</gallery>
<gallery mode"nolines" perrow"3" widths"200px" caption"d-type drum modes">
File:Drum vibration mode21.gif|Drum mode <math>u_{21}</math>
File:Drum vibration mode22.gif|Drum mode <math>u_{22}</math>
File:Drum vibration mode23.gif|Drum mode <math>u_{23}</math>
</gallery>
Orbital energy
In atoms with one electron (hydrogen-like atom), the energy of an orbital (and, consequently, any electron in the orbital) is determined mainly by <math>n</math>. The <math>n=1</math> orbital has the lowest possible energy in the atom. Each successively higher value of <math>n</math> has a higher energy, but the difference decreases as <math>n</math> increases. For high <math>n</math>, the energy becomes so high that the electron can easily escape the atom. In single electron atoms, all levels with different <math>\ell</math> within a given <math>n</math> are degenerate in the Schrödinger approximation, and have the same energy. This approximation is broken slightly in the solution to the Dirac equation (where energy depends on and another quantum number ), and by the effect of the magnetic field of the nucleus and quantum electrodynamics effects. The latter induce tiny binding energy differences especially for s electrons that go nearer the nucleus, since these feel a very slightly different nuclear charge, even in one-electron atoms; see Lamb shift.
In atoms with multiple electrons, the energy of an electron depends not only on its orbital, but also on its interactions with other electrons. These interactions depend on the detail of its spatial probability distribution, and so the energy levels of orbitals depend not only on <math>n</math> but also on <math>\ell</math>. Higher values of <math>\ell</math> are associated with higher values of energy; for instance, the 2p state is higher than the 2s state. When <math>\ell 2</math>, the increase in energy of the orbital becomes so large as to push the energy of orbital above the energy of the s orbital in the next higher shell; when <math>\ell 3</math> the energy is pushed into the shell two steps higher. The filling of the 3d orbitals does not occur until the 4s orbitals have been filled.
The increase in energy for subshells of increasing angular momentum in larger atoms is due to electron–electron interaction effects, and it is specifically related to the ability of low angular momentum electrons to penetrate more effectively toward the nucleus, where they are subject to less screening from the charge of intervening electrons. Thus, in atoms with higher atomic number, the <math>\ell</math> of electrons becomes more and more of a determining factor in their energy, and the principal quantum numbers <math>n</math> of electrons becomes less and less important in their energy placement.
The energy sequence of the first 35 subshells (e.g., 1s, 2p, 3d, etc.) is given in the following table. Each cell represents a subshell with <math>n</math> and <math>\ell</math> given by its row and column indices, respectively. The number in the cell is the subshell's position in the sequence. For a linear listing of the subshells in terms of increasing energies in multielectron atoms, see the section below.
{| class="wikitable"
|-
!
! s
! p
! d
! f
! g
! h
|-
! 1
| 1 || || || || ||
|-
! 2
| 2 || 3 || || || ||
|-
! 3
| 4 || 5 || 7 || || ||
|-
! 4
| 6 || 8 || 10 || 13 || ||
|-
! 5
| 9 || 11 || 14 || 17 || 21 ||
|-
! 6
|12 || 15 || 18 || 22 || 26 || 31
|-
! 7
|16 || 19 || 23 || 27 || 32 || 37
|-
! 8
|20 || 24 || 28 || 33 || 38 || 44
|-
! 9
|25 || 29 || 34 || 39 || 45 || 51
|-
! 10
|30 || 35 || 40 || 46 || 52 || 59
|}
Note: empty cells indicate non-existent sublevels, while numbers in italics indicate sublevels that could (potentially) exist, but which do not hold electrons in any element currently known.
Electron placement and the periodic table
orbitals. The chart of orbitals (left) is arranged by increasing energy (see Madelung rule). Atomic orbits are functions of three variables (two angles, and the distance from the nucleus). These images are faithful to the angular component of the orbital, but not entirely representative of the orbital as a whole.]]
Several rules govern the placement of electrons in orbitals (electron configuration). The first dictates that no two electrons in an atom may have the same set of values of quantum numbers (this is the Pauli exclusion principle). These quantum numbers include the three that define orbitals, as well as the spin magnetic quantum number . Thus, two electrons may occupy a single orbital, so long as they have different values of . Because takes one of only two values ( or ), at most two electrons can occupy each orbital.
Additionally, an electron always tends to fall to the lowest possible energy state. It is possible for it to occupy any orbital so long as it does not violate the Pauli exclusion principle, but if lower-energy orbitals are available, this condition is unstable. The electron will eventually lose energy (by releasing a photon) and drop into the lower orbital. Thus, electrons fill orbitals in the order specified by the energy sequence given above.
This behavior is responsible for the structure of the periodic table. The table may be divided into several rows (called 'periods'), numbered starting with 1 at the top. The presently known elements occupy seven periods. If a certain period has number i, it consists of elements whose outermost electrons fall in the ith shell. Niels Bohr was the first to propose (1923) that the periodicity in the properties of the elements might be explained by the periodic filling of the electron energy levels, resulting in the electronic structure of the atom.
The periodic table may also be divided into several numbered rectangular 'blocks'. The elements belonging to a given block have this common feature: their highest-energy electrons all belong to the same -state (but the associated with that -state depends upon the period). For instance, the leftmost two columns constitute the 's-block'. The outermost electrons of Li and Be respectively belong to the 2s subshell, and those of Na and Mg to the 3s subshell.
The following is the order for filling the "subshell" orbitals, which also gives the order of the "blocks" in the periodic table:
:1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p
The "periodic" nature of the filling of orbitals, as well as emergence of the s, p, d, and f "blocks", is more obvious if this order of filling is given in matrix form, with increasing principal quantum numbers starting the new rows ("periods") in the matrix. Then, each subshell (composed of the first two quantum numbers) is repeated as many times as required for each pair of electrons it may contain. The result is a compressed periodic table, with each entry representing two successive elements:
{| class="wikitable"
|1s|| || || || || || || || || || || || || || ||
|-
|2s|| || || || || || || || || || || || ||2p||2p||2p
|-
|3s|| || || || || || || || || || || || ||3p||3p||3p
|-
|4s|| || || || || || || ||3d||3d||3d||3d||3d||4p||4p||4p
|-
|5s|| || || || || || || ||4d||4d||4d||4d||4d||5p||5p||5p
|-
|6s||4f||4f||4f||4f||4f||4f||4f||5d||5d||5d||5d||5d||6p||6p||6p
|-
|7s||5f||5f||5f||5f||5f||5f||5f||6d||6d||6d||6d||6d||7p||7p||7p
|}
Although this is the general order of orbital filling according to the Madelung rule, there are exceptions, and the actual electronic energies of each element are also dependent upon additional details of the atoms (see ).
The number of electrons in an electrically neutral atom increases with the atomic number. The electrons in the outermost shell, or valence electrons, tend to be responsible for an element's chemical behavior. Elements that contain the same number of valence electrons can be grouped together and display similar chemical properties.
Relativistic effects
For elements with high atomic number , the effects of relativity become more pronounced, and especially so for s electrons, which move at relativistic velocities as they penetrate the screening electrons near the core of high- atoms. This relativistic increase in momentum for high speed electrons causes a corresponding decrease in wavelength and contraction of 6s orbitals relative to 5d orbitals (by comparison to corresponding s and d electrons in lighter elements in the same column of the periodic table); this results in 6s valence electrons becoming lowered in energy.
Examples of significant physical outcomes of this effect include the lowered melting temperature of mercury (which results from 6s electrons not being available for metal bonding) and the golden color of gold and caesium.
In the Bohr model, an electron has a velocity given by <math>v Z \alpha c</math>, where is the atomic number, <math>\alpha</math> is the fine-structure constant, and is the speed of light. In non-relativistic quantum mechanics, therefore, any atom with an atomic number greater than 137 would require its 1s electrons to be traveling faster than the speed of light. Even in the Dirac equation, which accounts for relativistic effects, the wave function of the electron for atoms with <math>Z > 137</math> is oscillatory and unbounded. The significance of element 137, also known as untriseptium, was first pointed out by the physicist Richard Feynman. Element 137 is sometimes informally called feynmanium (symbol Fy). However, Feynman's approximation fails to predict the exact critical value of due to the non-point-charge nature of the nucleus and very small orbital radius of inner electrons, resulting in a potential seen by inner electrons which is effectively less than . The critical value, which makes the atom unstable with regard to high-field breakdown of the vacuum and production of electron-positron pairs, does not occur until is about 173. These conditions are not seen except transiently in collisions of very heavy nuclei such as lead or uranium in accelerators, where such electron-positron production from these effects has been claimed to be observed.
There are no nodes in relativistic orbital densities, although individual components of the wave function will have nodes.
pp hybridization (conjectured)
In late period 8 elements, a hybrid of 8p<sub>3/2</sub> and 9p<sub>1/2</sub> is expected to exist, where "3/2" and "1/2" refer to the total angular momentum quantum number. This "pp" hybrid may be responsible for the p-block of the period due to properties similar to p subshells in ordinary valence shells. Energy levels of 8p<sub>3/2</sub> and 9p<sub>1/2</sub> come close due to relativistic spin–orbit effects; the 9s subshell should also participate, as these elements are expected to be analogous to the respective 5p elements indium through xenon. Transitions between orbitals
Bound quantum states have discrete energy levels. When applied to atomic orbitals, this means that the energy differences between states are also discrete. A transition between these states (i.e., an electron absorbing or emitting a photon) can thus happen only if the photon has an energy corresponding with the exact energy difference between said states.
Consider two states of the hydrogen atom:
# State , , and }}
# State , , and }}
By quantum theory, state 1 has a fixed energy of , and state 2 has a fixed energy of . Now, what would happen if an electron in state 1 were to move to state 2? For this to happen, the electron would need to gain an energy of exactly . If the electron receives energy that is less than or greater than this value, it cannot jump from state 1 to state 2. Now, suppose we irradiate the atom with a broad-spectrum of light. Photons that reach the atom that have an energy of exactly will be absorbed by the electron in state 1, and that electron will jump to state 2. However, photons that are greater or lower in energy cannot be absorbed by the electron, because the electron can jump only to one of the orbitals, it cannot jump to a state between orbitals. The result is that only photons of a specific frequency will be absorbed by the atom. This creates a line in the spectrum, known as an absorption line, which corresponds to the energy difference between states 1 and 2.
The atomic orbital model thus predicts line spectra, which are observed experimentally. This is one of the main validations of the atomic orbital model.
The atomic orbital model is nevertheless an approximation to the full quantum theory, which only recognizes many electron states. The predictions of line spectra are qualitatively useful but are not quantitatively accurate for atoms and ions other than those containing only one electron.
See also
<!-- Please keep entries in alphabetical order & add a short description WP:SEEALSO -->
* Atomic electron configuration table
* Condensed matter physics
* Electron configuration
* Energy level
* Hund's rules
* Molecular orbital
* Orbital overlap
* Quantum chemistry
* Quantum chemistry computer programs
* Solid-state physics
* Wave function collapse
* Wiswesser's rule
<!-- https://en.wikipedia.org/wiki/Function_(mathematics) -->
References
*
*
*
*
*
*
External links
* [https://www.quantum-physics.polytechnique.fr/hydrogenOrbitals.php?lang=1 3D representation of hydrogenic orbitals]
* [http://www.shef.ac.uk/chemistry/orbitron/ The Orbitron], a visualization of all common and uncommon atomic orbitals, from 1s to 7g
* [http://www.orbitals.com/orb/orbtable.htm Grand table] Still images of many orbitals
Category:Atomic physics
Category:Chemical bonding
Category:Electron states
Category:Quantum chemistry
Category:Articles containing video clips | https://en.wikipedia.org/wiki/Atomic_orbital | 2025-04-05T18:25:35.235352 |
1207 | Amino acid | Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins.<!----> Only these 22 appear in the genetic code of life.
Amino acids can be classified according to the locations of the core structural functional groups (alpha- <span style"white-space: nowrap">(α-)</span>, beta- <span style"white-space: nowrap">(β-)</span>, gamma- <span style"white-space: nowrap">(γ-)</span> amino acids, etc.); other categories relate to polarity, ionization, and side-chain group type (aliphatic, acyclic, aromatic, polar, etc.). In the form of proteins, amino-acid residues form the second-largest component (water being the largest) of human muscles and other tissues. Beyond their role as residues in proteins, amino acids participate in a number of processes such as neurotransmitter transport and biosynthesis. It is thought that they played a key role in enabling life on Earth and its emergence.
Amino acids are formally named by the IUPAC-IUBMB Joint Commission on Biochemical Nomenclature in terms of the fictitious "neutral" structure shown in the illustration. For example, the systematic name of alanine is 2-aminopropanoic acid, based on the formula . The Commission justified this approach as follows:
<blockquote>The systematic names and formulas given refer to hypothetical forms in which amino groups are unprotonated and carboxyl groups are undissociated. This convention is useful to avoid various nomenclatural problems but should not be taken to imply that these structures represent an appreciable fraction of the amino-acid molecules.
</blockquote>
History
The first few amino acids were discovered in the early 1800s. In 1806, French chemists Louis-Nicolas Vauquelin and Pierre Jean Robiquet isolated a compound from asparagus that was subsequently named asparagine, the first amino acid to be discovered. Cystine was discovered in 1810, although its monomer, cysteine, remained undiscovered until 1884. The last of the 20 common amino acids to be discovered was threonine in 1935 by William Cumming Rose, who also determined the essential amino acids and established the minimum daily requirements of all amino acids for optimal growth.
The unity of the chemical category was recognized by Wurtz in 1865, but he gave no particular name to it. The first use of the term "amino acid" in the English language dates from 1898, while the German term, , was used earlier. Proteins were found to yield amino acids after enzymatic digestion or acid hydrolysis. In 1902, Emil Fischer and Franz Hofmeister independently proposed that proteins are formed from many amino acids, whereby bonds are formed between the amino group of one amino acid with the carboxyl group of another, resulting in a linear structure that Fischer termed "peptide".
General structure
found in eukaryotes, grouped according to their side chains' pK<sub>a</sub> values and charges carried at physiological pH (7.4)]]
2-, alpha-, or α-amino acids have the generic formula in most cases, where R is an organic substituent known as a "side chain".
Of the many hundreds of described amino acids, 22 are proteinogenic ("protein-building"). It is these 22 compounds that combine to give a vast array of peptides and proteins assembled by ribosomes. Non-proteinogenic or modified amino acids may arise from post-translational modification or during nonribosomal peptide synthesis.Chirality
The carbon atom next to the carboxyl group is called the α–carbon. In proteinogenic amino acids, it bears the amine and the R group or side chain specific to each amino acid, as well as a hydrogen atom. With the exception of glycine, for which the side chain is also a hydrogen atom, the α–carbon is stereogenic. All chiral proteogenic amino acids have the <small>L</small> configuration. They are "left-handed" enantiomers, which refers to the stereoisomers of the alpha carbon.
A few <small>D</small>-amino acids ("right-handed") have been found in nature, e.g., in bacterial envelopes, as a neuromodulator (<small>D</small>-serine), and in some antibiotics. Rarely, <small>D</small>-amino acid residues are found in proteins, and are converted from the <small>L</small>-amino acid as a post-translational modification.Side chains Polar charged side chains Five amino acids possess a charge at neutral pH. Often these side chains appear at the surfaces on proteins to enable their solubility in water, and side chains with opposite charges form important electrostatic contacts called salt bridges that maintain structures within a single protein or between interfacing proteins. Many proteins bind metal into their structures specifically, and these interactions are commonly mediated by charged side chains such as aspartate, glutamate and histidine. Under certain conditions, each ion-forming group can be charged, forming double salts.
The two negatively charged amino acids at neutral pH are aspartate (Asp, D) and glutamate (Glu, E). The anionic carboxylate groups behave as Brønsted bases in most circumstances. Pyrrolysine (Pyl, O) is another amino acid not encoded in DNA, but synthesized into protein by ribosomes. It is found in archaeal species where it participates in the catalytic activity of several methyltransferases.
β- and γ-amino acids
Amino acids with the structure , such as β-alanine, a component of carnosine and a few other peptides, are β-amino acids. Ones with the structure are γ-amino acids, and so on, where X and Y are two substituents (one of which is normally H). Although the two charges in the zwitterion structure add up to zero it is misleading to call a species with a net charge of zero "uncharged".
In strongly acidic conditions (pH below 3), the carboxylate group becomes protonated and the structure becomes an ammonio carboxylic acid, . This is relevant for enzymes like pepsin that are active in acidic environments such as the mammalian stomach and lysosomes, but does not significantly apply to intracellular enzymes. In highly basic conditions (pH greater than 10, not normally seen in physiological conditions), the ammonio group is deprotonated to give .
Although various definitions of acids and bases are used in chemistry, the only one that is useful for chemistry in aqueous solution is that of Brønsted: This pH is known as the isoelectric point pI, so pI = (pK<sub>a1</sub> + pK<sub>a2</sub>).
For amino acids with charged side chains, the pK<sub>a</sub> of the side chain is involved. Thus for aspartate or glutamate with negative side chains, the terminal amino group is essentially entirely in the charged form , but this positive charge needs to be balanced by the state with just one C-terminal carboxylate group is negatively charged. This occurs halfway between the two carboxylate pK<sub>a</sub> values: pI (pK<sub>a1</sub> + pK<sub>a(R)</sub>), where pK<sub>a(R)</sub> is the side chain pK<sub>a</sub>.
Similar considerations apply to other amino acids with ionizable side-chains, including not only glutamate (similar to aspartate), but also cysteine, histidine, lysine, tyrosine and arginine with positive side chains.
Amino acids have zero mobility in electrophoresis at their isoelectric point, although this behaviour is more usually exploited for peptides and proteins than single amino acids. Zwitterions have minimum solubility at their isoelectric point, and some amino acids (in particular, with nonpolar side chains) can be isolated by precipitation from water by adjusting the pH to the required isoelectric point.
Physicochemical properties
The 20 canonical amino acids can be classified according to their properties. Important factors are charge, hydrophilicity or hydrophobicity, size, and functional groups. There are various hydrophobicity scales of amino acid residues.
Some amino acids have special properties. Cysteine can form covalent disulfide bonds to other cysteine residues. Proline forms a cycle to the polypeptide backbone, and glycine is more flexible than other amino acids.
Glycine and proline are strongly present within low complexity regions of both eukaryotic and prokaryotic proteins, whereas the opposite is the case with cysteine, phenylalanine, tryptophan, methionine, valine, leucine, isoleucine, which are highly reactive, or complex, or hydrophobic.
Many proteins undergo a range of posttranslational modifications, whereby additional chemical groups are attached to the amino acid residue side chains sometimes producing lipoproteins (that are hydrophobic), or glycoproteins (that are hydrophilic) allowing the protein to attach temporarily to a membrane. For example, a signaling protein can attach and then detach from a cell membrane, because it contains cysteine residues that can have the fatty acid palmitic acid added to them and subsequently removed.Table of standard amino acid abbreviations and properties
Although one-letter symbols are included in the table, IUPAC–IUBMB recommend
* Initial letters are used where there is no ambiguity: C cysteine, H histidine, I isoleucine, M methionine, S serine, V valine,
* D aspartate was assigned arbitrarily, with the proposed mnemonic asparDic acid; E glutamate was assigned in alphabetical sequence being larger by merely one methylene –CH<sub>2</sub>– group,
! colspan2 | Molar absorptivity
! rowspan=2 | Molecular mass
! rowspan2 | Abundance in proteins (%)
! rowspan=2 | Standard genetic coding,<br/>IUPAC notation
|-
! 3
! 1
! Class
! Chemical polarity
! Net charge<br/>at pH 7.4
{| class"wikitable" style"text-align:center;"
|-
! Ambiguous amino acids
! 3-letter
! 1-letter
! Amino acids included
! Codons included
|-
| Any / unknown
| Xaa
| X
| All
| NNN
|-
| Asparagine or aspartate
| Asx
| B
| D, N
| RAY
|-
| Glutamine or glutamate
| Glx
| Z
| E, Q
| SAR
|-
| Leucine or isoleucine
| Xle
| J
| I, L
| YTR, ATH, CTY
|-
| Hydrophobic
|
| Φ
| V, I, L, F, W, Y, M
| NTN, TAY, TGG
|-
| Aromatic
|
| Ω
| F, W, Y, H
| YWY, TTY, TGG
|-
| Aliphatic (non-aromatic)
|
| Ψ
| V, I, L, M
| VTN, TTR
|-
| Small
|
| π
| P, G, A, S
| BCN, RGY, GGR
|-
| Hydrophilic
|
| ζ
| S, T, H, N, Q, E, D, K, R
| VAN, WCN, CGN, AGY
|-
| Positively-charged
|
| +
| K, R, H
| ARR, CRY, CGR
|-
| Negatively-charged
|
| −
| D, E
| GAN
|}
Unk is sometimes used instead of Xaa, but is less standard.
Ter or * (from termination) is used in notation for mutations in proteins when a stop codon occurs. It corresponds to no amino acid at all.
In addition, many nonstandard amino acids have a specific code. For example, several peptide drugs, such as Bortezomib and MG132, are artificially synthesized and retain their protecting groups, which have specific codes. Bortezomib is Pyz–Phe–boroLeu, and MG132 is Z–Leu–Leu–Leu–al. To aid in the analysis of protein structure, photo-reactive amino acid analogs are available. These include photoleucine (pLeu) and photomethionine (pMet).
Occurrence and functions in biochemistry
Proteinogenic amino acids
Amino acids are the precursors to proteins. The order in which the amino acids are added is read through the genetic code from an mRNA template, which is an RNA derived from one of the organism's genes.
Twenty-two amino acids are naturally incorporated into polypeptides and are called proteinogenic or natural amino acids. Pyrrolysine is used by some methanogenic archaea in enzymes that they use to produce methane. It is coded for with the codon UAG, which is normally a stop codon in other organisms.
Several independent evolutionary studies have suggested that Gly, Ala, Asp, Val, Ser, Pro, Glu, Leu, Thr may belong to a group of amino acids that constituted the early genetic code, whereas Cys, Met, Tyr, Trp, His, Phe may belong to a group of amino acids that constituted later additions of the genetic code.Standard vs nonstandard amino acids
The 20 amino acids that are encoded directly by the codons of the universal genetic code are called standard or canonical amino acids. A modified form of methionine (N-formylmethionine) is often incorporated in place of methionine as the initial amino acid of proteins in bacteria, mitochondria and plastids (including chloroplasts). Other amino acids are called nonstandard or non-canonical. Most of the nonstandard amino acids are also non-proteinogenic (i.e. they cannot be incorporated into proteins during translation), but two of them are proteinogenic, as they can be incorporated translationally into proteins by exploiting information not encoded in the universal genetic code.
The two nonstandard proteinogenic amino acids are selenocysteine (present in many non-eukaryotes as well as most eukaryotes, but not coded directly by DNA) and pyrrolysine (found only in some archaea and at least one bacterium). The incorporation of these nonstandard amino acids is rare. For example, 25 human proteins include selenocysteine in their primary structure, and the structurally characterized enzymes (selenoenzymes) employ selenocysteine as the catalytic moiety in their active sites. Pyrrolysine and selenocysteine are encoded via variant codons. For example, selenocysteine is encoded by stop codon and SECIS element.
N-formylmethionine (which is often the initial amino acid of proteins in bacteria, mitochondria, and chloroplasts) is generally considered as a form of methionine rather than as a separate proteinogenic amino acid. Codon–tRNA combinations not found in nature can also be used to "expand" the genetic code and form novel proteins known as alloproteins incorporating non-proteinogenic amino acids.Non-proteinogenic amino acids
Aside from the 22 proteinogenic amino acids, many non-proteinogenic amino acids are known. Those either are not found in proteins (for example carnitine, GABA, levothyroxine) or are not produced directly and in isolation by standard cellular machinery. For example, hydroxyproline, is synthesised from proline. Another example is selenomethionine).
Non-proteinogenic amino acids that are found in proteins are formed by post-translational modification. Such modifications can also determine the localization of the protein, e.g., the addition of long hydrophobic groups can cause a protein to bind to a phospholipid membrane. Examples:
*the carboxylation of glutamate allows for better binding of calcium cations,
*Hydroxyproline, generated by hydroxylation of proline, is a major component of the connective tissue collagen.
* Hypusine in the translation initiation factor EIF5A, contains a modification of lysine.
Some non-proteinogenic amino acids are not found in proteins. Examples include 2-aminoisobutyric acid and the neurotransmitter gamma-aminobutyric acid. Non-proteinogenic amino acids often occur as intermediates in the metabolic pathways for standard amino acids – for example, ornithine and citrulline occur in the urea cycle, part of amino acid catabolism (see below). A rare exception to the dominance of α-amino acids in biology is the β-amino acid beta alanine (3-aminopropanoic acid), which is used in plants and microorganisms in the synthesis of pantothenic acid (vitamin B<sub>5</sub>), a component of coenzyme A.In mammalian nutrition
Animals ingest amino acids in the form of protein. The protein is broken down into its constituent amino acids in the process of digestion. The amino acids are then used to synthesize new proteins and other nitrogenous biomolecules, or they are further catabolized through oxidation to provide a source of energy. The oxidation pathway starts with the removal of the amino group by a transaminase; the amino group is then fed into the urea cycle. The other product of transamidation is a keto acid that enters the citric acid cycle. Glucogenic amino acids can also be converted into glucose, through gluconeogenesis.
Of the 20 standard amino acids, nine (His, Ile, Leu, Lys, Met, Phe, Thr, Trp and Val) are called essential amino acids because the human body cannot synthesize them from other compounds at the level needed for normal growth, so they must be obtained from food.
Semi-essential and conditionally essential amino acids, and juvenile requirements
In addition, cysteine, tyrosine, and arginine are considered semiessential amino acids, and taurine a semi-essential aminosulfonic acid in children. Some amino acids are conditionally essential for certain ages or medical conditions. Essential amino acids may also vary from species to species. The metabolic pathways that synthesize these monomers are not fully developed.Non-protein functions
Many proteinogenic and non-proteinogenic amino acids have biological functions beyond being precursors to proteins and peptides. In humans, amino acids also have important roles in diverse biosynthetic pathways. Defenses against herbivores in plants sometimes employ amino acids. Examples:
Standard amino acids
* Tryptophan is a precursor of the neurotransmitter serotonin.
* Tyrosine (and its precursor phenylalanine) are precursors of the catecholamine neurotransmitters dopamine, epinephrine and norepinephrine and various trace amines.
* Phenylalanine is a precursor of phenethylamine and tyrosine in humans. In plants, it is a precursor of various phenylpropanoids, which are important in plant metabolism.
* Glycine is a precursor of porphyrins such as heme.
* Arginine is a precursor of nitric oxide.
* Ornithine and S-adenosylmethionine are precursors of polyamines.
* Aspartate, glycine, and glutamine are precursors of nucleotides.Roles for nonstandard amino acids
*Carnitine is used in lipid transport.
*gamma-aminobutyric acid is a neurotransmitter.
*5-HTP (5-hydroxytryptophan) is used for experimental treatment of depression.
*<small>L</small>-DOPA (<small>L</small>-dihydroxyphenylalanine) for Parkinson's treatment,
*Eflornithine inhibits ornithine decarboxylase and used in the treatment of sleeping sickness.
*Canavanine, an analogue of arginine found in many legumes is an antifeedant, protecting the plant from predators.
*Mimosine found in some legumes, is another possible antifeedant. This compound is an analogue of tyrosine and can poison animals that graze on these plants.
However, not all of the functions of other abundant nonstandard amino acids are known.
Uses in industry
Animal feed
Amino acids are sometimes added to animal feed because some of the components of these feeds, such as soybeans, have low levels of some of the essential amino acids, especially of lysine, methionine, threonine, and tryptophan. Likewise amino acids are used to chelate metal cations in order to improve the absorption of minerals from feed supplements.
Food
The food industry is a major consumer of amino acids, especially glutamic acid, which is used as a flavor enhancer, and aspartame (aspartylphenylalanine 1-methyl ester), which is used as an artificial sweetener. Amino acids are sometimes added to food by manufacturers to alleviate symptoms of mineral deficiencies, such as anemia, by improving mineral absorption and reducing negative side effects from inorganic mineral supplementation.
Amino acids are used in the synthesis of some cosmetics.
Biodegradable plastics
Amino acids have been considered as components of biodegradable polymers, which have applications as environmentally friendly packaging and in medicine in drug delivery and the construction of prosthetic implants. An interesting example of such materials is polyaspartate, a water-soluble biodegradable polymer that may have applications in disposable diapers and agriculture. Due to its solubility and ability to chelate metal ions, polyaspartate is also being used as a biodegradable antiscaling agent and a corrosion inhibitor.SynthesisChemical synthesisThe commercial production of amino acids usually relies on mutant bacteria that overproduce individual amino acids using glucose as a carbon source. Some amino acids are produced by enzymatic conversions of synthetic intermediates. 2-Aminothiazoline-4-carboxylic acid is an intermediate in one industrial synthesis of <small>L</small>-cysteine for example. Aspartic acid is produced by the addition of ammonia to fumarate using a lyase.
Biosynthesis
In plants, nitrogen is first assimilated into organic compounds in the form of glutamate, formed from alpha-ketoglutarate and ammonia in the mitochondrion. For other amino acids, plants use transaminases to move the amino group from glutamate to another alpha-keto acid. For example, aspartate aminotransferase converts glutamate and oxaloacetate to alpha-ketoglutarate and aspartate. Other organisms use transaminases for amino acid synthesis, too.
Nonstandard amino acids are usually formed through modifications to standard amino acids. For example, homocysteine is formed through the transsulfuration pathway or by the demethylation of methionine via the intermediate metabolite S-adenosylmethionine, while hydroxyproline is made by a post translational modification of proline.
Microorganisms and plants synthesize many uncommon amino acids. For example, some microbes make 2-aminoisobutyric acid and lanthionine, which is a sulfide-bridged derivative of alanine. Both of these amino acids are found in peptidic lantibiotics such as alamethicin. However, in plants, 1-aminocyclopropane-1-carboxylic acid is a small disubstituted cyclic amino acid that is an intermediate in the production of the plant hormone ethylene.
Primordial synthesis
The formation of amino acids and peptides is assumed to have preceded and perhaps induced the emergence of life on earth. Amino acids can form from simple precursors under various conditions. Amino acids and similar building blocks could have been elaborated into proto-peptides, with peptides being considered key players in the origin of life.
In the famous Urey-Miller experiment, the passage of an electric arc through a mixture of methane, hydrogen, and ammonia produces a large number of amino acids. Since then, scientists have discovered a range of ways and components by which the potentially prebiotic formation and chemical evolution of peptides may have occurred, such as condensing agents, the design of self-replicating peptides and a number of non-enzymatic mechanisms by which amino acids could have emerged and elaborated into peptides.
According to a review, amino acids, and even peptides, "turn up fairly regularly in the various experimental broths that have been allowed to be cooked from simple chemicals. This is because nucleotides are far more difficult to synthesize chemically than amino acids." For a chronological order, it suggests that there must have been a 'protein world' or at least a 'polypeptide world', possibly later followed by the 'RNA world' and the 'DNA world'. Codon–amino acids mappings may be the biological information system at the primordial origin of life on Earth. While amino acids and consequently simple peptides must have formed under different experimentally probed geochemical scenarios, the transition from an abiotic world to the first life forms is to a large extent still unresolved.ReactionsAmino acids undergo the reactions expected of the constituent functional groups.Peptide bond formation
. The two amino acid residues are linked through a peptide bond.|alt=Two amino acids are shown next to each other. One loses a hydrogen and oxygen from its carboxyl group (COOH) and the other loses a hydrogen from its amino group (NH2). This reaction produces a molecule of water (H2O) and two amino acids joined by a peptide bond (–CO–NH–). The two joined amino acids are called a dipeptide.]]
As both the amine and carboxylic acid groups of amino acids can react to form amide bonds, one amino acid molecule can react with another and become joined through an amide linkage. This polymerization of amino acids is what creates proteins. This condensation reaction yields the newly formed peptide bond and a molecule of water. In cells, this reaction does not occur directly; instead, the amino acid is first activated by attachment to a transfer RNA molecule through an ester bond. This aminoacyl-tRNA is produced in an ATP-dependent reaction carried out by an aminoacyl tRNA synthetase. This aminoacyl-tRNA is then a substrate for the ribosome, which catalyzes the attack of the amino group of the elongating protein chain on the ester bond. As a result of this mechanism, all proteins made by ribosomes are synthesized starting at their N-terminus and moving toward their C-terminus.
However, not all peptide bonds are formed in this way. In a few cases, peptides are synthesized by specific enzymes. For example, the tripeptide glutathione is an essential part of the defenses of cells against oxidative stress. This peptide is synthesized in two steps from free amino acids. In the first step, gamma-glutamylcysteine synthetase condenses cysteine and glutamate through a peptide bond formed between the side chain carboxyl of the glutamate (the gamma carbon of this side chain) and the amino group of the cysteine. This dipeptide is then condensed with glycine by glutathione synthetase to form glutathione.
In chemistry, peptides are synthesized by a variety of reactions. One of the most-used in solid-phase peptide synthesis uses the aromatic oxime derivatives of amino acids as activated units. These are added in sequence onto the growing peptide chain, which is attached to a solid resin support. Libraries of peptides are used in drug discovery through high-throughput screening.
The combination of functional groups allow amino acids to be effective polydentate ligands for metal–amino acid chelates.
The multiple side chains of amino acids can also undergo chemical reactions.
Catabolism
classskin-invert-image|thumb|upright1.75 |Catabolism of proteinogenic amino acids. Amino acids can be classified according to the properties of their main degradation products:
<br/>* Glucogenic, with the products having the ability to form glucose by gluconeogenesis
<br/>* Ketogenic, with the products not having the ability to form glucose. These products may still be used for ketogenesis or lipid synthesis.
<br/>* Amino acids catabolized into both glucogenic and ketogenic products.
Degradation of an amino acid often involves deamination by moving its amino group to α-ketoglutarate, forming glutamate. This process involves transaminases, often the same as those used in amination during synthesis. In many vertebrates, the amino group is then removed through the urea cycle and is excreted in the form of urea. However, amino acid degradation can produce uric acid or ammonia instead. For example, serine dehydratase converts serine to pyruvate and ammonia.
Chemical analysis
The total nitrogen content of organic matter is mainly formed by the amino groups in proteins. The Total Kjeldahl Nitrogen (TKN) is a measure of nitrogen widely used in the analysis of (waste) water, soil, food, feed and organic matter in general. As the name suggests, the Kjeldahl method is applied. More sensitive methods are available. See also
* Amino acid dating
* Beta-peptide
* Degron
* Erepsin
* Homochirality
* Hyperaminoacidemia
* Leucines
* Miller–Urey experiment
* Nucleic acid sequence
* RNA codon table
Notes
References
Further reading
*
*
*
*
External links
*
Category:Nitrogen cycle
Category:Zwitterions | https://en.wikipedia.org/wiki/Amino_acid | 2025-04-05T18:25:35.316116 |
1208 | Alan Turing | | image = File:Alan Turing (1951).jpg
| caption = Turing in 1951
| birth_name = Alan Mathison Turing
| birth_date
| birth_place = Maida Vale, London, England
| death_date
| death_place =
| death_cause Cyanide poisoning as an act of suicide
| alma_mater =
* Princeton University (PhD)
}}
| known_for =
| prizes = Smith's Prize (1936)
| field =
| work_institutions =
| thesis_title = Systems of Logic Based on Ordinals
| thesis_url = https://web.archive.org/web/20121023103503/https://webspace.princeton.edu/users/jedwards/Turing%20Centennial%202012/Mudd%20Archive%20files/12285_AC100_Turing_1938.pdf
| thesis_year = 1938
| doctoral_advisor Alonzo Church
| doctoral_students =
| signature = Alan Turing signature.svg
}}
Alan Mathison Turing (; 23 June 1912 – 7 June 1954) was an English mathematician, computer scientist, logician, cryptanalyst, philosopher and theoretical biologist. He was highly influential in the development of theoretical computer science, providing a formalisation of the concepts of algorithm and computation with the Turing machine, which can be considered a model of a general-purpose computer. Turing is widely considered to be the father of theoretical computer science.
Born in London, Turing was raised in southern England. He graduated from King's College, Cambridge, and in 1938, earned a doctorate degree from Princeton University. During World War II, Turing worked for the Government Code and Cypher School at Bletchley Park, Britain's codebreaking centre that produced Ultra intelligence. He led Hut 8, the section responsible for German naval cryptanalysis. Turing devised techniques for speeding the breaking of German ciphers, including improvements to the pre-war Polish bomba method, an electromechanical machine that could find settings for the Enigma machine. He played a crucial role in cracking intercepted messages that enabled the Allies to defeat the Axis powers in many engagements, including the Battle of the Atlantic.
After the war, Turing worked at the National Physical Laboratory, where he designed the Automatic Computing Engine, one of the first designs for a stored-program computer. In 1948, Turing joined Max Newman's Computing Machine Laboratory at the University of Manchester, where he contributed to the development of early Manchester computers and became interested in mathematical biology. Turing wrote on the chemical basis of morphogenesis
In 1952, Turing was prosecuted for homosexual acts. He accepted hormone treatment, a procedure commonly referred to as chemical castration, as an alternative to prison. Turing died on 7 June 1954, aged 41, from cyanide poisoning. An inquest determined his death as suicide, but the evidence is also consistent with accidental poisoning.
Turing left an extensive legacy in mathematics and computing which has become widely recognised with statues and many things named after him, including an annual award for computing innovation. His portrait appears on the Bank of England £50 note, first released on 23 June 2021 to coincide with his birthday. The audience vote in a 2019 BBC series named Turing the greatest person of the 20th century.
Early life and education
Family
blue plaque in Maida Vale, London marking Turing's birthplace in 1912]]
Turing was born in Maida Vale, London, while his father, Julius Mathison Turing, was on leave from his position with the Indian Civil Service (ICS) of the British Raj government at Chatrapur, then in the Madras Presidency and presently in Odisha state, in India. Turing's father was the son of a clergyman, the Rev. John Robert Turing, from a Scottish family of merchants that had been based in the Netherlands and included a baronet. Turing's mother, Julius's wife, was Ethel Sara Turing (), daughter of Edward Waller Stoney, chief engineer of the Madras Railways. The Stoneys were a Protestant Anglo-Irish gentry family from both County Tipperary and County Longford, while Ethel herself had spent much of her childhood in County Clare. Julius and Ethel married on 1 October 1907 at the Church of Ireland St. Bartholomew's Church on Clyde Road in Ballsbridge, Dublin.
Julius's work with the ICS brought the family to British India, where his grandfather had been a general in the Bengal Army. However, both Julius and Ethel wanted their children to be brought up in Britain, so they moved to Maida Vale, London, where Alan Turing was born on 23 June 1912, as recorded by a blue plaque on the outside of the house of his birth, later the Colonnade Hotel. Turing had an elder brother, John Ferrier Turing, father of Dermot Turing, 12th Baronet of the Turing baronets.
Turing's father's civil service commission was still active during Turing's childhood years, and his parents travelled between Hastings in the United Kingdom and India, leaving their two sons to stay with a retired Army couple. At Hastings, Turing stayed at Baston Lodge, Upper Maze Hill, St Leonards-on-Sea, now marked with a blue plaque. The plaque was unveiled on 23 June 2012, the centenary of Turing's birth.
Very early in life, Turing's parents purchased a house in Guildford in 1927, and Turing lived there during school holidays. The location is also marked with a blue plaque.
School
Turing's parents enrolled him at St Michael's, a primary school at 20 Charles Road, St Leonards-on-Sea, from the age of six to nine. The headmistress recognised his talent, noting that she "...had clever boys and hardworking boys, but Alan is a genius".
Between January 1922 and 1926, Turing was educated at Hazelhurst Preparatory School, an independent school in the village of Frant in Sussex (now East Sussex). In 1926, at the age of 13, he went on to Sherborne School, an independent boarding school in the market town of Sherborne in Dorset, where he boarded at Westcott House. The first day of term coincided with the 1926 General Strike, in Britain, but Turing was so determined to attend that he rode his bicycle unaccompanied from Southampton to Sherborne, stopping overnight at an inn.
Turing's natural inclination towards mathematics and science did not earn him respect from some of the teachers at Sherborne, whose definition of education placed more emphasis on the classics. His headmaster wrote to his parents: "I hope he will not fall between two stools. If he is to stay at public school, he must aim at becoming educated. If he is to be solely a Scientific Specialist, he is wasting his time at a public school". Despite this, Turing continued to show remarkable ability in the studies he loved, solving advanced problems in 1927 without having studied even elementary calculus. In 1928, aged 16, Turing encountered Albert Einstein's work; not only did he grasp it, but it is possible that he managed to deduce Einstein's questioning of Newton's laws of motion from a text in which this was never made explicit.
Christopher Morcom
At Sherborne, Turing formed a significant friendship with fellow pupil Christopher Collan Morcom (13 July 1911 – 13 February 1930), who has been described as Turing's first love. Their relationship provided inspiration in Turing's future endeavours, but it was cut short by Morcom's death, in February 1930, from complications of bovine tuberculosis, contracted after drinking infected cow's milk some years previously.
The event caused Turing great sorrow. He coped with his grief by working that much harder on the topics of science and mathematics that he had shared with Morcom. In a letter to Morcom's mother, Frances Isobel Morcom (née Swan), Turing wrote:
Turing's relationship with Morcom's mother continued long after Morcom's death, with her sending gifts to Turing, and him sending letters, typically on Morcom's birthday. A day before the third anniversary of Morcom's death (13 February 1933), he wrote to Mrs. Morcom:
Some have speculated that Morcom's death was the cause of Turing's atheism and materialism. Apparently, at this point in his life he still believed in such concepts as a spirit, independent of the body and surviving death. In a later letter, also written to Morcom's mother, Turing wrote:
University and work on computabilityAfter graduating from Sherborne, Turing applied for several Cambridge colleges scholarships, including Trinity and King's, eventually earning an £80 per annum scholarship (equivalent to about £4,300 as of 2023) to study at the latter. There, Turing studied the undergraduate course in Schedule B from February 1931 to November 1934 at King's College, Cambridge, where he was awarded first-class honours in mathematics. His dissertation, On the Gaussian error function, written during his senior year and delivered in November 1934 (with a deadline date of 6 December) proved a version of the central limit theorem. It was finally accepted on 16 March 1935. By spring of that same year, Turing started his master's course (Part III)—which he completed in 1937—and, at the same time, he published his first paper, a one-page article called Equivalence of left and right almost periodicity (sent on 23 April), featured in the tenth volume of the Journal of the London Mathematical Society. Later that year, Turing was elected a Fellow of King's College on the strength of his dissertation where he served as a lecturer. However, and, unknown to Turing, this version of the theorem he proved in his paper, had already been proven, in 1922, by Jarl Waldemar Lindeberg. Despite this, the committee found Turing's methods original and so regarded the work worthy of consideration for the fellowship. Abram Besicovitch's report for the committee went so far as to say that if Turing's work had been published before Lindeberg's, it would have been "an important event in the mathematical literature of that year".
Between the springs of 1935 and 1936, at the same time as Alonzo Church, Turing worked on the decidability of problems, starting from Gödel's incompleteness theorems. In mid-April 1936, Turing sent Max Newman the first draft typescript of his investigations. That same month, Church published his An Unsolvable Problem of Elementary Number Theory, with similar conclusions to Turing's then-yet unpublished work. Finally, on 28 May of that year, he finished and delivered his 36-page paper for publication called "On Computable Numbers, with an Application to the Entscheidungsproblem". It was published in the Proceedings of the London Mathematical Society journal in two parts, the first on 30 November and the second on 23 December. In this paper, Turing reformulated Kurt Gödel's 1931 results on the limits of proof and computation, replacing Gödel's universal arithmetic-based formal language with the formal and simple hypothetical devices that became known as Turing machines. The Entscheidungsproblem (decision problem) was originally posed by German mathematician David Hilbert in 1928. Turing proved that his "universal computing machine" would be capable of performing any conceivable mathematical computation if it were representable as an algorithm. He went on to prove that there was no solution to the decision problem by first showing that the halting problem for Turing machines is undecidable: it is not possible to decide algorithmically whether a Turing machine will ever halt. This paper has been called "easily the most influential math paper in history".
, where Turing was an undergraduate in 1931 and became a Fellow in 1935. The computer room is named after him.]]
Although Turing's proof was published shortly after Church's equivalent proof using his lambda calculus, Turing's approach is considerably more accessible and intuitive than Church's. It also included a notion of a 'Universal Machine' (now known as a universal Turing machine), with the idea that such a machine could perform the tasks of any other computation machine (as indeed could Church's lambda calculus). According to the Church–Turing thesis, Turing machines and the lambda calculus are capable of computing anything that is computable. John von Neumann acknowledged that the central concept of the modern computer was due to Turing's paper. To this day, Turing machines are a central object of study in theory of computation.
From September 1936 to July 1938, Turing spent most of his time studying under Church at Princeton University, In June 1938, he obtained his PhD from the Department of Mathematics at Princeton; his dissertation, Systems of Logic Based on Ordinals, introduced the concept of ordinal logic and the notion of relative computing, in which Turing machines are augmented with so-called oracles, allowing the study of problems that cannot be solved by Turing machines. John von Neumann wanted to hire him as his postdoctoral assistant, but he went back to the United Kingdom.Career and researchWhen Turing returned to Cambridge, he attended lectures given in 1939 by Ludwig Wittgenstein about the foundations of mathematics. The lectures have been reconstructed verbatim, including interjections from Turing and other students, from students' notes. Turing and Wittgenstein argued and disagreed, with Turing defending formalism and Wittgenstein propounding his view that mathematics does not discover any absolute truths, but rather invents them.CryptanalysisDuring the Second World War, Turing was a leading participant in the breaking of German ciphers at Bletchley Park. The historian and wartime codebreaker Asa Briggs has said, "You needed exceptional talent, you needed genius at Bletchley and Turing's was that genius."
From September 1938, Turing worked part-time with the Government Code and Cypher School (GC&CS), the British codebreaking organisation. He concentrated on cryptanalysis of the Enigma cipher machine used by Nazi Germany, together with Dilly Knox, a senior GC&CS codebreaker. Soon after the July 1939 meeting near Warsaw at which the Polish Cipher Bureau gave the British and French details of the wiring of Enigma machine's rotors and their method of decrypting Enigma machine's messages, Turing and Knox developed a broader solution. The Polish method relied on an insecure indicator procedure that the Germans were likely to change, which they in fact did in May 1940. Turing's approach was more general, using crib-based decryption for which he produced the functional specification of the bombe (an improvement on the Polish Bomba).
. Turing worked here in 1939 and 1940, before moving to Hut 8.]]
On 4 September 1939, the day after the UK declared war on Germany, Turing reported to Bletchley Park, the wartime station of GC&CS. Like all others who came to Bletchley, he was required to sign the Official Secrets Act, in which he agreed not to disclose anything about his work at Bletchley, with severe legal penalties for violating the Act.
Specifying the bombe was the first of five major cryptanalytical advances that Turing made during the war. The others were: deducing the indicator procedure used by the German navy; developing a statistical procedure dubbed Banburismus for making much more efficient use of the bombes; developing a procedure dubbed Turingery for working out the cam settings of the wheels of the Lorenz SZ 40/42 (Tunny) cipher machine and, towards the end of the war, the development of a portable secure voice scrambler at Hanslope Park that was codenamed Delilah.
By using statistical techniques to optimise the trial of different possibilities in the code breaking process, Turing made an innovative contribution to the subject. He wrote two papers discussing mathematical approaches, titled The Applications of Probability to Cryptography and Paper on Statistics of Repetitions, which were of such value to GC&CS and its successor GCHQ that they were not released to the UK National Archives until April 2012, shortly before the centenary of his birth. A GCHQ mathematician, "who identified himself only as Richard," said at the time that the fact that the contents had been restricted under the Official Secrets Act for some 70 years demonstrated their importance, and their relevance to post-war cryptanalysis:
Turing had a reputation for eccentricity at Bletchley Park. He was known to his colleagues as "Prof" and his treatise on Enigma was known as the "Prof's Book". According to historian Ronald Lewin, Jack Good, a cryptanalyst who worked with Turing, said of his colleague:
Peter Hilton recounted his experience working with Turing in Hut 8 in his "Reminiscences of Bletchley Park" from A Century of Mathematics in America:
Hilton echoed similar thoughts in the Nova PBS documentary Decoding Nazi Secrets''.
While working at Bletchley, Turing, who was a talented long-distance runner, occasionally ran the to London when he was needed for meetings, and he was capable of world-class marathon standards. Turing tried out for the 1948 British Olympic team, but he was hampered by an injury. His tryout time for the marathon was only 11 minutes slower than British silver medallist Thomas Richards' Olympic race time of 2 hours 35 minutes. He was Walton Athletic Club's best runner, a fact discovered when he passed the group while running alone. When asked why he ran so hard in training he replied:
Due to the problems of counterfactual history, it is hard to estimate the precise effect Ultra intelligence had on the war. However, official war historian Harry Hinsley estimated that this work shortened the war in Europe by more than two years and saved over 14 million lives.
At the end of the war, a memo was sent to all those who had worked at Bletchley Park, reminding them that the code of silence dictated by the Official Secrets Act did not end with the war but would continue indefinitely.BombeWithin weeks of arriving at Bletchley Park,
now at The National Museum of Computing on Bletchley Park]]The bombe searched for possible correct settings used for an Enigma message (i.e., rotor order, rotor settings and plugboard settings) using a suitable crib: a fragment of probable plaintext. For each possible setting of the rotors (which had on the order of 10<sup>19</sup> states, or 10<sup>22</sup> states for the four-rotor U-boat variant), the bombe performed a chain of logical deductions based on the crib, implemented electromechanically.
The bombe detected when a contradiction had occurred and ruled out that setting, moving on to the next. Most of the possible settings would cause contradictions and be discarded, leaving only a few to be investigated in detail. A contradiction would occur when an enciphered letter would be turned back into the same plaintext letter, which was impossible with the Enigma. The first bombe was installed on 18 March 1940. Action This Day
By late 1941, Turing and his fellow cryptanalysts Gordon Welchman, Hugh Alexander and Stuart Milner-Barry were frustrated. Building on the work of the Poles, they had set up a good working system for decrypting Enigma signals, but their limited staff and bombes meant they could not translate all the signals. In the summer, they had considerable success, and shipping losses had fallen to under 100,000 tons a month; however, they badly needed more resources to keep abreast of German adjustments. They had tried to get more people and fund more bombes through the proper channels, but had failed. As Andrew Hodges, biographer of Turing, later wrote, "This letter had an electric effect." Churchill wrote a memo to General Ismay, which read: "ACTION THIS DAY. Make sure they have all they want on extreme priority and report to me that this has been done." On 18 November, the chief of the secret service reported that every possible measure was being taken. More than two hundred bombes were in operation by the end of the war.Hut 8 and the naval Enigmaat Bletchley Park, commissioned by Sidney Frank, built from half a million pieces of Welsh slate]]
Turing decided to tackle the particularly difficult problem of cracking the German naval use of Enigma "because no one else was doing anything about it and I could have it to myself". In December 1939, Turing solved the essential part of the naval indicator system, which was more complex than the indicator systems used by the other services.
That same night, he also conceived of the idea of Banburismus, a sequential statistical technique (what Abraham Wald later called sequential analysis) to assist in breaking the naval Enigma, "though I was not sure that it would work in practice, and was not, in fact, sure until some days had actually broken". Later this sequential process of accumulating sufficient weight of evidence using decibans (one tenth of a ban) was used in cryptanalysis of the Lorenz cipher.
Turing travelled to the United States in November 1942 and worked with US Navy cryptanalysts on the naval Enigma and bombe construction in Washington. He also visited their Computing Machine Laboratory in Dayton, Ohio.
Turing's reaction to the American bombe design was far from enthusiastic:
During this trip, he also assisted at Bell Labs with the development of secure speech devices. He returned to Bletchley Park in March 1943. During his absence, Hugh Alexander had officially assumed the position of head of Hut 8, although Alexander had been de facto head for some time (Turing having little interest in the day-to-day running of the section). Turing became a general consultant for cryptanalysis at Bletchley Park.
Alexander wrote of Turing's contribution:
TuringeryIn July 1942, Turing devised a technique termed Turingery (or jokingly Turingismus) for use against the Lorenz cipher messages produced by the Germans' new Geheimschreiber (secret writer) machine. This was a teleprinter rotor cipher attachment codenamed Tunny at Bletchley Park. Turingery was a method of wheel-breaking, i.e., a procedure for working out the cam settings of Tunny's wheels. He also introduced the Tunny team to Tommy Flowers who, under the guidance of Max Newman, went on to build the Colossus computer, the world's first programmable digital electronic computer, which replaced a simpler prior machine (the Heath Robinson), and whose superior speed allowed the statistical decryption techniques to be applied usefully to the messages. Some have mistakenly said that Turing was a key figure in the design of the Colossus computer. Turingery and the statistical approach of Banburismus undoubtedly fed into the thinking about cryptanalysis of the Lorenz cipher, but he was not directly involved in the Colossus development.DelilahFollowing his work at Bell Labs in the US, Turing pursued the idea of electronic enciphering of speech in the telephone system. In the latter part of the war, he moved to work for the Secret Service's Radio Security Service (later HMGCC) at Hanslope Park. At the park, he further developed his knowledge of electronics with the assistance of REME officer Donald Bayley. Together they undertook the design and construction of a portable secure voice communications machine codenamed Delilah. The machine was intended for different applications, but it lacked the capability for use with long-distance radio transmissions. In any case, Delilah was completed too late to be used during the war. Though the system worked fully, with Turing demonstrating it to officials by encrypting and decrypting a recording of a Winston Churchill speech, Delilah was not adopted for use. Turing also consulted with Bell Labs on the development of SIGSALY, a secure voice system that was used in the later years of the war.Early computers and the Turing test
]]
Between 1945 and 1947, Turing lived in Hampton, London, while he worked on the design of the ACE (Automatic Computing Engine) at the National Physical Laboratory (NPL). He presented a paper on 19 February 1946, which was the first detailed design of a stored-program computer. Von Neumann's incomplete First Draft of a Report on the EDVAC had predated Turing's paper, but it was much less detailed and, according to John R. Womersley, Superintendent of the NPL Mathematics Division, it "contains a number of ideas which are Dr. Turing's own".
Although ACE was a feasible design, the effect of the Official Secrets Act surrounding the wartime work at Bletchley Park made it impossible for Turing to explain the basis of his analysis of how a computer installation involving human operators would work. This led to delays in starting the project and he became disillusioned. In late 1947 he returned to Cambridge for a sabbatical year during which he produced a seminal work on Intelligent Machinery that was not published in his lifetime. While he was at Cambridge, the Pilot ACE was being built in his absence. It executed its first program on 10 May 1950, and a number of later computers around the world owe much to it, including the English Electric DEUCE and the American Bendix G-15. The full version of Turing's ACE was not built until after his death.
According to the memoirs of the German computer pioneer Heinz Billing from the Max Planck Institute for Physics, published by Genscher, Düsseldorf, there was a meeting between Turing and Konrad Zuse. It took place in Göttingen in 1947. The interrogation had the form of a colloquium. Participants were Womersley, Turing, Porter from England and a few German researchers like Zuse, Walther, and Billing (for more details see Herbert Bruderer, Konrad Zuse und die Schweiz).
commmemorating Alan Turing's work at the University of Manchester where he was a Reader from 1948 to 1954]]
In 1948, Turing was appointed reader in the Mathematics Department at the University of Manchester. He lived at "Copper Folly", 43 Adlington Road, in Wilmslow. A year later, he became deputy director of the Computing Machine Laboratory, where he worked on software for one of the earliest stored-program computers—the Manchester Mark 1. Turing wrote the first version of the Programmer's Manual for this machine, and was recruited by Ferranti as a consultant in the development of their commercialised machine, the Ferranti Mark 1. He continued to be paid consultancy fees by Ferranti until his death. During this time, he continued to do more abstract work in mathematics, and in "Computing Machinery and Intelligence", Turing addressed the problem of artificial intelligence, and proposed an experiment that became known as the Turing test, an attempt to define a standard for a machine to be called "intelligent". The idea was that a computer could be said to "think" if a human interrogator could not tell it apart, through conversation, from a human being. In the paper, Turing suggested that rather than building a program to simulate the adult mind, it would be better to produce a simpler one to simulate a child's mind and then to subject it to a course of education. A reversed form of the Turing test is widely used on the Internet; the CAPTCHA test is intended to determine whether the user is a human or a computer.
In 1948, Turing, working with his former undergraduate colleague, D.G. Champernowne, began writing a chess program for a computer that did not yet exist. By 1950, the program was completed and dubbed the Turochamp. In 1952, he tried to implement it on a Ferranti Mark 1, but lacking enough power, the computer was unable to execute the program. Instead, Turing "ran" the program by flipping through the pages of the algorithm and carrying out its instructions on a chessboard, taking about half an hour per move. The game was recorded. According to Garry Kasparov, Turing's program "played a recognizable game of chess". The program lost to Turing's colleague Alick Glennie, although it is said that it won a game against Champernowne's wife, Isabel.
His Turing test was a significant, characteristically provocative, and lasting contribution to the debate regarding artificial intelligence, which continues after more than half a century.
Pattern formation and mathematical biology
When Turing was 39 years old in 1951, he turned to mathematical biology, finally publishing his masterpiece "The Chemical Basis of Morphogenesis" in January 1952. He was interested in morphogenesis, the development of patterns and shapes in biological organisms. He suggested that a system of chemicals reacting with each other and diffusing across space, termed a reaction–diffusion system, could account for "the main phenomena of morphogenesis". He used systems of partial differential equations to model catalytic chemical reactions. For example, if a catalyst A is required for a certain chemical reaction to take place, and if the reaction produced more of the catalyst A, then we say that the reaction is autocatalytic, and there is positive feedback that can be modelled by nonlinear differential equations. Turing discovered that patterns could be created if the chemical reaction not only produced catalyst A, but also produced an inhibitor B that slowed down the production of A. If A and B then diffused through the container at different rates, then you could have some regions where A dominated and some where B did. To calculate the extent of this, Turing would have needed a powerful computer, but these were not so freely available in 1951, so he had to use linear approximations to solve the equations by hand. These calculations gave the right qualitative results, and produced, for example, a uniform mixture that oddly enough had regularly spaced fixed red spots. The Russian biochemist Boris Belousov had performed experiments with similar results, but could not get his papers published because of the contemporary prejudice that any such thing violated the second law of thermodynamics. Belousov was not aware of Turing's paper in the Philosophical Transactions of the Royal Society.
Although published before the structure and role of DNA was understood, Turing's work on morphogenesis remains relevant today and is considered a seminal piece of work in mathematical biology. One of the early applications of Turing's paper was the work by James Murray explaining spots and stripes on the fur of cats, large and small. Further research in the area suggests that Turing's work can partially explain the growth of "feathers, hair follicles, the branching pattern of lungs, and even the left-right asymmetry that puts the heart on the left side of the chest". In 2012, Sheth, et al. found that in mice, removal of Hox genes causes an increase in the number of digits without an increase in the overall size of the limb, suggesting that Hox genes control digit formation by tuning the wavelength of a Turing-type mechanism. Later papers were not available until Collected Works of A. M. Turing was published in 1992.
A study conducted in 2023 confirmed Turing's mathematical model hypothesis. Presented by the American Physical Society, the experiment involved growing chia seeds in even layers within trays, later adjusting the available moisture. Researchers experimentally tweaked the factors which appear in the Turing equations, and, as a result, patterns resembling those seen in natural environments emerged. This is believed to be the first time that experiments with living vegetation have verified Turing's mathematical insight.
Personal life
Treasure
In the 1940s, Turing became worried about losing his savings in the event of a German invasion. In order to protect it, he bought two silver bars weighing and worth £250 (in 2022, £8,000 adjusted for inflation, £48,000 at spot price) and buried them in a wood near Bletchley Park. Upon returning to dig them up, Turing found that he was unable to break his own code describing where exactly he had hidden them. This, along with the fact that the area had been renovated, meant that he never regained the silver.EngagementIn 1941, Turing proposed marriage to Hut 8 colleague Joan Clarke, a fellow mathematician and cryptanalyst, but their engagement was short-lived. After admitting his homosexuality to his fiancée, who was reportedly "unfazed" by the revelation, Turing decided that he could not go through with the marriage.
Homosexuality and indecency conviction
, formerly the Regal Cinema, pictured in 2006, outside of which Turning met Arnold Murray]]
In December 1951, Turing met Arnold Murray, a 19-year-old unemployed man. Turing was walking along Manchester's Oxford Road when he met Murray just outside the Regal Cinema and invited him to lunch. The two agreed to meet again and in January 1952 began an intimate relationship. On 23 January, Turing's house in Wilmslow was burgled. Murray told Turing that he and the burglar were acquainted, and Turing reported the crime to the police. During the investigation, he acknowledged a sexual relationship with Murray. Homosexual acts were criminal offences in the United Kingdom at that time, and both men were charged with "gross indecency" under Section 11 of the Criminal Law Amendment Act 1885. Initial committal proceedings for the trial were held on 27 February during which Turing's solicitor "reserved his defence", i.e., did not argue or provide evidence against the allegations. The proceedings were held at the Sessions House in Knutsford.
Turing was later convinced by the advice of his brother and his own solicitor, and he entered a plea of guilty. The case, Regina v. Turing and Murray, was brought to trial on 31 March 1952. Turing was convicted and given a choice between imprisonment and probation. His probation would be conditional on his agreement to undergo hormonal physical changes designed to reduce libido, known as "chemical castration". He accepted the option of injections of what was then called stilboestrol (now known as diethylstilbestrol or DES), a synthetic oestrogen; this feminization of his body was continued for the course of one year. The treatment rendered Turing impotent and caused breast tissue to form. In a letter, Turing wrote that "no doubt I shall emerge from it all a different man, but quite who I've not found out". Murray was given a conditional discharge.
Turing's conviction led to the removal of his security clearance and barred him from continuing with his cryptographic consultancy for the Government Communications Headquarters (GCHQ), the British signals intelligence agency that had evolved from GC&CS in 1946, though he kept his academic post. His trial took place only months after the defection to the Soviet Union of Guy Burgess and Donald Maclean, in summer 1951, after which the Foreign Office started to consider anyone known to be homosexual as a potential security risk.
Turing was denied entry into the United States after his conviction in 1952, but was free to visit other European countries. In the summer of 1952 he visited Norway which was more tolerant of homosexuals. Among the various men he met there was one named Kjell Carlson. Kjell intended to visit Turing in the UK but the authorities intercepted Kjell's postcard detailing his travel arrangements and were able to intercept and deport him before the two could meet. It was also during this time that Turing started consulting a psychiatrist, Dr Franz Greenbaum, with whom he got on well and who subsequently became a family friend. A post mortem was held that evening, which determined that he had died the previous day at age 41 with cyanide poisoning cited as the cause of death. When his body was discovered, an apple lay half-eaten beside his bed, and although the apple was not tested for cyanide, it was speculated that this was the means by which Turing had consumed a fatal dose.
Turing's brother, John, identified the body the following day and took the advice given by Dr. Greenbaum to accept the verdict of the inquest, as there was little prospect of establishing that the death was accidental. The inquest was held the following day, which determined the cause of death to be suicide. and his ashes were scattered in the gardens of the crematorium, just as his father's had been. Turing's mother was on holiday in Italy at the time of his death and returned home after the inquest. She never accepted the verdict of suicide. Furthermore, Turing had reportedly borne his legal setbacks and hormone treatment (which had been discontinued a year previously) "with good humour" and had shown no sign of despondency before his death. He even set down a list of tasks that he intended to complete upon returning to his office after the holiday weekend. Turing biographer Andrew Hodges theorised that Turing deliberately made his death look accidental in order to shield his mother from the knowledge that he had killed himself.
Doubts on the suicide thesis have been also cast by John W. Dawson Jr. who, in his review of Hodges' book, recalls "Turing's vulnerable position in the Cold War political climate" and points out that "Turing was found dead by a maid, who discovered him 'lying neatly in his bed'—hardly what one would expect of "a man fighting for life against the suffocation induced by cyanide poisoning." Turing had given no hint of suicidal inclinations to his friends and had made no effort to put his affairs in order.
Hodges and a later biographer, David Leavitt, have both speculated that Turing was re-enacting a scene from the Walt Disney film Snow White and the Seven Dwarfs (1937), his favourite fairy tale. Both men noted that (in Leavitt's words) he took "an especially keen pleasure in the scene where the Wicked Queen immerses her apple in the poisonous brew".
archives]]
It has also been suggested that Turing's belief in fortune-telling may have caused his depressed mood.
Government apology and pardon
In August 2009, British programmer John Graham-Cumming started a petition urging the British government to apologise for Turing's prosecution as a homosexual. The petition received more than 30,000 signatures. The prime minister, Gordon Brown, acknowledged the petition, releasing a statement on 10 September 2009 apologising and describing the treatment of Turing as "appalling":
In December 2011, William Jones and his member of Parliament, John Leech, created an e-petition requesting that the British government pardon Turing for his conviction of "gross indecency":
John Leech, the MP for Manchester Withington (2005–15), submitted several bills to Parliament and led a high-profile campaign to secure the pardon. Leech made the case in the House of Commons that Turing's contribution to the war made him a national hero and that it was "ultimately just embarrassing" that the conviction still stood. Leech continued to take the bill through Parliament and campaigned for several years, gaining the public support of numerous leading scientists, including Stephen Hawking. At the British premiere of a film based on Turing's life, The Imitation Game, the producers thanked Leech for bringing the topic to public attention and securing Turing's pardon. Leech is now regularly described as the "architect" of Turing's pardon and subsequently the Alan Turing Law which went on to secure pardons for 75,000 other men and women convicted of similar crimes.
On 26 July 2012, a bill was introduced in the House of Lords to grant a statutory pardon to Turing for offences under section 11 of the Criminal Law Amendment Act 1885, of which he was convicted on 31 March 1952. Late in the year in a letter to The Daily Telegraph, the physicist Stephen Hawking and 10 other signatories including the Astronomer Royal Lord Rees, President of the Royal Society Sir Paul Nurse, Lady Trumpington (who worked for Turing during the war) and Lord Sharkey (the bill's sponsor) called on Prime Minister David Cameron to act on the pardon request. The government indicated it would support the bill, and it passed its third reading in the House of Lords in October.
At the bill's second reading in the House of Commons on 29 November 2013, Conservative MP Christopher Chope objected to the bill, delaying its passage. The bill was due to return to the House of Commons on 28 February 2014, but before the bill could be debated in the House of Commons, the government elected to proceed under the royal prerogative of mercy. On 24 December 2013, Queen Elizabeth II signed a pardon for Turing's conviction for "gross indecency", with immediate effect. Announcing the pardon, Lord Chancellor Chris Grayling said Turing deserved to be "remembered and recognised for his fantastic contribution to the war effort" and not for his later criminal conviction. The Queen pronounced Turing pardoned in August 2014. It was only the fourth royal pardon granted since the conclusion of the Second World War. Pardons are normally granted only when the person is technically innocent, and a request has been made by the family or other interested party; neither condition was met in regard to Turing's conviction.
In September 2016, the government announced its intention to expand this retroactive exoneration to other men convicted of similar historical indecency offences, in what was described as an "Alan Turing law". The Alan Turing law is now an informal term for the law in the United Kingdom, contained in the Policing and Crime Act 2017, which serves as an amnesty law to retroactively pardon men who were cautioned or convicted under historical legislation that outlawed homosexual acts. The law applies in England and Wales.
On 19 July 2023, following an apology to LGBT veterans from the UK Government, Defence Secretary Ben Wallace suggested Turing should be honoured with a permanent statue on the fourth plinth of Trafalgar Square, describing Turing as "probably the greatest war hero, in my book, of the Second World War, [whose] achievements shortened the war, saved thousands of lives, helped defeat the Nazis. And his story is a sad story of a society and how it treated him."
See also
* Legacy of Alan Turing
* List of things named after Alan Turing
References
Notes
CitationsWorks cited
* | access-date 15 November 2010 | archive-date 17 February 2022 | archive-url https://web.archive.org/web/20220217145825/http://www.ellsbury.com/gne/gne-000.htm | url-status live }}
*
*
*
*
*
** in
*
*
*
*
*
*
*
*
Further reading
Articles
*
*
*
*
*
*
*
Books
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* (originally published in 1983); basis of the film The Imitation Game
*
*
*
*
* Turing's mother, who survived him by many years, wrote this 157-page biography of her son, glorifying his life. It was published in 1959, and so could not cover his war work. Scarcely 300 copies were sold (Sara Turing to Lyn Newman, 1967, Library of St John's College, Cambridge). The six-page foreword by Lyn Irvine includes reminiscences and is more frequently quoted. It was re-published by Cambridge University Press in 2012, to honour the centenary of his birth, and included a new foreword by Martin Davis, as well as a never-before-published memoir by Turing's older brother John F. Turing.
* (originally published in 1959 by W. Heffer & Sons, Ltd)
*
* This 1986 Hugh Whitemore play tells the story of Turing's life and death. In the original West End and Broadway runs, Derek Jacobi played Turing and he recreated the role in a 1997 television film based on the play made jointly by the BBC and WGBH, Boston. The play is published by Amber Lane Press, Oxford, ASIN: B000B7TM0Q
*
*
External links
* [http://purl.umn.edu/107493 Oral history interview with Nicholas C. Metropolis], Charles Babbage Institute, University of Minnesota. Metropolis was the first director of computing services at Los Alamos National Laboratory; topics include the relationship between Turing and John von Neumann
* [http://www.iwm.org.uk/history/how-alan-turing-cracked-the-enigma-code How Alan Turing Cracked The Enigma Code] Imperial War Museums
* [http://www.mathcomp.leeds.ac.uk/turing2012/ Alan Turing Year]
* [http://cie2012.eu/ CiE 2012: Turing Centenary Conference]
* [https://makingscience.royalsociety.org/s/rs/people/fst00117605 Science in the Making] Alan Turing's papers in the Royal Society's archives
* [http://www.turing.org.uk/ Alan Turing] site maintained by Andrew Hodges including a [https://web.archive.org/web/20180721235734/http://www.turing.org.uk/bio/part1.html short biography]
* [https://web.archive.org/web/20181012014022/http://www.alanturing.net/ AlanTuring.net – Turing Archive for the History of Computing] by Jack Copeland
* [https://turingarchive.kings.cam.ac.uk/ The Turing Digital Archive] – contains scans of some unpublished documents and material from the King's College, Cambridge archive
* [https://archiveshub.jisc.ac.uk/manchesteruniversity/data/gb133-tur/add Alan Turing Papers] – University of Manchester Library, Manchester
*
* [https://web.archive.org/web/20160104203150/http://oldshirburnian.org.uk/wp-content/uploads/2015/09/TURING-Alan-Mathison.pdf Sherborne School Archives] – holds papers relating to Turing's time at Sherborne School
* [https://oldshirburnian.org.uk/alan-turing-and-the-nature-of-spirit/ Alan Turing and the ‘Nature of Spirit’] (Old Shirburnian Society)
* [https://oldshirburnian.org.uk/alan-turing/ Alan Turing OBE, PhD, FRS (1912-1954)] (Old Shirburnian Society)
* [https://openplaques.org/people/368 Alan Turing plaques] recorded on openplaques.org
* [https://www.newscientist.com/people/alan-turing/ Alan Turing] archive on New Scientist
Category:1912 births
Category:1954 deaths
Category:1954 suicides
Category:20th-century atheists
Category:20th-century English LGBTQ people
Category:20th-century English mathematicians
Category:20th-century English philosophers
Category:Academics of the University of Manchester Institute of Science and Technology
Category:Academics of the University of Manchester
Category:Alumni of King's College, Cambridge
Category:Bayesian statisticians
Category:Bletchley Park people
Category:British anti-fascists
Category:British artificial intelligence researchers
Category:British cryptographers
Category:British people of World War II
Category:Castrated people
Category:Computability theorists
Category:Computer chess people
Category:Computer designers
Category:English atheists
Category:English computer scientists
Category:English gay sportsmen
Category:English inventors
Category:English LGBTQ scientists
Category:English logicians
Category:English male long-distance runners
Category:British male long-distance runners
Category:English people of Irish descent
Category:English people of Scottish descent
Category:Enigma machine
Category:Fellows of King's College, Cambridge
Category:Fellows of the Royal Society
Category:Foreign Office personnel of World War II
Category:Former Protestants
Category:Gay academics
Category:Gay scientists
Category:GCHQ people
Category:History of computing in the United Kingdom
Category:LGBTQ mathematicians
Category:LGBTQ philosophers
Category:LGBTQ track and field athletes
Category:LGBTQ people who died by suicide
Category:Officers of the Order of the British Empire
Category:People convicted for homosexuality in the United Kingdom
Category:People educated at Sherborne School
Category:People from Maida Vale
Category:People from Wilmslow
Category:People who have received posthumous pardons
Category:Princeton University alumni
Category:Recipients of British royal pardons
Category:Scientists of the National Physical Laboratory (United Kingdom)
Category:Suicides by cyanide poisoning
Category:Suicides in England
Category:Theoretical biologists
Category:British theoretical computer scientists | https://en.wikipedia.org/wiki/Alan_Turing | 2025-04-05T18:25:35.418682 |
1209 | Area | Area is the measure of a region's size on a surface. The area of a plane region or plane area refers to the area of a shape or planar lamina, while surface area refers to the area of an open surface or the boundary of a three-dimensional object. Area can be understood as the amount of material with a given thickness that would be necessary to fashion a model of the shape, or the amount of paint necessary to cover the surface with a single coat. It is the two-dimensional analogue of the length of a curve (a one-dimensional concept) or the volume of a solid (a three-dimensional concept).
Two different regions may have the same area (as in squaring the circle); by synecdoche, "area" sometimes is used to refer to the region, as in a "polygonal area".
The area of a shape can be measured by comparing the shape to squares of a fixed size. A shape with an area of three square metres would have the same area as three such squares. In mathematics, the unit square is defined to have area one, and the area of any other shape or surface is a dimensionless real number.
There are several well-known formulas for the areas of simple shapes such as triangles, rectangles, and circles. Using these formulas, the area of any polygon can be found by dividing the polygon into triangles. For shapes with curved boundary, calculus is usually required to compute the area. Indeed, the problem of determining the area of plane figures was a major motivation for the historical development of calculus.
For a solid shape such as a sphere, cone, or cylinder, the area of its boundary surface is called the surface area. Formulas for the surface areas of simple shapes were computed by the ancient Greeks, but computing the surface area of a more complicated shape usually requires multivariable calculus.
Area plays an important role in modern mathematics. In addition to its obvious importance in geometry and calculus, area is related to the definition of determinants in linear algebra, and is a basic property of surfaces in differential geometry. In analysis, the area of a subset of the plane is defined using Lebesgue measure, though not every subset is measurable if one supposes the axiom of choice. In general, area in higher mathematics is seen as a special case of volume for two-dimensional regions.
* For all S in M, .
* If S and T are in M then so are and , and also .
* If S and T are in M with then is in M and .
* If a set S is in M and S is congruent to T then T is also in M and .
* Every rectangle R is in M. If the rectangle has length h and breadth k then .
* Let Q be a set enclosed between two step regions S and T. A step region is formed from a finite union of adjacent rectangles resting on a common base, i.e. . If there is a unique number c such that for all such step regions S and T, then .
It can be proved that such an area function actually exists.Units
made of PVC pipe]]
Every unit of length has a corresponding unit of area, namely the area of a square with the given side length. Thus areas can be measured in square metres (m<sup>2</sup>), square centimetres (cm<sup>2</sup>), square millimetres (mm<sup>2</sup>), square kilometres (km<sup>2</sup>), square feet (ft<sup>2</sup>), square yards (yd<sup>2</sup>), square miles (mi<sup>2</sup>), and so forth.
* 1 hectare 100 ares 10,000 square metres = 0.01 square kilometres
Other uncommon metric units of area include the tetrad, the hectad, and the myriad.
The acre is also commonly used to measure land areas, where
* 1 acre 4,840 square yards 43,560 square feet.
An acre is approximately 40% of a hectare.
On the atomic scale, area is measured in units of barns, such that:
Some traditional South Asian units that have fixed value:
* 1 Killa = 1 acre
* 1 Ghumaon = 1 acre
* 1 Kanal 0.125 acre (1 acre 8 kanal)
* 1 Decimal = 48.4 square yards
* 1 Chatak 180 square feetHistoryCircle area
In the 5th century BCE, Hippocrates of Chios was the first to show that the area of a disk (the region enclosed by a circle) is proportional to the square of its diameter, as part of his quadrature of the lune of Hippocrates, but did not identify the constant of proportionality. Eudoxus of Cnidus, also in the 5th century BCE, also found that the area of a disk is proportional to its radius squared.
Subsequently, Book I of Euclid's Elements dealt with equality of areas between two-dimensional figures. The mathematician Archimedes used the tools of Euclidean geometry to show that the area inside a circle is equal to that of a right triangle whose base has the length of the circle's circumference and whose height equals the circle's radius, in his book Measurement of a Circle. (The circumference is 2r, and the area of a triangle is half the base times the height, yielding the area r<sup>2</sup> for the disk.) Archimedes approximated the value of (and hence the area of a unit-radius circle) with his doubling method, in which he inscribed a regular triangle in a circle and noted its area, then doubled the number of sides to give a regular hexagon, then repeatedly doubled the number of sides as the polygon's area got closer and closer to that of the circle (and did the same with circumscribed polygons).
Triangle area
Quadrilateral area
In the 7th century CE, Brahmagupta developed a formula, now known as Brahmagupta's formula, for the area of a cyclic quadrilateral (a quadrilateral inscribed in a circle) in terms of its sides. In 1842, the German mathematicians Carl Anton Bretschneider and Karl Georg Christian von Staudt independently found a formula, known as Bretschneider's formula, for the area of any quadrilateral.
General polygon area
The development of Cartesian coordinates by René Descartes in the 17th century allowed the development of the surveyor's formula for the area of any polygon with known vertex locations by Gauss in the 19th century.
Areas determined using calculus
The development of integral calculus in the late 17th century provided tools that could subsequently be used for computing more complicated areas, such as the area of an ellipse and the surface areas of various curved three-dimensional objects.
Area formulas
Polygon formulas
For a non-self-intersecting (simple) polygon, the Cartesian coordinates <math>(x_i, y_i)</math> (i=0, 1, ..., n-1) of whose n vertices are known, the area is given by the surveyor's formula:
:<math>A \frac{1}{2} \Biggl\vert \sum_{i 0}^{n - 1}( x_i y_{i + 1} - x_{i + 1} y_i) \Biggr\vert</math>
where when in-1, then i+1 is expressed as modulus n and so refers to 0.RectanglesThe most basic area formula is the formula for the area of a rectangle. Given a rectangle with length and width , the formula for the area is:
: lw}} (rectangle).
That is, the area of the rectangle is the length multiplied by the width. As a special case, as w}} in the case of a square, the area of a square with side length is given by the formula: as well as more complicated polygons.
Area of curved shapes
Circles
which rearrange to form an approximate parallelogram.]]
The formula for the area of a circle (more properly called the area enclosed by a circle or the area of a disk) is based on a similar method. Given a circle of radius , it is possible to partition the circle into sectors, as shown in the figure to the right. Each sector is approximately triangular in shape, and the sectors can be rearranged to form an approximate parallelogram. The height of this parallelogram is , and the width is half the circumference of the circle, or . Thus, the total area of the circle is :Area in calculus* The area between a positive-valued curve and the horizontal axis, measured between two values a and b (b is defined as the larger of the two values) on the horizontal axis, is given by the integral from a to b of the function that represents the curve:
<math displayblock>A\frac{(b^2-4ac)^{3/2}}{6a^2}=\frac{a}{6}(\beta-\alpha)^3,\qquad a\neq0.</math>
The above remains valid if one of the bounding functions is linear instead of quadratic.
Surface area of 3-dimensional figures
* Cone: <math>\pi r\left(r + \sqrt{r^2 + h^2}\right)</math>, where r is the radius of the circular base, and h is the height. That can also be rewritten as <math>\pi r^2 + \pi r l </math>
Relation of area to perimeter
The isoperimetric inequality states that, for a closed curve of length L (so the region it encloses has perimeter L) and for area A of the region that it encloses,
:<math>4\pi A \le L^2,</math>
and equality holds if and only if the curve is a circle. Thus a circle has the largest area of any closed figure with a given perimeter.
At the other extreme, a figure with given perimeter L could have an arbitrarily small area, as illustrated by a rhombus that is "tipped over" arbitrarily far so that two of its angles are arbitrarily close to 0° and the other two are arbitrarily close to 180°.
For a circle, the ratio of the area to the circumference (the term for the perimeter of a circle) equals half the radius r. This can be seen from the area formula πr<sup>2</sup> and the circumference formula 2πr.
The area of a regular polygon is half its perimeter times the apothem (where the apothem is the distance from the center to the nearest point on any side).
Fractals
Doubling the edge lengths of a polygon multiplies its area by four, which is two (the ratio of the new to the old side length) raised to the power of two (the dimension of the space the polygon resides in). But if the one-dimensional lengths of a fractal drawn in two dimensions are all doubled, the spatial content of the fractal scales by a power of two that is not necessarily an integer. This power is called the fractal dimension of the fractal.
Area bisectors
There are an infinitude of lines that bisect the area of a triangle. Three of them are the medians of the triangle (which connect the sides' midpoints with the opposite vertices), and these are concurrent at the triangle's centroid; indeed, they are the only area bisectors that go through the centroid. Any line through a triangle that splits both the triangle's area and its perimeter in half goes through the triangle's incenter (the center of its incircle). There are either one, two, or three of these for any given triangle.
Any line through the midpoint of a parallelogram bisects the area.
All area bisectors of a circle or other ellipse go through the center, and any chords through the center bisect the area. In the case of a circle they are the diameters of the circle.
Optimization
Given a wire contour, the surface of least area spanning ("filling") it is a minimal surface. Familiar examples include soap bubbles.
The question of the filling area of the Riemannian circle remains open.
The circle has the largest area of any two-dimensional object having the same perimeter.
A cyclic polygon (one inscribed in a circle) has the largest area of any polygon with a given number of sides of the same lengths.
A version of the isoperimetric inequality for triangles states that the triangle of greatest area among all those with a given perimeter is equilateral.
The ratio of the area of the incircle to the area of an equilateral triangle, <math>\frac{\pi}{3\sqrt{3}}</math>, is larger than that of any non-equilateral triangle.
The ratio of the area to the square of the perimeter of an equilateral triangle, <math>\frac{1}{12\sqrt{3}},</math> is larger than that for any other triangle.See also
* Brahmagupta quadrilateral, a cyclic quadrilateral with integer sides, integer diagonals, and integer area.
* Equiareal map
* Heronian triangle, a triangle with integer sides and integer area.
* List of triangle inequalities
* One-seventh area triangle, an inner triangle with one-seventh the area of the reference triangle.
:*Routh's theorem, a generalization of the one-seventh area triangle.
* Orders of magnitude—A list of areas by size.
* Derivation of the formula of a pentagon
* Planimeter, an instrument for measuring small areas, e.g. on maps.
* Area of a convex quadrilateral
* Robbins pentagon, a cyclic pentagon whose side lengths and area are all rational numbers.
References
External links | https://en.wikipedia.org/wiki/Area | 2025-04-05T18:25:35.479296 |
1210 | Astronomical unit | Au}}
or AU
| units1 = metric (SI) units
| inunits1
| units2 = imperial & US units
| inunits2
| units3 = astronomical units
| inunits3 <br/> <br/>
}}
The astronomical unit (symbol: au or AU) is a unit of length defined to be exactly equal to . Historically, the astronomical unit was conceived as the average Earth-Sun distance (the average of Earth's aphelion and perihelion), before its modern redefinition in 2012.
The astronomical unit is used primarily for measuring distances within the Solar System or around other stars. It is also a fundamental component in the definition of another unit of astronomical length, the parsec. One au is equivalent to 499 light-seconds to within 10 parts per million.
History of symbol usage
A variety of unit symbols and abbreviations have been in use for the astronomical unit. In a 1976 resolution, the International Astronomical Union (IAU) had used the symbol A to denote a length equal to the astronomical unit. In the non-normative Annex C to ISO 80000-3:2006 (later withdrawn), the symbol of the astronomical unit was also ua.
In 2012, the IAU, noting "that various symbols are presently in use for the astronomical unit", recommended the use of the symbol "au". In the 2014 revision and 2019 edition of the SI Brochure, the BIPM used the unit symbol "au". ISO 80000-3:2019, which replaces ISO 80000-3:2006, does not mention the astronomical unit.
Development of unit definition
Earth's orbit around the Sun is an ellipse. The semi-major axis of this elliptic orbit is defined to be half of the straight line segment that joins the perihelion and aphelion. The centre of the Sun lies on this straight line segment, but not at its midpoint. Because ellipses are well-understood shapes, measuring the points of its extremes defined the exact shape mathematically, and made possible calculations for the entire orbit as well as predictions based on observation. In addition, it mapped out exactly the largest straight-line distance that Earth traverses over the course of a year, defining times and places for observing the largest parallax (apparent shifts of position) in nearby stars. Knowing Earth's shift and a star's shift enabled the star's distance to be calculated. But all measurements are subject to some degree of error or uncertainty, and the uncertainties in the length of the astronomical unit only increased uncertainties in the stellar distances. Improvements in precision have always been a key to improving astronomical understanding. Throughout the twentieth century, measurements became increasingly precise and sophisticated, and ever more dependent on accurate observation of the effects described by Einstein's theory of relativity and upon the mathematical tools it used.
Improving measurements were continually checked and cross-checked by means of improved understanding of the laws of celestial mechanics, which govern the motions of objects in space. The expected positions and distances of objects at an established time are calculated (in au) from these laws, and assembled into a collection of data called an ephemeris. NASA Jet Propulsion Laboratory HORIZONS System provides one of several ephemeris computation services.
In 1976, to establish a more precise measure for the astronomical unit, the IAU formally adopted a new definition. Although directly based on the then-best available observational measurements, the definition was recast in terms of the then-best mathematical derivations from celestial mechanics and planetary ephemerides. It stated that "the astronomical unit of length is that length (A) for which the Gaussian gravitational constant (k) takes the value when the units of measurement are the astronomical units of length, mass and time". Equivalently, by this definition, one au is "the radius of an unperturbed circular Newtonian orbit about the sun of a particle having infinitesimal mass, moving with an angular frequency of "; or alternatively that length for which the heliocentric gravitational constant (the product G) is equal to ()<sup>2</sup> au<sup>3</sup>/d<sup>2</sup>, when the length is used to describe the positions of objects in the Solar System.
Subsequent explorations of the Solar System by space probes made it possible to obtain precise measurements of the relative positions of the inner planets and other objects by means of radar and telemetry. As with all radar measurements, these rely on measuring the time taken for photons to be reflected from an object. Because all photons move at the speed of light in vacuum, a fundamental constant of the universe, the distance of an object from the probe is calculated as the product of the speed of light and the measured time. However, for precision the calculations require adjustment for things such as the motions of the probe and object while the photons are transiting. In addition, the measurement of the time itself must be translated to a standard scale that accounts for relativistic time dilation. Comparison of the ephemeris positions with time measurements expressed in Barycentric Dynamical Time (TDB) leads to a value for the speed of light in astronomical units per day (of ). By 2009, the IAU had updated its standard measures to reflect improvements, and calculated the speed of light at (TDB).
In 1983, the CIPM modified the International System of Units (SI) to make the metre defined as the distance travelled in a vacuum by light in 1 / . This replaced the previous definition, valid between 1960 and 1983, which was that the metre equalled a certain number of wavelengths of a certain emission line of krypton-86. (The reason for the change was an improved method of measuring the speed of light.) The speed of light could then be expressed exactly as c<sub>0</sub> , a standard also adopted by the IERS numerical standards. From this definition and the 2009 IAU standard, the time for light to traverse an astronomical unit is found to be τ<sub>A</sub> , which is slightly more than 8 minutes 19 seconds. By multiplication, the best IAU 2009 estimate was A c<sub>0</sub>τ<sub>A</sub> , based on a comparison of Jet Propulsion Laboratory and IAA–RAS ephemerides.
In 2006, the BIPM reported a value of the astronomical unit as . The new definition recognizes as a consequence that the astronomical unit has reduced importance, limited in use to a convenience in some applications. As such, a distance within the Solar System without specifying the frame of reference for the measurement is problematic. The 1976 definition of the astronomical unit was incomplete because it did not specify the frame of reference in which to apply the measurement, but proved practical for the calculation of ephemerides: a fuller definition that is consistent with general relativity was proposed, and "vigorous debate" ensued until August 2012 when the IAU adopted the current definition of 1 astronomical unit = metres.
The astronomical unit is typically used for stellar system scale distances, such as the size of a protostellar disk or the heliocentric distance of an asteroid, whereas other units are used for other distances in astronomy. The astronomical unit is too small to be convenient for interstellar distances, where the parsec and light-year are widely used. The parsec (parallax arcsecond) is defined in terms of the astronomical unit, being the distance of an object with a parallax of . The light-year is often used in popular works, but is not an approved non-SI unit and is rarely used by professional astronomers.
When simulating a numerical model of the Solar System, the astronomical unit provides an appropriate scale that minimizes (overflow, underflow and truncation) errors in floating point calculations.
History
The book On the Sizes and Distances of the Sun and Moon, which is ascribed to Aristarchus, says the distance to the Sun is 18 to 20 times the distance to the Moon, whereas the true ratio is about . The latter estimate was based on the angle between the half-moon and the Sun, which he estimated as (the true value being close to ). Depending on the distance that Albert van Helden assumes Aristarchus used for the distance to the Moon, his calculated distance to the Sun would fall between and Earth radii.
Hipparchus gave an estimate of the distance of Earth from the Sun, quoted by Pappus as equal to 490 Earth radii. According to the conjectural reconstructions of Noel Swerdlow and G. J. Toomer, this was derived from his assumption of a "least perceptible" solar parallax of .
A Chinese mathematical treatise, the Zhoubi Suanjing (), shows how the distance to the Sun can be computed geometrically, using the different lengths of the noontime shadows observed at three places li apart and the assumption that Earth is flat.
According to Eusebius in the Praeparatio evangelica (Book XV, Chapter 53), Eratosthenes found the distance to the Sun to be "σταδιων μυριαδας τετρακοσιας και οκτωκισμυριας" (literally myriads ten hundreds and eighty thousands of stadia, where in the Greek text the numerals myriads, ten hundreds and eighty thousands are all accusative plural, while stadia is the genitive plural of stadion.) This has been translated either as ( × 400) + }}) stadia (1903 translation by Edwin Hamilton Gifford), or as ( × (400 + )}}) stadia (edition of Édouard des Places, dated 1974–1991). Using the Greek stadium of 185 to 190 metres, the former translation comes to to <!--Depends on if 185 m or 190 m is used-->, which is far too low, whereas the second translation comes to 148.7 to 152.8 billion metres (accurate within 2%).
{|class="wikitable"
! rowspan=2 | Distance to the Sun<br/>estimated by
! colspan=2 | Estimate
! rowspan=2 | In au
! rowspan=2 |Percentage error
|-
! Solar<br/>parallax
! Earth<br/>radii
|-
| Aristarchus
| alignleft | –
| align=right | –
| align=center | –
| −98.9% to −98%
|-
| Archimedes
| alignleft |
| align=right |
| align=center |
| −57.4%
|-
| Hipparchus
| alignleft |
| align=right |
| align=center |
| −97.9%
|-
| Posidonius
| alignleft |
| align=right |
| align=center |
| −57.4%
|-
| Ptolemy
| align=left | 2′ 50″
| align=right |
| align=center |
| −94.8%
|-
| Godefroy Wendelin
| alignleft |
| align=right |
| align=center |
| −40.3%
|-
| Jeremiah Horrocks
| alignleft |
| align=right |
| align=center |
| −40.3%
|-
| Christiaan Huygens
| alignleft |
| alignright |
| align=center |
| +6.8%
|-
| Cassini & Richer
| alignleft |
| align=right |
| align=center |
| −7.5%
|-
| Flamsteed
| alignleft |
| align=right |
| align=center |
| −7.5%
|-
| Jérôme Lalande
| alignleft |
| align=right |
| align=center |
| +2.3%
|-
| Simon Newcomb
| alignleft |
| align=right |
| align=center |
| −0.06%
|-
| Arthur Hinks
| alignleft |
| align=right |
| align=center |
| −0.15%
|-
| H. Spencer Jones
| alignleft |
| align=right |
| align=center |
| +0.05%
|-
| Modern astronomy
| alignleft|
| align=right |
| align=center |
|}
In the 2nd century CE, Ptolemy estimated the mean distance of the Sun as times Earth's radius. To determine this value, Ptolemy started by measuring the Moon's parallax, finding what amounted to a horizontal lunar parallax of 1° 26′, which was much too large. He then derived a maximum lunar distance of Earth radii. Because of cancelling errors in his parallax figure, his theory of the Moon's orbit, and other factors, this figure was approximately correct. He then measured the apparent sizes of the Sun and the Moon and concluded that the apparent diameter of the Sun was equal to the apparent diameter of the Moon at the Moon's greatest distance, and from records of lunar eclipses, he estimated this apparent diameter, as well as the apparent diameter of the shadow cone of Earth traversed by the Moon during a lunar eclipse. Given these data, the distance of the Sun from Earth can be trigonometrically computed to be Earth radii. This gives a ratio of solar to lunar distance of approximately 19, matching Aristarchus's figure. Although Ptolemy's procedure is theoretically workable, it is very sensitive to small changes in the data, so much so that changing a measurement by a few per cent can make the solar distance infinite. Later in Europe, Copernicus and Tycho Brahe also used comparable figures ( and Earth radii), and so Ptolemy's approximate Earth–Sun distance survived through the 16th century.
Johannes Kepler was the first to realize that Ptolemy's estimate must be significantly too low (according to Kepler, at least by a factor of three) in his Rudolphine Tables (1627). Kepler's laws of planetary motion allowed astronomers to calculate the relative distances of the planets from the Sun, and rekindled interest in measuring the absolute value for Earth (which could then be applied to the other planets). The invention of the telescope allowed far more accurate measurements of angles than is possible with the naked eye. Flemish astronomer Godefroy Wendelin repeated Aristarchus’ measurements in 1635, and found that Ptolemy's value was too low by a factor of at least eleven.
A somewhat more accurate estimate can be obtained by observing the transit of Venus. By measuring the transit in two different locations, one can accurately calculate the parallax of Venus and from the relative distance of Earth and Venus from the Sun, the solar parallax (which cannot be measured directly due to the brightness of the Sun). Jeremiah Horrocks had attempted to produce an estimate based on his observation of the 1639 transit (published in 1662), giving a solar parallax of , similar to Wendelin's figure. The solar parallax is related to the Earth–Sun distance as measured in Earth radii by
: <math>A = \cot\alpha \approx 1\,\textrm{radian}/\alpha.</math>
The smaller the solar parallax, the greater the distance between the Sun and Earth: a solar parallax of is equivalent to an Earth–Sun distance of Earth radii.
Christiaan Huygens believed that the distance was even greater: by comparing the apparent sizes of Venus and Mars, he estimated a value of about Earth radii, Another colleague, Ole Rømer, discovered the finite speed of light in 1676: the speed was so great that it was usually quoted as the time required for light to travel from the Sun to the Earth, or "light time per unit distance", a convention that is still followed by astronomers today.
A better method for observing Venus transits was devised by James Gregory and published in his Optica Promata (1663). It was strongly advocated by Edmond Halley and was applied to the transits of Venus observed in 1761 and 1769, and then again in 1874 and 1882. Transits of Venus occur in pairs, but less than one pair every century, and observing the transits in 1761 and 1769 was an unprecedented international scientific operation including observations by James Cook and Charles Green from Tahiti. Despite the Seven Years' War, dozens of astronomers were dispatched to observing points around the world at great expense and personal danger: several of them died in the endeavour. The various results were collated by Jérôme Lalande to give a figure for the solar parallax of . Karl Rudolph Powalky had made an estimate of in 1864.
{| class"wikitable" style"float:right; margin:0 0 0 0.5em;"
|-
! Date
! Method
! A/Gm
! Uncertainty
|-
| 1895
| aberration
|
|
|-
| 1941
| parallax
|
|
|-
| 1964
| radar
|
|
|-
| 1976
| telemetry
|
|
|-
| 2009
| telemetry
|
|
|}
Another method involved determining the constant of aberration. Simon Newcomb gave great weight to this method when deriving his widely accepted value of for the solar parallax (close to the modern value of ), although Newcomb also used data from the transits of Venus. Newcomb also collaborated with A. A. Michelson to measure the speed of light with Earth-based equipment; combined with the constant of aberration (which is related to the light time per unit distance), this gave the first direct measurement of the Earth–Sun distance in metres. Newcomb's value for the solar parallax (and for the constant of aberration and the Gaussian gravitational constant) were incorporated into the first international system of astronomical constants in 1896, which remained in place for the calculation of ephemerides until 1964. The name "astronomical unit" appears first to have been used in 1903.
The discovery of the near-Earth asteroid 433 Eros and its passage near Earth in 1900–1901 allowed a considerable improvement in parallax measurement. Another international project to measure the parallax of 433 Eros was undertaken in 1930–1931.
Direct radar measurements of the distances to Venus and Mars became available in the early 1960s. Along with improved measurements of the speed of light, these showed that Newcomb's values for the solar parallax and the constant of aberration were inconsistent with one another. Developments
es (distances in the image are not to scale)]]
The unit distance (the value of the astronomical unit in metres) can be expressed in terms of other astronomical constants:
:<math>A^3 = \frac{G M_\odot D^2}{k^2},</math>
where is the Newtonian constant of gravitation, is the solar mass, is the numerical value of Gaussian gravitational constant and is the time period of one day. so the orbits of the planets are steadily expanding outward from the Sun. This has led to calls to abandon the astronomical unit as a unit of measurement.
As the speed of light has an exact defined value in SI units and the Gaussian gravitational constant is fixed in the astronomical system of units, measuring the light time per unit distance is exactly equivalent to measuring the product × in SI units. Hence, it is possible to construct ephemerides entirely in SI units, which is increasingly becoming the norm.
A 2004 analysis of radiometric measurements in the inner Solar System suggested that the secular increase in the unit distance was much larger than can be accounted for by solar radiation, + metres per century.
The measurements of the secular variations of the astronomical unit are not confirmed by other authors and are quite controversial.
Furthermore, since 2010, the astronomical unit has not been estimated by the planetary ephemerides. Examples
The following table contains some distances given in astronomical units. It includes some examples with distances that are normally not given in astronomical units, because they are either too short or far too long. Distances normally change over time. Examples are listed by increasing distance.
{| class="wikitable sortable"
! width= 100 | Object or length
! Length ordistancein au
! width50 class"unsortable"| Range
! class="unsortable" | Comment and reference point
! width25 class"unsortable" | Refs
|- style="background-color: #e2e2e2"
| Light-second
| align=right|
| —
| Distance light travels in one second
| —
|-
| Lunar distance
| align=right|
| —
| Average distance from Earth (which the Apollo missions took about 3 days to travel)
| —
|- style="background-color: #e2e2e2"
|Solar radius
| align=right|
| —
| Radius of the Sun (, , a hundred times the radius of Earth or ten times the average radius of Jupiter)
| —
|- style="background-color: #e2e2e2"
| Light-minute
| align=right|
| —
| Distance light travels in one minute
| —
|-
| Mercury
| align=right|
| —
| Average distance from the Sun
| —
|-
| Venus
| align=right|
| —
| Average distance from the Sun
| —
|-
|Earth
| align=right|
| —
|Average distance of Earth's orbit from the Sun (sunlight travels for 8 minutes and 19 seconds before reaching Earth)
| —
|-
| Mars
| align=right|
| —
| Average distance from the Sun
| —
|-
| Jupiter
| align=right|
| —
| Average distance from the Sun
| —
|- style="background-color: #e2e2e2"
| Light-hour
| align=right|
| —
| Distance light travels in one hour
| —
|-
| Saturn
| align=right|
| —
| Average distance from the Sun
| —
|-
| Uranus
| align=right|
| —
| Average distance from the Sun
| —
|-
| Kuiper belt
| align=right|
| —
| align=left | Inner edge begins at approximately 30 au
|
|-
| Neptune
| align=right|
| —
| Average distance from the Sun
| —
|-
| Eris
| align=right|
| —
| Average distance from the Sun
| —
|-
|Voyager 2
| align=right|
| —
| Distance from the Sun in October 2024
|
|-
| Voyager 1
| align=right|
| —
| Distance from the Sun in October 2024
|
|-
| Proxima Centauri
| align=right|
| ± 126
| Distance to the nearest star to the Solar System
| —
|-
| Galactic Centre of the Milky Way
| align=right|
| —
| Distance from the Sun to the centre of the Milky Way
| —
|-
! colspan5 style"font-weight: normal; font-size: 0.9em; text-align: left; padding: 6px 2px 4px 4px" | Note: Figures in this table are generally rounded estimates, often rough estimates, and may considerably differ from other sources. Table also includes other units of length for comparison.
|}
See also
* Orders of magnitude (length)
References
Further reading
<!-- Cite templates used in further reading section because it more closely resembles format for reference lists used in most publications. -->
*
External links
* [https://www.iau.org/public_press/themes/measuring/ The IAU and astronomical units]
* [https://web.archive.org/web/20070216041250/http://www.iau.org/Units.234.0.html Recommendations concerning Units] (HTML version of the IAU Style Manual)
* [http://www.sil.si.edu/exhibitions/chasing-venus/intro.htm Chasing Venus, Observing the Transits of Venus]
* [http://www.transitofvenus.org/ Transit of Venus]
Category:Celestial mechanics
Unit
Category:Units of length | https://en.wikipedia.org/wiki/Astronomical_unit | 2025-04-05T18:25:35.523481 |
1212 | Artist | Singer}}
}}
at work at St Justinian, Wales, 2021]]
An artist is a person engaged in an activity related to creating art, practicing the arts, or demonstrating an art. The most common usage (in both everyday speech and academic discourse) refers to a practitioner in the visual arts only.
However, the term is also often used in the entertainment business to refer to musicians and other performers. Artiste (French) is a variant used in English in this context, but this use has become rare. The use of the term "artist" to describe writers is valid, but less common, and mostly restricted to contexts such as critics' reviews; "author" is generally used instead.
Dictionary definitions
The Oxford English Dictionary defines the older, broader meanings of the word "artist":
* A learned person or Master of Arts
* One who pursues a practical science, traditionally medicine, astrology, alchemy, chemistry
* A follower of a pursuit in which skill comes by study or practice
* A follower of a manual art, such as a mechanic
* One who makes their craft a fine art
* One who cultivates one of the fine arts – traditionally the arts presided over by the muses
History of the term
, Goethe in the Roman Campagna, 1787 – portrait of Johann Wolfgang von Goethe, a German author known for his works of poetry, drama, and prose, on philosophy, the visual arts, and science]]
The Greek word , often translated as "art", implies mastery of any sort of craft. The adjectival Latin form of the word, , became the source of the English words technique, technology, and technical.
In Greek culture, each of the nine Muses oversaw a different field of human creation:
* Calliope (the 'beautiful of speech'): chief of the muses and muse of epic or heroic poetry
* Clio (the 'glorious one'): muse of history
* Erato (the 'amorous one'): muse of love or erotic poetry, lyrics, and marriage songs
* Euterpe (the 'well-pleasing'): muse of music and lyric poetry
* Melpomene (the 'chanting one'): muse of tragedy
* Polyhymnia or Polymnia (the '[singer] of many hymns'): muse of sacred song, oratory, lyric, singing, and rhetoric
* Terpsichore (the '[one who] delights in dance'): muse of choral song and dance
* Thalia (the 'blossoming one'): muse of comedy and bucolic poetry
* Urania (the 'celestial one'): muse of astronomy
No muse was identified with the visual arts of painting and sculpture. In ancient Greece, sculptors and painters were held in low regard, the work often performed by slaves and mostly regarded as mere manual labour.
The word art derives from the Latin "" (stem art-), which, although literally defined means "skill method" or "technique", also conveys a connotation of beauty.
During the Middle Ages the word artist already existed in some countries such as Italy, but the meaning was something resembling craftsman, while the word artisan was still unknown. An artist was someone able to do a work better than others, so the skilled excellency was underlined, rather than the activity field. In this period, some "artisanal" products (such as textiles) were much more precious and expensive than paintings or sculptures.
The first division into major and minor arts dates back at least to the works of Leon Battista Alberti (1404–1472): De re aedificatoria, De statua, De pictura, which focused on the importance of the intellectual skills of the artist rather than the manual skills (even if in other forms of art there was a project behind).
With the academies in Europe (second half of 16th century) the gap between fine and applied arts was definitely set.
Many contemporary definitions of "artist" and "art" are highly contingent on culture, resisting aesthetic prescription; in the same way, the features constituting beauty and the beautiful cannot be standardized easily without moving into kitsch.
Training and employment
The US Bureau of Labor Statistics classifies many visual artists as either craft artists or fine artists. A craft artist makes handmade functional works of art, such as pottery or clothing. A fine artist makes paintings, illustrations (such as book illustrations or medical illustrations), sculptures, or similar artistic works primarily for their aesthetic value.
The main source of skill for both craft artists and fine artists is long-term repetition and practice.<ref name=":0" /> Many fine artists have studied their art form at university, and some have a master's degree in fine arts. Artists may also study on their own or receive on-the-job training from an experienced artist.
The number of available jobs as an artist is increasing more slowly than in other fields.<ref name=":0" /> About half of US artists are self-employed. Others work in a variety of industries. For example, a pottery manufacturer will employ craft artists, and book publishers will hire illustrators.
In the US, fine artists have a median income of approximately US$50,000 per year, and craft artists have a median income of approximately US$33,000 per year.<ref name":0" /> This compares to US$61,000 for all art-related fields, including related jobs such as graphic designers, multimedia artists, animators, and fashion designers.<ref name":0" /> Many artists work part-time as artists and hold a second job.<ref name":0" />See also
* Art history
* Arts by region
* Artist in Residence
* Humanities
* List of painters by name
* List of painters
* List of photographers
* List of composers
* List of sculptors
* Mathematics and art
* Starving artist
* Tattoo artist
* Tortured artist
References
Works cited
}}
* P.Galloni, Il sacro artefice. Mitologie degli artigiani medievali, Laterza, Bari, 1998
* C. T. Onions (1991). The Shorter Oxford English Dictionary. Clarendon Press Oxford.
External links
*
Category:Aesthetics
Category:Art occupations
Category:Artisans
Category:Arts-related lists
Category:Humanities occupations | https://en.wikipedia.org/wiki/Artist | 2025-04-05T18:25:35.547062 |
1213 | Actaeon | by Titian (1556–59)]]
Actaeon (; Aktaiōn), in Greek mythology, was the son of the priestly herdsman Aristaeus and Autonoe in Boeotia, and a famous Theban hero. Through his mother he was a member of the ruling House of Cadmus. Like Achilles, in a later generation, he was trained by the centaur Chiron.
He fell to the fatal wrath of Artemis (later his myth was attached to her Roman counterpart Diana), but the surviving details of his transgression vary: "the only certainty is in what Aktaion suffered, his pathos, and what Artemis did: the hunter became the hunted; he was transformed into a stag, and his raging hounds, struck with a 'wolf's frenzy' (Lyssa), tore him apart as they would a stag."
The many depictions both in ancient art and in the Renaissance and post-Renaissance art normally show either the moment of transgression and transformation, or his death by his own hounds.
Story
|left]]
Among others, John Heath has observed, "The unalterable kernel of the tale was a hunter's transformation into a deer and his death in the jaws of his hunting dogs. But authors were free to suggest different motives for his death." In the version that was offered by the Hellenistic poet Callimachus, which has become the standard setting, Artemis was bathing in the woods when the hunter Actaeon stumbled across her, thus seeing her naked. He stopped and stared, amazed at her ravishing beauty. Once seen, Artemis got revenge on Actaeon: she forbade him speech – if he tried to speak, he would be changed into a stag – for the unlucky profanation of her virginity's mystery.
by Jean Mignon, 430 x 574 mm, 1550s?, without its very elaborate frame. Actaeon is shown three times, finally being killed by his hounds.
with frame]]
Upon hearing the call of his hunting party, he cried out to them and immediately transformed. At this, he fled deep into the woods, and doing so he came upon a pond and, seeing his reflection, groaned. His own hounds then turned upon him and pursued him, not recognizing him. In an endeavour to save himself, he raised his eyes (and would have raised his arms, had he had them) toward Mount Olympus. The gods did not heed his desperation, and he was torn to pieces. An element of the earlier myth made Actaeon the familiar hunting companion of Artemis, no stranger. In an embroidered extension of the myth, the hounds were so upset with their master's death, that Chiron made a statue so lifelike that the hounds thought it was Actaeon.
There are various other versions of his transgression: The Hesiodic Catalogue of Women and pseudo-Apollodoran Bibliotheke state that his offense was that he was a rival of Zeus for Semele, his mother's sister, whereas in Euripides' Bacchae he has boasted that he is a better hunter than Artemis:
{|
|-
|
:
:
:
:
|
:Look at Actaeon's wretched fate
:who by the man-eating hounds he had raised,
:was torn apart, better at hunting
:than Artemis he had boasted to be, in the meadows.
|}
's Bath of Diana (1558–59) Actaeon's passing on horseback at left and mauling as a stag at right is incidental to the three female nudes.]]
Further materials, including fragments that belong with the Hesiodic Catalogue of Women and at least four Attic tragedies, including a Toxotides of Aeschylus, have been lost. Diodorus Siculus (4.81.4), in a variant of Actaeon's hubris that has been largely ignored, has it that Actaeon wanted to marry Artemis. Other authors say the hounds were Artemis' own; some lost elaborations of the myth seem to have given them all names and narrated their wanderings after his loss. A number of ancient Greek vases depicting the metamorphosis and death of Actaeon include the goddess Lyssa in the scene, infecting his dogs with rabies and setting them against him.
According to the Latin version of the story told by the Roman Ovid having accidentally seen Diana (Artemis) on Mount Cithaeron while she was bathing, he was changed by her into a stag, and pursued and killed by his fifty hounds. This version also appears in Callimachus' Fifth Hymn, as a mythical parallel to the blinding of Tiresias after he sees Athena bathing.
<!--a confusion with Aristaeus, apparently:His statue was often set up on rocks and mountains as a protection against excessive heat. The myth itself probably represents the destruction of vegetation during the fifty Dog Days.-->
The literary testimony of Actaeon's myth is largely lost, but Lamar Ronald Lacy, deconstructing the myth elements in what survives and supplementing it by iconographic evidence in late vase-painting, made a plausible reconstruction of an ancient Actaeon myth that Greek poets may have inherited and subjected to expansion and dismemberment. His reconstruction opposes a too-pat consensus that has an archaic Actaeon aspiring to Semele, a classical Actaeon boasting of his hunting prowess and a Hellenistic Actaeon glimpsing Artemis' bath. Lacy identifies the site of Actaeon's transgression as a spring sacred to Artemis at Plataea where Actaeon was a hero archegetes ("hero-founder") The righteous hunter, the companion of Artemis, seeing her bathing naked in the spring, was moved to try to make himself her consort, as Diodorus Siculus noted, and was punished, in part for transgressing the hunter's "ritually enforced deference to Artemis" (Lacy 1990:42).Names of dogs {| class"wikitable"
|+List of Actaeon's dogs
! rowspan="3" |Dogs
! colspan="4" |Source
! rowspan="3" |Consorts
! colspan="4" |Source
|-
| rowspan="2" |Apollodorus
| rowspan="2" |Ovid
! colspan="2" |Hyginus
| rowspan="2" |Apollodorus
| rowspan="2" |Ovid
! colspan="2" |Hyginus
|-
|Ovid
|Other author
|Ovid
|Other author
|-
|Acamas
|
|
|
|✓
|Aello (Storm)
|
|✓
|✓
|
|-
|Aethon
|
|
|
|✓
|Alce (Stout)
|
|✓
|✓
|
|-
|Agrius
|
|
|
|✓
|Agre (Chaser)
|
|✓
|✓
|
|-
|Amarynthus
|✓
|
|
|
|Arcena
|✓
|
|
|
|-
|Arcas
|
|
|?
|
|Arethusa
|
|
|
|✓
|-
|Argiodus (Towser)
|
|✓
|✓
|
|Argo
|
|
|
|✓
|-
|Asbolos (Sooty)
|
|✓
|✓
|
|Aura
|
|
|?
|
|-
|Balius (Dappled)
|✓
|
|
|
|Canace (Barker)
|
|✓
|✓
|
|-
|Borax
|
|
|
|✓
|Chediaetros*
|
|
|
|✓
|-
|Bores
|✓
|
|
|
|Cyllo
|
|
|
|✓
|-
|Boreas
|
|
|
|✓
|Dinomache
|
|
|
|✓
|-
|Charops
|
|
|
|✓
|Dioxippe
|
|
|
|✓
|-
|Corus
|
|
|
|✓
|Echione
|
|
|
|✓
|-
|Cyllopodes
|
|
|
|✓
|Gorgo
|
|
|
|✓
|-
|Cyprius
|
|
|?
|
|Harpyia (Harpy)
|
|✓
|✓
|✓
|-
|Dorceus (Quicksight)
|
|✓
|✓
|
|Lachne (Bristle)
|
|✓
|✓
|
|-
|Draco
|
|
|
|✓
|Lacaena
|
|
|
|✓
|-
|Dromas (Racer)
|
|✓
|✓
|
|Leaena
|
|
|
|✓
|-
|Dromius
|
|
|
|✓
|Lycisca (Wolfet)
|
|✓
|✓
|
|-
|Echnobas
|
|
|?
|
|Lynceste
|
|
|
|✓
|-
|Elion
|
|
|?
|
|Melanchaetes (Blackmane)
|
|✓
|✓
|
|-
|Gnosius
|
|
|?
|
|Nape (Wildwood)
|
|✓
|✓
|
|-
|Eudromus
|
|
|
|✓
|Ocydrome
|
|
|
|✓
|-
|Haemon
|
|
|
|✓
|Ocypete
|
|
|
|✓
|-
|Harpalicus
|
|
|
|✓
|Oresitrophos (Rover)
|
|✓
|✓
|
|-
|Harpalos (Snap)
|
|✓
|✓
|
|Orias
|
|
|
|✓
|-
|Hylactor (Babbler)
|
|✓
|✓
|
|Oxyrhoe
|
|
|
|✓
|-
|Hylaeus (Woodranger)
|
|✓
|✓
|
|Poemenis (Shepherdess)
|
|✓
|✓
|
|-
|Ichneus
|
|
|
|✓
|Sagnos*
|
|
|
|
|-
|Ichnobates (Tracer)
|
|✓
|✓
|
|Sticte (Spot)
|
|✓
|✓
|
|-
|Labros (Wildtooth)
|
|✓
|✓
|
|Theriope
|
|
|
|✓
|-
|Lacon
|
|✓
|✓
|
|Theriphone
|
|
|
|✓
|-
|Ladon
|
|✓
|✓
|
|Therodamas (Savage)
|
|✓
|✓
|
|-
|Laelaps (Hunter)
|
|✓
|✓
|
|Therodanapis
|
|
|?
|
|-
|Lampus
|
|
|
|✓
|Urania
|
|
|
|✓
|-
|Leon
|
|
|
|✓
|Volatos*
|
|
|
|✓
|-
|Leucon (Blanche)
|
|✓
|✓
|
!Number
!1
!13
!15
!20
|-
|Lynceus
|✓
|
|
|✓
| colspan="5" |
|-
|Machimus
|
|
|
|✓
! colspan="5" |
|-
|Melampus (Blackfoot)
|
|✓
|✓
|✓
| colspan="5" |
|-
|Melaneus (Blackcoat)
|
|✓
|✓
|
! colspan="5" |
|-
|Obrimus
|
|
|
|✓
| colspan="5" |
|-
|Ocydromus
|
|
|
|✓
! colspan="5" |
|-
|Ocythous
|
|
|
|✓
| colspan="5" |
|-
|Omargus
|✓
|
|
|
! colspan="5" |
|-
|Nebrophonos (Killbuck)
|
|✓
|✓
|
| colspan="5" |
|-
|Oribasos (Surefoot)
|
|✓
|✓
|
! colspan="5" |
|-
|Pachylus
|
|
|
|✓
| colspan="5" |
|-
|Pamphagos (Glutton)
|
|✓
|✓
|
! colspan="5" |
|-
|Pterelas (Wingfoot)
|
|✓
|✓
|
| colspan="5" |
|-
|Spartus
|✓
|
|
|
! colspan="5" |
|-
|Stilbon
|
|
|
|✓
| colspan="5" |
|-
|Syrus
|
|
|
|✓
! colspan="5" |
|-
|Theron (Tempest)
|
|✓
|✓
|
| colspan="5" |
|-
|Thoos (Quickfoot)
|
|✓
|✓
|
! colspan="5" |
|-
|Tigris (Tiger)
|
|✓
|✓
|
| colspan="5" |
|-
|Zephyrus
|
|
|
|✓
! colspan="5" |
|-
!Number
!6
!22
!27
!26
| colspan="5" |
|}
Notes:
* Names of dogs were verified to correspond to the list given in Ovid's text where the names were already transliterated.
* ? = Seven listed names of dogs in Hyginus' Fabulae, was probably misread or misinterpreted by later authors because it does not correspond to the exact numbers and names given by Ovid:
** Arcas signifies Arcadia, place of origin of three dogs namely Pamphagos, Dorceus and Oribasus
** Cyprius means Cyprus, where the dogs Lysisca and Harpalos originated
** Gnosius can be read as Knossus in Crete, which signify that Ichnobates was a Knossian breed of dog
** Echnobas, Elion, Aura and Therodanapis were probably place names or adjectives defining the characteristics of dogs
The "bed of Actaeon"
In the second century AD, the traveller Pausanias was shown a spring on the road in Attica leading to Plataea from Eleutherae, just beyond Megara "and a little farther on a rock. It is called the bed of Actaeon, for it is said that he slept thereon when weary with hunting and that into this spring he looked while Artemis was bathing in it."
"As to Actæon there is a tradition at Orchomenus, that a spectre which sat on a stone injured their land. And when they consulted the oracle at Delphi, the god bade them bury in the ground whatever remains they could find of Actæon: he also bade them to make a brazen copy of the spectre and fasten it with iron to the stone. This I have myself seen, and they annually offer funeral rites to Actæon."
Parallels in Akkadian and Ugarit poems
In the standard version of the Epic of Gilgamesh (tablet vi) there is a parallel, in the series of examples Gilgamesh gives Ishtar of her mistreatment of her serial lovers:
<blockquote>You loved the herdsman, shepherd and chief shepherd<br /> Who was always heaping up the glowing ashes for you,<br /> And cooked ewe-lambs for you every day.<br /> But you hit him and turned him into a wolf,<br /> His own herd-boys hunt him down<br />
And his dogs tear at his haunches.</blockquote> Actaeon, torn apart by dogs incited by Artemis, finds another Near Eastern parallel in the Ugaritic hero Aqht, torn apart by eagles incited by Anath who wanted his hunting bow.
The virginal Artemis of classical times is not directly comparable to Ishtar of the many lovers, but the mytheme of Artemis shooting Orion, was linked to her punishment of Actaeon by T.C.W. Stinton; the Greek context of the mortal's reproach to the amorous goddess is translated to the episode of Anchises and Aphrodite. Daphnis too was a herdsman loved by a goddess and punished by her: see Theocritus' First Idyll.
Symbolism regarding Actaeon
In Greek Mythology, Actaeon is widely thought to symbolize ritual human sacrifice in attempt to please a God or Goddess: the dogs symbolize the sacrificers and Actaeon symbolizes the sacrifice.
Actaeon may symbolize human curiosity or irreverence.
The myth is seen by Jungian psychologist Wolfgang Giegerich as a symbol of spiritual transformation and/or enlightenment.
Actaeon often symbolizes a cuckold, as when he is turned into a stag, he becomes "horned". This is alluded to in Shakespeare's Merry Wives, Robert Burton's Anatomy of Melancholy, and others.
Cultural depictions
by Titian]]
]]
, The Death of Actaeon'', oil on canvas, 1988]]
The two main scenes are Actaeon surprising Artemis/Diana, and his death. In classical art Actaeon is normally shown as fully human, even as his hounds are killing him (sometimes he has small horns), but in Renaissance art he is often given a deer's head with antlers even in the scene with Diana, and by the time he is killed he has at the least this head, and has often completely transformed into the shape of a deer.
* Aeschylus and other tragic poets made use of the story, which was a favourite subject in ancient works of art.
* There is a well-known small marble group in the British Museum illustrative of the story, in gallery 83/84.
*Two paintings by the 16th century painter Titian (Death of Actaeon and Diana and Actaeon).
*Actéon, an operatic pastorale by Marc-Antoine Charpentier.
* Percy Bysshe Shelley suggests a parallel between his alter-ego and Actaeon in his elegy for John Keats, Adonais, stanza 31 ('[he] had gazed on Nature's naked loveliness/ Actaeon-like, and now he fled astray/ .../ And his own thoughts, along that rugged way,/ Pursued, like raging hounds, their father and their prey.')
* The aria "Oft she visits this lone mountain" from Purcell's Dido and Aeneas, first performed in 1689 or earlier.
* Giordano Bruno, Gli Eroici Furori.
* In canto V of Giambattista Marino's poem the protagonist goes to theater to see a tragedy representing the myth of Actaeon. This episode foreshadows the protagonist's violent death at the end of the book.
* In Act I Scene 2 of Jacques Offenbach's Orpheus in the Underworld, Actaeon is Diana (Artemis)'s lover, and it is Jupiter who turns him into a stag, which puts Diana off hunting. His story is relinquished at this point, in favour of the other plots.
* Ted Hughes wrote a version of the story in his Tales from Ovid.
* Diane and Actéon Pas de Deux from Marius Petipa's ballet, Le Roi Candaule, to the music by Riccardo Drigo and Cesare Pugni, later incorporated into the second act of La Esmeralda (ballet).
* In Twelfth Night by William Shakespeare, Orsino compares his unrequited love for Olivia to the fate of Actaeon. "O, when mine eyes did see Olivia first, Methought she purged the air of pestilence, That instant was I turned into a hart, and my desires like fell and cruel hounds e'er since pursue me." Act 1 Scene 1.
* In Christopher Marlowe's play Edward II, courtier Piers Gaveston seeks to entertain his lover, King Edward II of England, by presenting a play based on the Actaeon myth. In Gaveston's version, Diane is played by a naked boy holding an olive branch to hide his loins, and it is the boy-Diane who transforms Actaeon into a hart and lets him be devoured by the hounds. Thus, Gaveston's (and Marlowe's) interpretation adds a strong element of homoeroticism, absent from the original myth.
*Paul Manship in 1925 created a set of copper statute of Diane and Actaeon, which in the Luce Lunder Smithsonian Institution.
* French based collective LFKs and his film/theatre director, writer and visual artist Jean Michel Bruyere produced a series of 600 shorts and "medium" films, an interactive 360° installation, Si poteris narrare licet ("if you are able to speak of it, then you may do so") in 2002, a 3D 360° installation La Dispersion du Fils (from 2008 to 2016) and an outdoor performance, Une Brutalité pastorale (2000) all about the myth of Diana and Actaeon.
*In Matthew Barney's 2019 movie Redoubt set in the Sawtooth Mountains of the U.S. state of Idaho and an accompanying traveling art exhibition originating at the Yale University Art Gallery the myth is retold by the visual artist and filmmaker via avenues of his own design.
*Seamus Heaney's collection North contains an aisling concerning the myth of Diana and Actaeon.
Royal House of Thebes family tree
Notes
References
*
*The Oxford Classical Dictionary, s.v. "Actaeon".
*Ovid, Metamorphoses, 3.138ff.
*Euripides, Bacchae, 337–340.
*Diodorus Siculus, 4.81.4.
External links
* [https://iconographic.warburg.sas.ac.uk/category/vpc-taxonomy-000554 The Warburg Institute Iconographic Database (ca 260 images of Actaeon)]
Category:Deaths due to dog attacks
Category:Mythological Greek archers
Category:Metamorphoses characters
Category:Metamorphoses into animals in Greek mythology
Category:Deeds of Artemis
Category:Deeds of Zeus
Category:Dogs in art
Category:Inanna
Category:Anat
Category:Mythological deer
Category:Mythological hunters | https://en.wikipedia.org/wiki/Actaeon | 2025-04-05T18:25:35.603950 |
1214 | Anglicanism | Anglicanism is a Western Christian tradition which developed from the practices, liturgy, and identity of the Church of England following the English Reformation, in the context of the Protestant Reformation in Europe. It is one of the largest branches of Christianity, with around 110 million adherents worldwide .
Adherents of Anglicanism are called Anglicans; they are also called Episcopalians in some countries. The majority of Anglicans are members of national or regional ecclesiastical provinces of the international Anglican Communion, which forms the third-largest Christian communion in the world, after the Catholic Church and the Eastern Orthodox Church, and the world's largest Protestant communion. These provinces are in full communion with the See of Canterbury and thus with the archbishop of Canterbury, whom the communion refers to as its (Latin, 'first among equals'). The archbishop calls the decennial Lambeth Conference, chairs the meeting of primates, and is the president of the Anglican Consultative Council. Some churches that are not part of the Anglican Communion or recognised by it also call themselves Anglican, including those that are within the Continuing Anglican movement and Anglican realignment.
Anglicans base their Christian faith on the Bible, traditions of the apostolic church, apostolic succession ("historic episcopate"), and the writings of the Church Fathers, as well as historically, the Thirty-nine Articles of Religion and The Books of Homilies. The degree of distinction between Protestant and Catholic tendencies within Anglicanism is routinely a matter of debate both within specific Anglican churches and the Anglican Communion. The Book of Common Prayer is unique to Anglicanism, the collection of services in one prayer book used for centuries. The book is acknowledged as a principal tie that binds the Anglican Communion as a liturgical tradition. Adherents of Anglicanism are called Anglicans. As an adjective, Anglican is used to describe the people, institutions, churches, liturgical traditions, and theological concepts developed by the Church of England.
The word Episcopal ("of or pertaining to bishops") is preferred in the title of the Episcopal Church (the province of the Anglican Communion covering the United States) and the Scottish Episcopal Church, though the full name of the former is The Protestant Episcopal Church in the United States of America. Elsewhere, however, the term Anglican Church came to be preferred as it distinguished these churches from others that maintain an episcopal polity.
Definition
In its structures, theology, and forms of worship, Anglicanism emerged as a distinct Christian tradition representing a middle ground between Lutheran and Reformed varieties of Protestantism; after the Oxford Movement, Anglicanism has often been characterized as representing a via media ('middle way') between Protestantism as a whole, and Catholicism.
The faith of Anglicans is founded in the Scriptures and the Gospels, the traditions of the Apostolic Church, the historical episcopate, the first four ecumenical councils, and the early Church Fathers, especially those active during the five initial centuries of Christianity, according to the quinquasaecularist principle proposed by the English bishop Lancelot Andrewes and the Lutheran dissident Georg Calixtus.
Anglicans understand the Old and New Testaments as "containing all things necessary for salvation" and as being the rule and ultimate standard of faith. Reason and tradition are seen as valuable means to interpret scripture (a position first formulated in detail by Richard Hooker), but there is no full mutual agreement among Anglicans about exactly how scripture, reason, and tradition interact (or ought to interact) with each other. Anglicans understand the Apostles' Creed as the baptismal symbol and the Nicene Creed as the sufficient statement of the Christian faith.
Anglicans believe the catholic and apostolic faith is revealed in Holy Scripture and the ecumenical creeds (Apostles', Nicene and Athanasian) and interpret these in light of the Christian tradition of the historic church, scholarship, reason, and experience.
Anglicans celebrate the traditional sacraments, with special emphasis being given to the Eucharist, also called Holy Communion, the Lord's Supper, or the Mass. The Eucharist is central to worship for most Anglicans as a communal offering of prayer and praise in which the life, death, and resurrection of Jesus Christ are proclaimed through prayer, reading of the Bible, singing, giving God thanks over the bread and wine for the innumerable benefits obtained through the passion of Christ; the breaking of the bread, the blessing of the cup, and the partaking of the body and blood of Christ as instituted at the Last Supper. The consecrated bread and wine, which are considered by Anglican formularies to be the true body and blood of Christ in a spiritual manner and as outward symbols of an inner grace given by Christ which to the repentant convey forgiveness and cleansing from sin. While many Anglicans celebrate the Eucharist in similar ways to the predominant Latin Catholic tradition, a considerable degree of liturgical freedom is permitted, and worship styles range from simple to elaborate.
Unique to Anglicanism is the Book of Common Prayer (BCP), the collection of services which worshippers in most Anglican churches have used for centuries. It was called common prayer originally because it was intended for use in all Church of England churches, which had previously followed differing local liturgies. The term was kept when the church became international because all Anglicans used to share in its use around the world.
In 1549, the first Book of Common Prayer was compiled by Thomas Cranmer, the then archbishop of Canterbury. While it has since undergone many revisions and Anglican churches in different countries have developed other service books, the Prayer Book is still acknowledged as one of the ties that bind Anglicans together.
Identity
Early history
is venerated as the first-recorded British Christian martyr]]
, the first Archbishop of Canterbury]]
According to legend, the founding of Christianity in Britain is commonly attributed to Joseph of Arimathea and is commemorated at Glastonbury Abbey.}}}} Many of the early Church Fathers wrote of the presence of Christianity in Roman Britain, with Tertullian stating "those parts of Britain into which the Roman arms had never penetrated were become subject to Christ". Saint Alban, who was executed in AD 209, is the first Christian martyr in the British Isles. For this reason he is venerated as the British protomartyr. The historian Heinrich Zimmer writes that "Just as Britain was a part of the Roman Empire, so the British Church formed (during the fourth century) a branch of the Catholic Church of the West; and during the whole of that century, from the Council of Arles (316) onward, took part in all proceedings concerning the Church."
After Roman troops withdrew from Britain, the "absence of Roman military and governmental influence and overall decline of Roman imperial political power enabled Britain and the surrounding isles to develop distinctively from the rest of the West. A new culture emerged around the Irish Sea among the Celtic peoples with Celtic Christianity at its core. What resulted was a form of Christianity distinct from Rome in many traditions and practices."}}
In The Celtic Resource Book, Martin Wallace writes that }}}}
The historian Charles Thomas, in addition to the Celticist Heinrich Zimmer, writes that the distinction between sub-Roman and post-Roman Insular Christianity, also known as Celtic Christianity, began to become apparent around AD 475, with the Celtic churches allowing married clergy, observing Lent and Easter according to their own calendar, and having a different tonsure; moreover, like the Eastern Orthodox and the Oriental Orthodox churches, the Celtic churches operated independently of the Pope's authority, as a result of their isolated development in the British Isles.
In what is known as the Gregorian mission, Pope Gregory I sent Augustine of Canterbury to the British Isles in AD 596, with the purpose of evangelising the pagans there (who were largely Anglo-Saxons), as well as to reconcile the Celtic churches in the British Isles to the See of Rome. In Kent, Augustine persuaded the Anglo-Saxon king "Æthelberht and his people to accept Christianity". Augustine, on two occasions, "met in conference with members of the Celtic episcopacy, but no understanding was reached between them".
Eventually, the "Christian Church of the Anglo-Saxon kingdom of Northumbria convened the Synod of Whitby in 663/664 to decide whether to follow Celtic or Roman usages". This meeting, with King Oswiu as the final decision maker, "led to the acceptance of Roman usage elsewhere in England and brought the English Church into close contact with the Continent". As a result of assuming Roman usages, the Celtic Church surrendered its independence, and, from this point on, the Church in England "was no longer purely Celtic, but became Anglo-Roman-Celtic". The theologian Christopher L. Webber writes that "Although "the Roman form of Christianity became the dominant influence in Britain as in all of western Europe, Anglican Christianity has continued to have a distinctive quality because of its Celtic heritage."
The Church in England remained united with Rome until the English Parliament, though the Act of Supremacy (1534) declared King Henry VIII to be the Supreme Head of the Church of England to fulfill the "English desire to be independent from continental Europe religiously and politically." As the change was mostly political, done in order to allow for the annulment of Henry VIII's marriage, the English Church under Henry VIII continued to maintain Catholic doctrines and liturgical celebrations of the sacraments despite its separation from Rome. With little exception, Henry VIII allowed no changes during his lifetime. Under King Edward VI (1547–1553), however, the church in England first began to undergo what is known as the English Reformation, in the course of which it acquired a number of characteristics that would subsequently become recognised as constituting its distinctive "Anglican" identity.Development
revived the Church of England in 1559 and established a uniform faith and practice; she took the title "Supreme Governor"]]
, a prominent 19th-century Anglican theologian]]
With the Elizabethan Settlement of 1559, the Protestant identity of the English and Irish churches was affirmed by means of parliamentary legislation which mandated allegiance and loyalty to the English Crown in all their members. The Elizabethan church began to develop distinct religious traditions, assimilating some of the theology of Reformed churches with the services in the Book of Common Prayer (which drew extensively on the Sarum Rite native to England), under the leadership and organisation of a continuing episcopate. Over the years, these traditions themselves came to command adherence and loyalty. The Elizabethan Settlement stopped the radical Protestant tendencies under Edward VI by combining the more radical elements of the 1552 prayer book with the conservative "Catholic" 1549 prayer book into the 1559 Book of Common Prayer. From then on, Protestantism was in a "state of arrested development", regardless of the attempts to detach the Church of England from its "idiosyncratic anchorage in the medieval past" by various groups which tried to push it towards a more Reformed theology and governance in the years 1560–1660.
Although two important constitutive elements of what later would emerge as Anglicanism were present in 1559 – scripture, the historic episcopate, the Book of Common Prayer, the teachings of the First Four Ecumenical Councils as the yardstick of catholicity, the teaching of the Church Fathers and Catholic bishops, and informed reason – neither the laypeople nor the clergy perceived themselves as Anglicans at the beginning of Elizabeth I's reign, as there was no such identity. Neither does the term via media appear until the 1627 to describe a church which refused to identify itself definitely as Catholic or Protestant, or as both, "and had decided in the end that this is virtue rather than a handicap".
Historical studies on the period 1560–1660 written before the late 1960s tended to project the predominant conformist spirituality and doctrine of the 1660s on the ecclesiastical situation one hundred years before, and there was also a tendency to take polemically binary partitions of reality claimed by contestants studied (such as the dichotomies Protestant-"Popish" or "Laudian"-"Puritan") at face value. Since the late 1960s, these interpretations have been criticised. Studies on the subject written during the last forty-five years have, however, not reached any consensus on how to interpret this period in English church history. The extent to which one or several positions concerning doctrine and spirituality existed alongside the more well-known and articulate Puritan movement and the Durham House Party, and the exact extent of continental Calvinism among the English elite and among the ordinary churchgoers from the 1560s to the 1620s are subjects of current and ongoing debate.. For a study perceiving an emerging self-conscious "Prayer Book Episcopalism" distinct from, but a predecessor to, Restoration Anglicanism, see .}}
In 1662, under King Charles II, a revised Book of Common Prayer was produced, which was acceptable to high churchmen as well as some Puritans and is still considered authoritative to this day.
In so far as Anglicans derived their identity from both parliamentary legislation and ecclesiastical tradition, a crisis of identity could result wherever secular and religious loyalties came into conflict – and such a crisis indeed occurred in 1776 with the United States Declaration of Independence, most of whose signatories were, at least nominally, Anglican. For these American patriots, even the forms of Anglican services were in doubt, since the Prayer Book rites of Matins, Evensong, and Holy Communion all included specific prayers for the British royal family. Consequently, the conclusion of the War of Independence eventually resulted in the creation of two new Anglican churches, the Episcopal Church in the United States in those states that had achieved independence; and in the 1830s, the Church of England in Canada became independent from the Church of England in those North American colonies which had remained under British control and to which many Loyalist churchmen had migrated.
Reluctantly, legislation was passed in the British Parliament (the Consecration of Bishops Abroad Act 1786) to allow bishops to be consecrated for an American church outside of allegiance to the British Crown (since no dioceses had ever been established in the former American colonies). Both in the United States and in Canada, the new Anglican churches developed novel models of self-government, collective decision-making, and self-supported financing; that would be consistent with separation of religious and secular identities.
In the following century, two further factors acted to accelerate the development of a distinct Anglican identity. From 1828 and 1829, Dissenters and Catholics could be elected to the House of Commons, which consequently ceased to be a body drawn purely from the established churches of Scotland, England, and Ireland; but which nevertheless, over the following ten years, engaged in extensive reforming legislation affecting the interests of the English and Irish churches; which, by the Acts of Union of 1800, had been reconstituted as the United Church of England and Ireland (a union which was dissolved in 1871). The propriety of this legislation was bitterly contested by the Oxford Movement (Tractarians), who in response developed a vision of Anglicanism as religious tradition deriving ultimately from the ecumenical councils of the patristic church. Those within the Church of England opposed to the Tractarians, and to their revived ritual practices, introduced a stream of bills in parliament aimed to control innovations in worship. This only made the dilemma more acute, with consequent continual litigation in the secular and ecclesiastical courts.
Over the same period, Anglican churches engaged vigorously in Christian missions, resulting in the creation, by the end of the century, of over ninety colonial bishoprics, which gradually coalesced into new self-governing churches on the Canadian and American models. However, the case of John Colenso, Bishop of Natal, reinstated in 1865 by the English Judicial Committee of the Privy Council over the heads of the Church in South Africa, demonstrated acutely that the extension of episcopacy had to be accompanied by a recognised Anglican ecclesiology of ecclesiastical authority, distinct from secular power.
Consequently, at the instigation of the bishops of Canada and South Africa, the first Lambeth Conference was called in 1867; to be followed by further conferences in 1878 and 1888, and thereafter at ten-year intervals. The various papers and declarations of successive Lambeth Conferences have served to frame the continued Anglican debate on identity, especially as relating to the possibility of ecumenical discussion with other churches. This ecumenical aspiration became much more of a possibility, as other denominational groups rapidly followed the example of the Anglican Communion in founding their own transnational alliances: the Alliance of Reformed Churches, the Ecumenical Methodist Council, the International Congregational Council, and the Baptist World Alliance.Theories
Anglicanism was seen as a middle way, or via media, between two branches of Protestantism, Lutheranism and Reformed Christianity. but are seen as a historical document which has played a significant role in the shaping of Anglican identity. The degree to which each of the articles has remained influential varies.
On the doctrine of justification, for example, there is a wide range of beliefs within the Anglican Communion, with some Anglo-Catholics arguing for a faith with good works and the sacraments. At the same time, however, some evangelical Anglicans ascribe to the Reformed emphasis on sola fide ("faith alone") in their doctrine of justification (see Sydney Anglicanism). Still other Anglicans adopt a nuanced view of justification, taking elements from the early Church Fathers, Catholicism, Protestantism, liberal theology, and latitudinarian thought.
Arguably, the most influential of the original articles has been Article VI on the "sufficiency of scripture", which says that "Scripture containeth all things necessary to salvation: so that whatsoever is not read therein, nor may be proved thereby, is not to be required of any man, that it should be believed as an article of the Faith, or be thought requisite or necessary to salvation." This article has informed Anglican biblical exegesis and hermeneutics since earliest times.
Anglicans look for authority in their "standard divines" (see below). Historically, the most influential of these – apart from Cranmer – has been the 16th-century cleric and theologian Richard Hooker, who after 1660 was increasingly portrayed as the founding father of Anglicanism. Hooker's description of Anglican authority as being derived primarily from scripture, informed by reason (the intellect and the experience of God) and tradition (the practices and beliefs of the historical church), has influenced Anglican self-identity and doctrinal reflection perhaps more powerfully than any other formula. The analogy of the "three-legged stool" of scripture, reason, and tradition is often incorrectly attributed to Hooker. Rather, Hooker's description is a hierarchy of authority, with scripture as foundational and reason and tradition as vitally important, but secondary, authorities.
Finally, the extension of Anglicanism into non-English cultures, the growing diversity of prayer books, and the increasing interest in ecumenical dialogue have led to further reflection on the parameters of Anglican identity. Many Anglicans look to the Chicago-Lambeth Quadrilateral of 1888 as the sine qua non of communal identity. In brief, the quadrilateral's four points are the scriptures as containing all things necessary to salvation; the creeds (specifically, the Apostles' and Nicene Creeds) as the sufficient statement of Christian faith; the dominical sacraments of Baptism and Holy Communion; and the historic episcopate.
Divines
, author of the first two editions of the Book of Common Prayer]]
Within the Anglican tradition, "divines" are clergy of the Church of England whose theological writings have been considered standards for faith, doctrine, worship, and spirituality, and whose influence has permeated the Anglican Communion in varying degrees through the years. While there is no authoritative list of these Anglican divines, there are some whose names would likely be found on most lists – those who are commemorated in lesser feasts of the Anglican churches and those whose works are frequently anthologised.
The corpus produced by Anglican divines is diverse. What they have in common is a commitment to the faith as conveyed by scripture and the Book of Common Prayer, thus regarding prayer and theology in a manner akin to that of the Apostolic Fathers. On the whole, Anglican divines view the via media of Anglicanism not as a compromise, but as "a positive position, witnessing to the universality of God and God's kingdom working through the fallible, earthly ecclesia Anglicana".
These theologians regard scripture as interpreted through tradition and reason as authoritative in matters concerning salvation. Reason and tradition, indeed, are extant in and presupposed by scripture, thus implying co-operation between God and humanity, God and nature, and between the sacred and secular. Faith is thus regarded as incarnational and authority as dispersed.
Amongst the early Anglican divines of the 16th and 17th centuries, the names of Thomas Cranmer, John Jewel, Matthew Parker, Richard Hooker, Lancelot Andrewes, and Jeremy Taylor predominate. The influential character of Hooker's Of the Laws of Ecclesiastical Polity cannot be overestimated. Published in 1593 and subsequently, Hooker's eight-volume work is primarily a treatise on church-state relations, but it deals comprehensively with issues of biblical interpretation, soteriology, ethics, and sanctification. Throughout the work, Hooker makes clear that theology involves prayer and is concerned with ultimate issues and that theology is relevant to the social mission of the church.
The 17th century saw the rise of two important movements in Anglicanism: Cambridge Platonism, with its mystical understanding of reason as the "candle of the Lord", and the evangelical revival, with its emphasis on the personal experience of the Holy Spirit. The Cambridge Platonist movement evolved into a school called Latitudinarianism, which emphasised reason as the barometer of discernment and took a stance of indifference towards doctrinal and ecclesiological differences.
The evangelical revival, influenced by such figures as John Wesley and Charles Simeon, re-emphasised the importance of justification through faith and the consequent importance of personal conversion. Some in this movement, such as Wesley and George Whitefield, took the message to the United States, influencing the First Great Awakening and creating an Anglo-American movement called Methodism that would eventually break away, structurally, from the Anglican churches after the American Revolution.
By the 19th century, there was a renewed interest in pre-Reformation English religious thought and practice. Theologians such as John Keble, Edward Bouverie Pusey, and John Henry Newman had widespread influence in the realm of polemics, homiletics and theological and devotional works, not least because they largely repudiated the old high-church tradition and replaced it with a dynamic appeal to antiquity which looked beyond the Reformers and Anglican formularies. Their work is largely credited with the development of the Oxford Movement, which sought to reassert Catholic identity and practice in Anglicanism.
In contrast to this movement, clergy such as the Bishop of Liverpool, J. C. Ryle, sought to uphold the distinctly Reformed identity of the Church of England. He was not a servant of the status quo, but argued for a lively religion which emphasised grace, holy and charitable living, and the plain use of the 1662 Book of Common Prayer (interpreted in a partisan evangelical way) without additional rituals. Frederick Denison Maurice, through such works as The Kingdom of Christ, played a pivotal role in inaugurating another movement, Christian socialism. In this, Maurice transformed Hooker's emphasis on the incarnational nature of Anglican spirituality to an imperative for social justice.
In the 19th century, Anglican biblical scholarship began to assume a distinct character, represented by the so-called "Cambridge triumvirate" of Joseph Lightfoot, F. J. A. Hort, and Brooke Foss Westcott. Their orientation is best summed up by Westcott's observation that "Life which Christ is and which Christ communicates, the life which fills our whole beings as we realise its capacities, is active fellowship with God."
The earlier part of the 20th century is marked by Charles Gore, with his emphasis on natural revelation, and William Temple's focus on Christianity and society, while, from outside England, Robert Leighton, Archbishop of Glasgow, and several clergy from the United States have been suggested, such as William Porcher DuBose, John Henry Hobart (1775–1830, Bishop of New York 1816–30), William Meade, Phillips Brooks, and Charles Brent.Churchmanship
, a Catholic liturgical phenomenon which reemerged in Anglicanism following the Catholic Revival of the 19th century]]
Churchmanship can be defined as the manifestation of theology in the realms of liturgy, piety and, to some extent, spirituality. Anglican diversity in this respect has tended to reflect the diversity in the tradition's Reformed and Catholic identity. Different individuals, groups, parishes, dioceses and provinces may identify more closely with one or the other, or some mixture of the two.
The range of Anglican belief and practice became particularly divisive during the 19th century, when some clergy were disciplined and even imprisoned on charges of introducing illegal ritual while, at the same time, others were criticised for engaging in public worship services with ministers of Reformed churches. Resistance to the growing acceptance and restoration of traditional Catholic ceremonial by the mainstream of Anglicanism ultimately led to the formation of small breakaway churches such as the Free Church of England in England (1844) and the Reformed Episcopal Church in North America (1873).
Anglo-Catholic (and some broad-church) Anglicans celebrate public liturgy in ways that understand worship to be something very special and of utmost importance. Vestments are worn by the clergy, sung settings are often used, and incense may be used. Nowadays, in most Anglican churches, the Eucharist is celebrated in a manner similar to the usage of Roman Catholics and some Lutherans, though, in many churches, more traditional, "pre–Vatican II" models of worship are common (e.g., an "eastward orientation" at the altar). Whilst many Anglo-Catholics derive much of their liturgical practice from that of the pre-Reformation English church, others more closely follow traditional Roman Catholic practices.
The Eucharist may sometimes be celebrated in the form known as High Mass, with a priest, deacon and subdeacon (usually actually a layman) dressed in traditional vestments, with incense and sanctus bells and prayers adapted from the Roman Missal or other sources by the celebrant. Such churches may also have forms of eucharistic adoration such as Benediction of the Blessed Sacrament. In terms of personal piety, some Anglicans may recite the Rosary and Angelus, be involved in a devotional society dedicated to "Our Lady" (the Blessed Virgin Mary) and seek the intercession of the saints.
In recent decades, the prayer books of several provinces have, out of deference to a greater agreement with Eastern Conciliarism (and a perceived greater respect accorded Anglicanism by Eastern Orthodoxy than by Roman Catholicism), instituted a number of historically Eastern and Oriental Orthodox elements in their liturgies, including introduction of the Trisagion and deletion of the filioque clause from the Nicene Creed.
For their part, those evangelical (and some broad-church) Anglicans who emphasise the more Protestant aspects of the Church stress the Reformation theme of salvation by grace through faith. They emphasise the two dominical sacraments of Baptism and Eucharist, viewing the other five as "lesser rites". Some evangelical Anglicans may even tend to take the inerrancy of scripture literally, adopting the view of Article VI that it contains all things necessary to salvation in an explicit sense. Worship in churches influenced by these principles tends to be significantly less elaborate, with greater emphasis on the Liturgy of the Word (the reading of the scriptures, the sermon, and the intercessory prayers).
The Order for Holy Communion may be celebrated bi-weekly or monthly (in preference to the daily offices), by priests attired in choir habit, or more regular clothes, rather than Eucharistic vestments. Ceremony may be in keeping with their view of the provisions of the 17th-century Puritans – being a Reformed interpretation of the Ornaments Rubric – no candles, no incense, no bells, and a minimum of manual actions by the presiding celebrant (such as touching the elements at the Words of Institution).
In the early 21st century, there has been a growth of charismatic worship among Anglicans. Both Anglo-Catholics and evangelicals have been affected by this movement such that it is not uncommon to find typically charismatic postures, music, and other themes evident during the services of otherwise Anglo-Catholic or evangelical parishes.
The spectrum of Anglican beliefs and practice is too large to be fit into these labels. Many Anglicans locate themselves somewhere in the spectrum of the broad-church tradition and consider themselves an amalgam of evangelical and Catholic. Such Anglicans stress that Anglicanism is the via media (middle way) between the two major strains of Western Christianity and that Anglicanism is like a "bridge" between the two strains.
Sacramental doctrine and practice
In accord with its prevailing self-identity as a via media or "middle path" of Western Christianity, Anglican sacramental theology expresses elements in keeping with its status as being both a church in the Catholic tradition as well as a Reformed church. With respect to sacramental theology, the Catholic heritage is perhaps most strongly asserted in the importance Anglicanism places on the sacraments as a means of grace, sanctification, and salvation, as expressed in the church's liturgy and doctrine.
Of the seven sacraments, all Anglicans recognise Baptism and the Eucharist as being directly instituted by Christ. The other five – Confession/Absolution, Matrimony, Confirmation, Holy Orders (also called Ordination), and Anointing of the Sick (also called Unction) – are regarded variously as full sacraments by Anglo-Catholics and many high church and some broad-church Anglicans, but merely as "sacramental rites" by other broad-church and low-church Anglicans, especially evangelicals associated with Reform UK and the Diocese of Sydney.
Eucharistic theology
Anglican eucharistic theology is divergent in practice, reflecting the essential comprehensiveness of the tradition. A few low-church Anglicans take a strictly memorialist (Zwinglian) view of the sacrament. In other words, they see Holy Communion as a memorial to Christ's suffering, and participation in the Eucharist as both a re-enactment of the Last Supper and a foreshadowing of the heavenly banquet – the fulfilment of the eucharistic promise.
Other low-church Anglicans believe in the real presence of Christ in the Eucharist but deny that the presence of Christ is carnal or is necessarily localised in the bread and wine. Despite explicit criticism in the Thirty-Nine Articles, many high-church or Anglo-Catholic Anglicans hold, more or less, the Catholic view of the real presence as expressed in the doctrine of transubstantiation, seeing the Eucharist as a liturgical representation of Christ's atoning sacrifice with the elements actually transformed into Christ's body and blood.
The majority of Anglicans, however, have in common a belief in the real presence, defined in one way or another. To that extent, they are in the company of the continental reformer Martin Luther and Calvin rather than Ulrich Zwingli. The Catechism of the American BCP of 1976 repeats the standard Anglican view ("The outward and visible sign in the Eucharist is the bread and wine"..."The inward and spiritual grace in the Holy Communion is the Body and Blood of Christ given to his people, and received by faith") without further definition. It should be remembered that Anglicanism has no official doctrine on this matter, believing it is wiser to leave the Presence a mystery. The faithful can believe privately whatever explanation they favour, be it transubstantiation, consubstantiation, receptionism, or virtualism (the two most congenial to Anglicans for centuries until the Oxford Movement), each of which espouses belief in the real presence in one way or another, or memorialism, which has never been an option with Anglicans.
A famous Anglican aphorism regarding Christ's presence in the sacrament, commonly misattributed to Queen Elizabeth I, is first found in print in a poem by John Donne:
<blockquote><poem>
He was the word that spake it,
He took the bread and brake it:
And what that word did make it,
I do believe and take it.</poem></blockquote>
An Anglican position on the eucharistic sacrifice ("Sacrifice of the Mass") was expressed in the response Saepius officio of the archbishops of Canterbury and York to Pope Leo XIII's papal encyclical Apostolicae curae: viz. that the Prayer Book contained a strong sacrificial theology. Later revisions of the Prayer Book influenced by the Scottish Canon of 1764 first adopted by the Protestant Episcopal Church in 1789 made this assertion quite evident: "we do make and celebrate before thy Divine Majesty with these thy holy gifts, which we now offer unto thee, the memorial thy Son has commanded us to make", which is repeated in the 1929 English BCP and included in such words or others such as "present" or "show forth" in subsequent revisions.
Anglican and Roman Catholic representatives declared that they had "substantial agreement on the doctrine of the Eucharist" in the Windsor Statement on Eucharistic Doctrine by the Anglican-Roman Catholic International Consultation (1971) and the Elucidation of the ARCIC Windsor Statement (1979). The final response (1991) to these documents by the Vatican made it plain that it did not consider the degree of agreement reached to be satisfactory.Practices
In Anglicanism there is a distinction between liturgy, which is the formal public and communal worship of the church, and personal prayer and devotion, which may be public or private. Liturgy is regulated by the prayer books and consists of the Eucharist (some call it Holy Communion or Mass), the other six sacraments, and the daily offices such as Morning Prayer and Evening Prayer.
Book of Common Prayer
]]
The Book of Common Prayer (BCP) is the foundational prayer book of Anglicanism. The original book of 1549 (revised in 1552) was one of the instruments of the English Reformation, replacing the various "uses" or rites in Latin that had been used in different parts of the country with a single compact volume in the language of the people, so that "now from henceforth all the Realm shall have but one use". Suppressed under Queen Mary I, it was revised in 1559, and then again in 1662, after the Restoration of Charles II. This version was made mandatory in England and Wales by the Act of Uniformity and was in standard use until the mid-20th century.
With British colonial expansion from the 17th century onwards, Anglican churches were planted around the globe. These churches at first used and then revised the Book of Common Prayer until they, like their parent church, produced prayer books which took into account the developments in liturgical study and practice in the 19th and 20th centuries, which come under the general heading of the Liturgical Movement.
Worship
Anglican worship services are open to all visitors. Anglican worship originates principally in the reforms of Thomas Cranmer, who aimed to create a set order of service like that of the pre-Reformation church but less complex in its seasonal variety and said in English rather than Latin. This use of a set order of service is not unlike the Catholic tradition. Traditionally, the pattern was that laid out in the Book of Common Prayer. Although many Anglican churches now use a wide range of modern service books written in the local language, the structures of the Book of Common Prayer are largely retained. Churches which call themselves Anglican will have identified themselves so because they use some form or variant of the Book of Common Prayer in the shaping of their worship.
Anglican worship, however, is as diverse as Anglican theology. A contemporary "low church" service may differ little from the worship of many mainstream non-Anglican Protestant churches. The service is constructed around a sermon focused on Biblical exposition and opened with one or more Bible readings and closed by a series of prayers (both set and extemporised) and hymns or songs. A "high church" or Anglo-Catholic service, by contrast, is usually a more formal liturgy celebrated by clergy in distinctive vestments and may be almost indistinguishable from a Roman Catholic service, often resembling the "pre–Vatican II" Tridentine rite.
Between these extremes are a variety of styles of worship, often involving a robed choir and the use of the organ to accompany the singing and to provide music before and after the service. Anglican churches tend to have pews or chairs, and it is usual for the congregation to kneel for some prayers but to stand for hymns and other parts of the service such as the Gloria, Collect, Gospel reading, Creed and either the Preface or all of the Eucharistic Prayer. Anglicans may genuflect or cross themselves in the same way as Roman Catholics.
Other more traditional Anglicans tend to follow the 1662 Book of Common Prayer'' and retain the use of the King James Bible. This is typical in many Anglican cathedrals and particularly in royal peculiars such as the Savoy Chapel and the Queen's Chapel. These Anglican church services include classical music instead of songs, hymns from the New English Hymnal (usually excluding modern hymns such as "Lord of the Dance"), and are generally non-evangelical and formal in practice.
Until the mid-20th century the main Sunday service was typically Morning Prayer, but the Eucharist has once again become the standard form of Sunday worship in most Anglican churches; this again is similar to Roman Catholic practice. Other common Sunday services include an early morning Eucharist without music, an abbreviated Eucharist following a service of morning prayer, and a service of Evening Prayer, often called "Evensong" when sung, usually celebrated between 3:00 and 6:00 pm. The late-evening service of Compline was revived in parish use in the early 20th century. Many Anglican churches will also have daily morning and evening prayer, and some have midweek or even daily celebration of the Eucharist.
An Anglican service (whether or not a Eucharist) will include readings from the Bible that are generally taken from a standardised lectionary, which provides for much of the Bible (and some passages from the Apocrypha) to be read out loud in the church over a cycle of one, two, or three years (depending on which eucharistic and office lectionaries are used, respectively). The sermon (or homily) is typically about ten to twenty minutes in length, often comparably short to sermons in evangelical churches. Even in the most informal Anglican services, it is common for set prayers such as the weekly Collect to be read. There are also set forms for intercessory prayer, though this is now more often extemporaneous. In high and Anglo-Catholic churches there are generally prayers for the dead.
Although Anglican public worship is usually ordered according to the canonically approved services, in practice many Anglican churches use forms of service outside these norms. Liberal churches may use freely structured or experimental forms of worship, including patterns borrowed from ecumenical traditions such as those of the Taizé Community or the Iona Community.
Anglo-Catholic parishes might use the modern Roman Catholic liturgy of the Mass or more traditional forms, such as the Tridentine Mass (which is translated into English in the English Missal), the Anglican Missal, or, less commonly, the Sarum Rite. Catholic devotions such as the Rosary, Angelus, and Benediction of the Blessed Sacrament are also common among Anglo-Catholics.
Eucharistic discipline
Only baptised persons are eligible to receive communion, although in many churches communion is restricted to those who have not only been baptised but also confirmed. In many Anglican provinces, however, all baptised Christians are now often invited to receive communion and some dioceses have regularised a system for admitting baptised young people to communion before they are confirmed.
The discipline of fasting before communion is practised by some Anglicans. Most Anglican priests require the presence of at least one other person for the celebration of the Eucharist (referring back to Christ's statement in Matthew 18:20, "When two or more are gathered in my name, I will be in the midst of them."), though some Anglo-Catholic priests (like Roman Catholic priests) may say private Masses. As in the Roman Catholic Church, it is a canonical requirement to use fermented wine for communion.
Unlike in Roman Catholicism, the consecrated bread and wine are normally offered to the congregation at a eucharistic service ("communion in both kinds"). This practice is becoming more frequent in the Roman Catholic Church as well, especially through the Neocatechumenal Way. In some churches, the sacrament is reserved in a tabernacle or aumbry with a lighted candle or lamp nearby. In Anglican churches, only a priest or a bishop may be the celebrant at the Eucharist.
Divine office
at York Minster in York, England]]
All Anglican prayer books contain offices for Morning Prayer (Matins) and Evening Prayer (Evensong). In the original Book of Common Prayer, these were derived from combinations of the ancient monastic offices of Matins and Lauds; and Vespers and Compline, respectively. The prayer offices have an important place in Anglican history.
Prior to the Catholic revival of the 19th century, which eventually restored the Eucharist as the principal Sunday liturgy, and especially during the 18th century, a morning service combining Matins, the Litany, and ante-Communion comprised the usual expression of common worship, while Matins and Evensong were sung daily in cathedrals and some collegiate chapels. This nurtured a tradition of distinctive Anglican chant applied to the canticles and psalms used at the offices (although plainsong is often used as well).
In some official and many unofficial Anglican service books, these offices are supplemented by other offices such as the Little Hours of Prime and prayer during the day such as (Terce, Sext, None, and Compline). Some Anglican monastic communities have a Daily Office based on that of the Book of Common Prayer but with additional antiphons and canticles, etc., for specific days of the week, specific psalms, etc. See, for example, Order of the Holy Cross and Order of St Helena, editors, A Monastic Breviary (Wilton, Conn.: Morehouse-Barlow, 1976). The All Saints Sisters of the Poor, with convents in Catonsville, Maryland, and elsewhere, use an elaborated version of the Anglican Daily Office. The Society of St. Francis publishes Celebrating Common Prayer, which has become especially popular for use among Anglicans.
In England, the United States, Canada, Australia, New Zealand, and some other Anglican provinces, the modern prayer books contain four offices:
*Morning Prayer, corresponding to Matins, Lauds and Prime;
*Prayer During the Day, roughly corresponding to the combination of Terce, Sext, and None (Noonday Prayer in the USA);
*Evening Prayer, corresponding to Vespers (and Compline);
*Compline.
In addition, most prayer books include a section of prayers and devotions for family use. In the US, these offices are further supplemented by an "Order of Worship for the Evening", a prelude to or an abbreviated form of Evensong, partly derived from Orthodox prayers. In the United Kingdom, the publication of Daily Prayer, the third volume of Common Worship, was published in 2005. It retains the services for Morning and Evening Prayer and Compline and includes a section entitled "Prayer during the Day". A New Zealand Prayer Book of 1989 provides different outlines for Matins and Evensong on each day of the week, as well as "Midday Prayer", "Night Prayer" and "Family Prayer".
Some Anglicans who pray the office on daily basis use the present Divine Office of the Roman Catholic Church. In many cities, especially in England, Anglican and Roman Catholic priests and lay people often meet several times a week to pray the office in common. A small but enthusiastic minority use the Anglican Breviary, or other translations and adaptations of the pre–Vatican II Roman Rite and Sarum Rite, along with supplemental material from cognate western sources, to provide such things as a common of Octaves, a common of Holy Women, and other additional material. Others may privately use idiosyncratic forms borrowed from a wide range of Christian traditions.
"Quires and Places where they sing" <!-- Please do not "correct" the capitalisation or spelling as it is a direct quote -->
In the late medieval period, many English cathedrals and monasteries had established small choirs of trained lay clerks and boy choristers to perform polyphonic settings of the Mass in their Lady chapels. Although these "Lady Masses" were discontinued at the Reformation, the associated musical tradition was maintained in the Elizabethan Settlement through the establishment of choral foundations for daily singing of the Divine Office by expanded choirs of men and boys. This resulted from an explicit addition by Elizabeth herself to the injunctions accompanying the 1559 Book of Common Prayer (that had itself made no mention of choral worship) by which existing choral foundations and choir schools were instructed to be continued, and their endowments secured. Consequently, some thirty-four cathedrals, collegiate churches, and royal chapels maintained paid establishments of lay singing men and choristers in the late 16th century.
All save four of these have – with interruptions during the Commonwealth and the COVID-19 pandemic – continued daily choral prayer and praise to this day. In the Offices of Matins and Evensong in the 1662 Book of Common Prayer, these choral establishments are specified as "Quires and Places where they sing".
For nearly three centuries, this round of daily professional choral worship represented a tradition entirely distinct from that embodied in the intoning of Parish Clerks, and the singing of "west gallery choirs" which commonly accompanied weekly worship in English parish churches. In 1841, the rebuilt Leeds Parish Church established a surpliced choir to accompany parish services, drawing explicitly on the musical traditions of the ancient choral foundations. Over the next century, the Leeds example proved immensely popular and influential for choirs in cathedrals, parish churches, and schools throughout the Anglican communion. More or less extensively adapted, this choral tradition also became the direct inspiration for robed choirs leading congregational worship in a wide range of Christian denominations.
In 1719, the cathedral choirs of Gloucester, Hereford, and Worcester combined to establish the annual Three Choirs Festival, the precursor for the multitude of summer music festivals since. By the 20th century, the choral tradition had become for many the most accessible face of worldwide Anglicanism – especially as promoted through the regular broadcasting of choral evensong by the BBC; and also in the annual televising of the festival of Nine Lessons and Carols from King's College, Cambridge. Composers closely concerned with this tradition include Edward Elgar, Ralph Vaughan Williams, Gustav Holst, Charles Villiers Stanford, and Benjamin Britten. A number of important 20th-century works by non-Anglican composers were originally commissioned for the Anglican choral tradition – for example, the Chichester Psalms of Leonard Bernstein and the Nunc dimittis of Arvo Pärt.
Communion
Principles of governance
Contrary to popular misconception, the British monarch is not the constitutional "head" of the Church of England but is, in law, the church's "supreme governor", nor does the monarch have any role in provinces outside England. The role of the crown in the Church of England is practically limited to the appointment of bishops, including the archbishop of Canterbury, and even this role is limited, as the church presents the government with a short list of candidates from which to choose. This process is accomplished through collaboration with and consent of ecclesial representatives (see Ecclesiastical Commissioners). Although the monarch has no constitutional role in Anglican churches in other parts of the world, the prayer books of several countries where the monarch is head of state contain prayers for him or her as sovereign.
A characteristic of Anglicanism is that it has no international juridical authority. All forty-two provinces of the Anglican Communion are autonomous, each with their own primate and governing structure. These provinces may take the form of national churches (such as in Canada, Uganda or Japan) or a collection of nations (such as the West Indies, Central Africa or South Asia), or geographical regions (such as Vanuatu and Solomon Islands) etc. Within these provinces there may exist subdivisions, called ecclesiastical provinces, under the jurisdiction of a metropolitan archbishop.
All provinces of the Anglican Communion consist of dioceses, each under the jurisdiction of a bishop. In the Anglican tradition, bishops must be consecrated according to the strictures of apostolic succession, which Anglicans consider one of the marks of catholicity. Apart from bishops, there are two other orders of ordained ministry: deacon and priest.
No requirement is made for clerical celibacy, though many Anglo-Catholic priests have traditionally been bachelors. Because of innovations that occurred at various points after the latter half of the 20th century, women may be ordained as deacons in almost all provinces, as priests in most and as bishops in many. Anglican religious orders and communities, suppressed in England during the Reformation, have re-emerged, especially since the mid-19th century, and now have an international presence and influence.
Government in the Anglican Communion is synodical, consisting of three houses of laity (usually elected parish representatives), clergy and bishops. National, provincial and diocesan synods maintain different scopes of authority, depending on their canons and constitutions. Anglicanism is not congregational in its polity: it is the diocese, not the parish church, which is the smallest unit of authority in the church. (See Episcopal polity).
Archbishop of Canterbury
of the episcopal see of Canterbury]]
The archbishop of Canterbury has a precedence of honour over the other primates of the Anglican Communion, and for a province to be considered a part of the communion means specifically to be in full communion with the see of Canterbury – though this principle is currently subject to considerable debate, especially among those in the so-called Global South, including American Anglicans. The archbishop is, therefore, recognised as ("first amongst equals"), even though he does not exercise any direct authority in any province outside England, of which he is chief primate. Rowan Williams, the archbishop of Canterbury from 2002 to 2012, was the first archbishop appointed from outside the Church of England since the Reformation: he was formerly the archbishop of Wales.
As "spiritual head" of the communion, the archbishop of Canterbury maintains a certain moral authority and has the right to determine which churches will be in communion with his see. He hosts and chairs the Lambeth Conferences of Anglican Communion bishops and decides who will be invited to them. He also hosts and chairs the Anglican Communion Primates' Meeting and is responsible for the invitations to it. He acts as president of the secretariat of the Anglican Communion Office and its deliberative body, the Anglican Consultative Council.
Conferences
The Anglican Communion has no international juridical organisation. All international bodies are consultative and collaborative, and their resolutions are not legally binding on the autonomous provinces of the communion. There are three international bodies of note.
* The Lambeth Conference is the oldest international consultation. It was first convened by Archbishop Charles Longley in 1867 as a vehicle for bishops of the communion to "discuss matters of practical interest, and pronounce what we deem expedient in resolutions which may serve as safe guides to future action". Since then, it has been held roughly every ten years. Invitation is by the archbishop of Canterbury.
* The Anglican Consultative Council was created by a 1968 Lambeth Conference resolution and meets biennially. The council consists of representative bishops, clergy and laity chosen by the forty-two provinces. The body has a permanent secretariat, the Anglican Communion Office, of which the archbishop of Canterbury is president.
* The Anglican Communion Primates' Meeting is the most recent manifestation of international consultation and deliberation, having been first convened by Archbishop Donald Coggan in 1978 as a forum for "leisurely thought, prayer and deep consultation".Ordained ministry
]]
Like the Roman Catholic Church and the Orthodox churches, the Anglican Communion maintains the threefold ministry of deacons, presbyters (usually called "priests"), and bishops.
Episcopate
Bishops, who possess the fullness of Christian priesthood, are the successors of the apostles. Primates, archbishops, and metropolitans are all bishops and members of the historical episcopate who derive their authority through apostolic succession – an unbroken line of bishops that can be traced back to the 12 apostles of Jesus.
Priesthood
Bishops are assisted by priests and deacons. Most ordained ministers in the Anglican Communion are priests, who usually work in parishes within a diocese. Priests are in charge of the spiritual life of parishes and are usually called the rector or vicar. A curate (or, more correctly, an "assistant curate") is a priest or deacon who assists the parish priest. Non-parochial priests may earn their living by any vocation, although employment by educational institutions or charitable organisations is most common. Priests also serve as chaplains of hospitals, schools, prisons, and in the armed forces.
An archdeacon is a priest or deacon responsible for administration of an archdeaconry, which is often the name given to the principal subdivisions of a diocese. An archdeacon represents the diocesan bishop in his or her archdeaconry. In the Church of England, the position of archdeacon can only be held by someone in priestly orders who has been ordained for at least six years. In some other parts of the Anglican Communion, the position can also be held by deacons. In parts of the Anglican Communion where women cannot be ordained as priests or bishops but can be ordained as deacons, the position of archdeacon is effectively the most senior office to which an ordained woman can be appointed.
A dean is a priest who is the principal cleric of a cathedral or other collegiate church and the head of the chapter of canons. If the cathedral or collegiate church has its own parish, the dean is usually also rector of the parish. However, in the Church of Ireland, the roles are often separated, and most cathedrals in the Church of England do not have associated parishes. In the Church in Wales, however, most cathedrals are parish churches and their deans are now also vicars of their parishes.
The Anglican Communion recognises Roman Catholic and Eastern Orthodox ordinations as valid. Outside the Anglican Communion, Anglican ordinations (at least of male priests) are recognised by the Old Catholic Church, Porvoo Communion Lutherans, and various Independent Catholic churches.
Diaconate
, including a stole over the left shoulder]]
In Anglican churches, deacons often work directly in ministry to the marginalised inside and outside the church: the poor, the sick, the hungry, the imprisoned. Unlike Orthodox and most Roman Catholic deacons who may be married only before ordination, deacons are permitted to marry freely both before and after ordination, as are priests. Most deacons are preparing for priesthood and usually only remain as deacons for about a year before being ordained priests. However, there are some deacons who remain so.
Many provinces of the Anglican Communion ordain both men and women as deacons. Many of those provinces that ordain women to the priesthood previously allowed them to be ordained only to the diaconate. The effect of this was the creation of a large and overwhelmingly female diaconate for a time, as most men proceeded to be ordained priest after a short time as a deacon.
Deacons, in some dioceses, can be granted licences to solemnise matrimony, usually under the instruction of their parish priest and bishop. They sometimes officiate at Benediction of the Blessed Sacrament in churches which have this service. Deacons are not permitted to preside at the Eucharist (but can lead worship with the distribution of already consecrated communion where this is permitted), absolve sins, or pronounce a blessing. It is the prohibition against deacons pronouncing blessings that leads some to believe that deacons cannot solemnise matrimony.
Laity
All baptised members of the church are called Christian faithful, truly equal in dignity and in the work to build the church. Some non-ordained people also have a formal public ministry, often on a full-time and long-term basis – such as lay readers (also known as readers), churchwardens, vergers, and sextons. Other lay positions include acolytes (male or female, often children), lay eucharistic ministers (also known as chalice bearers), and lay eucharistic visitors (who deliver consecrated bread and wine to "shut-ins" or members of the parish who are unable to leave home or hospital to attend the Eucharist). Lay people also serve on the parish altar guild (preparing the altar and caring for its candles, linens, flowers, etc.), in the choir and as cantors, as ushers and greeters, and on the church council (called the "vestry" in some countries), which is the governing body of a parish.
Religious orders
A small yet influential aspect of Anglicanism is its religious orders and communities. Shortly after the beginning of the Catholic Revival in the Church of England, there was a renewal of interest in re-establishing religious and monastic orders and communities. One of Henry VIII's earliest acts was their dissolution and seizure of their assets. In 1841, Marian Rebecca Hughes became the first woman to take the vows of religion in communion with the Province of Canterbury since the Reformation.
In 1848, Priscilla Lydia Sellon became the superior of the Society of the Most Holy Trinity at Devonport, Plymouth, the first organised religious order. Sellon is called "the restorer, after three centuries, of the religious life in the Church of England". For the next one hundred years, religious orders for both men and women proliferated throughout the world, becoming a numerically small but disproportionately influential feature of global Anglicanism.
Anglican religious life at one time boasted hundreds of orders and communities, and thousands of religious. An important aspect of Anglican religious life is that most communities of both men and women lived their lives consecrated to God under the vows of poverty, chastity, and obedience, or, in Benedictine communities, Stability, Conversion of Life, and Obedience, by practising a mixed life of reciting the full eight services of the Breviary in choir, along with a daily Eucharist, plus service to the poor. The mixed life, combining aspects of the contemplative orders and the active orders, remains to this day a hallmark of Anglican religious life. Another distinctive feature of Anglican religious life is the existence of some mixed-gender communities.
Since the 1960s, there has been a sharp decline in the number of professed religious in most parts of the Anglican Communion, especially in North America, Europe, and Australia. Many once large and international communities have been reduced to a single convent or monastery with memberships of elderly men or women. In the last few decades of the 20th century, novices have for most communities been few and far between. Some orders and communities have already become extinct. There are, however, still thousands of Anglican religious working today in approximately 200 communities around the world, and religious life in many parts of the Communion – especially in developing nations – flourishes.
The most significant growth has been in the Melanesian countries of the Solomon Islands, Vanuatu, and Papua New Guinea. The Melanesian Brotherhood, founded at Tabalia, Guadalcanal, in 1925 by Ini Kopuria, is now the largest Anglican Community in the world, with over 450 brothers in the Solomon Islands, Vanuatu, Papua New Guinea, the Philippines, and the United Kingdom. The Sisters of the Church, started by Mother Emily Ayckbowm in England in 1870, has more sisters in the Solomons than all their other communities. The Community of the Sisters of Melanesia, started in 1980 by Sister Nesta Tiboe, is a growing community of women in the Solomon Islands.
The Society of Saint Francis, founded as a union of various Franciscan orders in the 1920s, has experienced great growth in the Solomon Islands. Other communities of religious have been started by Anglicans in Papua New Guinea and in Vanuatu. Most Melanesian Anglican religious are in their early to mid-20s. Vows may be temporary, and it is generally assumed that brothers, at least, will leave and marry in due course, making the average age 40 to 50 years younger than their brothers and sisters in other countries. Growth of religious orders, especially for women, is marked in certain parts of Africa.
Worldwide distribution
(green), and the Old Catholic Churches in the Utrecht Union (red).]]
in Jamestown, Virginia, the first Anglican church in North America]]
Anglicanism represents the third largest Christian communion in the world, after the Roman Catholic Church and the Eastern Orthodox Church. The number of Anglicans in the world is over 85 million . The 11 provinces in Africa saw growth in the last two decades. They now include 36.7 million members, more Anglicans than there are in England. England remains the largest single Anglican province, with 26 million members. In most industrialised countries, church attendance has decreased since the 19th century. Anglicanism's presence in the rest of the world is due to large-scale emigration, the establishment of expatriate communities, or the work of missionaries.
The Church of England has been a church of missionaries since the 17th century, when the Church first left English shores with colonists who founded what would become the United States, Australia, Canada, New Zealand, and South Africa, and established Anglican churches. For example, an Anglican chaplain, Robert Wolfall, with Martin Frobisher's Arctic expedition, celebrated the Eucharist in 1578 in Frobisher Bay.
The first Anglican church in the Americas was built at Jamestown, Virginia, in 1607. By the 18th century, missionaries worked to establish Anglican churches in Asia, Africa, and Latin America. The great Church of England missionary societies were founded; for example, the Society for Promoting Christian Knowledge (SPCK) in 1698, the Society for the Propagation of the Gospel in Foreign Parts (SPG) in 1701, and the Church Mission Society (CMS) in 1799.
In the 19th century, social-oriented evangelism with societies were founded and developed, including the Church Pastoral Aid Society (CPAS) in 1836, Mission to Seafarers in 1856, Girls' Friendly Society (GFS) in 1875, Mothers' Union in 1876, and Church Army in 1882, all carrying out a personal form of evangelism.
In the 20th century, the Church of England developed new forms of evangelism, including the Alpha course in 1990, which was developed and propagated from Holy Trinity Brompton Church in London.
In the 21st century, there has been renewed effort to reach children and youth. Fresh expressions is a Church of England missionary initiative to youth begun in 2005, and has ministries at a skate park through the efforts of St George's Church, Benfleet, Essex, the Diocese of Chelmsford, or youth groups with evocative names, like the C.L.A.W (Christ Little Angels – Whatever!) youth group at Coventry Cathedral. For those who prefer not to actually visit a brick and mortar church, there are Internet ministries, such as the Diocese of Oxford's online Anglican i-Church, which was founded on the web in 2005.
Ecumenism
Anglican interest in ecumenical dialogue can be traced back to the time of the Reformation and dialogues with both Orthodox and Lutheran churches in the 16th century. In the 19th century, with the rise of the Oxford Movement, there arose greater concern for reunion of the churches of "Catholic confession". This desire to work towards full communion with other denominations led to the development of the Chicago-Lambeth Quadrilateral, approved by the third Lambeth Conference of 1888. The four points (the sufficiency of scripture, the historic creeds, the two dominical sacraments, and the historic episcopate) were proposed as a basis for discussion, although they have frequently been taken as a non-negotiable bottom-line for any form of reunion.
Theological diversity
at the Anglo-Catholic Church of the Good Shepherd in Rosemont, Pennsylvania]]
Anglicanism in general has always sought a balance between the emphases of Catholicism and Protestantism, while tolerating a range of expressions of evangelicalism and ceremony. Clergy and laity from all Anglican churchmanship traditions have been active in the formation of the Continuing movement.
While there are high church, broad-church and low-church Continuing Anglicans, many Continuing churches are Anglo-Catholic with highly ceremonial liturgical practices. Others belong to a more evangelical or low-church tradition and tend to support the Thirty-nine Articles and simpler worship services. Morning Prayer, for instance, is often used instead of the Holy Eucharist for Sunday worship services, although this is not necessarily true of all low-church parishes.
Most Continuing churches in the United States reject the 1979 revision of the Book of Common Prayer by the Episcopal Church and use the 1928 version for their services instead. In addition, Anglo-Catholic bodies may use the Anglican Missal, Anglican Service Book or English Missal when celebrating Mass.
Internal conflict
A changing focus on social issues after the World War II led to Lambeth Conference resolutions countenancing contraception and the remarriage of divorced persons. Eventually, most provinces approved the ordination of women. In more recent years, some jurisdictions have permitted the ordination of people in same-sex relationships and authorised rites for the blessing of same-sex unions (see Homosexuality and Anglicanism). "The more liberal provinces that are open to changing Church doctrine on marriage in order to allow for same-sex unions include Brazil, Canada, New Zealand, Scotland, South India, South Africa, the US and Wales", while the more conservative provinces are primarily located in the Global South.
The lack of social consensus among and within provinces of diverse cultural traditions has resulted in considerable conflict and even schism concerning some or all of these developments, as was the case in the Anglican realignment. More conservative elements within and outside of Anglicanism (primarily African churches and factions within North American Anglicanism) have opposed these changes, while some liberal and moderate Anglicans see this opposition as representing a new fundamentalism within Anglicanism and "believe a split is inevitable and preferable to continued infighting and paralysis." Some Anglicans opposed to various liberalising changes, in particular the ordination of women, have become Roman Catholics or Orthodox. Others have, at various times, joined the Continuing Anglican movement or departed for non-Anglican evangelical churches.Continuum
The term "Continuing Anglicanism" refers to a number of church bodies which have formed outside of the Anglican Communion in the belief that traditional forms of Anglican faith, worship, and order have been unacceptably revised or abandoned within some Anglican Communion churches in recent decades. They therefore claim that they are "continuing" traditional Anglicanism.
The modern Continuing Anglican movement principally dates to the Congress of St. Louis, held in the United States in 1977, where participants rejected changes that had been made in the Episcopal Church's Book of Common Prayer and also the Episcopal Church's approval of the ordination of women to the priesthood. More recent changes in the North American churches of the Anglican Communion, such as the introduction of same-sex marriage rites and the ordination of gay and lesbian people to the priesthood and episcopate, have created further separations.
Continuing churches have generally been formed by people who have left the Anglican Communion. The original Anglican churches are charged by the Continuing Anglicans with being greatly compromised by secular cultural standards and liberal theology. Many Continuing Anglicans believe that the faith of some churches in communion with the archbishop of Canterbury has become unorthodox and therefore have not sought to also be in communion with him.
The original continuing parishes in the United States were found mainly in metropolitan areas. Since the late 1990s, a number have appeared in smaller communities, often as a result of a division in the town's existing Episcopal churches. The 2007–08 Directory of Traditional Anglican and Episcopal Parishes, published by the Fellowship of Concerned Churchmen, contained information on over 900 parishes affiliated with either the Continuing Anglican churches or the Anglican realignment movement, a more recent wave of Anglicans withdrawing from the Anglican Communion's North American provinces.
Social activism
in Dublin, Ireland]]
A concern for social justice can be traced to very early Anglican beliefs, relating to an intertwined theology of God, nature, and humanity. The Anglican theologian Richard Hooker wrote in his book The Works of that Learned and Judicious Divine that "God hath created nothing simply for itself, but each thing in all things, and of every thing each part in other have such interest, that in the whole world nothing is found whereunto any thing created can say, 'I need thee not.'" Such statements demonstrate a theological Anglican interest in social activism, which has historically appeared in movements such as evangelical Anglican William Wilberforce’s campaign against slavery in the 18th century, or 19th century issues concerning industrialisation.
Working conditions and Christian socialism
Lord Shaftesbury, a devout evangelical, campaigned to improve the conditions in factories, in mines, for chimney sweeps, and for the education of the very poor. For years, he was chairman of the Ragged School Board. Frederick Denison Maurice was a leading figure advocating reform, founding so-called "producer's co-operatives" and the Working Men's College. His work was instrumental in the establishment of the Christian socialist movement, although he himself was not in any real sense a socialist but "a Tory paternalist with the unusual desire to theories his acceptance of the traditional obligation to help the poor", influenced Anglo-Catholics such as Charles Gore, who wrote that "the principle of the incarnation is denied unless the Christian spirit can be allowed to concern itself with everything that interests and touches human life." Anglican focus on labour issues culminated in the work of William Temple in the 1930s and 1940s." In 1937, the Anglican Pacifist Fellowship emerged as a distinct reform organisation, seeking to make pacifism a clearly defined part of Anglican theology. The group rapidly gained popularity amongst Anglican intellectuals, including Vera Brittain, Evelyn Underhill, and the former British political leader George Lansbury. Furthermore, Dick Sheppard, who during the 1930s was one of Britain's most famous Anglican priests due to his landmark sermon broadcasts for BBC Radio, founded the Peace Pledge Union, a secular pacifist organisation for the non-religious that gained considerable support throughout the 1930s.
Whilst never actively endorsed by Anglican churches, many Anglicans unofficially have adopted the Augustinian "Just War" doctrine. The Anglican Pacifist Fellowship remains highly active throughout the Anglican world. It rejects this doctrine of "just war" and seeks to reform the Church by reintroducing the pacifism inherent in the beliefs of many of the earliest Christians and present in their interpretation of Christ's Sermon on the Mount. The principles of the Anglican Pacifist Fellowship are often formulated as a statement of belief that "Jesus' teaching is incompatible with the waging of war ... that a Christian church should never support or justify war ... [and] that our Christian witness should include opposing the waging or justifying of war."
Confusing the matter was that the 37th Article of Religion in the Book of Common Prayer states that "it is lawful for Christian men, at the commandment of the Magistrate, to wear weapons, and serve in the wars." Therefore, the Lambeth Council in the modern era has sought to provide a clearer position by repudiating modern war and developed a statement that has been affirmed at each subsequent meeting of the council.
This statement was strongly reasserted when "the 67th General Convention of the Episcopal Church reaffirms the statement made by the Anglican Bishops assembled at Lambeth in 1978 and adopted by the 66th General Convention of the Episcopal Church in 1979, calling "Christian people everywhere ... to engage themselves in non-violent action for justice and peace and to support others so engaged, recognising that such action will be controversial and may be personally very costly... this General Convention, in obedience to this call, urges all members of this Church to support by prayer and by such other means as they deem appropriate, those who engaged in such non-violent action, and particularly those who suffer for conscience' sake as a result; and be it further Resolved, that this General Convention calls upon all members of this Church seriously to consider the implications for their own lives of this call to resist war and work for peace for their own lives."
Opposition to apartheid
The focus on other social issues became increasingly diffuse after World War II. The growing independence and strength of Anglican churches in the Global South brought new emphasis to issues of global poverty, the inequitable distribution of resources, and the lingering effects of colonialism. In this regard, figures such as Desmond Tutu and Ted Scott were instrumental in mobilising Anglicans worldwide against the apartheid policies of South Africa.
Abortion and euthanasia
at the 2015 March for Life in Washington, D.C.]]
While individual Anglicans and member churches within the Communion differ in practice over the circumstances in which abortion should or should not be permitted, Lambeth Conference resolutions have consistently held to a conservative view on the issue. The 1930 Conference, the first to be held since the initial legalisation of abortion in Europe (in Russia in 1920), stated: "The Conference further records its abhorrence of the sinful practice of abortion."
The 1958 Conference's Family in Contemporary Society report affirmed the following position on abortion and was commended by the 1968 Conference:
The subsequent Lambeth Conference, in 1978, made no change to this position and commended the need for "programmes at diocesan level, involving both men and women ... to emphasise the sacredness of all human life, the moral issues inherent in clinical abortion, and the possible implications of genetic engineering."
In the context of debates around and proposals for the legalisation of euthanasia and assisted suicide, the 1998 Conference affirmed that "life is God-given and has intrinsic sanctity, significance and worth".
Ordinariates within the Roman Catholic Church
On 4 November 2009, Pope Benedict XVI issued an apostolic constitution, Anglicanorum Coetibus, to allow groups of former Anglicans to enter into full communion with the Roman Catholic Church as members of personal ordinariates. 20 October 2009 announcement of the imminent constitution mentioned:
Pope Benedict XVI approved, within the apostolic constitution, a canonical structure that provides for personal ordinariates which will allow former Anglicans to enter full communion with the Roman Catholic Church while preserving elements of distinctive Anglican spiritual patrimony.
For each personal ordinariate, the ordinary may be a former Anglican bishop or priest. It was expected that provision would be made to allow the retention of aspects of Anglican liturgy.
Notes
References
Citations
Sources
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
Further reading
*
*
*
*
* Buchanan, Colin. Historical Dictionary of Anglicanism (2nd ed. 2015) [https://www.amazon.com/Historical-Dictionary-Anglicanism-Dictionaries-Philosophies/dp/1442250151 excerpt]
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
External links
* [http://www.anglicancommunion.org/ Anglican Communion website]
* [http://www.cofe.anglican.org/faith/anglican/ What it means to be an Anglican article]
* [http://anglicanhistory.org/ Anglican History website]
* [http://www.anglicansonline.org/ Anglicans Online website]
* [http://justus.anglican.org/resources Online Anglican resources]
Category:Christian denominations founded in Great Britain
Category:Protestant denominations established in the 16th century | https://en.wikipedia.org/wiki/Anglicanism | 2025-04-05T18:25:35.683633 |
1216 | Athens | | image_skyline =
| settlement_type = Capital city
| nicknames (, "the glorious city")<br/> (, "the violet-crowned city") <br /> The City of Wisdom<br/>City of Reason
| image_flag = Flag of the City of Athens.svg
| flag_link | image_seal Coat of Arms of Athens (English Version).svg
| pushpin_map = Greece#Europe
| pushpin_map_caption = Location within Greece##Location within Europe
| pushpin_relief = 1
| coordinates
| subdivision_type = Country
| subdivision_name = Greece
| subdivision_type1 = Geographic region
| subdivision_name1 = Central Greece
| subdivision_type2 = Administrative region
| subdivision_name2 = Attica
| subdivision_type3 = Regional unit
| subdivision_name3 = Central Athens
| government_type = Mayor–council government
| leader_party =
| leader_title = Mayor
| leader_name Haris Doukas
| named_for = Athena
| parts_type = Districts
| parts_style = para
| p1 = 7
| established_title | established_date
| population_as_of = 2021
| population_footnotes
| demographics1_title1 = Metro
| demographics1_info1 = €109.654 billion (2023)
| demographics1_title2 = Per capita
| demographics1_info2 = €29,000 (2023)
| timezone1 = EET
| utc_offset1 = +2
| timezone1_DST = EEST
| utc_offset1_DST = +3
| elevation_min_m = 70.1
| elevation_max_m = 338
| postal_code_type = Postal codes
| postal_code = 10x xx, 11x xx, 120 xx
| area_code_type = Telephone
| area_code = 21
| registration_plate = Yxx, Zxx, Ixx
| blank_name_sec1 = Patron saint
| blank_info_sec1 = Dionysius the Areopagite (3 October)
| blank_name_sec2 = Major airport(s)
| blank_info_sec2 = Athens International Airport
| website =
| official_name | population_density_rank
}}
Athens, ; , }} ( ) is the capital and largest city of Greece. A significant coastal urban area in the Mediterranean, Athens is also the capital of the Attica region and is the southernmost capital on the European mainland. With its urban area's population numbering over 3.6 million, it is the eighth largest urban area in the European Union. The Municipality of Athens (also City of Athens), which constitutes a small administrative unit of the entire urban area, had a population of 643,452 (2021) within its official limits, and a land area of .
Athens is one of the world's oldest cities, with its recorded history spanning over 3,400 years, and its earliest human presence beginning somewhere between the 11th and 7th millennia BC. According to Greek mythology the city was named after Athena, the ancient Greek goddess of wisdom, but modern scholars generally agree that the goddess took her name after the city. Classical Athens was one of the most powerful city-states in ancient Greece. It was a centre for democracy, the arts, education and philosophy, and was highly influential throughout the European continent, particularly in Ancient Rome. For this reason, it is often regarded as the cradle of Western civilization and the birthplace of democracy in its own right independently from the rest of Greece.
In modern times, Athens is a large cosmopolitan metropolis and central to economic, financial, industrial, maritime, political and cultural life in Greece. It is a Beta (+) –
status global city according to the Globalization and World Cities Research Network, and is one of the biggest economic centers in Southeastern Europe. It also has a large financial sector, and its port Piraeus is both the 2nd busiest passenger port in Europe, and the 13th largest container port in the world. The Athens metropolitan area extends beyond its administrative municipal city limits as well as its urban agglomeration, with a population of 3,638,281 (2021) over an area of . Etymology and names
In Ancient Greek, the name of the city was (Athênai, in Classical Attic), which is a plural word. In earlier Greek, such as Homeric Greek, the name had been current in the singular form though, as (Athḗnē). It was possibly rendered in the plural later on, like those of (Thêbai) and (Μukênai). The root of the word is probably not of Greek or Indo-European origin, and is possibly a remnant of the Pre-Greek substrate of Attica. Modern scholars now generally agree that the goddess takes her name from the city, they agreed that whoever gave the Athenians the better gift would become their patron Cecrops accepted this gift Athenians were called cicada-wearers () because they used to wear pins of golden cicadas. A symbol of being autochthonous (earth-born), because the legendary founder of Athens, Erechtheus was an autochthon or of being musicians, because the cicada is a "musician" insect. In classical literature, the city was sometimes referred to as the City of the Violet Crown, first documented in Pindar's ἰοστέφανοι Ἀθᾶναι (iostéphanoi Athânai), or as (tò kleinòn ásty, "the glorious city").
During the medieval period, the name of the city was rendered once again in the singular as . Variant names included Setines, Satine, and Astines, all derivations involving false splitting of prepositional phrases. King Alphonse X of Castile gives the pseudo-etymology 'the one without death/ignorance'. In Ottoman Turkish, it was called Ātīnā, and in modern Turkish, it is Atina.History
Antiquity
The oldest known human presence in Athens is the Cave of Schist, which has been dated to between the 11th and 7th millennia BC. Athens has been continuously inhabited for at least 5,000 years (3000 BC). Unlike other Mycenaean centers, such as Mycenae and Pylos, it is not known whether Athens suffered destruction in about 1200 BC, an event often attributed to a Dorian invasion, and the Athenians always maintained that they were pure Ionians with no Dorian element. However, Athens, like many other Bronze Age settlements, went into economic decline for around 150 years afterwards. Iron Age burials, in the Kerameikos and other locations, are often richly provided for and demonstrate that from 900 BC onwards Athens was one of the leading centres of trade and prosperity in the region.
By the sixth century BC, widespread social unrest led to the reforms of Solon. These would pave the way for the eventual introduction of democracy by Cleisthenes in 508 BC. Athens had by this time become a significant naval power with a large fleet, and helped the rebellion of the Ionian cities against Persian rule. In the ensuing Greco-Persian Wars Athens, together with Sparta, led the coalition of Greek states that would eventually repel the Persians, defeating them decisively at Marathon in 490 BC, and crucially at Salamis in 480 BC. However, this did not prevent Athens from being captured and sacked twice by the Persians within one year, after a heroic but ultimately failed resistance at Thermopylae by Spartans and other Greeks led by King Leonidas, after both Boeotia and Attica fell to the Persians.
under the leadership of Athens before the Peloponnesian War in 431 BC]]
The decades that followed became known as the Golden Age of Athenian democracy, during which time Athens became the leading city of Ancient Greece, with its cultural achievements laying the foundations for Western civilization.
on the Acropolis hill of Athens, dedicated to Athena Parthenos]]
By the mid-4th century BC, the northern Greek kingdom of Macedon was becoming dominant in Athenian affairs. In 338 BC the armies of Philip II defeated an alliance of some of the Greek city-states including Athens and Thebes at the Battle of Chaeronea. Later, under Rome, Athens was given the status of a free city because of its widely admired schools. In the second century AD, the Roman emperor Hadrian, himself an Athenian citizen, ordered the construction of a library, a gymnasium, an aqueduct which is still in use, several temples and sanctuaries, a bridge and financed the completion of the Temple of Olympian Zeus.
In the early 4th century AD, the Eastern Roman Empire began to be governed from Constantinople, and with the construction and expansion of the imperial city, many of Athens's works of art were taken by the emperors to adorn it. The Empire became Christianized, and the use of Latin declined in favour of exclusive use of Greek; in the Roman imperial period, both languages had been used. In the later Roman period, Athens was ruled by the emperors continuing until the 13th century, its citizens identifying themselves as citizens of the Roman Empire ("Rhomaioi"). The conversion of the empire from paganism to Christianity greatly affected Athens, resulting in reduced reverence for the city. The sack of the city by the Herules in 267 and by the Visigoths under their king Alaric I () in 396, however, dealt a heavy blow to the city's fabric and fortunes, and Athens was henceforth confined to a small fortified area that embraced a fraction of the ancient city. an event whose impact on the city is much debated,—but there is also evidence of a mosque existing in the city at the time.
The Turks began a practice of storing gunpowder and explosives in the Parthenon and Propylaea. In 1640, a lightning bolt struck the Propylaea, causing its destruction. In 1687, during the Morean War, the Acropolis was besieged by the Venetians under Francesco Morosini, and the temple of Athena Nike was dismantled by the Ottomans to fortify the Parthenon. A shot fired during the bombardment of the Acropolis caused a powder magazine in the Parthenon to explode (26 September), and the building was severely damaged, giving it largely the appearance it has today. The Venetian occupation of Athens lasted for six months, and both the Venetians and the Ottomans participated in the looting of the Parthenon. One of its western pediments was removed, causing even more damage to the structure. At the time, after the extensive destruction it had suffered during the war of independence, it was reduced to a town of about 4,000 people (less than half its earlier population) in a loose swarm of houses along the foot of the Acropolis. The first King of Greece, King Otto of Bavaria, commissioned the architects Stamatios Kleanthis and Eduard Schaubert to design a modern city plan fit for the capital of a state.
at the opening ceremony of the 2004 Summer Olympics]]
The first modern city plan consisted of a triangle defined by the Acropolis, the ancient cemetery of Kerameikos and the new palace of the Bavarian king (now housing the Greek Parliament), so as to highlight the continuity between modern and ancient Athens. Neoclassicism, the international style of this epoch, was the architectural style through which Bavarian, French and Greek architects such as Hansen, Klenze, Boulanger or Kaftantzoglou designed the first important public buildings of the new capital. In 1896, Athens hosted the first modern Olympic Games. During the 1920s a number of Greek refugees, expelled from Asia Minor after the Greco-Turkish War and Population exchange between Greece and Turkey, swelled Athens's population; nevertheless it was mostly after World War II and the Civil War ended, during the 1950s and 1960s, that the population of the city exploded, and Athens experienced its greatest expansion.
In the 1980s, it became evident that smog from factories and an ever-increasing fleet of automobiles, as well as a lack of adequate free space due to congestion, had evolved into the city's most important challenge. The Acropolis of Athens was inscribed as a UNESCO World Heritage Site in 1987, for its group of ancient Greek monumental ruins, including architectural masterpieces such as the Parthenon. A series of anti-pollution measures taken by the city's authorities in the 1990s, combined with a substantial improvement of the city's infrastructure (including the Attiki Odos motorway, the expansion of the Athens Metro, and the new Athens International Airport), considerably alleviated pollution and transformed Athens into a much more functional city. In 2004, Athens hosted the 2004 Summer Olympics. Further urban improvements began in the 2020s along the coastal zone, including the Hellenikon Park development and the Faliro Delta upgrade, adding to the Stavros Niarchos Centre.
Geography<!--'Athens Basin' and 'Attica Basin' redirect here-->
Athens sprawls across the central plain of Attica that is often referred to as the Athens Basin<!--boldface per WP:R#PLA--> or the Attica Basin<!--boldface per WP:R#PLA--> (). The basin is bounded by four large mountains: Mount Aigaleo to the west, Mount Parnitha to the north, Mount Pentelicus to the northeast and Mount Hymettus to the east. Beyond Mount Aegaleo lies the Thriasian plain, which forms an extension of the central plain to the west. The Saronic Gulf lies to the southwest. Mount Parnitha is the tallest of the four mountains (), and has been declared a national park. The Athens urban area spreads over from Agios Stefanos in the north to Varkiza in the south. The city is located in the north temperate zone, 38 degrees north of the equator.
Athens is built around a large number of hills. Lycabettus is one of the tallest hills of the city proper and provides a view of the entire Attica Basin. The meteorology of Athens is deemed to be one of the most complex in the world because its mountains cause a temperature inversion phenomenon which, along with the Greek government's difficulties controlling industrial pollution, was responsible for the air pollution problems the city has faced.
The Cephissus river, the Ilisos and the Eridanos stream are the historical rivers of Athens.
Environment
in Athens]]
By the late 1970s, the pollution of Athens had become so destructive that according to the then Greek Minister of Culture, Constantine Trypanis, "...the carved details on the five the caryatids of the Erechtheum had seriously degenerated, while the face of the horseman on the Parthenon's west side was all but obliterated." A series of measures taken by the authorities of the city throughout the 1990s resulted in the improvement of air quality; the appearance of smog (or nefos as the Athenians used to call it) has become less common.
Measures taken by the Greek authorities throughout the 1990s have improved the quality of air over the Attica Basin. Nevertheless, air pollution still remains an issue for Athens, particularly during the hottest summer days. In late June 2007, the Attica region experienced a number of brush fires, considered critical to maintaining a better air quality in Athens all year round. The landmark Dionysiou Areopagitou Street has been pedestrianised, forming a scenic route. The route starts from the Temple of Olympian Zeus at Vasilissis Olgas Avenue, continues under the southern slopes of the Acropolis near Plaka, and finishes just beyond the Temple of Hephaestus in Thiseio. The route in its entirety provides visitors with views of the Parthenon and the Agora (the meeting point of ancient Athenians), away from the busy City Centre.
The hills of Athens also provide green space. Lycabettus, Philopappos hill and the area around it, including Pnyx and Ardettos hill, are planted with pines and other trees, with the character of a small forest rather than typical metropolitan parkland. Also to be found is the Pedion tou Areos (Field of Mars) of 27.7 hectares, near the National Archaeological Museum. Athens' largest zoo is the Attica Zoological Park, a private zoo located in the suburb of Spata. The zoo is home to around 2000 animals representing 400 species, and is open 365 days a year. Smaller zoos exist within public gardens or parks, such as the zoo within the National Garden of Athens.
Climate
Athens has a hot-summer Mediterranean climate (Köppen climate classification: Csa). The climate in Athens can be considered warmer than some cities that are similar or even less distant from the equator such as Seoul, Melbourne, Buenos Aires, Cape Town and Norfolk (Virginia, US). According to the meteorological station near the city center which is operated by the National Observatory of Athens, the downtown area has simple mean annual temperature of while parts of the urban agglomeration may reach up to , being affected by the urban heat island effect. Athens receives about of precipitation per year, largely concentrated during the colder half of the year with the remaining rainfall falling sparsely, mainly during thunderstorms. Fog is rare in the city center, but somewhat more frequent in areas to the east, close to mount Hymettus.
The southern section of the Athens metropolitan area (i.e., Elliniko, Athens Riviera) lies in the transitional zone between Mediterranean (Csa) and hot semi-arid climate (BSh), with its port-city of Piraeus being the most extreme example, receiving just per year. The areas to the south generally see less extreme temperature variations as their climate is moderated by the Saronic gulf. The northern part of the city (i.e., Kifissia), owing to its higher elevation, features moderately lower temperatures and slightly increased precipitation year-round. The generally dry climate of the Athens basin compared to the precipitation amounts seen in a typical Mediterranean climate is due to the rain shadow effect caused by the Pindus mountain range and the Dirfys and Parnitha mountains, substantially drying the westerly and northerly and 24 January 2022, when the entire urban area was blanketed in snow.
Athens may get particularly hot in the summer, owing partly to the strong urban heat island effect characterizing the city. In fact, Athens has been referred to as the hottest city in mainland Europe, and is the first city in Europe to appoint a chief heat officer to deal with severe heat waves. Temperatures of 47.5°C have been reported in several locations of the metropolitan area, including within the urban agglomeration. Metropolitan Athens was until 2021 the holder of the World Meteorological Organization record for the highest temperature ever recorded in Europe with which was recorded in the areas of Elefsina and Tatoi on 10 July 1977.
Administration<!--'Athens City Centre', 'Athens City Center', 'Athens city centre', 'Athens city center', 'City of Athens', 'Municipality of Athens', 'Athens Municipality', 'Athens municipality' redirect here-->
]]
Athens became the capital of Greece in 1834, following Nafplion, which was the provisional capital from 1829. The municipality (city) of Athens is also the capital of the Attica region. The term Athens can refer either to the municipality of Athens, to Greater Athens or urban area, or to the entire Athens Metropolitan Area.
The large city centre<!--boldface per WP:R#PLA--> () of the Greek capital falls directly within the Municipality of Athens<!--boldface per WP:R#PLA--> (), which is the largest in population size in Greece and forms the core of the Athens urban area, followed by the Municipality of Piraeus, which forms a significant city centre on its own within the Athens urban area and it is the second largest in population size within it.
Athens Urban Area<!--'Athens Urban Area', 'Athens urban area', 'Urban Area of the Capital', and 'Greater Athens' redirect here-->
The Athens Urban Area<!--boldface per WP:R#PLA--> (), also known as Urban Area of the Capital<!--boldface per WP:R#PLA--> () or Greater Athens<!--boldface per WP:R#PLA--> ()<!--boldface per WP:R#PLA-->, today consists of 40 municipalities: 35 of them divided in four regional units (Central Athens, North Athens, West Athens, South Athens), and a further 5 municipalities which make up the regional unit of Piraeus. The Athens urban area spans over , with a population of 3,059,764 people as of 2021.
{|class"wikitable" style"text-align:center; margin:1em auto"
|+ Athens Urban Area
|-
|style="text-align:left;"|
{|style="width: 100%; font-size: 85%;"
|-
|Regional units:
|-
|Central Athens:<br /><br />
|-
|
|-
|
|-
|
|-
|
|}
|style="text-align:center;"|
|}
Athens metropolitan area
]]
The Athens metropolitan area spans within the Attica region and includes a total of 58 municipalities, which are organized in seven regional units (those outlined above, along with East Attica and West Attica), having reached a population of 3,638,281 according to the 2021 census. There are also some inter-municipal centres serving specific areas. For example, Kifissia and Glyfada serve as inter-municipal centres for northern and southern suburbs respectively.
, designed by Ernst Ziller]]
– one of the many beaches on the southern coast of Athens]]
The Athens Metropolitan Area consists of 58 densely populated municipalities, sprawling around the Municipality of Athens (the City Centre) in virtually all directions. For the Athenians, all the urban municipalities surrounding the City Centre are called suburbs. According to their geographic location in relation to the City of Athens, the suburbs are divided into four zones; the northern suburbs (including Agios Stefanos, Dionysos, Ekali, Nea Erythraia, Kifissia, Kryoneri, Maroussi, Pefki, Lykovrysi, Metamorfosi, Nea Ionia, Nea Filadelfeia, Irakleio, Vrilissia, Melissia, Penteli, Chalandri, Agia Paraskevi, Gerakas, Pallini, Galatsi, Psychiko and Filothei); the southern suburbs (including Alimos, Nea Smyrni, Moschato, Tavros, Agios Ioannis Renti, Kallithea, Piraeus, Agios Dimitrios, Palaio Faliro, Elliniko, Glyfada, Lagonisi, Saronida, Argyroupoli, Ilioupoli, Varkiza, Voula, Vari and Vouliagmeni); the eastern suburbs (including Zografou, Dafni, Vyronas, Kaisariani, Cholargos and Papagou); and the western suburbs (including Peristeri, Ilion, Egaleo, Koridallos, Agia Varvara, Keratsini, Perama, Nikaia, Drapetsona, Chaidari, Petroupoli, Agioi Anargyroi, Ano Liosia, Aspropyrgos, Eleusina, Acharnes and Kamatero).
The Athens city coastline, extending from the major commercial port of Piraeus to the southernmost suburb of Varkiza for some , is also connected to the City Centre by tram.
In the northern suburb of Maroussi, the upgraded main Olympic Complex (known by its Greek acronym OAKA) dominates the skyline. The area has been redeveloped according to a design by the Spanish architect Santiago Calatrava, with steel arches, landscaped gardens, fountains, futuristic glass, and a landmark new blue glass roof which was added to the main stadium. A second Olympic complex, next to the sea at the beach of Palaio Faliro, also features modern stadia, shops and an elevated esplanade. Work is underway to transform the grounds of the old Athens Airport – named Elliniko – in the southern suburbs, into one of the largest landscaped parks in Europe, to be named the Hellenikon Metropolitan Park.
Many of the southern suburbs (such as Alimos, Palaio Faliro, Elliniko, Glyfada, Voula, Vouliagmeni and Varkiza) known as the Athens Riviera, host a number of sandy beaches, most of which are operated by the Greek National Tourism Organisation and require an entrance fee. Casinos operate on both Mount Parnitha (Regency Casino Mont Parnes), some from downtown Athens (accessible by car or cable car), and the nearby town of Loutraki (accessible by car via the Athens – Corinth National Highway, or the Athens Suburban Railway).
Twin towns – sister cities
The concept of a partner city is used under different names in different countries, but they mean the same thing, that two cities in different countries assist each other as partners. Athens has quite a number of partners, whether as a "twin", a "sister", or a "partner."
Demographics
The Municipality of Athens has an official population of 643,452 people (in 2021).
For the Athenians the most popular way of dividing the downtown is through its neighbourhoods such as Pagkrati, Ampelokipoi, Goudi, Exarcheia, Patisia, Ilisia, Petralona, Plaka, Anafiotika, Koukaki, Kolonaki and Kypseli, each with its own distinct history and characteristics.
Romani people are concentrated in Acharnes, Ano Liosia, Agia Varvara, Zefeiri and Kamatero.
There is a large Albanian community in Athens. Metropolitan Area The Athens Metropolitan Area, with an area of and inhabited by 3,744,059 people in 2021, It also ranks as a very safe city (39th globally out of 162 cities overall) on the ranking of the safest and most dangerous countries. As November 2024 the crime index from Numbeo places Athens at 55.40 (moderate), while its safety index is at 44.60. According to a Mercer 2019 Quality of Living Survey, Athens ranks 89th on the Mercer Quality of Living Survey ranking. Economy
headquarters in Marousi, the largest technology company in Greece]]
is the largest Greek bank by total assets.]]
, the main commercial street of Athens]]
Athens is the financial capital of Greece. According to data from 2014, Athens as a metropolitan economic area produced US$130 billion as GDP in PPP, which consists of nearly half of the production for the whole country. Athens was ranked 102nd in that year's list of global economic metropolises, while GDP per capita for the same year was 32,000 US dollars.
Athens is one of the major economic centres in south-eastern Europe and is considered a regional economic power. The port of Piraeus, where big investments by COSCO have already been delivered during the recent decade, the completion of the new Cargo Centre in Thriasion, the expansion of the Athens Metro and the Athens Tram, as well as the Hellenikon metropolitan park redevelopment in Elliniko and other urban projects, are the economic landmarks of the upcoming years.
Prominent Greek companies such as Hellas Sat, Hellenic Aerospace Industry, Mytilineos Holdings, Titan Cement, Hellenic Petroleum, Papadopoulos E.J., Folli Follie, Jumbo S.A., OPAP, and Cosmote have their headquarters in the metropolitan area of Athens. Multinational companies such as Ericsson, Sony, Siemens, Motorola, Samsung, Microsoft, Teleperformance, Novartis, Mondelez and Coca-Cola also have their regional research and development headquarters in the city. The banking sector is represented by National Bank of Greece, Alpha Bank, Eurobank, and Piraeus Bank, while the Bank of Greece is also situated in the City Centre. The Athens Stock Exchange was severely hit by the Greek government-debt crisis and the decision of the government to proceed into capital controls during summer 2015. As a whole the economy of Athens and Greece was strongly affected, while data showed a change from long recession to growth of 1.4% from 2017 onwards.
Tourism is also a leading contributor to the economy of the city, as one of Europe's top destinations for city-break tourism, and also the gateway for excursions to both the islands and other parts of the mainland. Greece attracted 26.5 million visitors in 2015, 30.1 million visitors in 2017, and over 33 million in 2018, making Greece one of the most visited countries in Europe and the world, and contributing 18% to the country's GDP. Athens welcomed more than 5 million tourists in 2018, and 1.4 million were "city-breakers"; this was an increase by over a million city-breakers since 2013.
Tourism
Athens has been a destination for travellers since antiquity. Over the 2000s, the city's infrastructure and social amenities have improved, in part because of its successful bid to stage the 2004 Olympic Games.
The Greek Government, aided by the EU, has funded major infrastructure projects such as the state-of-the-art Eleftherios Venizelos International Airport, the expansion of the Athens Metro system, and the new Attiki Odos Motorway.
Transport
Athens is the country's major transportation hub. The city has Greece's largest airport and its largest port; Piraeus, too, is the largest container transport port in the Mediterranean, and the largest passenger port in Europe.
Athens is a major national hub for Intercity (Ktel) and international buses, as well as for domestic and international rail transport. Public transport is serviced by a variety of transportation means, making up the country's largest mass transit system. Transport for Athens operates a large bus and trolleybus fleet, the city's Metro, a Suburban Railway service and a tram network, connecting the southern suburbs to the city centre. Bus transport OSY () (Odikes Sygkoinonies S.A.), a subsidiary company of OASA (Athens urban transport organisation), is the main operator of buses and trolleybuses in Athens. As of 2017, its network consists of around 322 bus lines, spanning the Athens Metropolitan Area, and making up a fleet of 2,375 buses and trolleybuses. Of those 2,375, 619 buses run on compressed natural gas, making up the largest fleet of natural gas-powered buses in Europe, and 354 are electric-powered (trolleybuses). All of the 354 trolleybuses are equipped to run on diesel in case of power failure.
International links are provided by a number of private companies. National and regional bus links are provided by KTEL from two InterCity Bus Terminals; Kifissos Bus Terminal A and Liosion Bus Terminal B, both located in the north-western part of the city. Kifissos provides connections towards Peloponnese, North Greece, West Greece and some Ionian Islands, whereas Liosion is used for most of Central Greece. Both of these terminals will be replaced by a new Intercity Bus Terminal under construction in Eleonas due to be completed by 2027.
Railways
Athens is the hub of the country's national railway system (OSE), connecting the capital with major cities across Greece and abroad (Istanbul, Sofia, Belgrade and Bucharest).
)]]
The Athens Suburban Railway, referred to as the Proastiakos, connects Athens International Airport to the city of Kiato, and is expected to stretch to by 2010. The Athens Metro runs three metro lines, namely Line 1 (Green Line), Line 2 (Red Line) and Line 3 (Blue Line) lines, of which the first was constructed in 1869, and the other two largely during the 1990s, with the initial new sections opened in January 2000. Line 1 mostly runs at ground level and the other two (Line 2 & 3) routes run entirely underground. A fleet of 42 trains, using 252 carriages, operates on the network, with a daily occupancy of 1,353,000 passengers.
Line 1 (Green Line) serves 24 stations, and is the oldest line of the Athens metro network. It runs from Piraeus station to Kifissia station and covers a distance of . There are transfer connections with the Blue Line 3 at Monastiraki station and with the Red Line 2 at Omonia and Attiki stations. Line 2 (Red Line) runs from Anthoupoli station to Elliniko station and covers a distance of . connecting the biggest port of Greece, the Port of Piraeus, with Athens International Airport, the biggest airport of Greece.
]]
The Athens Tram is operated by STASY S.A. (Statheres Sygkoinonies S.A.), a subsidiary company of Transport for Athens (OASA). It has a fleet of 35 Sirio type vehicles and 25 Alstom Citadis type vehicles which serve 48 stations, Athens International Airport
]]
Athens is served by the Athens International Airport (ATH), located near the town of Spata, in the eastern Messoghia plain, some east of center of Athens. The airport, awarded the "European Airport of the Year 2004" Award,
Ferry
The Port of Piraeus is the largest port in Greece and one of the largest in Europe. Rafina and Lavrio act as alternative ports of Athens, connects the city with numerous Greek islands of the Aegean Sea, Evia while also serving the cruise ships that arrive.
Motorways
interchange north of Athens]]
Two main motorways of Greece begin in Athens, namely the A1/E75, heading north towards Greece's second largest city, Thessaloniki; and the border crossing of Evzones and the A8/E94 heading west, towards Greece's third largest city, Patras, which incorporated the GR-8A. Before their completion much of the road traffic used the GR-1 and the GR-8.
Athens' Metropolitan Area is served by the Attiki Odos toll motorway network: its main section, the A6, extends from the western industrial suburb of Elefsina to Athens International Airport; while two beltways, namely the Aigaleo Beltway (A65) and the Hymettus Beltway (A62) serve parts of western and eastern Athens respectively. The span of the Attiki Odos in all its length is , making it the largest metropolitan motorway network in all of Greece.
Education
]]
]]
]]
Located on Panepistimiou Street, the old campus of the University of Athens, the National Library, and the Athens Academy form the "Athens Trilogy" built in the mid-19th century. The largest and oldest university in Athens is the National and Kapodistrian University of Athens. Most of the functions of NKUA along National Technical University of Athens have been transferred to a campus in the eastern suburb of Zografou. The National Technical University of Athens old campus is located on Patision Street.
The University of West Attica is the second largest university in Athens. The seat of the university is located in the western area of Athens, where the philosophers of Ancient Athens delivered lectures. All the activities of UNIWA are carried out in the modern infrastructure of the three University Campuses within the metropolitan region of Athens (Egaleo Park, Ancient Olive Groove and Athens), which offer modern teaching and research spaces, entertainment and support facilities for all students. Other universities that lie within Athens are the Athens University of Economics and Business, the Panteion University, the Agricultural University of Athens and the University of Piraeus.
There are overall ten state-supported Institutions of Higher (or Tertiary) education located in the Athens Urban Area, these are by chronological order: Athens School of Fine Arts (1837), National Technical University of Athens (1837), National and Kapodistrian University of Athens (1837), Agricultural University of Athens (1920), Athens University of Economics and Business (1920), Panteion University of Social and Political Sciences (1927), University of Piraeus (1938), Harokopio University of Athens (1990), School of Pedagogical and Technological Education (2002), University of West Attica (2018). There are also several other private colleges, as they called formally in Greece, as the establishment of private universities is prohibited by the constitution. Many of them are accredited by a foreign state or university such as the American College of Greece and the Athens Campus of the University of Indianapolis. Culture Archaeological hub and museums
in central Athens]]
]]
in the Stoa of Attalos]]
The city is a world centre of archaeological research. Alongside national academic institutions, such as the Athens University and the Archaeological Society, it is home to multiple archaeological museums, taking in the National Archaeological Museum, the Cycladic Museum, the Epigraphic Museum, the Byzantine & Christian Museum, as well as museums at the ancient Agora, Acropolis, Kerameikos, and the Kerameikos Archaeological Museum. The city is also the setting for the Demokritos laboratory for Archaeometry, alongside regional and national archaeological authorities forming part of the Greek Department of Culture.
Athens hosts 17 Foreign Archaeological Institutes which promote and facilitate research by scholars from their home countries. As a result, Athens has more than a dozen archaeological libraries and three specialized archaeological laboratories, and is the venue of several hundred specialized lectures, conferences and seminars, as well as dozens of archaeological exhibitions each year. At any given time, hundreds of international scholars and researchers in all disciplines of archaeology are to be found in the city.
Athens' most important museums include:
* the National Archaeological Museum, the largest archaeological museum in the country, and one of the most important internationally, as it contains a vast collection of antiquities. Its artefacts cover a period of more than 5,000 years, from late Neolithic Age to Roman Greece;
* the Benaki Museum with its several branches for each of its collections including ancient, Byzantine, Ottoman-era, Chinese art and beyond;
* the Byzantine and Christian Museum, one of the most important museums of Byzantine art;
* the National Art Gallery, the nation's eponymous leading gallery, which reopened in 2021 after renovation;
* the National Museum of Contemporary Art, which opened in 2000 in a former brewery building;
* the Numismatic Museum, housing a major collection of ancient and modern coins;
* the Museum of Cycladic Art, home to an extensive collection of Cycladic art, including its famous figurines of white marble;
* the New Acropolis Museum, opened in 2009, and replacing the old museum on the Acropolis. The new museum has proved considerably popular; almost one million people visited during the summer period June–October 2009 alone. A number of smaller and privately owned museums focused on Greek culture and arts are also to be found.
* the Kerameikos Archaeological Museum, a museum which displays artifacts from the burial site of Kerameikos. Much of the pottery and other artifacts relate to Athenian attitudes towards death and the afterlife, throughout many ages.
* the Jewish Museum of Greece, a museum which describes the history and culture of the Greek Jewish community.
Architecture
Hall]]
(Athens Metropolis)]]
Athens incorporates architectural styles ranging from Greco-Roman and Neoclassical to Modern. They are often to be found in the same areas, as Athens is not marked by a uniformity of architectural style. A visitor will quickly notice the absence of tall buildings: Athens has very strict height restriction laws in order to ensure the Acropolis Hill is visible throughout the city. Despite the variety in styles, there is evidence of continuity in elements of the architectural environment throughout the city's history.
For the greatest part of the 19th century Neoclassicism dominated Athens, as well as some deviations from it such as Eclecticism, especially in the early 20th century. Thus, the Old Royal Palace was the first important public building to be built, between 1836 and 1843. Later in the mid and late 19th century, Theophil Freiherr von Hansen and Ernst Ziller took part in the construction of many neoclassical buildings such as the Athens Academy and the Zappeion Hall. Ziller also designed many private mansions in the centre of Athens which gradually became public, usually through donations, such as Schliemann's Iliou Melathron.
Beginning in the 1920s, modern architecture including Bauhaus and Art Deco began to exert an influence on almost all Greek architects, and buildings both public and private were constructed in accordance with these styles. Localities with a great number of such buildings include Kolonaki, and some areas of the centre of the city; neighbourhoods developed in this period include Kypseli.
In the 1950s and 1960s during the extension and development of Athens, other modern movements such as the International style played an important role. The centre of Athens was largely rebuilt, leading to the demolition of a number of neoclassical buildings. The architects of this era employed materials such as glass, marble and aluminium, and many blended modern and classical elements. After World War II, internationally known architects to have designed and built in the city included Walter Gropius, with his design for the US Embassy, and, among others, Eero Saarinen, in his postwar design for the east terminal of the Ellinikon Airport.
Urban sculpture
is now home to the National History Museum. View from Stadiou Street.]]
Across the city numerous statues or busts are to be found. Apart from the neoclassicals by Leonidas Drosis at the Academy of Athens (Plato, Socrates, Apollo and Athena), others in notable categories include the statue of Theseus by Georgios Fytalis at Thiseion; depictions of philhellenes such as Lord Byron, George Canning, and William Gladstone; the equestrian statue of Theodoros Kolokotronis by Lazaros Sochos in front of the Old Parliament; statues of Ioannis Kapodistrias, Rigas Feraios and Adamantios Korais at the university; of Evangelos Zappas and Konstantinos Zappas at the Zappeion; Ioannis Varvakis at the National Garden; the" Woodbreaker" by Dimitrios Filippotis; the equestrian statue of Alexandros Papagos in the Papagou district; and various busts of fighters of Greek independence at the Pedion tou Areos. A significant landmark is also the Tomb of the Unknown Soldier in Syntagma.
Entertainment and performing arts
, near Omonoia Square]]
Athens is home to 148 theatrical stages, more than any other city in the world, including the ancient Odeon of Herodes Atticus, home to the Athens Festival, which runs from May to October each year. In addition to a large number of multiplexes, Athens plays host to open air garden cinemas. The city also supports music venues, including the Athens Concert Hall (Megaro Moussikis), which attracts world class artists. The Athens Planetarium, located in Andrea Syngrou Avenue, in Palaio Faliro is one of the largest and best equipped digital planetaria in the world. The Stavros Niarchos Foundation Cultural Center, inaugurated in 2016, will house the National Library of Greece and the Greek National Opera. In 2018 Athens was designated as the World Book Capital by UNESCO.
Restaurants, tavernas and bars can be found in the entertainment hubs in Plaka and the Trigono areas of the historic centre, the inner suburbs of Gazi and Psyrri are especially busy with nightclubs and bars, while Kolonaki, Exarchia, Kypseli, Metaxourgeio, Koukaki and Pangrati offer more of a cafe and restaurant scene. The coastal suburbs of Microlimano, Alimos and Glyfada include many tavernas, beach bars and busy summer clubs.
, home of the Greek National Opera and the new National Library]]
The most successful songs during the period 1870–1930 were the Athenian serenades (Αθηναϊκές καντάδες), based on the Heptanesean kantádhes (καντάδες 'serenades'; sing.: καντάδα) and the songs performed on stage (επιθεωρησιακά τραγούδια 'theatrical revue songs') in revues, musical comedies, operettas and nocturnes that were dominating Athens' theatre scene.
In 1922, following the Greek-Turkish war, Greek genocide and later population exchange suffered by the Greek population of Asia Minor, many ethnic Greeks fled to Athens. They settled in poor neighbourhoods and brought with them Rebetiko music, making it also popular in Greece, and which later became the base for the Laïko music. Other forms of song popular today in Greece are elafrolaika, entechno, dimotika, and skyladika. Greece's most notable, and internationally famous, composers of Greek song, mainly of the entechno form, are Manos Hadjidakis and Mikis Theodorakis. Both composers have achieved fame abroad for their composition of film scores. Her professional opera career started in 1940 in Athens, with the Greek National Opera. In 2018, the city's municipal Olympia Theatre was renamed to "Olympia City Music Theatre 'Maria Callas'" and in 2023, the Municipality inaugurated the Maria Callas Museum, housing it in a neoclassical building on 44 Mitropoleos street. Sports
), dating back to the 4th century BC, hosted the first modern Olympic Games in 1896.]]
vs Sparta Prague in the Athens Olympic Stadium, 2008]]
Athens has a long tradition in sports and sporting events, serving as home to the most important clubs in Greek sport and housing a large number of sports facilities. The city has also been host to sports events of international importance.
Athens has hosted the Summer Olympic Games twice, in 1896 and 2004. The 2004 Summer Olympics required the development of the Athens Olympic Stadium, which has since gained a reputation as one of the most beautiful stadiums in the world, and one of its most interesting modern monuments. The biggest stadium in the country, it hosted two finals of the UEFA Champions League, in 1994 and 2007. Other major stadiums are the Karaiskakis Stadium located in the nearby city of Piraeus, a sports and entertainment complex, host of the 1971 UEFA Cup Winners' Cup Final, and Agia Sophia Stadium located in Nea Filadelfeia, host of the 2024 UEFA Europa Conference League final.
The EuroLeague final has been hosted twice in 1985 and in 1993 at the Peace and Friendship Stadium, most known as SEF, a large indoor arena, and the third time in 2007 at the Olympic Indoor Hall. Events in other sports such as athletics, volleyball, water polo etc., have been hosted in the capital's venues.
Greater Athens is home to three widely supported and successful multi-sport clubs, Panathinaikos, originated in the city of Athens, Olympiacos, originated in the port city of Piraeus and AEK, originated in the suburban town of Nea Filadelfeia. In football, Olympiacos is the dominant force at the national level and the only Greek club to have won a European competition, the 2023–24 UEFA Europa Conference League, Panathinaikos made it to the 1971 European Cup Final, while AEK Athens is the other member of the big three. These clubs also have successful basketball teams; Panathinaikos and Olympiacos are considered among the top powers in Europe, having won the EuroLeague seven and three times respectively, whilst AEK Athens was the first Greek team to win a European trophy in any team sport.
Other notable clubs within the region are Athinaikos, Panionios, Atromitos, Apollon, Panellinios, Egaleo F.C., Ethnikos Piraeus, Maroussi BC and Peristeri B.C. Athenian clubs have also had domestic and international success in other sports.
The Athens area encompasses a variety of terrain, notably hills and mountains rising around the city, and the capital is the only major city in Europe to be bisected by a mountain range. Four mountain ranges extend into city boundaries and thousands of kilometres of trails criss-cross the city and neighbouring areas, providing exercise and wilderness access on foot and bike.
Beyond Athens and across the prefecture of Attica, outdoor activities include skiing, rock climbing, hang gliding and windsurfing. Numerous outdoor clubs serve these sports, including the Athens Chapter of the Sierra Club, which leads over 4,000 outings annually in the area.
Athens was awarded the 2004 Summer Olympics on 5 September 1997 in Lausanne, Switzerland, after having lost a previous bid to host the 1996 Summer Olympics, to Atlanta, United States. The games welcomed over 10,000 athletes from all 202 countries.<ref nameolyy/> See also
* List of modern cities named after Athens
* Outline of Athens
* Timeline of Athens
Notes
References
External links
* of the Municipality of Athens
}}
}}
<!--leave the empty space as standard-->
Category:Ancient Greek archaeological sites in Greece
Category:Archaeological sites in Attica
Category:Capitals in Europe
Category:Capitals of Greek states
Category:City-states
Category:Greek regional capitals
Category:Populated coastal places in Greece
Category:Populated places established in the 5th century BC
Category:Populated places in ancient Greece
Category:Populated places in Central Athens (regional unit)
Category:Roman sites in Greece
Category:Athens Riviera | https://en.wikipedia.org/wiki/Athens | 2025-04-05T18:25:35.780535 |
1217 | Anguilla | | mapsize = 290px
| image_map2 = Anguilla - Location Map (2013) - AIA - UNOCHA.svg
| mapsize2 = 290px
| map_caption2 | subdivision_type Sovereign state
| subdivision_name =
| established_title = English control
| established_date = 1667
| established_title2 = Federation with Saint Kitts and Nevis
| established_date2 = 1871
| established_title3 = Secession and independence
| established_date3 = 12 July 1967
| established_title4 = British control restored
| established_date4 = 18 March 1969
| official_languages = English
| demonym = Anguillan
| capital = The Valley
| coordinates
| largest_city = capital
| ethnic_groups =
| ethnic_groups_year = 2011
| ethnic_groups_ref
| leader_title1 = Monarch
| leader_name1 = Charles III
| leader_title2 = Governor
| leader_name2 = Julia Crouch
| leader_title3 = Deputy Governor
| leader_name3 = Perin A. Bradley
| leader_title4 = Premier
| leader_name4= Cora Richardson-Hodge
| legislature = House of Assembly
| national_representation = Government of the United Kingdom
| national_representation_type1 = Minister
| national_representation1 = Stephen Doughty
| area_km2 = 91
| area_sq_mi | area_rank <!-- Area rank should match List of countries and dependencies by area:none -->
| percent_water = negligible
| elevation_max_m = 73
| population_estimate =
| population_census = 13,452
| population_estimate_year =
| population_estimate_rank = not ranked
| population_census_year = 2011
| population_density_km2 = 132
| population_density_rank = not ranked
| population_density_sq_mi = 342
| GDP_PPP $311 million
| GDP_PPP_year = 2014
| GDP_PPP_rank | GDP_PPP_per_capita $29,493
| GDP_PPP_per_capita_rank | GDP_nominal US$307,000,000
| GDP_nominal_year = 2020
| GDP_nominal_rank | GDP_nominal_per_capita
| GDP_nominal_per_capita_rank | Gini
| Gini_year | Gini_change <!-- increase/decrease/steady -->
| Gini_ref | HDI <!-- number only -->
| HDI_year = <!-- Please use the year to which the data refers, not the publication year-->
| HDI_change = <!-- increase/decrease/steady -->
| HDI_ref | HDI_rank
| currency = Eastern Caribbean dollar
| currency_code = XCD
| timezone = AST
| utc_offset = −04:00
| date_format = dd/mm/yyyy
| drives_on = left
| calling_code = +1-264
| postal_code_type = UK postcode
| postal_code = AI-2640
| iso_code = AI
| cctld = .ai
|website=[https://gov.ai gov.ai]
}}
Anguilla ( ) is a British Overseas Territory in the Caribbean. It is one of the most northerly of the Leeward Islands in the Lesser Antilles, lying east of Puerto Rico and the Virgin Islands and directly north of Saint Martin. The territory consists of the main island of Anguilla, approximately long by wide at its widest point, together with a number of much smaller islands and cays with no permanent population. The territory's capital is The Valley. The total land area of the territory is , with a population of approximately ().
Etymology
The native Arawak name for the island was Malliouhana.
History
, a plantation house thought to be the oldest building in Anguilla]]
Anguilla was first settled by Indigenous Amerindian peoples who migrated from South America.
There are two known petroglyph sites in Anguilla: Big Spring and Fountain Cavern. The rock ledges of Big Spring contain more than 100 petroglyphs (dating back to AD 600–1200), the majority consisting of three indentations that form faces.
Precisely when Anguilla was first seen by Europeans is uncertain: some sources claim that Columbus sighted the island during his second voyage in 1493, while others state that the first European explorer was the French Huguenot nobleman and merchant René Goulaine de Laudonnière in 1564.
Traditional accounts state that Anguilla was first colonised by English settlers from Saint Kitts beginning in 1650. The settlers focused on planting tobacco, and to a lesser extent cotton. The French attacked again in 1688, 1745 and 1798, causing much destruction but failing to capture the island. By 1672 a slave depot existed on the island of Nevis, serving the Leeward Islands. While the time of African arrival in Anguilla is difficult to place precisely, archival evidence indicates a substantial African presence of at least 100 enslaved people by 1683; these seem to have come from Central Africa as well as West Africa. The slaves were forced to work on the sugar plantations which had begun to replace tobacco as Anguilla's main crop. Many planters subsequently sold up or left the island. However many Anguillans had no wish to be a part of this union, and resented the dominance of St Kitts within it. On 30 May 1967 Anguillans forcibly ejected the St Kitts police force from the island and declared their separation from St Kitts following a referendum. The events, led by Atlin Harrigan and Ronald Webster among others, became known as the Anguillan Revolution; its goal was not independence per se, but rather independence from Saint Kitts and Nevis and a return to being a British colony.
With negotiations failing to break the deadlock, a second referendum confirming Anguillans' desire for separation from St Kitts was held and the Republic of Anguilla was declared unilaterally, with Ronald Webster as president. Efforts by British envoy William Whitlock failed to break the impasse and 300 British troops were subsequently sent in March 1969.Geology
Anguilla (and the wider Anguilla Bank) is of volcanic origin, lying on the Lesser Antilles volcanic island arc, and tuffs and volcaniclastic breccias of Eocene age are exposed locally on the island. The island was largely submerged during the Miocene, leading to the formation of the reefal limestone Anguilla Formation, which was subsequently tectonically uplifted and covers most of the island today. Since the late Pleistocene, however, Anguilla has undergone tectonic subsidence at a rate of around 1–2 mm/yr.
{|
|- valign = top
|
and other islands to its south]]
|
|}
Climate
Temperature
Northeastern trade winds keep this tropical island relatively cool and dry. Average annual temperature is . In October 2023, the destroyer HMS Dauntless (which had temporarily replaced Medway on her normal Caribbean tasking), visited the territory in order to assist local authorities in preparing for the climax of the hurricane season.
Anguilla had a small marine police force, comprising around 32 personnel, which operated one VT Halmatic M160-class fast patrol boat. Policing on the island is the responsibility of the Royal Anguilla Police Force. Population Demographics
The majority of residents (90.08%) are of West African ancestry, most of whom are the descendants of enslaved people transported from Africa.
The years 2006 and 2007 saw an influx of large numbers of Chinese, Indian and Mexican workers, brought in as labour for major tourist developments due to the local population not being large enough to support the labour requirements. Religion
Christian churches did not have a consistent or strong presence during the initial period of English colonisation; spiritual and religious practices of Europeans and Africans tended to reflect their regional origins. As early as 1813, Christian ministers formally ministered to enslaved Africans and promoted literacy among converts. The Wesleyan (Methodist) Missionary Society of England built churches and schools from 1817.
According to the 2001 census, Christianity is Anguilla's predominant religion, with 29% of the population practising Anglicanism; another 23.9% are Methodist. Between 1992 and 2001, the number of followers of the Church of God and Pentecostals increased considerably. There are at least 15 churches on the island. Although a minority on the island, Anguilla is an important location to followers of Rastafarian religion as the birthplace of Robert Athlyi Rogers, author of the Holy Piby which had a strong influence on Rastafarian and other Africa-centre belief systems. More recently, a Muslim cultural centre has opened on the island. It has its main roots in early varieties of English and West African languages, and is similar to the dialects spoken in English-speaking islands throughout the Eastern Caribbean in terms of its structural features.
Linguists who are interested in the origins of Anguillan and other Caribbean Creoles point out that some of its grammatical features can be traced to African languages while others can be traced to European languages. Three areas have been identified as significant for the identification of the linguistic origins of those forced migrants who arrived before 1710: the Gold Coast, the Slave Coast and the Windward Coast.
Sociohistorical information from Anguilla's archives suggest that Africans and Europeans formed two distinct, but perhaps overlapping speech communities in the early phases of the island's colonisation. "Anguillian" is believed to have emerged as the language of the masses as time passed, slavery was abolished and locals began to see themselves as "belonging" to Anguillan society. There is a single library, the Edison L. Hughes Education & Library Complex of the Anguilla Public Library. A branch of the Saint James School of Medicine was established in 2011 in Anguilla. It is a private, for-profit medical school headquartered in Park Ridge, Illinois.
There is a University of the West Indies Open campus site in the island. Culture The island's cultural history begins with the native Taino, Arawak and Carib. Their artefacts have been found around the island, telling of life before European settlers arrived.
Anguillan culture has also been built through immigration. Many European families have moved to the island and have impacted the formalities of the Anguillan people.
Similar to nearby islands, Anguillans geography and location require a cultural reliance on the ocean. The island's abundance of sea life has led to the incorporation of many fish and crustacean into daily life. They have become a part of the local cuisine, opened up opportunities for ecotourism, and introduced celebrations such as Lobster Fest and boat races.
As throughout the Caribbean, holidays are a cultural fixture. Anguilla's most important holidays are of historic as much as cultural importance – particularly the anniversary of the emancipation (previously August Monday in the Park), celebrated as the Summer Festival, or Carnival,
Music in Anguilla presents itself as an important part of its culture as well. All different genres of music are played at the celebrations mentioned above. This music represents the deep history of talent that Anguillans have displayed for decades.
The Anguilla National Trust (ANT) was established in 1989 and opened its current office in 1991 charged with the responsibility of preserving the heritage of the island, including its cultural heritage.
The Heritage Collection Museum used to showcase the history and artefacts of Anguilla, but in 2024 the collection was handed over to the Anguilla National Museum. Cuisine
Anguillan cuisine is influenced by native Caribbean, West African, Spanish, French, and English cuisines. Seafood is abundant, including prawns, shrimp, crab, spiny lobster, conch, mahi-mahi, red snapper, marlin, and grouper.
A significant amount of the island's produce is imported due to limited land suitable for agriculture production; much of the soil is sandy and infertile. sweet potatoes Among the forty three poets in the collection are Rita Celestine-Carty, Bankie Banx, John T. Harrigan, Patricia J. Adams, Fabian Fahie, Dr. Oluwakemi Linda Banks, and Reuel Ben Lewi.
Music
, noted reggae artist and poet from Anguilla who has built up an international following]]
Various Caribbean musical genres are popular on the island, such as soca and calypso, but reggae most deeply roots itself in Anguillan society. Anguilla has produced many artists and groups in this genre.
Reggae has shown itself to be the most popular genre in Anguilla. The most successful of reggae artists originating in Anguilla come from the Banks family. Bankie "Banx" and his son Omari Banks have had many chart-topping songs listened to around the world. The two musicians continue to provide live performances across the island quite often.
British Dependency has also gained popularity throughout the 21st century. The band, who began in Anguilla, boasts the island's first female bass player. Performing alongside The Wailers on tour, British Dependency have earned attention from an American audience.
One of many musical events that take place in Anguilla is Moonsplash. Moonsplash is an annual reggae music festival that has occurred in Anguilla for 33 consecutive years and proves to be the oldest independent musical event in the Caribbean. Along with its longstanding history, it is the largest festival annually alongside carnival.
While not many soca and calypso artists have gained extreme popularity, the genres are still widely listened to across the island.
Sports
Boat racing has deep roots in Anguillan culture and is the national sport. The Eels have been finalists in the St. Martin tournament in November 2006 and semi-finalists in 2007, 2008, 2009 and Champions in 2010. The Eels were formed in 2006 by Scottish club national second row Martin Welsh, Club Sponsor and President of the AERFC Ms. Jacquie Ruan, and Canadian standout Scrumhalf Mark Harris (Toronto Scottish RFC).
Anguilla is the birthplace of sprinter Zharnel Hughes who has represented Great Britain since 2015, and England at the 2018 Commonwealth Games. He won the 100 metres at the 2018 European Athletics Championships, the 4 x 100 metres at the same championships, and the 4 x 100 metres for England at the 2018 Commonwealth Games. He also won a relay team gold at the 2022 Birmingham Commonwealth Games and a silver on the relay for Great Britain at the 2020 Olympic Games. In 2023 he broke the British record for the 100m sprint, with a time of 9.83 seconds.
Shara Proctor, British Long Jump Silver Medalist at the World Championships in Beijing, first represented Anguilla in the event until 2010 when she began to represent Great Britain and England. Under the Anguillan Flag she achieved several medals in the NACAC games.
Keith Connor, triple jumper, is also an Anguillan. He represented Great Britain and England and achieved several international titles including Commonwealth and European Games gold medals and an Olympic bronze medal. Connor later became Head Coach of Australia Athletics.Natural historyWildlifeAnguilla has habitat for the Cuban tree frogs (Osteopilus septentrionalis). The red-footed tortoise (Chelonoidis carbonaria) is a species of tortoise found here, which originally came from South America. All three animals are introductions.
Notable people
<!-- Please respect alphabetical order -->
*Zharnel Hughes (born 1995), sprinter
*Dee-Ann Kentish-Rogers (born 1993), politician, model and Miss Universe Great Britain 2018
*Carlos Newton (born 1976), former UFC Welterweight Champion
*Shara Proctor (born 1988), long jump athlete
Economy
Anguilla's thin arid soil being largely unsuitable for agriculture, the island has few land-based natural resources. Before the 2008 worldwide crisis, the economy of Anguilla was growing strongly, especially the tourism sector, which was driving major new developments in partnerships with multi-national companies. Anguilla's tourism industry received a major boost when it was selected to host the World Travel Awards in December 2014. Known as "the Oscars of the travel industry", the awards ceremony was held at the CuisinArt Resort and Spa and was hosted by Vivica A. Fox. Anguilla was voted the World's Leading Luxury Island Destination from a short list of top-tier candidates such as St. Barts, the Maldives, and Mauritius. The economy, including the tourism sector, suffered its biggest setback in late 2017 due to the effects of Hurricane Irma in September, which was the most powerful hurricane to hit the island and which caused major material damage of $320 million. A lot of infrastructure was damaged, which was repaired in 2018/19 and the economy began to recover in 2019. However, the onset of the COVID-19 pandemic in 2020/21, caused a setback in the economy.
Anguilla's financial system comprises seven banks, two money services businesses, more than 40 company managers, more than 50 insurers, 12 brokers, more than 250 captive intermediaries, more than 50 mutual funds, and eight trust companies.
Anguilla has become a popular tax haven, having no capital gains, estate, profit, sales, or corporate taxes. In April 2011, faced with a mounting deficit, it introduced a 3% "Interim Stabilisation Levy", Anguilla's first form of income tax. Anguilla also has a 0.75% property tax.
Anguilla aims to obtain 15% of its energy from solar power to become less reliant on expensive imported diesel. The Climate & Development Knowledge Network is helping the government gather the information it needs to change the territory's legislation, so that it can integrate renewables into its grid. Barbados has also made good progress in switching to renewables, but many other Small Island Developing States are still at the early stages of planning how to integrate renewable energy into their grids. "For a small island we're very far ahead," said Beth Barry, Coordinator of the Anguilla Renewable Energy Office. "We've got an Energy Policy and a draft Climate Change policy and have been focusing efforts on the question of sustainable energy supply for several years now. As a result, we have a lot of information we can share with other islands."
According to a Bloomberg report, due to a skyrocketing interest in artificial intelligence, Anguilla was expected to profit in 2023 from a surge in demand for web addresses ending with the country's top-level domain .ai. The total number of registrations of .ai domain names had already doubled in 2022, and according to Vince Cate, who has managed the top-level domain, Anguilla will bring in as much as $30 million in domain-registration fees for 2023. Transportation Air
Anguilla is served by Clayton J. Lloyd International Airport (prior to 4 July 2010 known as Wallblake Airport). The primary runway at the airport is in length and can accommodate moderate-sized aircraft. Regional scheduled passenger services connect to various other Caribbean islands via local airlines.
In December 2021 Anguilla inaugurated its first ever international regular commercial jet service flight to and from the mainland U.S. American Eagle operating on behalf of American Airlines began nonstop Embraer 175 regional jet service to Anguilla from Miami in an aviation watershed moment for Anguilla with the airport also currently attempting to attract other international air carriers.
Other airlines currently serving the airport include Tradewind Aviation and Cape Air which provide scheduled air service to San Juan, Puerto Rico. Several other small airlines serve the airport as well.
The airport can handle large narrow-body jets such as the Boeing 737 and Airbus A320 and has growing private jet service flights with a new private jet terminal being built.RoadAside from taxis, there is no public transport on the island. Cars drive on the left and most roads are unsealed. There is no rail network.BoatThere are regular ferries from Saint Martin to Anguilla. It is a 20-minute crossing from Marigot, St. Martin, to Blowing Point, Anguilla.
There is also a charter service which offers boat trips from Blowing Point, Anguilla, to Princess Juliana Airport. See also
* Bibliography of Anguilla
* Outline of Anguilla
* Index of Anguilla-related articles
References
Further reading
* |page=46–47 }}
*
* |page=42–43}}
* .
*
*
*
*
* Not to Reason Why: Study of the Anguillan Operations as Presented to Parliament|publisherConservative Political Centre|year1969|isbn0-85070-437-5|locationLondon|author-link=Neil Marten}}
* .
*
External links
Government
* [http://www.gov.ai/ Government of Anguilla]—Official government website
General information
* [https://www.cia.gov/the-world-factbook/countries/anguilla/ Anguilla]. The World Factbook. Central Intelligence Agency.
* [https://web.archive.org/web/20090204121925/http://ucblibraries.colorado.edu/govpubs/for/anguilla.htm Anguilla] from UCB Libraries GovPubs
*
* [https://www.youtube.com/watch?v=X74BamQvGHM%7CAnguilla's battle for freedom -- youtube video compilation] archived at [http://ghostarchive.org/varchive/X74BamQvGHM Ghostarchive.org] on 18 May 2022
Geographic locale
|list Lat. <small>and</small> Long.
}}
}}
}}
Category:1650 establishments in North America
Category:1650 establishments in the British Empire
Category:1650s establishments in the Caribbean
Category:British Leeward Islands
.Anguilla
Category:British West Indies
Category:English-speaking countries and territories
Category:Former English colonies
Category:Island countries
Category:Leeward Islands (Caribbean)
Category:Member states of the Organisation of Eastern Caribbean States
Category:Small Island Developing States
Category:States and territories established in 1650
Category:States and territories established in 1980
Category:Dependent territories in the Caribbean | https://en.wikipedia.org/wiki/Anguilla | 2025-04-05T18:25:35.837968 |
1223 | Telecommunications in Anguilla | <!-- "none" is preferred when the title is sufficiently descriptive; see WP:SDNONE -->
This article is about communications systems in Anguilla.
Telephone
Telephones – main lines in use: 6,200 (2002)
:country comparison to the world: 212
Telephones – mobile cellular: 1,800 (2002)
:country comparison to the world: 211
Telephone system:
<br>Domestic: Modern internal telephone system
<br>International: EAST CARIBBEAN FIBRE SYSTEM ECFS (cable system)<br />
microwave radio relay to island of Saint Martin (Guadeloupe and Netherlands Antilles)
Mobile phone (GSM)
Mobile phone operators:<br />
FLOW (Anguilla) Ltd. – GSM and UMTS 850 and 1900 MHz, LTE 700 MHz with Island-wide coverage <br />
Digicel (Anguilla) Ltd. – GSM and UMTS 850 to 1900 MHz, LTE 700 MHz
Mobiles: ? (2007)
Radio
Radio broadcast stations: AM 3, FM 7, shortwave 0 (2007)
{| class="wikitable sortable"
|+ Radio Stations of Anguilla
! Band / Freq.
! Call Sign
! Brand
! City of license
! Notes
|-
| AM 690 kHz
| Unknown
| Caribbean Beacon
| The Valley
| Religious broadcaster
|-
| AM 1500 kHz
| Unknown
| Caribbean Beacon
| The Valley
| 2.5 kW repeater
|-
| AM 1610 kHz
| Unknown
| Caribbean Beacon
| The Valley
| 200 kW repeater
|-
| FM 92.9 MHz
| Unknown
| Klass 92.9
| The Valley
|
|-
| FM 93.3 MHz
| Unknown
| Rainbow FM
| The Valley
| Caribbean Music, News
|-
| FM 95.5 MHz
| Unknown
| Radio Anguilla
| The Valley
| Public broadcaster
|-
| FM 97.7 MHz
| Unknown
| Heart Beat Radio/Up Beat Radio
| The Valley
| 30 kW, Caribbean Music, News
|-
| FM 99.3 MHz
| ZNBR-FM
| NBR – New Beginning Radio / Grace FM
| The Valley
| 5 kW, Religious broadcaster
|-
| FM 100.1 MHz
| Unknown
| Caribbean Beacon
| The Valley
| Religious broadcaster
|-
| FM 100.9 MHz
| Unknown
| CBN – Country Broadcast Network
| The Valley
| 3 kW
|-
| FM 103.3 MHz
| Unknown
| Kool FM
| The Valley
| Religious broadcaster, Urban Caribbean
|-
| FM 105.1 MHz
| ZRON-FM
| Tradewinds Radio
| The Valley
| 5 kW, Caribbean Music, News
|-
| FM 106.7 MHz
| unknown
| VOC – Voice Of Creation
| Sachasses
| Religious broadcaster
|-
| FM 107.9 MHz
| unknown
| GEM Radio Network
| The Valley
| Repeater (Trinidad)
|-
| SW 6090 kHz
| Unknown
| Caribbean Beacon
| The Valley
| Religious
|-
| SW 11775 kHz
| Unknown
| Caribbean Beacon
| The Valley
| Religious
|}
Radios: 3,000 (1997)
Television
Television broadcast stations: 1 (1997)
Televisions: 1,000 (1997)
Internet
Internet country code: .ai (Top level domain)
Internet Service Providers (ISPs): 2 (FLOW – [https://archive.today/20200404133519/https://discoverflow.co/anguilla/], Digicel Anguilla – [https://www.digicelgroup.com/ai/en.html] )
Internet hosts: 269 (2012)
:country comparison to the world: 192
Internet: users: 12,377 (2018)
:country comparison to the world: 206
See also
*Anguilla
* FLOW (Anguilla) Ltd. [https://archive.today/20200404133519/https://discoverflow.co/anguilla/]
References
<references />
External links
* [https://www.pucanguilla.com/ Public Utilities Commission of Anguilla]
* [https://www.submarinecablemap.com/country/anguilla Anguilla], SubmarineCableMap.com
Category:Communications in Anguilla
Anguilla
Anguilla | https://en.wikipedia.org/wiki/Telecommunications_in_Anguilla | 2025-04-05T18:25:35.871218 |
1227 | Ashmore and Cartier Islands | | total_islands | major_islands 4
| area_km2 | population 0
| population_as_of = July 2021
| country = Australia
}}
The Territory of Ashmore and Cartier Islands is an uninhabited Australian external territory consisting of four low-lying tropical islands in two separate reefs (Ashmore and Cartier), as well as the territorial sea generated by the islands.
Ashmore Reef is called Pulau Pasir by Indonesians and Nusa Solokaek in the Rotenese language. Both names have the meaning "sand island".
Geography
The territory comprises Ashmore Reef, which includes West, Middle and East Islands, in addition to two lagoons, as well as Cartier Reef, which includes Cartier Island. Ashmore Reef covers approximately and Cartier Reef , both measurements extending to the limits of the reefs.
West, Middle and East Islands have a combined land area variously reported as , Cartier Island has a reported land area of .HistoryAccording to Australian literature, Cartier Island was visited by Captain Nash in 1800, and named after his ship Cartier. Ashmore Island was seen by Captain Samuel Ashmore in 1811 from his ship Hibernia and named after him. Ashmore Island was annexed by the United Kingdom in 1878, as was Cartier Island in 1909. In December 1905, formally took possession of the Ashmore Islands on behalf of the United Kingdom. The ship's commander Captain Ernest Gaunt went ashore accompanied by five officers and around 200 seamen, erecting the Union Jack on a flagpole and singing "God Save the King", while Cambrian returned a 21-gun salute.
After their annexation, the British Government occasionally granted licences on the islands for fishing or guano extraction. In the 1920s, the islands were used as a base for poachers targeting the Western Australian pearling industry. The lack of effective policing led to Australian lobbying for a transfer of control.
A British order-in-council dated 23 July 1931 stated that Ashmore and Cartier Islands would be placed under the authority of the Commonwealth of Australia, when Australia passes legislation to accept them, and formal administration would begin two years later. The Commonwealth's resulting Ashmore and Cartier Islands Acceptance Act 1933 came into operation on 10 May 1934, when the islands formally became a part of Australia. The act authorised the Governor of Western Australia to make ordinances for the territory. In July 1938 the territory was annexed to the Northern Territory, then also administered by the Commonwealth, whose laws, ordinances and regulations applied to the Northern Territory. When self-government was granted to the Northern Territory on 1 July 1978, administration of Ashmore and Cartier Islands was retained by the Commonwealth.
In 1947, interior minister Herbert Johnson became the first Australian government minister to visit the territory. The Age reported that Johnson had been unable to land due to rough seas and regarded the islands as "almost valueless".
In 1983, the territory was declared a nature reserve under the National Parks and Wildlife Conservation Act 1975, Cartier Island, which was a former bombing range, became a marine reserve in 2000.
After the islands became a first point of contact with the Australian migration zone, in September 2001, the Australian Government excised the Ashmore and Cartier Islands from the Australian migration zone.
Governance
Today, the territory is administered from Canberra by the Department of Infrastructure, Transport, Regional Development, Communications and the Arts, which is also responsible for the administration of the territories of Christmas Island, Cocos (Keeling) Islands, the Coral Sea Islands, Jervis Bay Territory and Norfolk Island.
The Attorney-General's Department had been responsible for the administration of Australian territories until the 2010 federal election. In that year the responsibility for Australian territories was transferred to the then Department of Regional Australia, Local Government, Arts and Sport, It has no permanently dry land area, although large parts of the reef become exposed during low tide.Proposed Northern Territory annexationThe Northern Territory government has claimed on multiple occasions (1989, 1996) that the Ashmore and Cartier Islands should be returned to their jurisdiction, instead of remaining a separate territory. The Australian House of Representatives Standing Committee on Legal and Constitutional Affairs recommended in a 1991 report that the Northern Territory annex the islands. In 1998, John Howard's Coalition debated the issue in the leadup to the 1998 Northern Territory statehood referendum, and stated in a campaign release that it would "pursue incorporation of the Ashmore & Cartier Islands into the Northern Territory before or at the time of Statehood". However, these efforts did not lead to any changes.Environment and protection
satellite image)]]
The Ashmore Reef Marine Park and Cartier Island Marine Park are both classed as strict nature reserves (IUCN Ia) and protect biodiverse areas of significant and international importance, as well as cultural heritage.
Cartier Island is an unvegetated sand island, The Australian Border Force vessel is stationed off the reef for up to 300 days per year. The islands are also visited by seasonal caretakers and occasional scientific researchers.EconomyThe area around the Ashmore and Cartier Islands has been a traditional fishing ground of Indonesian fishermen for centuries, and continues to be. In the 1850s, American whalers operated in the region. Once they had landed on Ashmore Island, asylum seekers could claim to have entered Australian migration zone and request to be processed as refugees. The use of Ashmore Island for this purpose created great notoriety during late 2001, when refugee arrivals became a major political issue in Australia. The Australian Government argued that as Australia was not the country of first asylum for these "boat people", Australia did not have a responsibility to accept them.
A number of measures were taken to discourage the use of the territory for this purpose, such as attempting to have the people smugglers arrested in Indonesia; the so-called Pacific Solution of processing them in third countries; the boarding and forced turnaround of the boats by Australian military forces; and finally excising the territory and many other small islands from the Australian migration zone.
In October 2001, the Royal Australian Navy detained two Indonesian boats carrying asylum seekers for seven days in the Ashmore Island lagoon. These boats were later returned to Indonesian waters through the use of force and deception.See also
* Immigration detention in Australia
* SIEV 36
References
External links
* [https://www.cia.gov/the-world-factbook/countries/ashmore-and-cartier-islands/ Ashmore and Cartier Islands]. The World Factbook. Central Intelligence Agency.
* [https://web.archive.org/web/20050306222710/http://www.ga.gov.au/education/facts/dimensions/externalterr/ashmore.htm Geoscience Australia—Ashmore and Cartier Islands]
* [https://web.archive.org/web/20050416130424/http://www.deh.gov.au/coasts/mpa/ashmore/ Department of the Environment and Heritage—Ashmore Reef National Nature Reserve]
* [http://www.environment.gov.au/topics/marine/marine-reserves/north-west/cartier Department of the Environment and Heritage—Cartier Island Commonwealth Marine Reserve]
* [http://islands.unep.ch/IJA.htm First on list of Australian islands]
* "Ashmore Reef Belongs to Indonesia," posted on East Timor Action Network. [http://www.etan.org/et2003/january/05-11/06ashmorn.htm]
* "Ashmore Islands are member of ARABOSAI" [https://web.archive.org/web/20090809150200/http://www.arabosai.org/en/members.asp]
}}
Category:Ramsar sites in Australia
Category:Important Bird Areas of Australian External Territories
Category:Immigration to Australia
Category:Territorial disputes of Australia
Category:Territorial disputes of Indonesia
Category:Former British protectorates
Ashmore Reef | https://en.wikipedia.org/wiki/Ashmore_and_Cartier_Islands | 2025-04-05T18:25:35.898336 |
1234 | Acoustic theory | Acoustic theory is a scientific field that relates to the description of sound waves. It derives from fluid dynamics. See acoustics for the engineering approach.
For sound waves of any magnitude of a disturbance in velocity, pressure, and density we have
\begin{align}
\frac{\partial \rho'}{\partial t} +\rho_0\nabla\cdot \mathbf{v} + \nabla\cdot(\rho'\mathbf{v}) & = 0 \qquad \text{(Conservation of Mass)} \\
(\rho_0+\rho')\frac{\partial \mathbf{v}}{\partial t} + (\rho_0+\rho')(\mathbf{v}\cdot\nabla)\mathbf{v} + \nabla p' & = 0 \qquad \text{(Equation of Motion)}
\end{align}
In the case that the fluctuations in velocity, density, and pressure are small, we can approximate these as
\begin{align}
\frac{\partial \rho'}{\partial t} +\rho_0\nabla\cdot \mathbf{v} & = 0 \\
\frac{\partial \mathbf{v}}{\partial t} + \frac{1}{\rho_0}\nabla p'& = 0
\end{align}
Where \mathbf{v}(\mathbf{x},t) is the perturbed velocity of the fluid, p_0 is the pressure of the fluid at rest, p'(\mathbf{x},t) is the perturbed pressure of the system as a function of space and time, \rho_0 is the density of the fluid at rest, and \rho'(\mathbf{x}, t) is the variance in the density of the fluid over space and time.
In the case that the velocity is irrotational (\nabla\times \mathbf{v} = 0), we then have the acoustic wave equation that describes the system:
\frac{1}{c^2}\frac{\partial^2 \phi}{\partial t^2} - \nabla^2\phi = 0
Where we have
\begin{align}
\mathbf{v} & = -\nabla \phi \\
c^2 & = (\frac{\partial p}{\partial \rho})_s\\
p' & = \rho_0\frac{\partial \phi}{\partial t}\\
\rho' & = \frac{\rho_0}{c^2}\frac{\partial \phi}{\partial t}
\end{align}
Derivation for a medium at rest
Starting with the Continuity Equation and the Euler Equation:
\begin{align}
\frac{\partial \rho}{\partial t} +\nabla\cdot \rho\mathbf{v} & = 0 \\
\rho\frac{\partial \mathbf{v}}{\partial t} + \rho(\mathbf{v}\cdot\nabla)\mathbf{v} + \nabla p & = 0
\end{align}
If we take small perturbations of a constant pressure and density:
\begin{align}
\rho & = \rho_0+\rho' \\
p & = p_0 + p'
\end{align}
Then the equations of the system are
\begin{align}
\frac{\partial}{\partial t}(\rho_0+\rho') +\nabla\cdot (\rho_0+\rho')\mathbf{v} & = 0 \\
(\rho_0+\rho')\frac{\partial \mathbf{v}}{\partial t} + (\rho_0+\rho')(\mathbf{v}\cdot\nabla)\mathbf{v} + \nabla (p_0+p') & = 0
\end{align}
Noting that the equilibrium pressures and densities are constant, this simplifies to
\begin{align}
\frac{\partial \rho'}{\partial t} +\rho_0\nabla\cdot\mathbf{v}+\nabla\cdot \rho'\mathbf{v} & = 0 \\
(\rho_0+\rho')\frac{\partial \mathbf{v}}{\partial t} + (\rho_0+\rho')(\mathbf{v}\cdot\nabla)\mathbf{v} + \nabla p' & = 0
\end{align}
A Moving Medium
Starting with
\begin{align}
\frac{\partial \rho'}{\partial t} +\rho_0\nabla\cdot\mathbf{w}+\nabla\cdot \rho'\mathbf{w} & = 0 \\
(\rho_0+\rho')\frac{\partial \mathbf{w}}{\partial t} + (\rho_0+\rho')(\mathbf{w}\cdot\nabla)\mathbf{w} + \nabla p' & = 0
\end{align}
We can have these equations work for a moving medium by setting \mathbf{w} = \mathbf{u} + \mathbf{v}, where \mathbf{u} is the constant velocity that the whole fluid is moving at before being disturbed (equivalent to a moving observer) and \mathbf{v} is the fluid velocity.
In this case the equations look very similar:
\begin{align}
\frac{\partial \rho'}{\partial t} +\rho_0\nabla\cdot\mathbf{v}+\mathbf{u}\cdot\nabla\rho' + \nabla\cdot \rho'\mathbf{v} & = 0 \\
(\rho_0+\rho')\frac{\partial \mathbf{v}}{\partial t} + (\rho_0+\rho')(\mathbf{u}\cdot\nabla)\mathbf{v} + (\rho_0+\rho')(\mathbf{v}\cdot\nabla)\mathbf{v} + \nabla p' & = 0
\end{align}
Note that setting \mathbf{u} = 0 returns the equations at rest.
Linearized Waves
Starting with the above given equations of motion for a medium at rest:
\begin{align}
\frac{\partial \rho'}{\partial t} +\rho_0\nabla\cdot\mathbf{v}+\nabla\cdot \rho'\mathbf{v} & = 0 \\
(\rho_0+\rho')\frac{\partial \mathbf{v}}{\partial t} + (\rho_0+\rho')(\mathbf{v}\cdot\nabla)\mathbf{v} + \nabla p' & = 0
\end{align}
Let us now take \mathbf{v},\rho',p' to all be small quantities.
In the case that we keep terms to first order, for the continuity equation, we have the \rho'\mathbf{v} term going to 0. This similarly applies for the density perturbation times the time derivative of the velocity. Moreover, the spatial components of the material derivative go to 0. We thus have, upon rearranging the equilibrium density:
\begin{align}
\frac{\partial \rho'}{\partial t} +\rho_0\nabla\cdot \mathbf{v} & = 0 \\
\frac{\partial \mathbf{v}}{\partial t} + \frac{1}{\rho_0}\nabla p' & = 0
\end{align}
Next, given that our sound wave occurs in an ideal fluid, the motion is adiabatic, and then we can relate the small change in the pressure to the small change in the density by
p' = \left(\frac{\partial p}{\partial \rho_{0}}\right)_{s}\rho'
Under this condition, we see that we now have
\begin{align}
\frac{\partial p'}{\partial t} +\rho_{0}\left(\frac{\partial p}{\partial \rho_0}\right)_{s}\nabla\cdot \mathbf{v} & = 0 \\
\frac{\partial \mathbf{v}}{\partial t} + \frac{1}{\rho_0}\nabla p' & = 0
\end{align}
Defining the speed of sound of the system:
c \equiv \sqrt{\left(\frac{\partial p}{\partial \rho_{0}}\right)_{s}}
Everything becomes
\begin{align}
\frac{\partial p'}{\partial t} +\rho_0c^2\nabla\cdot \mathbf{v} & = 0 \\
\frac{\partial \mathbf{v}}{\partial t} + \frac{1}{\rho_0}\nabla p' & = 0
\end{align}
For Irrotational Fluids
In the case that the fluid is irrotational, that is \nabla\times\mathbf{v} 0, we can then write \mathbf{v} -\nabla\phi and thus write our equations of motion as
\begin{align}
\frac{\partial p'}{\partial t} -\rho_0c^2\nabla^2\phi & = 0 \\
-\nabla\frac{\partial\phi}{\partial t} + \frac{1}{\rho_0}\nabla p' & = 0
\end{align}
The second equation tells us that
p' = \rho_0 \frac{\partial \phi}{\partial t}
And the use of this equation in the continuity equation tells us that
\rho_0\frac{\partial^2 \phi}{\partial t} -\rho_0c^2\nabla^2\phi = 0
This simplifies to
\frac{1}{c^2}\frac{\partial^2 \phi}{\partial t^2} -\nabla^2\phi = 0
Thus the velocity potential \phi obeys the wave equation in the limit of small disturbances. The boundary conditions required to solve for the potential come from the fact that the velocity of the fluid must be 0 normal to the fixed surfaces of the system.
Taking the time derivative of this wave equation and multiplying all sides by the unperturbed density, and then using the fact that p' = \rho_0 \frac{\partial \phi}{\partial t} tells us that
\frac{1}{c^2}\frac{\partial^2 p'}{\partial t^2} -\nabla^2p' = 0
Similarly, we saw that p' \left(\frac{\partial p}{\partial \rho_{0}}\right)_{s}\rho' c^{2}\rho'. Thus we can multiply the above equation appropriately and see that
\frac{1}{c^2}\frac{\partial^2 \rho'}{\partial t^2} -\nabla^2\rho' = 0
Thus, the velocity potential, pressure, and density all obey the wave equation. Moreover, we only need to solve one such equation to determine all other three. In particular, we have
\begin{align}
\mathbf{v} & = -\nabla \phi \\
p' & = \rho_0 \frac{\partial \phi}{\partial t}\\
\rho' & = \frac{\rho_0}{c^2}\frac{\partial\phi}{\partial t}
\end{align}
For a moving medium
Again, we can derive the small-disturbance limit for sound waves in a moving medium. Again, starting with
\begin{align}
\frac{\partial \rho'}{\partial t} +\rho_0\nabla\cdot\mathbf{v}+\mathbf{u}\cdot\nabla\rho' + \nabla\cdot \rho'\mathbf{v} & = 0 \\
(\rho_0+\rho')\frac{\partial \mathbf{v}}{\partial t} + (\rho_0+\rho')(\mathbf{u}\cdot\nabla)\mathbf{v} + (\rho_0+\rho')(\mathbf{v}\cdot\nabla)\mathbf{v} + \nabla p' & = 0
\end{align}
We can linearize these into
\begin{align}
\frac{\partial \rho'}{\partial t} +\rho_0\nabla\cdot\mathbf{v}+\mathbf{u}\cdot\nabla\rho' & = 0 \\
\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{u}\cdot\nabla)\mathbf{v} + \frac{1}{\rho_0}\nabla p' & = 0
\end{align}
For Irrotational Fluids in a Moving Medium
Given that we saw that
\begin{align}
\frac{\partial \rho'}{\partial t} +\rho_0\nabla\cdot\mathbf{v}+\mathbf{u}\cdot\nabla\rho' & = 0 \\
\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{u}\cdot\nabla)\mathbf{v} + \frac{1}{\rho_0}\nabla p' & = 0
\end{align}
If we make the previous assumptions of the fluid being ideal and the velocity being irrotational, then we have
\begin{align}
p' & \left(\frac{\partial p}{\partial \rho_{0}}\right)_{s}\rho' c^{2}\rho' \\
\mathbf{v} & = -\nabla\phi
\end{align}
Under these assumptions, our linearized sound equations become
\begin{align}
\frac{1}{c^2}\frac{\partial p'}{\partial t} -\rho_0\nabla^2\phi+\frac{1}{c^2}\mathbf{u}\cdot\nabla p' & = 0 \\
-\frac{\partial}{\partial t}(\nabla\phi) - (\mathbf{u}\cdot\nabla)[\nabla\phi] + \frac{1}{\rho_0}\nabla p' & = 0
\end{align}
Importantly, since \mathbf{u} is a constant, we have (\mathbf{u}\cdot\nabla)[\nabla\phi] = \nabla[(\mathbf{u}\cdot\nabla)\phi], and then the second equation tells us that
\frac{1}{\rho_0} \nabla p' = \nabla\left[\frac{\partial\phi}{\partial t} + (\mathbf{u}\cdot\nabla)\phi\right]
Or just that
p' = \rho_{0}\left[\frac{\partial\phi}{\partial t} + (\mathbf{u}\cdot\nabla)\phi\right]
Now, when we use this relation with the fact that \frac{1}{c^2}\frac{\partial p'}{\partial t} -\rho_0\nabla^2\phi+\frac{1}{c^2}\mathbf{u}\cdot\nabla p' = 0, alongside cancelling and rearranging terms, we arrive at
\frac{1}{c^2}\frac{\partial^2 \phi}{\partial t^2} - \nabla^2\phi + \frac{1}{c^2}\frac{\partial}{\partial t}[(\mathbf{u}\cdot\nabla)\phi] + \frac{1}{c^2}\frac{\partial}{\partial t}(\mathbf{u}\cdot\nabla\phi) + \frac{1}{c^2}\mathbf{u}\cdot\nabla[(\mathbf{u}\cdot\nabla)\phi] = 0
We can write this in a familiar form as
\left[\frac{1}{c^2}\left(\frac{\partial}{\partial t} + \mathbf{u}\cdot\nabla\right)^{2} - \nabla^{2}\right]\phi = 0
This differential equation must be solved with the appropriate boundary conditions. Note that setting \mathbf{u}=0 returns us the wave equation. Regardless, upon solving this equation for a moving medium, we then have
\begin{align}
\mathbf{v} & = -\nabla \phi \\
p' & = \rho_{0}\left(\frac{\partial}{\partial t} + \mathbf{u}\cdot\nabla\right)\phi\\
\rho' & = \frac{\rho_{0}}{c^{2}}\left(\frac{\partial}{\partial t} + \mathbf{u}\cdot\nabla\right)\phi
\end{align}
See also
Acoustic attenuation
Sound
Fourier analysis
References
Category:Fluid dynamics
Category:Acoustics
Category:Sound | https://en.wikipedia.org/wiki/Acoustic_theory | 2025-04-05T18:25:35.972643 |
1235 | Alexander Mackenzie (politician) | | image = Alexander MacKenzie - portrait.jpg
| alt = Monochrome photograph of Alexander Mackenzie sitting in a chair.
| caption = Mackenzie in 1878
| order1 = 2nd
| office1 = Prime Minister of Canada
| term_start1 = November 7, 1873
| term_end1 = October 8, 1878
| monarch1 = Victoria
| governor_general1 = The Earl of Dufferin
| predecessor1 = John A. Macdonald
| successor1 = John A. Macdonald
| office2 = Leader of the Liberal Party
| term_start2 = March 6, 1873
| term_end2 = May 4, 1880
| predecessor2 = Edward Blake
| successor2 = Edward Blake
| order3 = Member of the House of Commons of Canada
| term_start3 = September 20, 1867
| term_end3 = April 17, 1892
| office4 = More...
| birth_date =
| birth_place = Logierait, Scotland
| death_date =
| death_place = Toronto, Ontario, Canada
| restingplace = Lakeview Cemetery, Sarnia, Ontario
| party = Liberal
| spouse =
*
}}
| children = 3
| signature = Alexander Mackenzie Signature-rt.svg
<!--Military service-->
| allegiance = Canada
| branch = Canadian militia
| serviceyears = 1866–1874
| rank = Major
| unit = 27th (Lambton) Battalion of Infantry
| battles = Fenian Raids
}}
Alexander Mackenzie (January 28, 1822 – April 17, 1892) was a Canadian politician who served as the second prime minister of Canada, in office from 1873 to 1878.
Mackenzie was born in Logierait, Perthshire, Scotland. He left school at the age of 13, following his father's death, to help his widowed mother, and trained as a stonemason. Mackenzie immigrated to the Province of Canada when he was 19, settling in what became Ontario. His masonry business prospered, allowing him to pursue other interests – such as the editorship of a pro-Reformist newspaper called the Lambton Shield. Mackenzie was elected to the Legislative Assembly of the Province of Canada in 1862, as a supporter of George Brown.
In 1867, Mackenzie was elected to the new House of Commons of Canada for the Liberal Party. He became leader of the party (thus Leader of the Opposition) in mid-1873, and a few months later succeeded John A. Macdonald as the prime minister, following Macdonald's resignation in the aftermath of the Pacific Scandal. Mackenzie and the Liberals won a clear majority at the 1874 election. He was popular among the general public for his humble background and consistent democratic principles.
As the prime minister, Mackenzie continued the nation-building programme that had been begun by his predecessor. His government established the Supreme Court of Canada and Royal Military College of Canada, and created the District of Keewatin to better administer Canada's newly acquired western territories. However, it made little progress on the transcontinental railway, and struggled to deal with the aftermath of the Panic of 1873. At the 1878 election, Mackenzie's government suffered a landslide defeat. He remained leader of the Liberal Party for another two years, and continued on as a Member of Parliament (MP) until his death, due to a stroke.
Early life
Mackenzie was born on January 28, 1822, in Logierait, Perthshire, Scotland, the son of Mary Stewart (Fleming) and Alexander Mackenzie Sr. (born 1784) who were married in 1817. The site of his birthplace is known as Clais-'n-deoir (the Hollow of the Weeping), where families said their goodbyes as the convicted were led to nearby Gallows Hill. The house in which he was born was built by his father. He was the third of 10 boys, seven of whom survived infancy. Alexander Mackenzie Sr. was a carpenter and ship's joiner who had to move around frequently for work after the end of the Napoleonic Wars in 1815. Mackenzie's father died on March 7, 1836, and at the age of 13, Alexander Mackenzie Jr. was thus forced to end his formal education to help support his family. He apprenticed as a stonemason and met his future wife, Helen Neil, in Irvine, where her father was also a stonemason. The Neils were Baptist and shortly thereafter, Mackenzie converted from Presbyterianism to Baptist beliefs. Together with the Neils, he immigrated to Canada in 1842 to seek a better life. Mackenzie's faith was to link him to the increasingly influential temperance cause, particularly strong in Canada West (Ontario) where he lived, a constituency of which he later represented in the House of Commons.
The Neils and Mackenzie settled in Kingston, Ontario. The limestone in the area proved too hard for his stonemason tools, and not having money to buy new tools, Mackenzie took a job as a labourer constructing a building on Princess Street. The contractor on the job claimed financial difficulty, so Mackenzie accepted a promissory note for summer wages. The note later proved to be worthless. Subsequently, Mackenzie won a contract building a bomb-proof arch at Fort Henry. He later became a foreman on the construction of Kingston's four Martello Towers – Murney Tower, Fort Frederick, Cathcart Tower, and Shoal Tower. He was also a foreman on the construction of the Welland Canal and the Lachine Canal. While working on the Beauharnois Canal, a one-ton stone fell and crushed one of his legs. He recovered, but never regained the strength in that leg.
While in Kingston, Mackenzie became a vocal opponent of religious and political entitlement and corruption in government.
Mackenzie married Helen Neil (1826–52) in 1845 and with her had three children, with only one girl, Mary, surviving infancy. Helen and he moved to Sarnia, Ontario (known as Canada West) in 1847 and Mary was born in 1848. They were soon joined from Scotland by the rest of Mackenzie's brothers and his mother. He began working as a general contractor, earning a reputation for being a hard-working, honest man, as well as having a working man's view on fiscal policy. Mackenzie helped construct many courthouses and jails across southern Ontario. A number of these still stand today, including the Sandwich Courthouse and Jail now known as the Mackenzie Hall Cultural Centre in Windsor, Ontario, and the Kent County Courthouse and Jail in Chatham, Ontario. He even bid, unsuccessfully, on the construction of the Parliament buildings in Ottawa in 1859.
Helen died in 1852, finally succumbing to the effects of excessive doses of mercury-based calomel used to treat a fever while in Kingston. In 1853, he married Jane Sym (1825–93).
Mackenzie served as a Major in the 27th Lambton Battalion of Infantry from 1866 to 1874, serving on active duty during the Fenian Raids in 1870.
cartoon shows Mackenzie the Mason and Governor General Lord Dufferin the Overseer.]]
Early political involvement
Mackenzie involved himself in politics almost from the moment he arrived in Canada. He fought passionately for equality and the elimination of all forms of class distinction. In 1851, he became the secretary for the Reform Party for Lambton. After convincing him to run in Kent/Lambton, Mackenzie campaigned relentlessly for George Brown, owner of the Reformist paper The Globe in the 1851 election, helping Brown to win his first seat in the Legislative Assembly. Mackenzie and Brown remained the closest of friends and colleagues for the rest of their lives.
In 1852, Mackenzie became editor of another reformist paper, the Lambton Shield''. As an editor, Mackenzie was perhaps a little too vocal, leading the paper to a lawsuit for libel against the local conservative candidate. Because a key witness claimed Cabinet Confidence and would not testify, the paper lost the suit and was forced to fold due to financial hardship.
After his brother, Hope Mackenzie, declined to run for re-election, Alexander was petitioned to run and won his first seat in the Legislative Assembly as a supporter of George Brown in 1861. When Brown resigned from the Great Coalition in 1865 over negotiations of a reciprocity trade treaty with the United States, Mackenzie was invited to replace him as president of the council. Wary of Macdonald's motivations and true to his principles, Mackenzie declined.
He entered the House of Commons of Canada in 1867, representing the Lambton constituency. No cohesive national Liberal Party of Canada existed at the time, and with Brown not winning his seat, no official leader emerged. Mackenzie was asked but did not believe he was the best qualified for the position. Although he resisted offers of the position, he nevertheless sat as the de facto leader of the Official Opposition.
Prime Minister (1873–1878)
When the Macdonald government fell due to the Pacific Scandal in 1873, the Governor General, Lord Dufferin, called upon Mackenzie, who had been chosen as leader of the Liberal Party a few months earlier, to form a new government. Mackenzie formed a government and asked the Governor General to call an election for January 1874. The Liberals won a majority of the seats in the House of Commons having garnered 40% of the popular vote.
Mackenzie remained prime minister until the 1878 election when Macdonald's Conservatives returned to power.
For a man of Mackenzie's humble origins to attain such a position was unusual in an age which generally offered such opportunity only to the privileged. Lord Dufferin expressed early misgivings about a stonemason taking over government, but on meeting Mackenzie, Dufferin revised his opinions:
Mackenzie served concurrently as Minister of Public Works and oversaw the completion of the Parliament buildings. While drawing up the plans for the West Block, he included a circular staircase leading directly from his office to the outside of the building, which allowed him to escape the patronage-seekers waiting for him in his ante-chamber. Proving Dufferin's reflections on his character to be true, Mackenzie disliked intensely the patronage inherent in politics. Nevertheless, he found it a necessary evil to maintain party unity and ensure the loyalty of his fellow Liberals.
]]
In keeping with his democratic ideals, Mackenzie refused the offer of a knighthood three times,
As Prime Minister, Alexander Mackenzie strove to reform and simplify the machinery of government, achieving a remarkable record of reform legislation. He introduced the secret ballot; advised the creation of the Supreme Court of Canada; the establishment of the Royal Military College of Canada in Kingston in 1874 and the creation of the Office of the Auditor General in 1878. He completed the Intercolonial Railway, but struggled to progress on the national railway due to a worldwide economic depression, almost coming to blows with Governor General Lord Dufferin over imperial interference. Mackenzie stood up for the rights of Canada as a nation and fought for the supremacy of Parliament and honesty in government. Above all else, he was known and loved for his honesty and integrity.
However, his term was marked by economic depression that had grown out of the Panic of 1873, which Mackenzie's government was unable to alleviate. In 1874, Mackenzie negotiated a new free trade agreement with the United States, eliminating the high protective tariffs in place on Canadian goods in US markets. However, this action did not bolster the economy, and construction of the CPR slowed drastically due to lack of funding. In 1876, the Conservative opposition announced a National Policy of protective tariffs, which resonated with voters. When an election was called in 1878, the Liberals got slightly more than a third of the vote, and the Conservatives with 42 percent of the votes came back into power.
Supreme Court appointments
Mackenzie chose the following jurists to be appointed as justices of the Supreme Court of Canada by the Governor General:
* Sir William Buell Richards (Chief Justice) – September 30, 1875
* Télesphore Fournier – September 30, 1875
* William Alexander Henry – September 30, 1875
* Sir William Johnstone Ritchie – September 30, 1875
* Sir Samuel Henry Strong – September 30, 1875
* Jean-Thomas Taschereau – September 30, 1875
* Sir Henri Elzéar Taschereau – October 7, 1878
Later life
Despite his government's defeat, he retained the East York seat and remained Leader of the Opposition for another two years, until 1880. In 1881, he became the first president of The North American Life Assurance Company.
He was soon struck with a mysterious strange ailment that sapped his strength and all but took his voice. Although sitting in silence in the House of Commons, he held his House of Commons East York seat until his death in 1892.
He suffered a stroke after hitting his head during a fall in 1892. He died on April 17 in Toronto at the age of seventy, and was buried in Lakeview Cemetery in Sarnia, Ontario.CharacterMackenzie's first biography in 1892 referred to him as Canada's Stainless Statesman. He was a devout Baptist and teetotaller who found refuge in, and drew strength from, his family, friends, and faith. He was also a loyal friend and an incorrigible prankster (stuffed chimney on young in-laws; rolled boulder down Thunder Cape towards friend A. McKellar; burned Tory campaign placards in hotel woodstove early in morning).
Unpretentious and down to earth, his public official austerity was in striking contrast to private compassion and giving nature. He was called "the soul of honour and integrity" by Thomas Guthrie Marquis, a historian of the period, and according to a later biographer, was a proud man who sought no recognition or personal enrichment and accepted gifts reluctantly. He preferred to follow than to lead (many times he refused leadership offers) and he said he found that duty outweighed the heavy burden of office. He was uncompromising on his principles, perhaps too much so. Marquis wrote, "He was, and ever will remain, the Sir Galahad of Canadian politics."
Very proud of his Scottish heritage, he was forever a Scot: "Nemo me impune lacessit" (no one attacks me with impunity). The Upper Canada rebellion leader William Lyon Mackenzie said of him, "He is every whit a self-made, self-educated man. Has large mental capacity and indomitable energy."
Canada's Governor General, Lord Dufferin, said he was "as pure as crystal, and as true as steel, with lots of common sense." A close friend, Chief Justice Sir Louis Davies, said he was "the best debater the House of Commons has ever known." Sir Wilfrid Laurier, a friend, colleague in cabinet and later prime minister of Canada, said Mackenzie was "one of the truest and strongest characters to be met within Canadian history. He was endowed with a warm heart and a copious and rich fancy, though veiled by a somewhat reticent exterior, and he was of friends the most tender and true."
Sir George Ross, a friend, colleague, and later premier of Ontario, said, "Mackenzie was sui generis a debater. His humorous sallies blistered like a blast from a flaming smelter. His sterling honesty is a great heritage, and will keep his memory green to all future generations."
At his eulogy, Rev. Dr. Thomas compared him to the Duke of Wellington, who "stood four square, to all the winds that blow."
Newspapers around the world and in Canada gave him many compliments. The London Times – the untiring energy, the business-like accuracy, the keen perception and reliable judgment, and above all the inflexible integrity, which marked his private life, he carried without abatement of one jot into his public career. The Westminster Review – a man, who although, through failing health and failing voice, he had virtually passed out of public life, yet retained to the last the affectionate veneration of the Canadian people as no other man of the time can be said to have done.
The Charlottetown Patriot – in all that constitutes the real man, the honest statesman, the true patriot, the warm friend, and sincere Christian, he had few equals. Possessed of a clear intellect, a retentive memory, and a ready command of appropriate words, he was one of the most logical and powerful speakers we have ever heard.
The St. John Telegraph – he was loved by the people and his political opponents were compelled to respect him even above their own chosen leader. As a statesman, he has had few equals.
The Montreal Star – it is one of the very foremost architects of the Canadian nationality that we mourn. In the dark days of ’73, Canadians were in a state of panic, distrusting the stability of their newly-built Dominion; no one can tell what would have happened had not the stalwart form of Alexander Mackenzie lifted itself above the screaming, vociferating and denying mass of politicians, and all Canada felt at once, there was a man who could be trusted.
The Toronto Globe – he was a man who loved the people and fought for their rights against privilege and monopoly in every form. The Philadelphia Record – Like Caesar, who twice refused a knightly crown, Alexander Mackenzie refused knighthood three times. Unlike Caesar, he owed his political overthrow to his incorruptible honesty and unswerving integrity.
Legacy
In their 1999 study of the Prime Ministers of Canada, which included the results of a survey of Canadian historians, J. L. Granatstein and Norman Hillmer found that Mackenzie was in 11th place just after John Sparrow David Thompson.Namesakes
]]
The following are named in honour of Alexander Mackenzie:
* The Mackenzie Mountain Range in the Yukon and Northwest Territories
* Mount Mackenzie, in the Selkirk Mountains of British Columbia
* The Mackenzie Building, and the use of the Mackenzie tartan by the bands at the Royal Military College of Canada in Kingston, Ontario, "Alexander Mackenzie", the Royal Military College of Canada March for bagpipes, was composed in his honour by Pipe Major Don M. Carrigan, who was the College Pipe Major 1973 to 1985.
* Mackenzie Hall in Windsor, Ontario
* Alexander Mackenzie Scholarships in Economics and Political Science at McGill University and the University of Toronto
* Alexander MacKenzie Park in Sarnia, Ontario
* Alexander Mackenzie High School in Sarnia
* Alexander Mackenzie Housing Co-Operative Inc. in Sarnia
* Mackenzie Avenue, Ottawa, Ontario
* Mackenzie Tower, West Block, Parliament Hill, Ottawa, Ontario
Other honours
* A monument is dedicated to his tomb in Lakeview Cemetery, Sarnia, Ontario
* "Honourable Alexander Mackenzie" (1964) by Lawren Harris, head of the Department of Fine Arts, Mount Allison University, now hangs in the Mackenzie Building, Royal Military College of Canada. The unveiling ceremony was performed by the Right Honourable Louis St. Laurent, a Canadian former Prime Minister, and the gift was accepted by the Commandant, Air Commodore L.J. Birchall. The painting was commissioned in memory of No. 244, Lieut.-Col, F.B. Wilson, O.B.E., her deceased husband, by Mrs, F.W. Dashwood. Also taking part in the ceremony was the Honourable Paul Hellyer, Minister of National Defence, President and Chancellor of the college. In attendance was Mrs. Burton R. Morgan of Ottawa, great-granddaughter of Alexander Mackenzie.
* Burgess tickets presented to Alexander Mackenzie in Dundee, Dunkeld, Logierait, Irvine, and Perth Scotland
Electoral record
See also
* List of prime ministers of Canada
* Timeline of the Alexander Mackenzie premiership
References
Citations
<!--added above External links/Sources by script-assisted edit-->
Works cited
*
*
*
*
*
*
General sources
*
* [http://central.bac-lac.gc.ca/.redirect?appfonandcol&id103965&langeng Alexander Mackenzie fonds] at Library and Archives CanadaFurther reading
*
*
* .
External links
*[http://www.mccord-museum.qc.ca/scripts/large.php?accessnumberII-42806.0&Lang1&imageID=147760 Photograph:Alexander Mackenzie, 1874] – McCord Museum
*
Category:Prime ministers of Canada
Category:Leaders of the Liberal Party of Canada
Category:Provincial secretaries of Ontario
Category:Members of the Legislative Assembly of the Province of Canada from Canada West
Category:Businesspeople from Ontario
Category:Canadian journalists
Category:19th-century Scottish writers
Category:Politicians from Sarnia
Category:People from Perth and Kinross
Category:Scottish emigrants to pre-Confederation Ontario
Category:1822 births
Category:1892 deaths
Category:Leaders of the opposition (Canada)
Category:Persons of National Historic Significance (Canada)
Category:Canadian Baptists
Category:19th-century Canadian journalists
Category:Canadian male journalists
Category:19th-century British male writers
Category:Immigrants to the Province of Canada
Category:19th-century Baptists
Category:19th-century Scottish businesspeople
Category:19th-century members of the House of Commons of Canada
Category:Members of the House of Commons of Canada from Ontario | https://en.wikipedia.org/wiki/Alexander_Mackenzie_(politician) | 2025-04-05T18:25:36.003346 |
1239 | Ashoka | CE}} relief from Sanchi, showing Ashoka on his chariot, visiting the Ramagrama.
| succession = 3rd Mauryan Emperor
| reign 232 BCE
| coronation
| predecessor = Bindusara
| successor = Dasharatha
| birth_date =
| death_date = 232 BCE
| residence = Pataliputra, Magadha, Mauryan Empire
| spouses =
| issue =
| father = Bindusara
| mother Subhadrangi or Dharma
| religion <!--Please do not add Ashoka's former religion to avoid opening up disputes. Consider getting a talk consensus first.--> Supported Buddhism but also other religions, propagated dharma ("righteousness")
| succession1 = Crown Prince of Magadha
| predecessor1 = Susima
| successor1 = Kunala
| succession2 = Viceroy of Avantirastra
| predecessor2 | successor2
| dynasty = Maurya
}}
Ashoka, also known as Asoka<!--From the Brahmi script.--> or Aśoka<!--From Devanagari.--> ( ; , ; – 232 BCE), and popularly known as Ashoka the Great, was Emperor of Magadha from until his death in 232 BCE, and the third ruler from the Mauryan dynasty. His empire covered a large part of the Indian subcontinent, stretching from present-day Afghanistan in the west to present-day Bangladesh in the east, with its capital at Pataliputra. A patron of Buddhism, he is credited with playing an important role in the spread of Buddhism across ancient Asia.
The Edicts of Ashoka state that during his eighth regnal year (), he conquered Kalinga after a brutal war. Ashoka subsequently devoted himself to the propagation of "dhamma" or righteous conduct, the major theme of the edicts. Ashoka's edicts suggest that a few years after the Kalinga War, he was gradually drawn towards Buddhism. The Buddhist legends credit Ashoka with establishing a large number of stupas, patronising the Third Buddhist council, supporting Buddhist missionaries, and making generous donations to the sangha.
Ashoka's existence as a historical emperor had almost been forgotten, but since the decipherment in the 19th century of sources written in the Brahmi script, Ashoka holds a reputation as one of the greatest Indian emperors. The State Emblem of the modern Republic of India is an adaptation of the Lion Capital of Ashoka. Ashoka's wheel, the Ashoka Chakra, is adopted at the centre of the National Flag of India.
Sources of information
Information about Ashoka comes from his inscriptions, other inscriptions that mention him or are possibly from his reign, and ancient literature, especially Buddhist texts. These sources often contradict each other, although various historians have attempted to correlate their testimony.
at Junagadh contains inscriptions by Ashoka (fourteen of the Edicts of Ashoka), Rudradaman I and Skandagupta.]]
Inscriptions
Ashoka's inscriptions are the earliest self-representations of imperial power in the Indian subcontinent. However, these inscriptions are focused mainly on the topic of dhamma, and provide little information regarding other aspects of the Maurya state or society. Even on the topic of dhamma, the content of these inscriptions cannot be taken at face value. In the words of American academic John S. Strong, it is sometimes helpful to think of Ashoka's messages as propaganda by a politician whose aim is to present a favourable image of himself and his administration, rather than record historical facts.
A small number of other inscriptions also provide some information about Ashoka. For example, he finds a mention in the 2nd century Junagadh rock inscription of Rudradaman. An inscription discovered at Sirkap mentions a lost word beginning with "Priyadari", which is theorised to be Ashoka's title "Priyadarshi" since it has been written in Aramaic of 3rd century BCE, although this is not certain. Some other inscriptions, such as the Sohgaura copper plate inscription and the Mahasthan inscription, have been tentatively dated to Ashoka's period by some scholars, although others contest this.
Buddhist legends
Much of the information about Ashoka comes from Buddhist legends, which present him as a great, ideal emperor. These legends appear in texts that are not contemporary to Ashoka and were composed by Buddhist authors, who used various stories to illustrate the impact of their faith on Ashoka. This makes it necessary to exercise caution while relying on them for historical information. Among modern scholars, opinions range from downright dismissal of these legends as mythological to acceptance of all historical portions that seem plausible.
The Buddhist legends about Ashoka exist in several languages, including Sanskrit, Pali, Tibetan, Chinese, Burmese, Khmer, Sinhala, Thai, Lao, and Khotanese. All these legends can be traced to two primary traditions:
* the North Indian tradition preserved in the Sanskrit-language texts such as Divyavadana (including its constituent Ashokavadana); and Chinese sources such as A-yü wang chuan and A-yü wang ching.
* the Sri Lankan tradition preserved in Pali-language texts, such as Dipavamsa, Mahavamsa, Vamsatthapakasini (a commentary on Mahavamsa), Buddhaghosha's commentary on the Vinaya, and Samanta-pasadika.
There are several significant differences between the two traditions. For example, the Sri Lankan tradition emphasizes Ashoka's role in convening the Third Buddhist council, and his dispatch of several missionaries to distant regions, including his son Mahinda to Sri Lanka. However, the North Indian tradition makes no mention of these events. It describes other events not found in the Sri Lankan tradition, such as a story about another son named Kunala.
Even while narrating the common stories, the two traditions diverge in several ways. For example, both Ashokavadana and Mahavamsa mention that Ashoka's empress Tishyarakshita had the Bodhi Tree destroyed. In Ashokavadana, the empress manages to have the tree healed after she realises her mistake. In the Mahavamsa, she permanently destroys the tree, but only after a branch of the tree has been transplanted in Sri Lanka. In another story, both the texts describe Ashoka's unsuccessful attempts to collect a relic of Gautama Buddha from Ramagrama. In Ashokavadana, he fails to do so because he cannot match the devotion of the Nāgas who hold the relic; however, in the Mahavamsa, he fails to do so because the Buddha had destined the relic to be enshrined by King Dutthagamani of Sri Lanka. Using such stories, the Mahavamsa glorifies Sri Lanka as the new preserve of Buddhism.
, but in vain. Southern gateway, Stupa 1, Sanchi.]]Other sourcesNumismatic, sculptural, and archaeological evidence supplements research on Ashoka. Ashoka's name appears in the lists of Mauryan emperors in the various Puranas. However, these texts do not provide further details about him, as their Brahmanical authors were not patronised by the Mauryans. Other texts, such as the Arthashastra and Indica of Megasthenes, which provide general information about the Maurya period, can also be used to make inferences about Ashoka's reign. However, the Arthashastra is a normative text that focuses on an ideal rather than a historical state, and its dating to the Mauryan period is a subject of debate. The Indica is a lost work, and only parts of it survive in the form of paraphrases in later writings.
The 12th-century text Rajatarangini mentions a Kashmiri king Ashoka of Gonandiya dynasty who built several stupas: some scholars, such as Aurel Stein, have identified this king with the Maurya emperor Ashoka; others, such as Ananda W. P. Guruge dismiss this identification as inaccurate.Alternative interpretation of the epigraphic evidence
The name "A-shoka" literally means "without sorrow". According to an Ashokavadana legend, his mother gave him this name because his birth removed her sorrows.
The name Priyadasi is associated with Ashoka in the 3rd–4th century CE Dipavamsa. The term literally means "he who regards amiably", or "of gracious mien" (Sanskrit: Priya-darshi). It may have been a regnal name adopted by Ashoka. A version of this name is used for Ashoka in Greek-language inscriptions: βασιλεὺς Πιοδασσης ("Basileus Piodassēs").]]
The Mahavamsa states that when Bindusara fell sick, Ashoka returned to Pataliputra from Ujjain and gained control of the capital. After his father's death, Ashoka had his eldest brother killed and ascended the throne. The text also states that Ashoka killed ninety-nine of his half-brothers, including Sumana. The Dipavamsa states that he killed a hundred of his brothers and was crowned four years later. The Vamsatthapakasini adds that an Ajivika ascetic had predicted this massacre based on the interpretation of a dream of Ashoka's mother. According to these accounts, only Ashoka's uterine brother Tissa was spared. Other sources name the surviving brother Vitashoka, Vigatashoka, Sudatta (So-ta-to in A-yi-uang-chuan), or Sugatra (Siu-ka-tu-lu in Fen-pie-kung-te-hun).
The figures such as 99 and 100 are exaggerated and seem to be a way of stating that Ashoka killed several of his brothers. Taranatha states that Ashoka, who was an illegitimate son of his predecessor, killed six legitimate princes to ascend the throne. It is possible that Ashoka was not the rightful heir to the throne and killed a brother (or brothers) to acquire the throne. However, the Buddhist sources have exaggerated the story, which attempts to portray him as evil before his conversion to Buddhism. Ashoka's Rock Edict No. 5 mentions officers whose duties include supervising the welfare of "the families of his brothers, sisters, and other relatives". This suggests that more than one of his brothers survived his ascension. However, some scholars oppose this suggestion, arguing that the inscription talks only about the families of his brothers, not the brothers themselves. Date of ascension According to the Sri Lankan texts Mahavamsa and the Dipavamsa, Ashoka ascended the throne 218 years after the death of Gautama Buddha and ruled for 37 years. The date of the Buddha's death is itself a matter of debate, and the North Indian tradition states that Ashoka ruled a hundred years after the Buddha's death, which has led to further debates about the date.
Assuming that the Sri Lankan tradition is correct, and assuming that the Buddha died in 483 BCE – a date proposed by several scholars – Ashoka must have ascended the throne in 265 BCE. The Puranas state that Ashoka's father Bindusara reigned for 25 years, not 28 years as specified in the Sri Lankan tradition. If this is true, Ashoka's ascension can be dated three years earlier, to 268 BCE. Alternatively, if the Sri Lankan tradition is correct, but if we assume that the Buddha died in 486 BCE (a date supported by the Cantonese Dotted Record), Ashoka's ascension can be dated to 268 BCE. The Mahavamsa states that Ashoka consecrated himself as the emperor four years after becoming a sovereign. This interregnum can be explained assuming that he fought a war of succession with other sons of Bindusara during these four years.
The Ashokavadana contains a story about Ashoka's minister Yashas hiding the sun with his hand. Professor P. H. L. Eggermont theorised that this story was a reference to a partial solar eclipse that was seen in northern India on 4 May 249 BCE. According to the Ashokavadana, Ashoka went on a pilgrimage to various Buddhist sites sometime after this eclipse. Ashoka's Rummindei pillar inscription states that he visited Lumbini during his 21st regnal year. Assuming this visit was a part of the pilgrimage described in the text, and assuming that Ashoka visited Lumbini around 1–2 years after the solar eclipse, the ascension date of 268–269 BCE seems more likely. However, this theory is not universally accepted. For example, according to John S. Strong, the event described in the Ashokavadana has nothing to do with chronology, and Eggermont's interpretation grossly ignores the literary and religious context of the legend.
Reign before Buddhist influence
Both Sri Lankan and North Indian traditions assert that Ashoka was a violent person before Buddhism. Taranatha also states that Ashoka was initially called "Kamashoka" because he spent many years in pleasurable pursuits (kama); he was then called "Chandashoka" ("Ashoka the fierce") because he spent some years performing evil deeds; and finally, he came to be known as Dhammashoka ("Ashoka the righteous") after his conversion to Buddhism.
The Ashokavadana also calls him "Chandashoka", and describes several of his cruel acts:
* The ministers who had helped him ascend the throne started treating him with contempt after his ascension. To test their loyalty, Ashoka gave them the absurd order of cutting down every flower-and fruit-bearing tree. When they failed to carry out this order, Ashoka personally cut off the heads of 500 ministers.
* One day, during a stroll at a park, Ashoka and his concubines came across a beautiful Ashoka tree. The sight put him in an amorous mood, but the women did not enjoy caressing his rough skin. Sometime later, when Ashoka fell asleep, the resentful women chopped the flowers and the branches of his namesake tree. After Ashoka woke up, he burnt 500 of his concubines to death as punishment.
* Alarmed by the king's involvement in such massacres, prime minister Radha-Gupta proposed hiring an executioner to carry out future mass killings to leave the king unsullied. Girika, a Magadha village boy who boasted that he could execute the whole of Jambudvipa, was hired for the purpose. He came to be known as Chandagirika ("Girika the fierce"), and on his request, Ashoka built a jail in Pataliputra. Called Ashoka's Hell, the jail looked pleasant from the outside, but inside it, Girika brutally tortured the prisoners.
The 5th-century Chinese traveller Faxian states that Ashoka personally visited the underworld to study torture methods there and then invented his methods. The 7th-century traveller Xuanzang claims to have seen a pillar marking the site of Ashoka's "Hell".
The Mahavamsa also briefly alludes to Ashoka's cruelty, stating that Ashoka was earlier called Chandashoka because of his evil deeds but came to be called Dharmashoka because of his pious acts after his conversion to Buddhism. However, unlike the north Indian tradition, the Sri Lankan texts do not mention any specific evil deeds performed by Ashoka, except his killing of 99 of his brothers.
Such descriptions of Ashoka as an evil person before his conversion to Buddhism appear to be a fabrication of the Buddhist authors, who attempted to present the change that Buddhism brought to him as a miracle. In an attempt to dramatise this change, such legends exaggerate Ashoka's past wickedness and his piousness after the conversion.
Kalinga war and conversion to Buddhism
inscribed panel portraying Ashoka and his queens with the Brahmi label "King Asoka", 1st–3rd century CE.]]
Ashoka's inscriptions mention that he conquered the Kalinga region during his 8th regnal year: the destruction caused during the war made him repent violence, and in the subsequent years, he was drawn towards Buddhism. Edict 13 of the Edicts of Ashoka Rock Inscriptions expresses the great remorse the king felt after observing the destruction of Kalinga:
On the other hand, the Sri Lankan tradition suggests that Ashoka was already a devoted Buddhist by his 8th regnal year, converted to Buddhism during his 4th regnal year, and constructed 84,000 viharas during his 5th–7th regnal years. The Buddhist legends make no mention of the Kalinga campaign.
Based on Sri Lankan tradition, some scholars, such as Eggermont, believe Ashoka converted to Buddhism before the Kalinga war. Critics of this theory argue that if Ashoka were already a Buddhist, he would not have waged the violent Kalinga War. Eggermont explains this anomaly by theorising that Ashoka had his own interpretation of the "Middle Way".
Some earlier writers believed that Ashoka dramatically converted to Buddhism after seeing the suffering caused by the war since his Major Rock Edict 13 states that he became closer to the dhamma after the annexation of Kalinga. However, even if Ashoka converted to Buddhism after the war, epigraphic evidence suggests that his conversion was a gradual process rather than a dramatic event. For example, in a Minor Rock Edict issued during his 13th regnal year (five years after the Kalinga campaign), he states that he had been an upasaka (lay Buddhist) for more than two and a half years, but did not make much progress; in the past year, he was drawn closer to the sangha and became a more ardent follower. Kalinga war According to Ashoka's Major Rock Edict 13, he conquered Kalinga 8 years after ascending to the throne. The edict states that during his conquest of Kalinga, 100,000 men and animals were killed in action; many times that number "perished"; and 150,000 men and animals were carried away from Kalinga as captives. Ashoka states that the repentance of these sufferings caused him to devote himself to the practice and propagation of dharma. He proclaims that he now considered the slaughter, death and deportation caused during the conquest of a country painful and deplorable; and that he considered the suffering caused to the religious people and householders even more deplorable.
This edict has been inscribed at several places, including Erragudi, Girnar, Kalsi, Maneshra, Shahbazgarhi and Kandahar. However, it is omitted in Ashoka's inscriptions found in the Kalinga region, where the Rock Edicts 13 and 14 have been replaced by two separate edicts that make no mention of Ashoka's remorse. It is possible that Ashoka did not consider it politically appropriate to make such a confession to the people of Kalinga. Another possibility is the Kalinga war and its consequences, as described in Ashoka's rock edicts, are "more imaginary than real". This description is meant to impress those far removed from the scene, thus unable to verify its accuracy.
Ancient sources do not mention any other military activity of Ashoka, although the 16th-century writer Taranatha claims that Ashoka conquered the entire Jambudvipa. First contact with Buddhism Different sources give different accounts of Ashoka's conversion to Buddhism.
According to Sri Lankan tradition, Ashoka's father, Bindusara, was a devotee of Brahmanism, and his mother Dharma was a devotee of Ajivikas. The Samantapasadika states that Ashoka followed non-Buddhist sects during the first three years of his reign. The Sri Lankan texts add that Ashoka was not happy with the behaviour of the Brahmins who received his alms daily. His courtiers produced some Ajivika and Nigantha teachers before him, but these also failed to impress him.
The Dipavamsa states that Ashoka invited several non-Buddhist religious leaders to his palace and bestowed great gifts upon them in the hope that they would answer a question posed by the king. The text does not state what the question was but mentions that none of the invitees were able to answer it. One day, Ashoka saw a young Buddhist monk called Nigrodha (or Nyagrodha), who was looking for alms on a road in Pataliputra. He was the king's nephew, although the king was not aware of this: he was a posthumous son of Ashoka's eldest brother Sumana, whom Ashoka had killed during the conflict for the throne. Ashoka was impressed by Nigrodha's tranquil and fearless appearance, and asked him to teach him his faith. In response, Nigrodha offered him a sermon on appamada (earnestness). Impressed by the sermon, Ashoka offered Nigrodha 400,000 silver coins and 8 daily portions of rice. The king became a Buddhist upasaka, and started visiting the Kukkutarama shrine at Pataliputra. At the temple, he met the Buddhist monk Moggaliputta Tissa, and became more devoted to the Buddhist faith. The veracity of this story is not certain. This legend about Ashoka's search for a worthy teacher may be aimed at explaining why Ashoka did not adopt Jainism, another major contemporary faith that advocates non-violence and compassion. The legend suggests that Ashoka was not attracted to Buddhism because he was looking for such a faith; instead, he was in search of a competent spiritual teacher. The Sri Lankan tradition adds that during his sixth regnal year, Ashoka's son Mahinda became a Buddhist monk, and his daughter became a Buddhist nun.
A story in Divyavadana attributes Ashoka's conversion to the Buddhist monk Samudra, who was an ex-merchant from Shravasti. According to this account, Samudra was imprisoned in Ashoka's "Hell", but saved himself using his miraculous powers. When Ashoka heard about this, he visited the monk, and was further impressed by a series of miracles performed by the monk. He then became a Buddhist. A story in the Ashokavadana states that Samudra was a merchant's son, and was a 12-year-old boy when he met Ashoka; this account seems to be influenced by the Nigrodha story.
The A-yu-wang-chuan states that a 7-year-old Buddhist converted Ashoka. Another story claims that the young boy ate 500 Brahmanas who were harassing Ashoka for being interested in Buddhism; these Brahmanas later miraculously turned into Buddhist bhikkus at the Kukkutarama monastery, which Ashoka visited.
Several Buddhist establishments existed in various parts of India by the time of Ashoka's ascension. It is not clear which branch of the Buddhist sangha influenced him, but the one at his capital Pataliputra is a good candidate. Another good candidate is the one at Mahabodhi: the Major Rock Edict 8 records his visit to the Bodhi Tree – the place of Buddha's enlightenment at Mahabodhi – after his tenth regnal year, and the minor rock edict issued during his 13th regnal year suggests that he had become a Buddhist around the same time. Reign after Buddhist influence Construction of stupas and temples
. The central stupa was built during the Mauryas, and enlarged during the Shungas, but the decorative gateway is dated to the later dynasty of the Satavahanas. ]]
Both Mahavamsa and Ashokavadana state that Ashoka constructed 84,000 stupas or viharas. According to the Mahavamsa, this activity took place during his fifth–seventh regnal years.
The Ashokavadana states that Ashoka collected seven out of the eight relics of Gautama Buddha, and had their portions kept in 84,000 boxes made of gold, silver, cat's eye, and crystal. He ordered the construction of 84,000 stupas throughout the earth, in towns that had a population of 100,000 or more. He told Elder Yashas, a monk at the Kukkutarama monastery, that he wanted these stupas to be completed on the same day. Yashas stated that he would signal the completion time by eclipsing the sun with his hand. When he did so, the 84,000 stupas were completed at once.
temple built by Ashoka at Bodh Gaya. At the center, the Vajrasana, or "Enlightenment Throne of the Buddha", with its supporting columns, being the object of adoration. A Pillar of Ashoka topped by an elephant appears in the right corner. Bharhut relief, 1st century BCE.]]
, or "Enlightenment Throne of the Buddha", at the Mahabodhi Temple in Bodh Gaya. It was built by Ashoka to commemorate the enlightenment of the Buddha, about two hundred years before him.]]
The Mahavamsa states that Ashoka ordered construction of 84,000 viharas (monasteries) rather than the stupas to house the relics. Like Ashokavadana, the Mahavamsa'' describes Ashoka's collection of the relics, but does not mention this episode in the context of the construction activities. It states that Ashoka decided to construct the 84,000 viharas when Moggaliputta Tissa told him that there were 84,000 sections of the Buddha's Dharma. Ashoka himself began the construction of the Ashokarama vihara, and ordered subordinate kings to build the other viharas. Ashokarama was completed by the miraculous power of Thera Indagutta, and the news about the completion of the 84,000 viharas arrived from various cities on the same day.
The construction of following stupas and viharas is credited to Ashoka:
* Sanchi, Madhya Pradesh, India
* Dhamek Stupa, Sarnath, Uttar Pradesh, India
* Mahabodhi Temple, Bihar, India
* Barabar Caves, Bihar, India
* Nalanda Mahavihara (some portions like Sariputta Stupa), Bihar, India
* Takshashila University (some portions like Dharmarajika Stupa and Kunala Stupa), Takshashila, Pakistan
* Bhir Mound (reconstructed), Takshashila, Pakistan
* Bharhut stupa, Madhya Pradesh, India
* Deorkothar Stupa, Madhya Pradesh, India
* Butkara Stupa, Swat, Pakistan
* Sannati Stupa, Karnataka, India
* Mir Rukun Stupa, Nawabshah, Pakistan
Propagation of Dharma
Ashoka's rock edicts suggest that during his eighth–ninth regnal years, he made a pilgrimage to the Bodhi Tree, started propagating dharma, and performed social welfare activities. The welfare activities included establishment of medical treatment facilities for humans and animals; plantation of medicinal herbs; and digging of wells and plantation of trees along the roads. These activities were conducted in the neighbouring kingdoms, including those of the Cholas, the Pandyas, the Satiyaputras, Tamraparni, the Greek kingdom of Antiyoka.
The edicts also state that during his tenth–eleventh regnal years, Ashoka became closer to the Buddhist sangha, and went on a tour of the empire that lasted for at least 256 days.
By his 12th regnal year, Ashoka had started inscribing edicts to propagate dharma, having ordered his officers (rajjukas and pradesikas) to tour their jurisdictions every five years for inspection and for preaching dharma. By the next year, he had set up the post of the dharma-mahamatra.
During his 14th regnal year, he commissioned the enlargement of the stupa of Buddha Kanakamuni. Third Buddhist Council
The Sri Lankan tradition presents a greater role for Ashoka in the Buddhist community. In this tradition, Ashoka starts feeding monks on a large scale. His lavish patronage to the state patronage leads to many fake monks joining the sangha. The true Buddhist monks refuse to co-operate with these fake monks, and therefore, no uposatha ceremony is held for seven years. The king attempts to eradicate the fake monks, but during this attempt, an over-zealous minister ends up killing some real monks. The king then invites the elder monk Moggaliputta-Tissa, to help him expel non-Buddhists from the monastery founded by him at Pataliputra. 60,000 monks (bhikkhus) convicted of being heretical are de-frocked in the ensuing process. The uposatha ceremony is then held, and Tissa subsequently organises the Third Buddhist council, during the 17th regnal year of Ashoka. Tissa compiles Kathavatthu, a text that reaffirms Theravadin orthodoxy on several points.
The North Indian tradition makes no mention of these events, which has led to doubts about the historicity of the Third Buddhist council.
at the Third Buddhist Council. Nava Jetavana, Shravasti.]]
Richard Gombrich argues that the non-corroboration of this story by inscriptional evidence cannot be used to dismiss it as completely unhistorical, as several of Ashoka's inscriptions may have been lost. Gombrich also argues that Asohka's inscriptions prove that he was interested in maintaining the "unanimity and purity" of the Sangha. For example, in his Minor Rock Edict 3, Ashoka recommends the members of the Sangha to study certain texts (most of which remain unidentified). Similarly, in an inscription found at Sanchi, Sarnath, and Kosam, Ashoka mandates that the dissident members of the sangha should be expelled, and expresses his desire to the Sangha remain united and flourish.
The 8th century Buddhist pilgrim Yijing records another story about Ashoka's involvement in the Buddhist sangha. According to this story, the earlier king Bimbisara, who was a contemporary of the Gautama Buddha, once saw 18 fragments of a cloth and a stick in a dream. The Buddha interpreted the dream to mean that his philosophy would be divided into 18 schools after his death, and predicted that a king called Ashoka would unite these schools over a hundred years later. Buddhist missions In the Sri Lankan tradition, Moggaliputta-Tissa – who is patronised by Ashoka – sends out nine Buddhist missions to spread Buddhism in the "border areas" in . This tradition does not credit Ashoka directly with sending these missions. Each mission comprises five monks, and is headed by an elder. To Sri Lanka, he sent his own son Mahinda, accompanied by four other Theras – Itthiya, Uttiya, Sambala and Bhaddasala. Next, with Moggaliputta-Tissa's help, Ashoka sent Buddhist missionaries to distant regions such as Kashmir, Gandhara, Himalayas, the land of the Yonas (Greeks), Maharashtra, Suvannabhumi, and Sri Lanka.
The Sri Lankan tradition dates these missions to Ashoka's 18th regnal year, naming the following missionaries:
* Mahinda to Sri Lanka
* Majjhantika to Kashmir and Gandhara
* Mahadeva to Mahisa-mandala (possibly modern Mysore region)
* Rakkhita to Vanavasa
* Dhammarakkhita the Greek to Aparantaka (western India)
* Maha-dhamma-rakkhita to Maharashtra
* Maharakkhita to the Greek country
* Majjhima to the Himalayas
* Soṇa and Uttara to Suvaṇṇabhūmi (possibly Lower Burma and Thailand)
The tradition adds that during his 19th regnal year, Ashoka's daughter Sanghamitta went to Sri Lanka to establish an order of nuns, taking a sapling of the sacred Bodhi Tree with her.
The North Indian tradition makes no mention of these events. Ashoka's own inscriptions also appear to omit any mention of these events, recording only one of his activities during this period: in his 19th regnal year, he donated the Khalatika Cave to ascetics to provide them a shelter during the rainy season. Ashoka's Pillar Edicts suggest that during the next year, he made pilgrimage to Lumbini – the place of Buddha's birth, and to the stupa of the Buddha Kanakamuni.
The Rock Edict XIII states that Ashoka's won a "dhamma victory" by sending messengers to five kings and several other kingdoms. Whether these missions correspond to the Buddhist missions recorded in the Buddhist chronicles is debated. Indologist Etienne Lamotte argues that the "dhamma" missionaries mentioned in Ashoka's inscriptions were probably not Buddhist monks, as this "dhamma" was not same as "Buddhism". Moreover, the lists of destinations of the missions and the dates of the missions mentioned in the inscriptions do not tally the ones mentioned in the Buddhist legends.
Other scholars, such as Erich Frauwallner and Richard Gombrich, believe that the missions mentioned in the Sri Lankan tradition are historical. According to these scholars, a part of this story is corroborated by archaeological evidence: the Vinaya Nidana mentions names of five monks, who are said to have gone to the Himalayan region; three of these names have been found inscribed on relic caskets found at Bhilsa (near Vidisha). These caskets have been dated to the early 2nd century BCE, and the inscription states that the monks are of the Himalayan school. The missions may have set out from Vidisha in central India, as the caskets were discovered there, and as Mahinda is said to have stayed there for a month before setting out for Sri Lanka.
According to Gombrich, the mission may have included representatives of other religions, and thus, Lamotte's objection about "dhamma" is not valid. The Buddhist chroniclers may have decided not to mention these non-Buddhists, so as not to sideline Buddhism. Frauwallner and Gombrich also believe that Ashoka was directly responsible for the missions, since only a resourceful ruler could have sponsored such activities. The Sri Lankan chronicles, which belong to the Theravada school, exaggerate the role of the Theravadin monk Moggaliputta-Tissa in order to glorify their sect.
Some historians argue that Buddhism became a major religion because of Ashoka's royal patronage. However, epigraphic evidence suggests that the spread of Buddhism in north-western India and Deccan region was less because of Ashoka's missions, and more because of merchants, traders, landowners and the artisan guilds who supported Buddhist establishments.
Violence after conversion
According to the 5th century Buddhist legend Ashokavadana, Ashoka resorted to violence even after converting to Buddhism. For example:
* He slowly tortured Chandagirika to death in the "hell" prison.
* He ordered a massacre of 18,000 heretics for a misdeed of one.
* He launched a pogrom against the Jains, announcing a bounty on the head of any heretic; this resulted in the beheading of his own brother – Vitashoka.
According to the Ashokavadana, a non-Buddhist in Pundravardhana drew a picture showing the Buddha bowing at the feet of the Nirgrantha leader Jnatiputra. The term nirgrantha ("free from bonds") was originally used for a pre-Jaina ascetic order, but later came to be used for Jaina monks. "Jnatiputra" is identified with Mahavira, 24th Tirthankara of Jainism. The legend states that on complaint from a Buddhist devotee, Ashoka issued an order to arrest the non-Buddhist artist, and subsequently, another order to kill all the Ajivikas in Pundravardhana. Around 18,000 followers of the Ajivika sect were executed as a result of this order. Sometime later, another Nirgrantha follower in Pataliputra drew a similar picture. Ashoka burnt him and his entire family alive in their house.
Additionally, these stories do not appear in the Jain texts themselves who do mention Ashoka, such as the Parishtaparvan or Theravali.
Family
. The emperor's identification with Ashoka is suggested by a similar relief at Kanaganahalli, which bears his name.]]
near Sannati, 1st–3rd century CE. The relief bears the inscription "Rāya Asoko" (𑀭𑀸𑀬 𑀅𑀲𑁄𑀓𑁄, "King Ashoka") in the Brahmi script. It depicts the emperor with his empress, two attendants bearing fly-whisks, and one attendant bearing an umbrella.]]
. Sanchi relief.]] Consorts Various sources mention five consorts of Ashoka: Devi (or Vedisa-Mahadevi-Shakyakumari), Asandhimitra, Padmavati, Karuvaki and Tishyarakshita.
Karuvaki is the only queen of Ashoka known from his own inscriptions: she is mentioned in an edict inscribed on a pillar at Allahabad. The inscription names her as the mother of prince Tivara, and orders the imperial officers (mahamattas) to record her religious and charitable donations. According to one theory, Tishyarakshita was the regnal name of Kaurvaki.
According to the Mahavamsa, Ashoka's chief empress was Asandhimitta, who died four years before him. It states that she was born as Ashoka's empress because in a previous life, she directed a pratyekabuddha to a honey merchant (who was later reborn as Ashoka). Some later texts also state that she additionally gave the pratyekabuddha a piece of cloth made by her. These texts include the Dasavatthuppakarana, the so-called Cambodian or Extended Mahavamsa (possibly from 9th–10th centuries), and the Trai Bhumi Katha (15th century). These texts narrate another story: one day, Ashoka mocked Asandhamitta was enjoying a tasty piece of sugarcane without having earned it through her karma. Asandhamitta replied that all her enjoyments resulted from merit resulting from her own karma. Ashoka then challenged her to prove this by procuring 60,000 robes as an offering for monks. At night, the guardian gods informed her about her past gift to the pratyekabuddha, and next day, she was able to miraculously procure the 60,000 robes. An impressed Ashoka makes her his favourite empress, and even offers to make her a sovereign ruler. Asandhamitta refuses the offer, but still invokes the jealousy of Ashoka's 16,000 other women. Ashoka proves her superiority by having 16,000 identical cakes baked with his imperial seal hidden in only one of them. Each wife is asked to choose a cake, and only Asandhamitta gets the one with the imperial seal. The Trai Bhumi Katha claims that it was Asandhamitta who encouraged her husband to become a Buddhist, and to construct 84,000 stupas and 84,000 viharas.
According to Mahavamsa, after Asandhamitta's death, Tissarakkha became the chief empress. The Ashokavadana does not mention Asandhamitta at all, but does mention Tissarakkha as Tishyarakshita. The Divyavadana mentions another empress called Padmavati, who was the mother of the crown-prince Kunala.
As mentioned above, according to the Sri Lankan tradition, Ashoka fell in love with Devi (or Vidisha-Mahadevi), as a prince in central India. After Ashoka's ascension to the throne, Devi chose to remain at Vidisha than move to the imperial capital Pataliputra. According to the Mahavmsa, Ashoka's chief empress was Asandhamitta, not Devi: the text does not talk of any connection between the two women, so it is unlikely that Asandhamitta was another name for Devi. The Sri Lankan tradition uses the word samvasa to describe the relationship between Ashoka and Devi, which modern scholars variously interpret as sexual relations outside marriage, or co-habitation as a married couple. Those who argue that Ashoka did not marry Devi argue that their theory is corroborated by the fact that Devi did not become Ashoka's chief empress in Pataliputra after his ascension. The Dipavamsa refers to two children of Ashoka and Devi – Mahinda and Sanghamitta. Sons Tivara, the fourth son of Ashoka and Karuvaki, is the only of Ashoka's sons to be mentioned by name in the inscriptions.
According to North Indian tradition, Ashoka had a second son named Kunala. Kunala had a son named Samprati.
The Sri Lankan tradition mentions a son called Mahinda, who was sent to Sri Lanka as a Buddhist missionary; this son is not mentioned at all in the North Indian tradition. The Chinese pilgrim Xuanzang states that Mahinda was Ashoka's younger brother (Vitashoka or Vigatashoka) rather than his illegitimate son.
The Divyavadana mentions the crown-prince Kunala alias Dharmavivardhana, who was a second son of Ashoka and empress Padmavati. According to Faxian, Dharmavivardhana was appointed as the governor of Gandhara.
The Rajatarangini mentions Jalauka as a third son of Ashoka. Daughters According to Sri Lankan tradition, Ashoka had a daughter named Sanghamitta, who became a Bhikkhunī. A section of historians, such as Romila Thapar, doubt the historicity of Sanghamitta, based on the following points:
* The name "Sanghamitta", which literally means the friend of the Buddhist order (sangha), is unusual, and the story of her going to Ceylon so that the Ceylonese queen could be ordained appears to be an exaggeration.
* The Mahavamsa states that she married Ashoka's nephew Agnibrahma, and the couple had a son named Sumana. The contemporary laws regarding exogamy would have forbidden such a marriage between first cousins.
* According to the Mahavamsa, she was 18 years old when she was ordained as a nun. The narrative suggests that she was married two years earlier, and that her husband as well as her child were ordained. It is unlikely that she would have been allowed to become a nun with such a young child.
Another source mentions that Ashoka had a daughter named Charumati, who married a kshatriya named Devapala. Brothers According to the Ashokavadana, Ashoka had an elder half-brother named Susima.
* According to Sri Lankan tradition, this brother was Tissa, who initially lived a luxurious life, without worrying about the world. To teach him a lesson, Ashoka put him on the throne for a few days, then accused him of being an usurper, and sentenced him to die after seven days. During these seven days, Tissa realised that the Buddhist monks gave up pleasure because they were aware of the eventuality of death. He then left the palace, and became an arhat.
* The Theragatha commentary calls this brother Vitashoka. According to this legend, one day, Vitashoka saw a grey hair on his head, and realised that he had become old. He then retired to a monastery, and became an arhat.
* Faxian calls the younger brother Mahendra, and states that Ashoka shamed him for his immoral behaviour. The brother then retired to a dark cave, where he meditated, and became an arhat. Ashoka invited him to return to the family, but he preferred to live alone on a hill. So, Ashoka had a hill built for him within Pataliputra.
* The Ashoka-vadana states that Ashoka's brother was mistaken for a non-Buddhist Jain, and killed during a massacre of the Jains ordered by Ashoka. Imperial extent The extent of the territory controlled by Ashoka's predecessors is not certain, but it is possible that the empire of his grandfather Chandragupta extended across northern India from the western coast (Arabian Sea) to the eastern coast (Bay of Bengal) covering nearly two-thirds of the Indian subcontinent. Bindusara and Ashoka seem to have extended the empire southwards. The distribution of Ashoka's inscriptions suggests that his empire included almost the entire Indian subcontinent, except its southernmost parts. The Rock Edicts 2 and 13 suggest that these southernmost parts were controlled by the Cholas, the Pandyas, the Keralaputras, and the Satiyaputras. In the north-west, Ashoka's empire extended into Afghanistan, to the east of the Seleucid Empire ruled by Antiochus II. The capital of Ashoka's empire was Pataliputra in the Magadha region.
Religion and philosophy
Relationship with Buddhism
(𑀉𑀧𑀸𑀲𑀓, "Buddhist lay follower", in the Brahmi script), used by Ashoka in his Minor Rock Edict No.1 to describe his affiliation to Buddhism ().]]
The Buddhist legends state that Ashoka converted to Buddhism, although this has been debated by a section of scholars. The Minor Rock Edict 1 leaves no doubt that Ashoka was a follower of Buddhism. In this edict, he calls himself an upasaka (a lay follower of Buddhism) and a sakya'' (i.e. Buddhist, after Gautama Buddha's title Shakya-Muni). This and several other edicts are evidence of his Buddhist affiliation:
* In his Minor Rock Edict 1, Ashoka adds that he did not make much progress for a year after becoming an upasaka, but then, he "went to" the Sangha, and made more progress. It is not certain what "going to" the Sangha means – the Buddhist tradition that he lived with monks may be an exaggeration, but it clearly means that Ashoka was drawn closer to Buddhism.
* In his Minor Rock Edict 3, he calls himself an upasaka, and records his faith in the Buddha and the Sangha.
* In the Major Rock Edict 8, he records his visit to Sambodhi (the sacred Bodhi Tree at Bodh Gaya), ten years after his coronation.
* In the Lumbini (Rumminidei) inscription, he records his visit to the Buddha's birthplace, and declares his reverence for the Buddha and the sangha.
* In the Nigalisagar inscription, he records his doubling in size of a stupa dedicated to a former Buddha, and his visit to the site for worship.
* Some of his inscriptions reflect his interest in maintaining the Buddhist sangha.
* The Saru Maru inscription states that Ashoka dispatched the message while travelling to Upunita-vihara in Manema-desha. Although the identity of the destination is not certain, it was obviously a Buddhist monastery (vihara). Other religions A legend in the Buddhist text Vamsatthapakasini states that an Ajivika ascetic invited to interpret a dream of Ashoka's mother had predicted that he would patronise Buddhism and destroy 96 heretical sects. However, such assertions are directly contradicted by Ashoka's own inscriptions. Ashoka's edicts, such as the Rock Edicts 6, 7, and 12, emphasise tolerance of all sects. Similarly, in his Rock Edict 12, Ashoka honours people of all faiths. In his inscriptions, Ashoka dedicates caves to non-Buddhist ascetics, and repeatedly states that both Brahmins and shramanas deserved respect. He also tells people "not to denigrate other sects, but to inform themselves about them".
In fact, there is no evidence that Buddhism was a state religion under Ashoka. None of Ashoka's extant edicts record his direct donations to the Buddhists. One inscription records donations by his Queen Karuvaki, while the emperor is known to have donated the Barabar Caves to the Ajivikas. There are some indirect references to his donations to Buddhists. For example, the Nigalisagar Pillar inscription records his enlargement of the Konakamana stupa. Similarly, the Lumbini (Rumminidei) inscription states that he exempted the village of Buddha's birth from the land tax, and reduced the revenue tax to one-eighth.
Ashoka appointed the dhamma-mahamatta officers, whose duties included the welfare of various religious sects, including the Buddhist sangha, Brahmins, Ajivikas, and Nirgranthas. The Rock Edicts 8 and 12, and the Pillar Edict 7, mandate donations to all religious sects.
Ashoka's Minor Rock Edict 1 contains the phrase "amissā devā". According to one interpretation, the term "amissā" derives from the word "amṛṣa" ("false"), and thus, the phrase is a reference to Ashoka's belief in "true" and "false" gods. However, it is more likely that the term derives from the word "amiśra" ("not mingled"), and the phrase refers to celestial beings who did not mingle with humans. The inscription claims that the righteousness generated by adoption of dhamma by the humans attracted even the celestial gods who did not mingle with humans. Dharma
Ashoka's various inscriptions suggest that he devoted himself to the propagation of "Dharma" (Pali: Dhamma), a term that refers to the teachings of Gautama Buddha in the Buddhist circles. However, Ashoka's own inscriptions do not mention Buddhist doctrines such as the Four Noble Truths or Nirvana. The word "Dharma" has various connotations in the Indian religions, and can be generally translated as "law, duty, or righteousness". In the Kandahar inscriptions of Ashoka, the word "Dharma" has been translated as eusebeia (Greek) and qsyt (Aramaic), which further suggests that his "Dharma" meant something more generic than Buddhism.
The inscriptions suggest that for Ashoka, Dharma meant "a moral polity of active social concern, religious tolerance, ecological awareness, the observance of common ethical precepts, and the renunciation of war." For example:
* Abolition of the death penalty (Pillar Edict IV)
* Plantation of banyan trees and mango groves, and construction of resthouses and wells, every along the roads. (Pillar Edict 7).
* Restriction on killing of animals in the imperial kitchen (Rock Edict 1); the number of animals killed was limited to two peacocks and a deer daily, and in future, even these animals were not to be killed.
* Provision of medical facilities for humans and animals (Rock Edict 2).
* Encouragement of obedience to parents, "generosity toward priests and ascetics, and frugality in spending" (Rock Edict 3).
* He "commissions officers to work for the welfare and happiness of the poor and aged" (Rock Edict 5)
* Promotion of "the welfare of all beings so as to pay off his debt to living creatures and to work for their happiness in this world and the next." (Rock Edict 6)
Modern scholars have variously understood this dhamma as a Buddhist lay ethic, a set of politico-moral ideas, a "sort of universal religion", or as an Ashokan innovation. On the other hand, it has also been interpreted as an essentially political ideology that sought to knit together a vast and diverse empire.
Ashoka instituted a new category of officers called the dhamma-mahamattas, who were tasked with the welfare of the aged, the infirm, the women and children, and various religious sects. They were also sent on diplomatic missions to the Hellenistic kingdoms of west Asia, in order to propagate the dhamma.
Historically, the image of Ashoka in the global Buddhist circles was based on legends (such as those mentioned in the Ashokavadana) rather than his rock edicts. This was because the Brahmi script in which these edicts were written was forgotten soon and remained undeciphered until its study by James Prinsep in the 19th century. The writings of the Chinese Buddhist pilgrims such as Faxian and Xuanzang suggest that Ashoka's inscriptions mark the important sites associated with Gautama Buddha. These writers attribute Buddhism-related content to Ashoka's edicts, but this content does not match with the actual text of the inscriptions as determined by modern scholars after the decipherment of the Brahmi script. It is likely that the script was forgotten by the time of Faxian, who probably relied on local guides; these guides may have made up some Buddhism-related interpretations to gratify him, or may have themselves relied on faulty translations based on oral traditions. Xuanzang may have encountered a similar situation, or may have taken the supposed content of the inscriptions from Faxian's writings. This theory is corroborated by the fact that some Brahmin scholars are known to have similarly come up with a fanciful interpretation of Ashoka pillar inscriptions, when requested to decipher them by the 14th century Muslim Tughlaq emperor Firuz Shah Tughlaq. According to Shams-i Siraj's Tarikh-i Firoz Shahi, after the king had these pillar transported from Topra and Mirat to Delhi as war trophies, these Brahmins told him that the inscriptions prophesied that nobody would be able to remove the pillars except a king named Firuz. Moreover, by this time, there were local traditions that attributed the erection of these pillars to the legendary hero Bhima.
According to scholars such as Richard Gombrich, Ashoka's dharma shows Buddhist influence. For example, the Kalinga Separate Edict I seems to be inspired by Buddha's Advice to Sigala and his other sermons.Animal welfareAshoka's rock edicts declare that injuring living things is not good, and no animal should be slaughtered for sacrifice. However, he did not prohibit common cattle slaughter or beef eating.
He imposed a ban on killing of "all four-footed creatures that are neither useful nor edible", and of specific animal species including several birds, certain types of fish and bulls among others. He also banned killing of female goats, sheep and pigs that were nursing their young; as well as their young up to the age of six months. He also banned killing of all fish and castration of animals during certain periods such as Chaturmasa and Uposatha.
Ashoka also abolished the imperial hunting of animals and restricted the slaying of animals for food in the imperial residence. Because he banned hunting, created many veterinary clinics and eliminated meat eating on many holidays, the Mauryan Empire under Ashoka has been described as "one of the very few instances in world history of a government treating its animals as citizens who are as deserving of its protection as the human residents".
As Ashoka's edicts forbade both the killing of wild animals and the destruction of forests, he is seen by some modern environmental historians as an early embodiment of that environmental ethos.
Foreign relations
of Ashoka (260–218 BCE).]]
It is well known that Ashoka sent dütas or emissaries to convey messages or letters, written or oral (rather both), to various people. The VIth Rock Edict about "oral orders" reveals this. It was later confirmed that it was not unusual to add oral messages to written ones, and the content of Ashoka's messages can be inferred likewise from the XIIIth Rock Edict: They were meant to spread his dhammavijaya, which he considered the highest victory and which he wished to propagate everywhere (including far beyond India). There is obvious and undeniable trace of cultural contact through the adoption of the Kharosthi script, and the idea of installing inscriptions might have travelled with this script, as Achaemenid influence is seen in some of the formulations used by Ashoka in his inscriptions. This indicates to us that Ashoka was indeed in contact with other cultures, and was an active part in mingling and spreading new cultural ideas beyond his own immediate walls.Hellenistic world
In his rock edicts, Ashoka states that he had encouraged the transmission of Buddhism to the Hellenistic kingdoms to the west and that the Greeks in his dominion were converts to Buddhism and recipients of his envoys:
It is possible, but not certain, that Ashoka received letters from Greek rulers and was acquainted with the Hellenistic royal orders in the same way as he perhaps knew of the inscriptions of the Achaemenid kings, given the presence of ambassadors of Hellenistic kings in India (as well as the dütas sent by Ashoka himself). who himself is mentioned in the Edicts of Ashoka as a recipient of the Buddhist proselytism of Ashoka. Some Hellenistic philosophers, such as Hegesias of Cyrene, who probably lived under the rule of King Magas, one of the supposed recipients of Buddhist emissaries from Ashoka, are sometimes thought to have been influenced by Buddhist teachings.
The Greeks in India even seem to have played an active role in the propagation of Buddhism, as some of the emissaries of Ashoka, such as Dharmaraksita, are described in Pali sources as leading Greek (Yona) Buddhist monks, active in spreading Buddhism (the Mahavamsa, XII).
Some Greeks (Yavana) may have played an administrative role in the territories ruled by Ashoka. The Girnar inscription of Rudradaman records that during the rule of Ashoka, a Yavana Governor was in charge in the area of Girnar, Gujarat, mentioning his role in the construction of a water reservoir.
It is thought that Ashoka's palace at Patna was modelled after the Achaemenid palace of Persepolis.
Legends about past lives
, Bangladesh]]
Buddhist legends mention stories about Ashoka's past lives. According to a Mahavamsa story, Ashoka, Nigrodha and Devnampiya Tissa were brothers in a previous life. In that life, a pratyekabuddha was looking for honey to cure another, sick pratyekabuddha. A woman directed him to a honey shop owned by the three brothers. Ashoka generously donated honey to the pratyekabuddha, and wished to become the sovereign ruler of Jambudvipa for this act of merit. The woman wished to become his queen, and was reborn as Ashoka's wife Asandhamitta. Later Pali texts credit her with an additional act of merit: she gifted the pratyekabuddha a piece of cloth made by her. These texts include the Dasavatthuppakarana, the so-called Cambodian or Extended Mahavamsa (possibly from 9th–10th centuries), and the Trai Bhumi Katha (15th century).
According to an Ashokavadana story, Ashoka was born as Jaya in a prominent family of Rajagriha. When he was a little boy, he gave the Gautama Buddha dirt imagining it to be food. The Buddha approved of the donation, and Jaya declared that he would become a king by this act of merit. The text also state that Jaya's companion Vijaya was reborn as Ashoka's prime-minister Radhagupta. In the later life, the Buddhist monk Upagupta tells Ashoka that his rough skin was caused by the impure gift of dirt in the previous life. Some later texts repeat this story, without mentioning the negative implications of gifting dirt; these texts include Kumaralata's Kalpana-manditika, Aryashura's Jataka-mala, and the Maha-karma-vibhaga. The Chinese writer Pao Ch'eng's Shih chia ju lai ying hua lu asserts that an insignificant act like gifting dirt could not have been meritorious enough to cause Ashoka's future greatness. Instead, the text claims that in another past life, Ashoka commissioned a large number of Buddha statues as a king, and this act of merit caused him to become a great emperor in the next life.
The 14th century Pali-language fairy tale Dasavatthuppakarana (possibly from ) combines the stories about the merchant's gift of honey, and the boy's gift of dirt. It narrates a slightly different version of the Mahavamsa story, stating that it took place before the birth of the Gautama Buddha. It then states that the merchant was reborn as the boy who gifted dirt to the Buddha; however, in this case, the Buddha gave the dirt to Ānanda, his attendant, to create plaster from the dirt, which was used repair cracks in the monastery walls. Last years Tissarakkha as the empress Ashoka's last dated inscription - the Pillar Edict 4 is from his 26th regnal year. The only source of information about Ashoka's later years are the Buddhist legends. The Sri Lankan tradition states that Ashoka's empress Asandhamitta died during his 29th regnal year, and in his 32nd regnal year, his wife Tissarakkha was given the title of empress.
Both Mahavamsa and Ashokavadana state that Ashoka extended favours and attention to the Bodhi Tree, and a jealous Tissarakkha mistook "Bodhi" to be a mistress of Ashoka. She then used black magic to make the tree wither. According to the Ashokavadana, she hired a sorceress to do the job, and when Ashoka explained that "Bodhi" was the name of a tree, she had the sorceress heal the tree. According to the Mahavamsa, she completely destroyed the tree, during Ashoka's 34th regnal year.
The Ashokavadana states that Tissarakkha (called "Tishyarakshita" here) made sexual advances towards Ashoka's son Kunala, but Kunala rejected her. Subsequently, Ashoka granted Tissarakkha emperorship for seven days, and during this period, she tortured and blinded Kunala. Ashoka then threatened to "tear out her eyes, rip open her body with sharp rakes, impale her alive on a spit, cut off her nose with a saw, cut out her tongue with a razor." Kunala regained his eyesight miraculously, and pleaded for mercy for the empress, but Ashoka had her executed anyway. Kshemendra's Avadana-kalpa-lata also narrates this legend, but seeks to improve Ashoka's image by stating that he forgave the empress after Kunala regained his eyesight. Death According to the Sri Lankan tradition, Ashoka died during his 37th regnal year, which suggests that he died around 232 BCE.
According to the Ashokavadana, the emperor fell severely ill during his last days. He started using state funds to make donations to the Buddhist sangha, prompting his ministers to deny him access to the state treasury. Ashoka then started donating his personal possessions, but was similarly restricted from doing so. On his deathbed, his only possession was the half of a myrobalan fruit, which he offered to the sangha as his final donation. Such legends encourage generous donations to the sangha and highlight the role of the emperorship in supporting the Buddhist faith.
Legend states that during his cremation, his body burned for seven days and nights.
Archaeological remains
Architecture
Besides the various stupas attributed to Ashoka, the pillars erected by him survive at various places in the Indian subcontinent.
Ashoka is often credited with the beginning of stone architecture in India, dedicated to Buddhism, possibly following the introduction of stone-building techniques by the Greeks after Alexander the Great. Before Ashoka's time, buildings were probably built in non-permanent material, such as wood, bamboo or thatch.<!-- We ignore the IVC here? JJ, 12 jan 2025 --> Ashoka may have rebuilt his palace in Pataliputra by replacing wooden material by stone, and may also have used the help of foreign craftmen. Ashoka also innovated by using the permanent qualities of stone for his written edicts, as well as his pillars with Buddhist symbolism.
<gallery>
Ashok Sthamba.jpg | The Ashokan pillar at Lumbini, Nepal, Buddha's birthplace
Diamond throne discovery.jpg | The Diamond throne at the Mahabodhi Temple, attributed to Ashoka
Vajrasana front frieze design.jpg | Front frieze of the Diamond throne
MauryanRingstone.JPG | Mauryan ringstone, with standing goddess. Northwest Pakistan. 3rd century BCE. British Museum
Rampurva bull capital detail.jpg |Rampurva bull capital, detail of the abacus, with two "flame palmettes" framing a lotus surrounded by small rosette flowers.
</gallery>
Symbols
Ashokan capitals were highly realistic and used a characteristic polished finish, Mauryan polish, giving a shiny appearance to the stone surface. Lion Capital of Ashoka, the capital of one of the pillars erected by Ashoka features a carving of a spoked wheel, known as the Ashoka Chakra. This wheel represents the wheel of Dhamma set in motion by the Gautama Buddha, and appears on the flag of modern India. This capital also features sculptures of lions, which appear on the seal of India.
Inscriptions and rock-edicts
, and location of the contemporary Greek city of Ai-Khanoum.]]
, a bilingual inscription (in Greek and Aramaic) by King Ashoka, discovered at Kandahar ().]]
The edicts of Ashoka are a collection of 33 inscriptions on the Pillars of Ashoka, as well as boulders and cave walls, issued during his reign. This symbol was not used on the pre-Mauryan punch-marked coins, but only on coins of the Maurya period, together with the three arched-hill symbol, the "peacock on the hill", the triskelis and the Taxila mark.
<gallery widths"180px" heights"180px">
Caduceus on Mauryan coin.jpg | Caduceus symbol on a Maurya-era punch-marked coin
India Mauryan emperor Ashoka Punch-marked Coin.jpg | A punch-marked coin attributed to Ashoka
I15 1karshapana Maurya Ashoka MACW4229 1ar (8486624862).jpg | A Maurya-era silver coin of 1 karshapana, possibly from Ashoka's period, workshop of Mathura. Obverse: Symbols including a sun and an animal Reverse: Symbol Dimensions: 13.92 x 11.75 mm Weight: 3.4 g.
</gallery>
Modern scholarship
Rediscovery
Ashoka had almost been forgotten, but in the 19th century James Prinsep contributed in the revelation of historical sources. After deciphering the Brahmi script, Prinsep had originally identified the "Priyadasi" of the inscriptions he found with the King of Ceylon Devanampiya Tissa. However, in 1837, George Turnour discovered an important Sri Lankan manuscript (Dipavamsa, or "Island Chronicle" ) associating Piyadasi with Ashoka:
}}
of Maski mentions the author as "Devanampriya Asoka", definitively linking both names, and confirming Ashoka as the author of the famous Edicts.]]
Since then, the association of "Devanampriya Priyadarsin" with Ashoka was confirmed through various inscriptions, and especially confirmed in the Minor Rock Edict inscription discovered in Maski, directly associating Ashoka with his regnal title Devanampriya ("Beloved-of-the-Gods"):
|Maski Minor Rock Edict of Ashoka.
}}
Another important historian was British archaeologist John Hubert Marshall, who was director-General of the Archaeological Survey of India. His main interests were Sanchi and Sarnath, in addition to Harappa and Mohenjodaro. Sir Alexander Cunningham, a British archaeologist and army engineer, and often known as the father of the Archaeological Survey of India, unveiled heritage sites like the Bharhut Stupa, Sarnath, Sanchi, and the Mahabodhi Temple. Mortimer Wheeler, a British archaeologist, also exposed Ashokan historical sources, especially the Taxila.Perceptions and historiographyThe use of Buddhist sources in reconstructing the life of Ashoka has had a strong influence on perceptions of Ashoka, as well as the interpretations of his Edicts. Building on traditional accounts, early scholars regarded Ashoka as a primarily Buddhist monarch who underwent a conversion from the Vedic religion to Buddhism and was actively engaged in sponsoring and supporting the Buddhist monastic institution. Some scholars have tended to question this assessment. Thapar writes about Ashoka that "We need to see him both as a statesman in the context of inheriting and sustaining an empire in a particular historical period, and as a person with a strong commitment to changing society through what might be called the propagation of social ethics." The only source of information not attributable to Buddhist sources are the Ashokan Edicts, and these do not explicitly state that Ashoka was a Buddhist. In his edicts, Ashoka expresses support for all the major religions of his time: Buddhism, Brahmanism, Jainism, and Ajivikaism, and his edicts addressed to the population at large (there are some addressed specifically to Buddhists; this is not the case for the other religions) generally focus on moral themes members of all the religions would accept. For example, Amartya Sen writes, "The Indian Emperor Ashoka in the third century BCE presented many political inscriptions in favor of tolerance and individual freedom, both as a part of state policy and in the relation of different people to each other".
However, the edicts alone strongly indicate that he was a Buddhist. In one edict he belittles rituals, and he banned Vedic animal sacrifices; these strongly suggest that he at least did not look to the Vedic tradition for guidance. Furthermore, many edicts are expressed to Buddhists alone; in one, Ashoka declares himself to be an "upasaka", and in another he demonstrates a close familiarity with Buddhist texts. He erected rock pillars at Buddhist holy sites, but did not do so for the sites of other religions. He also used the word "dhamma" to refer to qualities of the heart that underlie moral action; this was an exclusively Buddhist use of the word. However, he used the word more in the spirit than as a strict code of conduct. Thapar writes, "His dhamma did not derive from divine inspiration, even if its observance promised heaven. It was more in keeping with the ethic conditioned by the logic of given situations. His logic of Dhamma was intended to influence the conduct of categories of people, in relation to each other. Especially where they involved unequal relationships."
Much of the knowledge about Ashoka comes from the several inscriptions that he had carved on pillars and rocks throughout the empire. All his inscriptions present him as compassionate and loving. In the Kalinga rock edits, he addresses his people as his "children" and mentions that as a father he desires their good. Impact of pacifism After Ashoka's death, the Maurya dynasty declined rapidly. The various Puranas provide different details about Ashoka's successors, but all agree that they had relatively short reigns. The empire seems to have weakened, fragmented, and suffered an invasion from the Bactrian Greeks.
Some historians, such as H. C. Raychaudhuri, have argued that Ashoka's pacifism undermined the "military backbone" of the Maurya empire. Others, such as Romila Thapar, have suggested that the extent and impact of his pacifism have been "grossly exaggerated".In art, film and literature
(1871–1951) depicting Ashoka's empress standing in front of the railings of the Buddhist monument at Sanchi (Raisen district, Madhya Pradesh)]]
* Ashoka the Great is a fictional biography of the emperor, which was originally written in Dutch in the form of a trilogy by Wytze Keuning in 1937–1947.
* Jaishankar Prasad composed Ashoka ki Chinta (''Ashoka's Anxiety''), a poem that portrays Ashoka's feelings during the war on Kalinga.
* Ashoka, a 1922 Indian silent historical film about the emperor produced by Madan Theatres.
*The Nine Unknown, a 1923 novel by Talbot Mundy about the "Nine Unknown Men", a fictional secret society founded by Ashoka.
*Samrat Ashok, a 1928 Indian silent film by Bhagwati Prasad Mishra.
* Uttar-Priyadarshi (The Final Beatitude), a verse-play written by poet Agyeya depicting his redemption, was adapted to stage in 1996 by theatre director, Ratan Thiyam and has since been performed in many parts of the world.
* In 1973, Amar Chitra Katha released a graphic novel based on the life of Ashoka.
* In Piers Anthony's series of space opera novels, the main character mentions Ashoka as a model for administrators to strive for.
* Samrat Ashok is a 1992 Indian Telugu-language film about the emperor by N. T. Rama Rao with Rao also playing the titular role.
* In 2024, Pracchand Ashok, a television serial by Ekta Kapoor, based on the love life of the Ashoka, began airing on Colors TV where Adnan Khan played the role of Ashoka.
* Civilization features Ashoka as a playable leader for India, being replaced by Gandhi in later iterations of the series.See also* List of people known as the GreatNotes
References
Works cited
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
Further reading
*
*
*
*
*
*
*
*
*
External links
*
* BBC Radio 4: Sunil Khilnani, [http://www.bbc.co.uk/programmes/b05tpy82 Incarnations: Ashoka.]
* BBC Radio 4: Melvyn Bragg with Richard Gombrich et al., [http://www.bbc.co.uk/programmes/b0511tm1 In Our Time, Ashoka the Great].
{| class"wikitable" style"margin:0 auto; font-size:88%; text-align:center;"
|-
! colspan6 style"background:#ccf; font-size: 130%;"| Edicts of Ashoka<br /><small></small>
|-
!style="background-color:#cdcdcd;"|Regnal years<br />of Ashoka
!colspan4 style"background-color:#cdcdcd;"|Type of Edict<br />(and location of the inscriptions)
!style="background-color:#cdcdcd;"|Geographical location
|-
| Year 8
|colspan=4 |End of the Kalinga War and conversion to the "Dharma"
| rowspan=10|
|-
| rowspan=3|Year 10
|alignleft style"background-color:#cdcdcd;"|Minor Rock Edicts
|colspan3 rowspan4|Related events:<br />Visit to the Bodhi tree in Bodh Gaya<br />Construction of the Mahabodhi Temple and Diamond throne in Bodh Gaya<br />Predication throughout India.<br />Dissenssions in the Sangha<br />Third Buddhist Council<br />In Indian language: Sohgaura inscription<br />Erection of the Pillars of Ashoka
|-
| style="background-color:#dcdcdc;"|Kandahar Bilingual Rock Inscription<br /><small>(in Greek and Aramaic, Kandahar)</small>
|-
| style="background-color:#dcdcdc;"|Minor Rock Edicts in Aramaic:<br />Laghman Inscription, Taxila inscription
|-
| Year 11 and later
| style="background-color:#dcdcdc;"|Minor Rock Edicts (n°1, n°2 and n°3)<br /><small>(Panguraria, Maski, Palkigundu and Gavimath, Bahapur/Srinivaspuri, Bairat, Ahraura, Gujarra, Sasaram, Rajula Mandagiri, Yerragudi, Udegolam, Nittur, Brahmagiri, Siddapur, Jatinga-Rameshwara)</small>
|-
| rowspan=3 |Year 12 and later
| style="background-color:#dcdcdc;"|Barabar Caves inscriptions
|colspan3 style"background-color:#cdcdcd;" width="40%"|Major Rock Edicts
|-
| style="background-color:#cdcdcd;"|Minor Pillar Edicts
|colspan3 rowspan2 style="background-color:#dcdcdc;"|Major Rock Edicts in Greek: Edicts n°12-13 (Kandahar)<br /><br />Major Rock Edicts in Indian language:<br />Edicts No.1 ~ No.14<br /><small>(in Kharoshthi script: Shahbazgarhi, Mansehra Edicts)</small><br /><small>(in the Brahmi script: Kalsi, Girnar, Sopara, Sannati, Yerragudi, Delhi Edicts)</small><br />Major Rock Edicts 1–10, 14, Separate Edicts 1&2:<br /><small>(Dhauli, Jaugada)</small>
|-
| style="background-color:#dcdcdc;"|Schism Edict, Queen's Edict<br /><small>(Sarnath Sanchi Allahabad)</small><br />Lumbini inscription, Nigali Sagar inscription
|-
|rowspan=2 |Year 26, 27<br />and later
|colspan2 style"background-color:#cdcdcd;"|Major Pillar Edicts
|-
|colspan2 style"background-color:#dcdcdc;"|In Indian language:<br />Major Pillar Edicts No.1 ~ No.7<br /><small>(Allahabad pillar Delhi-Meerut Delhi-Topra Rampurva Lauria Nandangarh Lauriya-Araraj Amaravati)</small><br />
Derived inscriptions in Aramaic, on rock:<br />
Kandahar, Edict No.7 and Pul-i-Darunteh, Edict No.5 or No.7
|-
| colspan=6 |
|}
Category:Emperors of Magadha
Category:Mauryan dynasty
Category:3rd-century BC deaths
Category:3rd-century BC Indian monarchs
Category:3rd-century Buddhism
Category:Ancient history of Afghanistan
Category:Ancient history of Pakistan
Category:Buddhist pacifists
Category:Indian Buddhist monarchs
Category:Indian pacifists
Category:People from Patna
Category:Ancient India
Category:Indian monarchs
Category:Indian warriors
Category:History of Buddhism in India
Category:Indian Buddhist missionaries
Category:Indian Buddhists
Category:Converts to Buddhism
Category:3rd-century BC Buddhists | https://en.wikipedia.org/wiki/Ashoka | 2025-04-05T18:25:36.125914 |
1241 | American (word) | <!--Please do not delete the language templates (ex. , , , , etc. They're needed for accessibility reasons, especially for screen readers. See WP:ATLANG-->
The meaning of the word American in the English language varies according to the historical, geographical, and political context in which it is used. American is derived from America, a term originally denoting all of the Americas (also called the Western Hemisphere), ultimately derived from the name of the Florentine explorer and cartographer Amerigo Vespucci (1451–1512). In some expressions, it retains this Pan-American sense, but its usage has evolved over time and, for various historical reasons, the word came to denote people or things specifically from the United States of America.
In contemporary English, American generally refers to persons or things related to the United States of America; among native English speakers this usage is almost universal, with any other use of the term requiring specification. However, in the past some have argued that "American" should be widened to also include people or things from anywhere in the American continents.
The word can be used as either an adjective or a noun (viz. a demonym). In adjectival use, it means "of or relating to the United States"; for example, "Elvis Presley was an American singer" or "the man prefers American English". In its noun form, the word generally means a resident or citizen of the U.S., but is also used for someone whose ethnic identity is simply "American". The noun is rarely used in English to refer to people not connected to the United States when intending a geographical meaning.}} Hebrew, Arabic, and Russian () for males and () for females}} speakers may use cognates of American to refer to inhabitants of the Americas or to U.S. nationals. They generally have other terms specific to U.S. nationals, such as the German , French , Japanese , and Italian . These specific terms may be less common than the term American. The respective guidelines of the foreign ministries of Austria, Germany and Switzerland all prescribe Amerikaner and amerikanisch in reference to the United States for official usage, making no mention of or .
Portuguese has , denoting both a person or thing from the Americas and a U.S. national. For referring specifically to a U.S. national and things, some words used are (also spelled , "United States person"), from , and ("Yankee")—both usages exist in Brazil (although "americano" is more frequent), but are uncommon in Portugal—but the term most often used, and the only one in Portugal, is , even though it could, as with its Spanish equivalent, apply to Canadians and Mexicans as well.
In Spanish, denotes geographic and cultural origin in the New World, as well as (infrequently) a U.S. citizen; as "Native of America" [] and "Pertaining or relating to this part of the world" [], where refers to the continent. The fourth definition of is defined as "United States person" [].}} the more common term is ("United States person"), which derives from ("United States of America"). The Spanish term ("North American") is frequently used to refer things and persons from the United States, but this term can also denote people and things from Canada and Mexico. Among Spanish-speakers, North America generally does not include Central America or the Caribbean.
Conversely, in Czech, there is no possibility for disambiguation. Američan (m.) and američanka (f.) can refer to persons from the United States or from the continents of the Americas, and there is no specific word capable of distinguishing the two meanings. For this reason, the latter meaning is very rarely used, and word is used almost exclusively to refer to persons from the United States. The usage is exactly parallel to the English word.
In other languages, however, there is no possibility for confusion. For example, the Chinese word for "U.S. national" is () is the Standard Mandarin pronunciation.}} is derived from a word for the United States, , where is an abbreviation for Yàměilìjiā ("America") and is "country". The name for the American continents is , from plus ("continent"). Thus, a is an American in the continent sense, and a is an American in the U.S. sense. ("United States") is written as , ("America the continent") is written as , ("country") is written as , and ("continent") is written as . and Vietnamese having for the country versus for the continents. Japanese has such terms as well ( [ versus []), but they are found more in newspaper headlines than in speech, where predominates.
In Swahili, means specifically the United States, and is a U.S. national, whereas the international form refers to the continents, and would be an inhabitant thereof. Likewise, the Esperanto word refers to the continents. For the country there is the term . Thus, a citizen of the United States is an , whereas an is an inhabitant of the Americas.
History
.]]
The name America was coined by Martin Waldseemüller from Americus Vesputius, the Latinized version of the name of Amerigo Vespucci (1454–1512), the Florentine explorer who mapped South America's east coast and the Caribbean Sea in the early 16th century. Later, Vespucci's published letters were the basis of Waldseemüller's 1507 map, which is the first usage of America. The adjective American subsequently denoted the New World.
In the 16th century, European usage of American denoted the native inhabitants of the New World. The earliest recorded use of this term in English is in Thomas Hacket's 1568 translation of André Thévet's book France Antarctique; Thévet himself had referred to the natives as Ameriques. The official name of the country was reaffirmed on November 15, 1777, when the Second Continental Congress adopted the Articles of Confederation, the first of which says, "The Stile of this Confederacy shall be 'The United States of America'". The Articles further state:
Thomas Jefferson, newly elected president in May 1801 wrote, "I am sure the measures I mean to pursue are such as would in their nature be approved by every American who can emerge from preconceived prejudices; as for those who cannot, we must take care of them as of the sick in our hospitals. The medicine of time and fact may cure some of them."
In The Federalist Papers (1787–88), Alexander Hamilton and James Madison used the adjective American with two different meanings: one political and one geographic; "the American republic" in Federalist No. 51 and in Federalist No. 70, and, in Federalist No. 24, Hamilton used American to denote the lands beyond the U.S.'s political borders.
Early official U.S. documents show inconsistent usage; the 1778 Treaty of Alliance with France used "the United States of North America" in the first sentence, then "the said united States"<!-- all instances of this phrase in the Treaty leaved "united" uncapitalized --> afterwards; "the United States of America" and "the United States of North America" derive from "the United Colonies of America" and "the United Colonies of North America". The Treaty of Peace and Amity of September 5, 1795, between the United States and the Barbary States contains the usages "the United States of North America", "citizens of the United States", and "American Citizens".
(1796)]]
U.S. President George Washington, in his 1796 Farewell Address'', declaimed that "The name of American, which belongs to you in your national capacity, must always exalt the just pride of patriotism more than any appellation." Political scientist Virginia L. Arbery notes that, in his Farewell Address:<blockquote> "...Washington invites his fellow citizens to view themselves now as Americans who, out of their love for the truth of liberty, have replaced their maiden names (Virginians, South Carolinians, New Yorkers, etc.) with that of “American”. Get rid of, he urges, “any appellation derived from local discriminations.” By defining himself as an American rather than as a Virginian, Washington set the national standard for all citizens. "Over and over, Washington said that America must be something set apart. As he put it to Patrick Henry, 'In a word, I want an American character, that the powers of Europe may be convinced we act for ourselves and not for others.'" </blockquote>As the historian Garry Wills has noted: "This was a theme dear to Washington. He wrote to Timothy Pickering that the nation 'must never forget that we are Americans; the remembrance of which will convince us we ought not to be French or English'." Washington's countrymen subsequently embraced his exhortation with notable enthusiasm.
This semantic divergence among North American anglophones, however, remained largely unknown in the Spanish-American colonies. In 1801, the document titled Letter to American Spaniards—published in French (1799), in Spanish (1801), and in English (1808)—might have influenced Venezuela's Act of Independence and its 1811 constitution.
The Latter-day Saints' Articles of Faith refer to the American continents as where they are to build Zion.
Common short forms and abbreviations are the United States, the U.S., the U.S.A., and America; colloquial versions include the U.S. of A. and the States. The term Columbia (from the Columbus surname) was a popular name for the U.S. and for the entire geographic Americas; its usage is present today in the District of Columbia's name. Moreover, the womanly personification of Columbia appears in some official documents, including editions of the U.S. dollar.
Usage at the United Nations
Use of the term American for U.S. nationals is common at the United Nations, and financial markets in the United States are referred to as "American financial markets".
American Samoa, an unincorporated territory of the United States, is a recognized territorial name at the United Nations.
Cultural views
Canada
Modern Canadians typically refer to people from the United States as Americans, though they seldom refer to the United States as America; they use the terms the United States, the U.S., or (informally) the States instead. Because of anti-American sentiment or simply national pride, Canadians never apply the term American to themselves. Not being an "American" is a part of Canadian identity, with many Canadians resenting being referred to as Americans or mistaken for U.S. citizens. This is often due to others' inability, particularly overseas, to distinguish Canadians from Americans, by their accent or other cultural attributes. People of American origin in Canada are categorized as "Other North American origins" by Statistics Canada for purposes of census counts.
Spain and Hispanic America
The use of American as a national demonym for U.S. nationals is challenged, primarily by Latin Americans. The term is also accepted in many parts of Latin America to refer to a person or something from the United States; however, this term may be ambiguous in certain parts. Up to and including the 1992 edition, the , published by the Real Academia Española, did not include the United States definition in the entry for ; this was added in the 2001 edition. The Real Academia Española advised against using exclusively for U.S. nationals:
as a synonym of , even though strictly speaking, the term norteamericano can equally be used to refer to the inhabitants of any country in North America, it normally applies to the inhabitants of the United States. But americano should not be used to refer exclusively to the inhabitants of the United States, an abusive usage which can be explained by the fact that in the United States, they frequently abbreviate the name of the country to "America" (in English, with no accent). }} }}Portugal and BrazilGenerally, denotes "U.S. citizen" in Portugal.
In Brazil, the term is used to address both that which pertains to the Americas and that which pertains to the U.S.; the particular meaning is deduced from context. Alternatively, the term ("North American") is also used in more informal contexts, while (of the U.S.) is the preferred form in academia. Use of the three terms is common in schools, government, and media. The term is used exclusively for the whole continent, and the U.S. is called ("United States") or ("United States of America"), often abbreviated .In other contexts"American" in the 1994 Associated Press Stylebook was defined as, "An acceptable description for a resident of the United States. It also may be applied to any resident or citizen of nations in North or South America." Elsewhere, the AP Stylebook indicates that "United States" must "be spelled out when used as a noun. Use U.S. (no space) only as an adjective."
The entry for "America" in The New York Times Manual of Style and Usage from 1999 reads:
Media releases from the Pope and Holy See frequently use "America" to refer to the United States, and "American" to denote something or someone from the United States.
International law
At least one international law uses U.S. citizen in defining a citizen of the United States rather than American citizen; for example, the English version of the North American Free Trade Agreement includes:
Many international treaties use the terms American and American citizen:
* 1796 – The treaty between the United States and the Dey of the Regency of Algiers on March 7, 1796, protected "American citizens".
* 1806 – The Louisiana Purchase Treaty between France and United States referred to "American citizens".
* 1825 – The treaty between the United States and the Cheyenne tribe refers to "American citizens".
* 1848 – The Treaty of Guadalupe Hidalgo between Mexico and the U.S. uses "American Government" to refer to the United States, and "American tribunals" to refer to U.S. courts.
* 1858 – The Treaty of Amity and Commerce between the United States and Japan protected "American citizens" and also used "American" in other contexts.
* 1898 – The Treaty of Paris ending the Spanish–American War, known in Spanish as the ("Spain–United States War") uses "American" in reference to United States troops.
* 1966 – The United States–Thailand Treaty of Amity protects "Americans" and "American corporations".U.S. commercial regulationProducts that are labeled, advertised, and marketed in the U.S. as "Made in the USA" must be, as set by the Federal Trade Commission (FTC), "all or virtually all made in the U.S." The FTC, to prevent deception of customers and unfair competition, considers an unqualified claim of "American Made" to expressly claim exclusive manufacture in the U.S: "The FTC Act gives the Commission the power to bring law enforcement actions against false or misleading claims that a product is of U.S. origin."
Alternatives
There are a number of alternatives to the demonym American as a citizen of the United States that do not simultaneously mean any inhabitant of the Americas. One uncommon alternative is Usonian, which usually describes a certain style of residential architecture designed by Frank Lloyd Wright. Other alternatives have also surfaced, but most have fallen into disuse and obscurity. ''Merriam-Webster's Dictionary of English Usage'' says:
Nevertheless, no alternative to American is common.<ref nameWilson/>See also
* Americas (terminology)
* Hyphenated Americans
* Names of the United States
* Naming of the Americas
* Totum pro parte
Notes
References
Works cited
*
*
*
External links
*
Category:Culture of the United States
Category:English words
Category:Geographical naming disputes
Category:Definitions | https://en.wikipedia.org/wiki/American_(word) | 2025-04-05T18:25:36.162465 |
1242 | Ada (programming language) | | latest release version = Ada 2022
| latest release date = May 2023
| latest preview version | latest preview date
| influenced by = ALGOL 68, Pascal, Simula 67, C++ (Ada 95), Smalltalk (Ada 95), Modula-2 (Ada 95) Java (Ada 2005), Eiffel (Ada 2012)
| operating system = Multi- or cross-platform
| file ext = .adb, .ads
| website =
| wikibooks = Ada Programming
}}
Ada is a structured, statically typed, imperative, and object-oriented high-level programming language, inspired by Pascal and other languages. It has built-in language support for design by contract (DbC), extremely strong typing, explicit concurrency, tasks, synchronous message passing, protected objects, and non-determinism. Ada improves code safety and maintainability by using the compiler to find errors in favor of runtime errors. Ada is an international technical standard, jointly defined by the International Organization for Standardization (ISO), and the International Electrotechnical Commission (IEC). , the standard, ISO/IEC 8652:2023, is called Ada 2022 informally.
Ada was originally designed by a team led by French computer scientist Jean Ichbiah of Honeywell under contract to the United States Department of Defense (DoD) from 1977 to 1983 to supersede over 450 programming languages then used by the DoD. Ada was named after Ada Lovelace (1815–1852), who has been credited as the first computer programmer.
Features
Ada was originally designed for embedded and real-time systems. The Ada 95 revision, designed by S. Tucker Taft of Intermetrics between 1992 and 1995, improved support for systems, numerical, financial, and object-oriented programming (OOP).
Features of Ada include: strong typing, modular programming mechanisms (packages), run-time checking, parallel processing (tasks, synchronous message passing, protected objects, and nondeterministic select statements), exception handling, and generics. Ada 95 added support for object-oriented programming, including dynamic dispatch.
The syntax of Ada minimizes choices of ways to perform basic operations, and prefers English keywords (such as and ) to symbols (such as }} and ). Ada uses the basic arithmetical operators , , , and , but avoids using other symbols. Code blocks are delimited by words such as 'declare', 'begin', and 'end', where the 'end' (in most cases) is followed by the keyword of the block that it closes (e.g., ... , ... ). In the case of conditional blocks this avoids a dangling else that could pair with the wrong nested 'if'-expression in other languages such as C or Java.
Ada is designed for developing very large software systems. Ada packages can be compiled separately. Ada package specifications (the package interface) can also be compiled separately without the implementation to check for consistency. This makes it possible to detect problems early during the design phase, before implementation starts.
A large number of compile-time checks are supported to help avoid bugs that would not be detectable until run-time in some other languages or would require explicit checks to be added to the source code. For example, the syntax requires explicitly named closing of blocks to prevent errors due to mismatched end tokens. The adherence to strong typing allows detecting many common software errors (wrong parameters, range violations, invalid references, mismatched types, etc.) either during compile-time, or otherwise during run-time. As concurrency is part of the language specification, the compiler can in some cases detect potential deadlocks. Compilers also commonly check for misspelled identifiers, visibility of packages, redundant declarations, etc. and can provide warnings and useful suggestions on how to fix the error.
Ada also supports run-time checks to protect against access to unallocated memory, buffer overflow errors, range violations, off-by-one errors, array access errors, and other detectable bugs. These checks can be disabled in the interest of runtime efficiency, but can often be compiled efficiently. It also includes facilities to help program verification. For these reasons, Ada is sometimes used in critical systems, where any anomaly might lead to very serious consequences, e.g., accidental death, injury or severe financial loss. Examples of systems where Ada is used include avionics, air traffic control, railways, banking, military and space technology.
Ada's dynamic memory management is high-level and type-safe. Ada has no generic or untyped pointers; nor does it implicitly declare any pointer type. Instead, all dynamic memory allocation and deallocation must occur via explicitly declared access types. Each access type has an associated storage pool that handles the low-level details of memory management; the programmer can either use the default storage pool or define new ones (this is particularly relevant for Non-Uniform Memory Access). It is even possible to declare several different access types that all designate the same type but use different storage pools. Also, the language provides for accessibility checks, both at compile time and at run time, that ensures that an access value cannot outlive the type of the object it points to.
Though the semantics of the language allow automatic garbage collection of inaccessible objects, most implementations do not support it by default, as it would cause unpredictable behaviour in real-time systems. Ada supports a limited form of region-based memory management, and in Ada, destroying a storage pool also destroys all the objects in the pool.
A double-dash (), resembling an em dash, denotes comment text. Comments stop at end of line; there is intentionally no way to make a comment span multiple lines, to prevent unclosed comments from accidentally voiding whole sections of source code. Disabling a whole block of code therefore requires the prefixing of each line (or column) individually with . While this clearly denotes disabled code by creating a column of repeated '--' down the page, it also renders the experimental dis/re-enablement of large blocks a more drawn-out process in editors without block commenting support.
The semicolon () is a statement terminator, and the null or no-operation statement is . A single without a statement to terminate is not allowed.
Unlike most ISO standards, the Ada language definition (known as the Ada Reference Manual or ARM, or sometimes the Language Reference Manual or LRM) is free content. Thus, it is a common reference for Ada programmers, not only programmers implementing Ada compilers. Apart from the reference manual, there is also an extensive rationale document which explains the language design and the use of various language constructs. This document is also widely used by programmers. When the language was revised, a new rationale document was written.
One notable free software tool that is used by many Ada programmers to aid them in writing Ada source code is the GNAT Programming Studio, and GNAT which is part of the GNU Compiler Collection.
Alire is a package and toolchain management tool for Ada.
History
In the 1970s the US Department of Defense (DoD) became concerned by the number of different programming languages being used for its embedded computer system projects, many of which were obsolete or hardware-dependent, and none of which supported safe modular programming. In 1975, a working group, the High Order Language Working Group (HOLWG), was formed with the intent to reduce this number by finding or creating a programming language generally suitable for the department's and the UK Ministry of Defence's requirements. After many iterations beginning with an original straw-man proposal the eventual programming language was named Ada. The total number of high-level programming languages in use for such projects fell from over 450 in 1983 to 37 by 1996.
HOLWG crafted the <span class"anchor" id"Steelman language requirements">Steelman language requirements</span> , a series of documents stating the requirements they felt a programming language should satisfy. Many existing languages were formally reviewed, but the team concluded in 1977 that no existing language met the specifications. The requirements were created by the United States Department of Defense in The Department of Defense Common High Order Language program in 1978. The predecessors of this document were called, in order, "Strawman", "Woodenman", "Tinman" and "Ironman". The requirements focused on the needs of embedded computer applications, and emphasised reliability, maintainability, and efficiency. Notably, they included exception handling facilities, run-time checking, and parallel computing.
It was concluded that no existing language met these criteria to a sufficient extent, so a contest was called to create a language that would be closer to fulfilling them. The design that won this contest became the Ada programming language. The resulting language followed the Steelman requirements closely, though not exactly.
Requests for proposals for a new programming language were issued and four contractors were hired to develop their proposals under the names of Red (Intermetrics led by Benjamin Brosgol), Green (Honeywell, led by Jean Ichbiah), Blue (SofTech, led by John Goodenough) and Yellow (SRI International, led by Jay Spitzen).<!-- Though Intermetrics and Bull have previous links, I am including them for parallelism. --> In April 1978, after public scrutiny, the Red and Green proposals passed to the next phase. In May 1979, the Green proposal, designed by Jean Ichbiah at Honeywell, was chosen and given the name Ada—after Augusta Ada King, Countess of Lovelace, usually known as Ada Lovelace. This proposal was influenced by the language LIS that Ichbiah and his group had developed in the 1970s. The preliminary Ada reference manual was published in ACM SIGPLAN Notices in June 1979. The Military Standard reference manual was approved on December 10, 1980 (Ada Lovelace's birthday), and given the number MIL-STD-1815 in honor of Ada Lovelace's birth year. In 1981, Tony Hoare took advantage of his Turing Award speech to criticize Ada for being overly complex and hence unreliable, but subsequently seemed to recant in the foreword he wrote for an Ada textbook.
Ada attracted much attention from the programming community as a whole during its early days. Its backers and others predicted that it might become a dominant language for general purpose programming and not only defense-related work. Early Ada compilers struggled to implement the large, complex language, and both compile-time and run-time performance tended to be slow and tools primitive. certified on April 11, 1983. NYU Ada/Ed is implemented in the high-level set language SETL. Several commercial companies began offering Ada compilers and associated development tools, including Alsys, TeleSoft, DDC-I, Advanced Computer Techniques, Tartan Laboratories, Irvine Compiler, TLD Systems, and Verdix. Computer manufacturers who had a significant business in the defense, aerospace, or related industries, also offered Ada compilers and tools on their platforms; these included Concurrent Computer Corporation, Cray Research, Inc., Digital Equipment Corporation, Harris Computer Systems, and Siemens Nixdorf Informationssysteme AG. though exceptions to this rule were often granted. Similar requirements existed in other NATO countries: Ada was required for NATO systems involving command and control and other functions, and Ada was the mandated or preferred language for defense-related applications in countries such as Sweden, Germany, and Canada.
By the late 1980s and early 1990s, Ada compilers had improved in performance, but there were still barriers to fully exploiting Ada's abilities, including a tasking model that was different from what most real-time programmers were used to. Saab Gripen, Lockheed Martin F-22 Raptor and the DFCS replacement flight control system for the Grumman F-14 Tomcat. The Canadian Automated Air Traffic System was written in 1 million lines of Ada (SLOC count). It featured advanced distributed processing, a distributed Ada database, and object-oriented design. Ada is also used in other air traffic systems, e.g., the UK's next-generation Interim Future Area Control Tools Support () air traffic control system is designed and implemented using SPARK Ada.
It is also used in the French TVM in-cab signalling system on the TGV high-speed rail system, and the metro suburban trains in Paris, London, Hong Kong and New York City.
The Ada 95 revision of the language went beyond the Steelman requirements, targeting general-purpose systems in addition to embedded ones, and adding features supporting object-oriented programming.
Standardization
{| class"wikitable floatright" style"margin-left: 1.5em;"
|+Timeline of Ada language
|-
! Year
! Informal name
! Official Standard
|-
| 1980
| Ada
| ANSI MIL-STD 1815
|-
| 1983
| Ada 83/87
| ANSI MIL-STD 1815A<br />ISO/IEC 8652:1987
|-
| 1995
| Ada 95
| ISO/IEC 8652:1995
|-
| 2007
| Ada 2005
| ISO/IEC 8652:1995/Amd 1:2007
|-
| 2012
| Ada 2012
| ISO/IEC 8652:2012
|-
| 2023
| Ada 2022
| ISO/IEC 8652:2023
|}
Preliminary Ada can be found in ACM Sigplan Notices Vol 14, No 6, June 1979
Ada was first published in 1980 as an ANSI standard ANSI/MIL-STD 1815. As this very first version held many errors and inconsistencies , the revised edition was published in 1983 as ANSI/MIL-STD 1815A. Without any further changes, it became an ISO standard in 1987. This version of the language is commonly known as Ada 83, from the date of its adoption by ANSI, but is sometimes referred to also as Ada 87, from the date of its adoption by ISO. There is also a French translation; DIN translated it into German as DIN 66268 in 1988.
Ada 95, the joint ISO/IEC/ANSI standard ISO/IEC 8652:1995 was published in February 1995, making it the first ISO standard object-oriented programming language. To help with the standard revision and future acceptance, the US Air Force funded the development of the GNAT Compiler. Presently, the GNAT Compiler is part of the GNU Compiler Collection.
Work has continued on improving and updating the technical content of the Ada language. A Technical Corrigendum to Ada 95 was published in October 2001, and a major Amendment, ISO/IEC 8652:1995/Amd 1:2007 was published on March 9, 2007, commonly known as Ada 2005 because work on the new standard was finished that year.
At the Ada-Europe 2012 conference in Stockholm, the Ada Resource Association (ARA) and Ada-Europe announced the completion of the design of the latest version of the Ada language and the submission of the reference manual to the ISO/IEC JTC 1/SC 22/WG 9 of the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC) for approval. ISO/IEC 8652:2012(see [https://www.adaic.org/resources/add_content/standards/12rm/html/RM-TTL.html Ada 2012 RM]) was published in December 2012, known as Ada 2012. A technical corrigendum, ISO/IEC 8652:2012/COR 1:2016, was published (see [http://www.ada-auth.org/standards/rm12_w_tc1/html/RM-TTL.html RM 2012 with TC 1]).
On May 2, 2023, the Ada community saw the formal approval of publication of the Ada 2022 edition of the programming language standard. Ada 95 adds further features for object-oriented extension of types. Control structures
Ada is a structured programming language, meaning that the flow of control is structured into standard statements. All standard constructs and deep-level early exit are supported, so the use of the also supported "go to" commands is seldom needed.
<syntaxhighlight lang="ada" line>
-- while a is not equal to b, loop.
while a /= b loop
Ada.Text_IO.Put_Line ("Waiting");
end loop;
if a > b then
Ada.Text_IO.Put_Line ("Condition met");
else
Ada.Text_IO.Put_Line ("Condition not met");
end if;
for i in 1 .. 10 loop
Ada.Text_IO.Put ("Iteration: ");
Ada.Text_IO.Put (i);
Ada.Text_IO.Put_Line;
end loop;
loop
a := a + 1;
exit when a = 10;
end loop;
case i is
when 0 => Ada.Text_IO.Put ("zero");
when 1 => Ada.Text_IO.Put ("one");
when 2 => Ada.Text_IO.Put ("two");
-- case statements have to cover all possible cases:
when others => Ada.Text_IO.Put ("none of the above");
end case;
for aWeekday in Weekday'Range loop -- loop over an enumeration
Put_Line ( Weekday'Image(aWeekday) ); -- output string representation of an enumeration
if aWeekday in Working_Day then -- check of a subtype of an enumeration
Put_Line ( " to work for " &
Working_Hours'Image (Work_Load(aWeekday)) ); -- access into a lookup table
end if;
end loop;
</syntaxhighlight>
Packages, procedures and functions
Among the parts of an Ada program are packages, procedures and functions.
Functions differ from procedures in that they must return a value. Function calls cannot be used "as a statement", and their result must be assigned to a variable. However, since Ada 2012, functions are not required to be pure and may mutate their suitably declared parameters or the global state.
Example:
Package specification (example.ads)
<syntaxhighlight lang="ada" line>
package Example is
type Number is range 1 .. 11;
procedure Print_and_Increment (j: in out Number);
end Example;
</syntaxhighlight>
Package body (example.adb)
<syntaxhighlight lang="ada" line>
with Ada.Text_IO;
package body Example is
i : Number := Number'First;
procedure Print_and_Increment (j: in out Number) is
function Next (k: in Number) return Number is
begin
return k + 1;
end Next;
begin
Ada.Text_IO.Put_Line ( "The total is: " & Number'Image(j) );
j := Next (j);
end Print_and_Increment;
-- package initialization executed when the package is elaborated
begin
while i < Number'Last loop
Print_and_Increment (i);
end loop;
end Example;
</syntaxhighlight>
This program can be compiled, e.g., by using the freely available open-source compiler GNAT, by executing
<syntaxhighlight lang="bash">gnatmake -z example.adb</syntaxhighlight>
Packages, procedures and functions can nest to any depth, and each can also be the logical outermost block.
Each package, procedure or function can have its own declarations of constants, types, variables, and other procedures, functions and packages, which can be declared in any order.
Pragmas
A pragma is a compiler directive that conveys information to the compiler to allow specific manipulating of compiled output. Certain pragmas are built into the language, while others are implementation-specific.
Examples of common usage of compiler pragmas would be to disable certain features, such as run-time type checking or array subscript boundary checking, or to instruct the compiler to insert object code instead of a function call (as C/C++ does with inline functions).
Generics
See also
* Ada compilers
*
*
*
*
*
*
*
Notes
References
International standards
* ISO/IEC 8652: Information technology—Programming languages—Ada
* ISO/IEC 15291: Information technology—Programming languages—Ada Semantic Interface Specification (ASIS)
* ISO/IEC 18009: Information technology—Programming languages—Ada: Conformity assessment of a language processor (ACATS)
* IEEE Standard 1003.5b-1996, the POSIX Ada binding
* [https://web.archive.org/web/20041209184612/http://www.omg.org/technology/documents/formal/ada_language_mapping.htm Ada Language Mapping Specification], the CORBA interface description language (IDL) to Ada mapping
Rationale
These documents have been published in various forms, including print.
* Also available [https://apps.dtic.mil/dtic/tr/fulltext/u2/a187106.pdf apps.dtic.mil], pdf
*
*
Books
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* 795 pages.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
Further reading
*
*
*
*
*
*
*
*External links<!--
PLEASE BE CAUTIOUS IN ADDING MORE LINKS TO THIS ARTICLE.
Wikipedia is not a collection of links nor should it be used for advertising.
Excessive or inappropriate links WILL BE DELETED.
For details, see Wikipedia:External links & Wikipedia:Spam.
-->
* [https://www.adaic.org Ada Resource Association]
* [https://quicksearch.dla.mil/qsDocDetails.aspx?ident_number=37152 DOD Ada programming language (ANSI/MIL STD 1815A-1983) specification]
* [https://www.open-std.org/JTC1/SC22/WG9/ JTC1/SC22/WG9 ISO home of Ada Standards]
* [http://purl.umn.edu/41474 Ada Programming Language Materials, 1981–1990]. Charles Babbage Institute, University of Minnesota.
* Department of Defense (June 1978), [https://web.archive.org/web/20200914235620/https://dwheeler.com/steelman/steelman.htm Requirements for High Order Computer Programming Languages: "Steelman"]
* David A. Wheeler (1996), [https://web.archive.org/web/20200915104558/https://dwheeler.com/steelman/ Introduction to Steelman On-Line] (version 1.2).
* SoftTech Inc. (1976), [https://archive.org/details/DTIC_ADA037637/mode/2up "Evaluation of ALGOL 68, JOVIAL J3B, Pascal, Simula 67, and TACPOL Versus TINMAN - Requirements for a Common High Order Programming Language."] - See also: ALGOL 68, JOVIAL J3B, Pascal, Simula 67, and TACPOL (Defense Technical Information Center - DTIC ADA037637, Report Number 1021-14).
* David A. Wheeler (1997), [https://web.archive.org/web/20200914235617/https://dwheeler.com/steelman/steeltab.htm "Ada, C, C++, and Java vs. The Steelman"]. Originally published in Ada Letters July/August 1997.
Category:Programming languages
Category:.NET programming languages
Category:Avionics programming languages
Category:High Integrity Programming Language
Category:Multi-paradigm programming languages
Category:Programming language standards
Category:Programming languages created in 1980
Category:Programming languages with an ISO standard
Category:Statically typed programming languages
Category:Systems programming languages
Category:1980 software
Category:High-level programming languages
Category:Ada Lovelace
<!-- Hidden categories below -->
Category:Articles with example Ada code | https://en.wikipedia.org/wiki/Ada_(programming_language) | 2025-04-05T18:25:36.206152 |
1247 | Alfonso Cuarón | | birth_place = Mexico City, Mexico
| alma_mater = National Autonomous University of Mexico
| occupation =
| years_active = 1981–present
| spouse =
*
}}
| children = 3, including Jonás Cuarón
| relatives = Carlos Cuarón (brother)
| awards = Full list
}}
Alfonso Cuarón Orozco ( ; ; born 28 November 1961) is a Mexican filmmaker. His accolades include four Academy Awards, three Golden Globe Awards and seven BAFTA Awards.
Cuarón made his feature film debut with the romantic comedy Sólo con tu pareja (1991), and directed the film adaptations A Little Princess (1995), and Great Expectations (1998). His breakthrough came with the coming-of-age film Y tu mamá también (2001) which earned him a nomination for the Academy Award for Best Original Screenplay. He gained greater prominence for directing the fantasy film Harry Potter and the Prisoner of Azkaban (2004), the dystopian drama Children of Men (2006), the science fiction drama Gravity (2013), and the semi-autobiographical drama Roma (2018). The latter two won him Academy Awards for Best Director. He also won Best Film Editing for Gravity and Best Cinematography for Roma.
Early life and education
Cuarón was born in Mexico City, the son of Alfredo Cuarón, a doctor specializing in nuclear medicine, and Cristina Orozco, a pharmaceutical biochemist. He has a sister Christina, and two brothers; Carlos, also a filmmaker, and Alfredo, a conservation biologist. Cuarón studied philosophy at the National Autonomous University of Mexico and filmmaking at the Centro Universitario de Estudios Cinematográficos, a school within the same university. There he met the director Carlos Marcovich and cinematographer Emmanuel Lubezki,Career1990–1999: Rise to prominence
in 1998.]]
Cuarón began working on television in Mexico, first as a technician and then as a director. His television work led to assignments as an assistant director for several film productions including La Gran Fiesta (1985), Gaby: A True Story (1987) and Romero (1989). In 1991 he landed his first big-screen directorial assignment, Sólo con tu pareja, a sex comedy about a womanizing businessman (played by Daniel Giménez Cacho) who, after having sex with an attractive nurse, is fooled into believing he's contracted AIDS. In addition to writing, producing and directing, Cuarón co-edited the film with Luis Patlán. The film, which also starred cabaret singer Astrid Hadad and model/actress Claudia Ramírez (with whom Cuarón was linked between 1989 and 1993) was a big hit in Mexico. After this success, director Sydney Pollack hired Cuarón to direct an episode of Fallen Angels, a series of neo-noir stories produced for the Showtime premium cable network in 1993; other directors who worked on the series included Steven Soderbergh, Jonathan Kaplan, Peter Bogdanovich, and Tom Hanks. The episode was entitled, "Murder, Obliquely" (1993) starring Laura Dern, Alan Rickman, and Diane Lane.
In 1995, Cuarón released his first feature film produced in the United States, A Little Princess, an adaptation of Frances Hodgson Burnett's classic 1905 novel of the same name. The film received critical acclaim with Janet Maslin of The New York Times declaring, "[the film] is a bright, beautiful and enchantingly childlike vision", one that "draw[s] its audience into the wittily heightened reality of a fairy tale" and "takes enough liberties to re-invent rather than embalm Miss Burnett's assiduously beloved story". The film went on to receive two Academy Award nominations for Best Cinematography and Best Production Design. Cuarón's next feature was also a literary adaptation, a modernized version of Charles Dickens's Great Expectations starring Ethan Hawke, Gwyneth Paltrow, and Robert De Niro. The film received mixed reviews to negative reviews. Russell Smith of The Austin Chronicle did however praise the film writing, ". What's truly intriguing about this film, though, is the stylishness with which Cuaron (A Little Princess) reinvents Dickens' hoary, often-remade tale. This Great Expectations has a seductive, enchanting feel that has nothing to do with sweet, gauzy sentiments or calculatedly “magical” Hollywood imagery". 2000–2009: Career breakthrough and success
, who worked together on Children of Men.]]
In 2001, Cuarón found himself returning to Mexico with a Spanish-speaking cast to film Y tu mamá también, starring Gael García Bernal, Diego Luna and Maribel Verdú. It was a provocative and controversial road comedy about two sexually obsessed teenagers who take an extended road trip with an attractive married woman who is much older than they. The film's open portrayal of sexuality and frequent rude humor, as well as the politically and socially relevant asides, made the film an international hit and a major success with critics. The film was distributed through IFC in America allowing the film to collect $13.8 million in the United States, unparalleled at the time for Latin American films. Critic Roger Ebert of The Chicago Sun-Times wrote, "It is clear Cuaron is a gifted director, and here he does his best work to date." Cuarón shared an Academy Award nomination for Best Original Screenplay with co-writer and brother Carlos Cuarón.
In 2004, Cuarón directed the third film in the successful Harry Potter series, Harry Potter and the Prisoner of Azkaban. Cuarón faced criticism at the time from some Harry Potter fans for his approach to the film, notably its tendency to take more creative liberties with the source material than its predecessors. However, author J. K. Rowling, who had seen and loved Cuarón's film Y tu mamá también, said that it was her personal favorite from the series so far. Critically, the film was also better received than the first two installments, with some critics remarking its new tone and for being the first Harry Potter film to truly capture the essence of the novels. It has been subsequently rated by audience polls and critics as the best of the movie franchise series. The film earned two Academy Award nominations for Best Visual Effects and Best Original Score for John Williams.
In 2006, Cuarón's feature Children of Men, an adaptation of the P. D. James novel starring Clive Owen, Julianne Moore, and Michael Caine, received wide critical acclaim including three Academy Award nominations. Cuarón himself received two nominations for his work on the film, in Best Film Editing (with Alex Rodríguez) and Best Adapted Screenplay (with several collaborators).
He created the production and distribution company Esperanto Filmoj ("Esperanto Films", named because of his support for the international language Esperanto), which has credits in the films Duck Season, ''Pan's Labyrinth, and Gravity. Cuarón also directed the controversial public service announcement I Am Autism (2009) for Autism Speaks that was criticized by disability rights groups for its negative portrayal of autism.
2010–present: Awards recognition
]]
In 2010, Cuarón began to develop the film Gravity, a drama set in space. He was joined by producer David Heyman, with whom Cuarón worked on Harry Potter and the Prisoner of Azkaban''. Starring Sandra Bullock and George Clooney, the film opened the 70th Venice International Film Festival in August. The film was then released in America in October 2013. The film became a financial success, earning 723.2 million at the box office against a budget of 130 million. The film also received many awards nominations. For the film, he received the Golden Globe Award in the category of Best Director. The film received ten Academy Award nominations, including Best Picture and Best Director. Cuarón won for Best Directing, becoming the first Latin American to win the award, while he and Mark Sanger received the award for Best Film Editing.
In 2013, Cuarón created Believe, a science fiction/fantasy/adventure series that was broadcast as part of the 2013–14 United States network television schedule on NBC as a mid-season entry. The series was created by Cuarón for Bad Robot and Warner Bros. Television. In 2014, Time placed him in its list of "100 Most Influential People in the World" – Pioneers.
In May 2015, Cuarón was announced as the president of the jury for the 72nd Venice International Film Festival.
Production began in fall 2016 for Cuarón's eighth film, Roma, a tale of a housekeeper for a middle class Mexican family in 1970s Mexico City, based on the life of his family's longtime maid, Liboria Rodríguez. The project was produced by Cuarón, Gabriela Rodríguez and Nicolás Celis and starred Yalitza Aparicio and Marina de Tavira both of whom received Oscar nominations. The film debuted at the 75th Venice International Film Festival, where it won the Golden Lion, and was distributed to select Mexican and American theaters before its online release on Netflix. Roma was highly acclaimed upon release; among its accolades are two Golden Globes (Golden Globe Award for Best Foreign Language Film and Best Director for Cuarón) and three Academy Awards (Best Director, Best Foreign Language Film, and Best Cinematography for Cuarón) out of a leading ten nominations.
In 2019, Cuaron signed an overall TV deal at Apple. His first series for Apple was the psychological thriller Disclaimer, starring Cate Blanchett, Kevin Kline, Louis Partridge and Sasha Baron Cohen; it is based on the eponymous novel by Renée Knight, with Cuaron writing and directing every episode.
Style
Cuaron's style is a mix of several mainstream Hollywood conventions while breaking from that dominant influence by taking an unorthodox approach that uses voiceover narration and by unconventionally lengthy shots. These longer cuts, narration, and often, moving cameras are more typical of documentary film. Cuarón's career shows mainstream Hollywood influences, which has spilled over to less mainstream films made outside of Hollywood. Children of Men was influenced by disaster and science fiction movie conventions. The Prisoner of Azkaban was a continuation of Cuarón's take on the coming-of-age genre after Y, Tu Mama Tambien. That film is in the form of an American road movie, along with teen movie elements. Voice-over narration adds a documentary feel. The narration, interjected by a non-diagetic voice not belonging to any character, highlights the socioeconomic state of not only the main characters, but also minor characters who otherwise seem irrelevant to the overall narrative.
Themes
As mentioned above, the voice-over narration in Y Tu Mama Tambien contains political messages. In the aforementioned film Cuarón tackles Mexican identity and sovereignty. With the backdrop of the 1990s and the advent of NAFTA and neoliberalism in Mexico, Cuarón critiques Mexico for the path they are heading towards a globalized economy and world. Cuarón also addresses Mexican history such as colonialism and the long unfulfilled promises of the Mexican Revolution of 1910. Using the same film as an example the narrator states that a new political party is in power, but hints that no real change will come about. This is also supported with one of the main characters, Julio, sharing a last name with the Mexican Revolutionary Emiliano Zapata, yet the name does not push Julio into action or in other words he lacks the initiative and interest in the country. These same themes of identity and history, particularly of Mexico, were first addressed in his first feature film Solo con tu pareja. In both films Cuarón uses allegory that ties into a national identity and/or history. On top of these themes he also tackles class, but that can be considered a subcategory of economics or politics in which he already grapples with.
Personal life
Cuarón's first marriage was to Mariana Elizondo with whom he has a son, Jonás Cuarón, born in 1981. Jonás is also a film director, known for Year of the Nail and Desierto. Alfonso's second marriage, from 2001 to 2008, was to Italian actress and freelance journalist Annalisa Bugliani, with whom he has two children. He called his production company Esperanto Filmoj. In October 2023, Cuarón signed an open letter from artists to US President Joe Biden calling for a ceasefire of Israeli bombardment in Gaza.
Cuarón is a vegetarian and has been living in London since 2000.Filmography
{| class="wikitable"
|+Directed features
! Year
! Title
! Distributor
|-
| 1991
| Sólo con tu pareja
|rowspan=2| Warner Bros.
|-
| 1995
| A Little Princess
|-
| 1998
| Great Expectations
| 20th Century Fox
|-
| 2001
| Y tu mamá también
| IFC Films
|-
| 2004
| Harry Potter and the Prisoner of Azkaban
| Warner Bros. Pictures
|-
| 2006
| Children of Men
| Universal Pictures
|-
| 2013
| Gravity
| Warner Bros. Pictures
|-
| 2018
| Roma
| Netflix
|-
|}
Awards and nominations
<!--Table is for nominations & wins received only by films directed by Cuarón.-->
{| class="wikitable"
|+ Awards and nominations received by Cuaron's films
|-
! rowspan="2" | Year
! rowspan="2" | Title
! colspan"2" style"text-align:center;" width=160| Academy Awards
! colspan"2" style"text-align:center;" width=160| BAFTA Awards
! colspan"2" style"text-align:center;" width=160| Golden Globe Awards
|-
! Nominations
! Wins
! Nominations
! Wins
! Nominations
! Wins
|-
|1995
|A Little Princess
|align=center|2
|
|
|
|
|
|-
|2001
|Y tu mamá también
|align=center|1
|
|align=center|2
|
|align=center|1
|
|-
|2004
|Harry Potter and the Prisoner of Azkaban
|align=center|2
|
|align=center|4
|
|
|
|-
|rowspan=1|2006
|Children of Men
|align=center|3
|
|align=center|3
|align=center|2
|
|
|-
|2013
|Gravity
|align=center|10
|align=center|7
|align=center|11
|align=center|6
|align=center|4
|align=center|1
|-
|2018
|Roma
|align=center|10
|align=center|3
|align=center|7
|align=center|4
|align=center|3
|align=center|2
|-
!colspan="2"|Total
!align=center|28
!align=center|10
!align=center|27
!align=center|12
!align=center|8
!align=center|3
|}
See also
* Esperanto Filmoj
* Cha Cha Cha Films
* Cinema of Mexico
* List of Academy Award records
References
External links
*
* [https://web.archive.org/web/20080803230520/http://www.bafta.org/learning/webcasts/a-life-in-pictures-alfonso-cuaron,370,BA.html Alfonso Cuarón: A Life in Pictures], BAFTA webcast, 27 July 2007
}}
Category:1961 births
Category:Living people
Category:Best Cinematographer Academy Award winners
Category:Best Cinematography BAFTA Award winners
Category:Best Directing Academy Award winners
Category:Best Director AACTA International Award winners
Category:Best Director BAFTA Award winners
Category:Best Director Golden Globe winners
Category:Best Film Editing Academy Award winners
Category:Directors Guild of America Award winners
Category:Directors of Best Foreign Language Film Academy Award winners
Category:Directors of Golden Lion winners
Category:English-language film directors
Category:Fantasy film directors
Category:Filmmakers who won the Best Film BAFTA Award
Category:Filmmakers who won the Best Foreign Language Film BAFTA Award
Category:Film directors from Mexico City
Category:Hugo Award–winning writers
Category:Mexican cinematographers
Category:Mexican Esperantists
Category:Mexican expatriates in the United Kingdom
Category:Mexican film producers
Category:Mexican film directors
Category:Mexican people of Spanish descent
Category:Mexican screenwriters
Category:Mexican television directors
Category:Mexican television producers
Category:Mexican television writers
Category:National Autonomous University of Mexico alumni
Category:Nebula Award winners
Category:Science fiction film directors
Category:Spanish-language film directors
Category:Writers from Mexico City | https://en.wikipedia.org/wiki/Alfonso_Cuarón | 2025-04-05T18:25:36.262970 |
1252 | Arianism | Arianism (, ) is a Christological doctrine which rejects the traditional notion of the Trinity and considers Jesus to be a creation of God, and therefore distinct from God. It is named after its major proponent, Arius (). It is considered heretical by most modern mainstream branches of Christianity. It is held by a minority of modern denominations, although some of these denominations hold related doctrines such as Socinianism, and some shy away from use of the term Arian due to the term's historically negative connotations. Modern mainstream denominations sometimes connected to the teaching include Jehovah's Witnesses, some individual churches within the Churches of Christ (including the movement's founder Barton W. Stone), as well as some Hebrew Roots Christians and Messianic Jews (although many Messianic Jews also follow Nicene Christianity).
It is first attributed to Arius (), a Christian presbyter who preached and studied in Alexandria, Egypt, although it developed out of various pre-existing strands of Christianity which differed from later Nicene Christianity in their view of Christology. Arian theology holds that Jesus Christ is the Son of God,}} before time by God the Father;
Arius' trinitarian theology, later given an extreme form by Aetius and his disciple Eunomius and called anomoean ('dissimilar'), asserts a total dissimilarity between the Son and the Father. Arianism holds that the Son is distinct from the Father and therefore subordinate to him. Trinitarian (Homoousian) doctrines were vigorously upheld by Patriarch Athanasius of Alexandria, who insisted that Jesus (God the Son) was "same in being" or "same in essence" with God the Father. Arius dissented: "If the Father begat the Son, then he who was begotten had a beginning in existence, and from this it follows there was a time when the Son was not." Tertullian is considered a pre-Arian. Among the other church fathers, Origen was accused of Arianism for using terms like "second God", and Patriarch Dionysius of Alexandria was denounced at Rome for saying that Son is a work and creature of God (i.e., a created being). However, the subordinationism of Origen is not identical to Arianism, and it has been generally viewed as closer to the Nicene-Constantinopolitan view of the Trinity.
Controversy over Arianism arose in the late 3rd century and persisted throughout most of the 4th century. It involved most church members—from simple believers, priests, and monks to bishops, emperors, and members of Rome's imperial family. Two Roman emperors, Constantius II and Valens, became Arians or semi-Arians, as did prominent Gothic, Vandal, and Lombard warlords both before and after the fall of the Western Roman Empire. The antipopes Felix II and Ursinus were Arian, and Pope Liberius was forced to sign the Arian Creed of Sirmium of 357—though the letter says he willingly agreed with Arianism. Such a deep controversy within the early Church during this period could not have materialized without significant historical influences providing a basis for the Arian doctrines.
icon, c. 1591, depicting the First Council of Nicaea]]
Arius had been a pupil of Lucian of Antioch at Lucian's private academy in Antioch and inherited from him a modified form of the teachings of Paul of Samosata. Arius taught that God the Father and the Son of God did not always exist together eternally.BeliefsLittle of Arius's own work survives except in quotations selected for polemical purposes by his opponents, and there is no certainty about what theological and philosophical traditions formed his thought. The influence from the One of Neoplatonism was widespread throughout the Eastern Roman Empire, and this influenced Arius.
Arius's basic premise is that only God is independent of existing. Since the Son is dependent, he must, therefore, be called a creature. Arians put forward a question for their belief: "Has God birthed Jesus willingly or unwillingly?" This question was used to argue that Jesus is dependent for his existence since Jesus exists only because God wants him to be. Therefore, they posited, the Son was rather the very first and the most perfect of God's creatures, and he was called "God" only by the Father's permission and power. The term "Son" is ambiguous, as Arians use adoptionist theology to support the belief that Jesus was created ex nihilo by the Father. The letter of the Arian bishop Auxentius of Durostorum regarding the Arian missionary Ulfilas (–383) gives an overview of Arian beliefs. Ulfilas, ordained by Arian bishop Eusebius of Nicomedia, became a missionary to the Goths and believed that God the Father, the "unbegotten" Almighty, is the only true God. According to Auxentius, Ulfilas believed the Son of God, Jesus, the "only-begotten god", was begotten before time began. The Holy Spirit, he wrote, is the illuminating and sanctifying power of God. Using 1 Corinthians 8:5–6 as a proof text:
}}
The creed of Ulfilas, which concludes the letter mentioned above, and again "But ye shall receive power, when the Holy Ghost is come upon you"; Neither God nor Lord, but the faithful minister of Christ; not equal, but subject and obedient in all things to the Son. And I believe the Son to be subject and obedient in all things to God the Father.|source}}
A letter from Arius to the Arian Eusebius of Nicomedia (died 341) states the core beliefs of the Arians:
Principally, the dispute between Trinitarianism and Arianism was about two questions:
* has the Son always existed eternally with the Father, or was the Son begotten at a certain time in the past?
* is the Son equal to the Father or subordinate to the Father?
For Constantine, these were minor theological points that stood in the way of uniting the Empire, but for the theologians, it was of huge importance; for them, it was a matter of salvation.
For the theologians of the 19th century, it was already obvious that, in fact, Arius and Alexander/Athanasius did not have much to quarrel about; the difference between their views was very small, and the end of the fight was by no means clear during their quarrel, both Arius and Athanasius suffering a great deal for their own views. Arius was the father of Homoiousianism, and Alexander was the father of Homoousianism, which Athanasius championed. For those theologians, it was clear that Arius, Alexander, and Athanasius were far from a true doctrine of the Trinity, which developed later, historically speaking.
Guido M. Berndt and Roland Steinacher state clearly that the beliefs of Arius were acceptable ("not especially unusual") to a huge number of orthodox clergy; this is the reason why such a major conflict was able to develop inside the Church since Arius's theology received widespread sympathy (or at least was not considered to be overly controversial) and could not be dismissed outright as individual heresy.Homoian ArianismArianism had several different variants, including Eunomianism and Homoian Arianism. Homoian Arianism is associated with Acacius and Eudoxius. Homoian Arianism avoided the use of the word ousia to describe the relation of Father to Son, and described these as "like" each other. Hanson lists twelve creeds that reflect the Homoian faith:
# The Second Sirmian Creed of 357
# The Creed of Nice (Constantinople) 360
# The creed put forward by Acacius at Seleucia, 359
# The Rule of Faith of Ulfilas
# The creed uttered by Ulfilas on his deathbed, 383
# The creed attributed to Eudoxius
# The Creed of Auxentius of Milan, 364
# The Creed of Germinius professed in correspondence with Ursacius of Singidunum and Valens of Mursa
# Palladius's rule of faith
# Three credal statements found in fragments, subordinating the Son to the Father
Struggles with orthodoxy
First Council of Nicaea
burning Arian books, illustration from a compendium of canon law, ]]
In 321, Arius was denounced by a synod at Alexandria for teaching a heterodox view of the relationship of Jesus to God the Father. Because Arius and his followers had great influence in the schools of Alexandria—counterparts to modern universities or seminaries—their theological views spread, especially in the eastern Mediterranean.
By 325, the controversy had become significant enough that the Emperor Constantine called an assembly of bishops, the First Council of Nicaea, which condemned Arius's doctrine and formulated the original Nicene Creed of 325. The Nicene Creed's central term, used to describe the relationship between the Father and the Son, is Homoousios (), or Consubstantiality, meaning "of the same substance" or "of one being". The Athanasian Creed is less often used but is a more overtly anti-Arian statement on the Trinity.
The focus of the Council of Nicaea was the nature of the Son of God and his precise relationship to God the Father. (See Paul of Samosata and the Synods of Antioch.) Arius taught that Jesus Christ was divine or holy and was sent to Earth for the salvation of mankind, }}
In the Arian view, God the Father is a deity and is divine; the Son of God is not a deity, but is still divine. Ousia is essence or being, in Eastern Christianity, and is the aspect of God that is completely incomprehensible to mankind and human perception. It is all that subsists by itself and which has not its being in another, God the Father and God the Son and God the Holy Spirit all being uncreated.
Constantine is believed to have exiled those who refused to accept the Nicaean Creed—Arius himself, the deacon Euzoios, and the Libyan bishops Theonas of Marmarica and Secundus of Ptolemais, along with the bishops who signed the creed but refused to join in condemnation of Arius, Eusebius of Nicomedia and Theognis of Nicaea. The emperor also ordered all copies of the Thalia, the book in which Arius had expressed his teachings, to be burned. However, there is no evidence that his son and ultimate successor, Constantius II, a Semi-Arian Christian, was exiled.
Although he was committed to maintaining what the Great Church had defined at Nicaea, Constantine was also bent on pacifying the situation and eventually became more lenient toward those condemned and exiled at the council. First, he allowed Eusebius of Nicomedia, who was a protégé of his sister, and Theognis to return once they had signed an ambiguous statement of faith. The two, and other friends of Arius, worked for Arius's rehabilitation.
At the First Synod of Tyre in AD 335, they brought accusations against Athanasius, now bishop of Alexandria, the primary opponent of Arius. After this, Constantine had Athanasius banished since he considered him an impediment to reconciliation. In the same year, the Synod of Jerusalem under Constantine's direction readmitted Arius to communion in 336. Arius died on the way to this event in Constantinople. Some scholars suggest that Arius may have been poisoned by his opponents. Eusebius and Theognis remained in the Emperor's favor; when Constantine -who had been a catechumen much of his adult life- accepted baptism on his deathbed, it was from Eusebius of Nicomedia. All the bishops who were there were in agreement with the major theological points of the proto-orthodoxy, since at that time all other forms of Christianity "had by this time already been displaced, suppressed, reformed, or destroyed".
Although the proto-orthodox won the previous disputes, due to the more precise defining of orthodoxy, they were vanquished with their own weapons, ultimately being declared heretics, not because they would have fought against ideas regarded as theologically correct, but because their positions lacked the precision and refinement needed by the fusion of several contradictory theses accepted at the same time by later orthodox theologians.
Of the roughly 300 bishops in attendance at the Council of Nicaea, two bishops did not sign the Nicene Creed that condemned Arianism. Constantine the Great also ordered a penalty of death for those who refused to surrender the Arian writings:
Ten years after the Council of Nicaea, Constantine the Great, who was himself later baptized by the Arian bishop Eusebius of Nicomedia in 337 AD,
Athanasius eventually returned to Alexandria in 346, after the deaths of both Arius and Constantine. Though Arianism had spread, Athanasius and other Nicene Christian church leaders crusaded against Arian theology, and Arius was anathemised and condemned as a heretic once more at the ecumenical First Council of Constantinople of 381, attended by 150 bishops. His advisor in these affairs was Eusebius of Nicomedia, who had already at the Council of Nicaea been the head of the Arian party, and was made the bishop of Constantinople.
Constantius used his power to exile bishops adhering to the Nicene Creed, especially St Athanasius of Alexandria, who fled to Rome. In 355 Constantius became the sole Roman emperor and extended his pro-Arian policy toward the western provinces, frequently using force to push through his creed, even exiling Pope Liberius and installing Antipope Felix II.
The Third Council of Sirmium in 357 was the high point of Arianism. The Seventh Arian Confession (Second Sirmium Confession) held that both homoousios (of one substance) and homoiousios (of similar substance) were unbiblical and that the Father is greater than the Son. This confession was later known as the Blasphemy of Sirmium.
<blockquote>
But since many persons are disturbed by questions concerning what is called in Latin substantia, but in Greek ousia, that is, to make it understood more exactly, as to 'coessential,' or what is called, 'like-in-essence,' there ought to be no mention of any of these at all, nor exposition of them in the Church, for this reason and for this consideration, that in divine Scripture nothing is written about them, and that they are above men's knowledge and above men's understanding;</blockquote>
As debates raged in an attempt to come up with a new formula, three camps evolved among the opponents of the Nicene Creed. The first group mainly opposed the Nicene terminology and preferred the term homoiousios (alike in substance) to the Nicene homoousios, while they rejected Arius and his teaching and accepted the equality and co-eternality of the persons of the Trinity. Because of this centrist position, and despite their rejection of Arius, they were called "Semi-Arians" by their opponents.
The second group also avoided invoking the name of Arius, but in large part followed Arius's teachings and, in another attempted compromise wording, described the Son as being like (homoios) the Father. A third group explicitly called upon Arius and described the Son as unlike (anhomoios) the Father. Constantius wavered in his support between the first and the second party, while harshly persecuting the third.
Epiphanius of Salamis labeled the party of Basil of Ancyra in 358 "Semi-Arianism". This is considered unfair by Kelly who states that some members of the group were virtually orthodox from the start but disliked the adjective homoousios while others had moved in that direction after the out-and-out Arians had come into the open.
The debates among these groups resulted in numerous synods, among them the Council of Serdica in 343, the Fourth Council of Sirmium in 358 and the double Council of Rimini and Seleucia in 359, and no fewer than fourteen further creed formulas between 340 and 360. This lead the pagan observer Ammianus Marcellinus to comment sarcastically: "The highways were covered with galloping bishops." None of these attempts was acceptable to the defenders of Nicene orthodoxy. Writing about the latter councils, Saint Jerome remarked that the world "awoke with a groan to find itself Arian."
After Constantius's death in 361, his successor Julian, a devotee of Rome's pagan gods, declared that he would no longer attempt to favor one church faction over another, and allowed all exiled bishops to return. This increased dissension among Nicene Christians. The emperor Valens, however, revived Constantius's policy and supported the "Homoian" party, exiling bishops and often using force. During this persecution many bishops were exiled to the other ends of the Roman Empire, e.g., Saint Hilary of Poitiers to the eastern provinces. These contacts and their common plight led to a rapprochement between the western supporters of the Nicene Creed and the homoousios and the eastern Semi-Arians.
Council of Constantinople
It was not until the co-reigns of Gratian and Theodosius that Arianism was effectively wiped out among the ruling class and elite of the Eastern Empire. Valens died in the Battle of Adrianople in 378 and was succeeded by Theodosius I, who adhered to the Nicene Creed. This allowed for settling the dispute. Theodosius's wife St Flacilla was instrumental in his campaign to end Arianism.
Two days after Theodosius arrived in Constantinople, 24 November 380, he expelled the Arian bishop, Demophilus of Constantinople, and surrendered the churches of that city to Gregory of Nazianzus, the Homoiousian leader of the rather small Nicene community there, an act which provoked rioting. Theodosius had just been baptized, by bishop Acholius of Thessalonica, during a severe illness, as was common in the early Christian world. In February he and Gratian had published an edict that all their subjects should profess the faith of the bishops of Rome and Alexandria (i.e., the Nicene faith), or be handed over for punishment for not doing so.
Although much of the church hierarchy in the East had opposed the Nicene Creed in the decades leading up to Theodosius's accession, he managed to achieve unity on the basis of the Nicene Creed. In 381, at the Second Ecumenical Council in Constantinople, a group of mainly Eastern bishops assembled and accepted the Nicene Creed of 381, which was supplemented in regard to the Holy Spirit, as well as some other changes: see Comparison of Nicene Creeds of 325 and 381. This is generally considered the end of the dispute about the Trinity and the end of Arianism among the Roman, non-Germanic peoples.Among medieval Germanic tribes
, built in Ravenna by the Ostrogothic King Theodoric the Great.]]
During the time of Arianism's flowering in Constantinople, the Gothic convert and Arian bishop Ulfilas (later the subject of the letter of Auxentius cited above) was sent as a missionary to the Gothic tribes across the Danube, a mission favored for political reasons by the Emperor Constantius II. The Homoians in the Danubian provinces played a major role in the conversion of the Goths to Arianism.
Ulfilas's translation of the Bible into Gothic language and his initial success in converting the Goths to Arianism was strengthened by later events. The conversion of Goths led to a widespread diffusion of Arianism among other Germanic tribes as well, the Vandals, Langobards, Svevi, and Burgundians.
The Arian Germanic tribes were generally tolerant towards Nicene Christians and other religious minorities, including the Jews. By the 8th century, it had ceased to be the tribes' mainstream belief as the tribal rulers gradually came to adopt Nicene orthodoxy. This trend began in 496 with Clovis I of the Franks, then Reccared I of the Visigoths in 587 and Aripert I of the Lombards in 653.
The Franks and the Anglo-Saxons were unlike the other Germanic peoples in that they entered the Western Roman Empire as Pagans and were converted to Chalcedonian Christianity, led by their kings, Clovis I of the Franks, and Æthelberht of Kent and others in Britain. See also Christianity in Gaul and Christianisation of Anglo-Saxon England.
The remaining tribes – the Vandals and the Ostrogoths – did not convert as a people nor did they maintain territorial cohesion. Having been militarily defeated by the armies of Emperor Justinian I, the remnants were dispersed to the fringes of the empire and became lost to history. The Vandalic War of 533–534 dispersed the defeated Vandals. Following their final defeat at the Battle of Mons Lactarius in 553, the Ostrogoths went back north and re-settled in south Austria.
<gallery>
File:CodexArgenteus06.jpg|A page from the Codex Argenteus, a 6th-century illuminated manuscript of the Gothic Bible
</gallery>
From the 5th to the 7th century
kingdoms in 495]]
Much of south-eastern Europe and central Europe, including many of the Goths and Vandals respectively, had embraced Arianism (the Visigoths converted to Arian Christianity in 376 through their bishop Wulfila), which led to Arianism being a religious factor in various wars in the Roman Empire.
In the west, organized Arianism survived in North Africa, in Hispania, and parts of Italy until it was suppressed in the 6th and 7th centuries. Visigothic Spain converted to Nicene Christianity through their king Reccared I at the Third Council of Toledo in 589. Grimoald, King of the Lombards (662–671), and his young son and successor Garibald (671), were the last Arian kings in Europe.From the 16th to the 19th century
Following the Protestant Reformation from 1517, it did not take long for Arian and other nontrinitarian views to resurface. The first recorded English antitrinitarian was John Assheton, who was forced to recant before Thomas Cranmer in 1548. At the Anabaptist Council of Venice 1550, the early Italian instigators of the Radical Reformation committed to the views of Michael Servetus,-who was burned alive by the orders of John Calvin in 1553- were promulgated by Giorgio Biandrata and others into Poland and Transylvania.
The anti trinitarian wing of the Polish Reformation separated from the Calvinist ecclesia maior to form the ecclesia minor or Polish Brethren. These were commonly referred to as "Arians" due to their rejection of the Trinity, though in fact the Socinians, as they were later known, went further than Arius to the position of Photinus. The epithet "Arian" was also applied to the early Unitarians such as John Biddle; though in denial of the pre-existence of Christ they were again largely Socinians, not Arians.
In 1683, when Anthony Ashley Cooper, 1st Earl of Shaftesbury, lay dying in Amsterdam—driven into exile by his outspoken opposition to King Charles II—he spoke to the minister Robert Ferguson, and professed himself an Arian.
In the 18th century the "dominant trend" in Britain, particularly in Latitudinarianism, was toward Arianism, with which Samuel Clarke, Benjamin Hoadly, William Whiston and Isaac Newton are associated. To quote the Encyclopædia Britannica article on Arianism: "In modern times some Unitarians are virtually Arians in that they are unwilling either to reduce Christ to a mere human being or to attribute to him a divine nature identical with that of the Father."
A similar view was held by the ancient anti-Nicene Pneumatomachi (Greek: , "breath" or "spirit" and "fighters", combining as "fighters against the spirit"), so called because they opposed the deifying of the Nicene Holy Ghost. Although the Pneumatomachi's beliefs were somewhat reminiscent of Arianism, they were a distinct group.
Jehovah's Witnesses
Jehovah's Witnesses are often referred to as "modern-day Arians", usually by their opponents, although Jehovah's Witnesses themselves have denied these claims. Significant similarities in doctrine include the identification of the Father as the only true God and of Jesus Christ as the first creation of God and the intermediate agent in the creation of all other things. They also deny the personhood of the Holy Spirit, which some Arians historically affirmed. Jehovah's Witnesses exclusively worship and pray to God the Father, or Jehovah, only through Jesus (the Son) as a mediator.
Iglesia ni Cristo
Iglesia ni Cristo's Christology has parallels with Arianism in that it affirms that the Father is the only true God, but it denies the preexistence of Christ. Thus, Iglesia ni Cristo is Socinian rather than Arian in its Christology.Other Socinian groupsOther Biblical Unitarians such as the Christadelphians and Church of God General Conference are also typically Socinian rather than Arian in their Christology.
The Church of Jesus Christ of Latter-day Saints
The Church of Jesus Christ of Latter-day Saints (LDS Church) teaches a nontrinitarian theology concerning the nature of the Godhead. Similarities between LDS doctrines and Arianism were alleged as early as 1846. There are a number of key differences between Arianism and Latter-day Saint theology. Whereas Arianism is a unitarian Christian form of classical theism, Latter-day Saint theology is a non-trinitarian (but not unitarian) form of Christianity outside of classical theism. Arianism also teaches that God is eternal, was never a man, and could not incarnate as a man; in contrast, the LDS Church teaches that "God Himself is an exalted man, perfected, enthroned, and supreme."
Whereas Arianism denies that humans can become gods, the LDS Church affirms that humans can become gods through exaltation. Whereas Arianism teaches that the Son was created, the LDS Church also teaches that the Son was procreated as a literal spirit child of the Heavenly Father and the Heavenly Mother and denies any form of creation ex nihilo; the creation of Christ ex nihilo is, in contrast, a fundamental premise of Arianism.
The LDS church, in contrast to the Arian teaching that God is incorporeal, also teaches that God has a tangible body: "The Father has a body of flesh and bones as tangible as man's; the Son also; but the Holy Ghost has not a body of flesh and bones, but is a personage of Spirit. Were it not so, the Holy Ghost could not dwell in us." Arianism traditionally taught that God is incomprehensible even to the Son. In contrast, the LDS Church rejects the doctrine that God is incomprehensible. Though Arianism teaches that Christ is ontologically inferior and subordinate to the Father, the LDS Church teaches that Christ is equal in power and glory with the Father.
The LDS Church teaches that the Father, Son, and Holy Spirit are three separate beings united in purpose: "the Father, the Son and the Holy Spirit (or Holy Ghost)[...] are three physically separate beings, but fully one in love, purpose and will", as illustrated in Jesus' Farewell Prayer, his baptism at the hands of John the Baptist, his transfiguration, and the martyrdom of Stephen. Thus, the church's first Article of Faith states: "We believe in God, the Eternal Father, and in His Son, Jesus Christ, and in the Holy Ghost."
Latter-day Saints believe that the three are collectively "one eternal God" but reject the Nicene definition of the Trinity, that the three are consubstantial. often cited as the governor of Earth.See also
References
Notes
Citations
Sources
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*|volume1 : From Christ to pre-Reformation|year2005|publisherHarper Collins|isbn978-0-310-20580-7}}
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
Further reading
*
*
*
*
*
*
*
*
External links
* [https://web.archive.org/web/20150629141505/http://www.fourthcentury.com/urkunden-chart-2007 Documents of the Early Arian Controversy] Chronological survey of the sources
* [https://web.archive.org/web/20080925171026/http://www.fourthcentury.com/index.php/urkunde-chart-opitz English translations of all extant letters relating to early Arianism]
* [https://web.archive.org/web/20080925041017/http://www.fourthcentury.com/notwppages/arius-supporters-map.htm A map of early sympathizers with Arius]
*
* [http://jewishencyclopedia.com/view.jsp?artid1757&letterA Jewish Encyclopedia: Arianism]
* [https://web.archive.org/web/20160414142828/http://tera-3.ul.cs.cmu.edu/cgi-bin/getImage.pl?target%2Fdata%2Fwww%2FNASD%2F4a7f1db4-5792-415c-be79-266f41eef20a%2F009%2F499%2FPTIFF%2F00000052.tif&rs1 Concordia Cyclopedia: Arianism (page 1)] [https://web.archive.org/web/20160414142900/http://tera-3.ul.cs.cmu.edu/cgi-bin/getImage.pl?target%2Fdata%2Fwww%2FNASD%2F4a7f1db4-5792-415c-be79-266f41eef20a%2F009%2F499%2FPTIFF%2F00000053.tif&rs1 (page 2)] [https://web.archive.org/web/20160414142854/http://tera-3.ul.cs.cmu.edu/cgi-bin/getImage.pl?target%2Fdata%2Fwww%2FNASD%2F4a7f1db4-5792-415c-be79-266f41eef20a%2F009%2F499%2FPTIFF%2F00000054.tif&rs1 (page 3)]
*
*
* [http://www.the-highway.com/arian_Hanko1.html Concise Summary of the Arian Controversy]
* [http://www.Arianismtoday.com Arianism Today]
Category:Christian denominations established in the 3rd century
Category:Christian terminology
Category:Christian theological movements
Category:Nature of Jesus Christ
Category:Nontrinitarian denominations | https://en.wikipedia.org/wiki/Arianism | 2025-04-05T18:25:36.349134 |
1254 | August 1 | Events
Pre-1600
*30 BC – Octavian (later known as Augustus) enters Alexandria, Egypt, bringing it under the control of the Roman Republic.
*AD 69 – Batavian rebellion: The Batavians in Germania Inferior (Netherlands) revolt under the leadership of Gaius Julius Civilis.
* 527 – Justinian I becomes the sole ruler of the Byzantine Empire.
* 607 – Ono no Imoko is dispatched as envoy to the Sui court in China (Traditional Japanese date: July 3, 607).
* 902 – Taormina, the last Byzantine stronghold in Sicily, is captured by the Aghlabid army, concluding the Muslim conquest of Sicily.
*1203 – Isaac II Angelos, restored Byzantine Emperor, declares his son Alexios IV Angelos co-emperor after pressure from the forces of the Fourth Crusade.
*1291 – The Old Swiss Confederacy is formed with the signature of the Federal Charter.
*1469 – Louis XI of France founds the chivalric order called the Order of Saint Michael in Amboise.
*1498 – Christopher Columbus becomes the first European to visit what is now Venezuela.
*1571 – The Ottoman conquest of Cyprus is concluded, by the surrender of Famagusta.
1601–1900
*1620 – Speedwell leaves Delfshaven to bring pilgrims to America by way of England.
*1664 – Ottoman forces are defeated in the battle of Saint Gotthard by an Austrian army led by Raimondo Montecuccoli, resulting in the Peace of Vasvár.
*1714 – George, Elector of Hanover, becomes King George I of Great Britain, marking the beginning of the Georgian era of British history.
*1759 – Seven Years' War: The Battle of Minden, an allied Anglo-German army victory over the French. In Britain this was one of a number of events that constituted the Annus Mirabilis of 1759 and is celebrated as Minden Day by certain British Army regiments.
*1774 – British scientist Joseph Priestley discovers oxygen gas, corroborating the prior discovery of this element by German-Swedish chemist Carl Wilhelm Scheele.
*1798 – French Revolutionary Wars: Battle of the Nile (Battle of Aboukir Bay): Battle begins when a British fleet engages the French Revolutionary Navy fleet in an unusual night action.
*1800 – The Acts of Union 1800 are passed which merge the Kingdom of Great Britain and the Kingdom of Ireland into the United Kingdom of Great Britain and Ireland.
*1801 – First Barbary War: The American schooner captures the Tripolitan polacca Tripoli in a single-ship action off the coast of modern-day Libya.
*1834 – Slavery is abolished in the British Empire as the Slavery Abolition Act 1833 comes into force, although it remains legal in the possessions of the East India Company until the passage of the Indian Slavery Act, 1843.
* 1834 – Construction begins on the Wilberforce Monument in Kingston Upon Hull.
*1842 – The Lombard Street riot erupts in Philadelphia, Pennsylvania, United States.
*1849 – Joven Daniel wrecks at the coast of Araucanía, Chile, leading to allegations that local Mapuche tribes murdered survivors and kidnapped Elisa Bravo.
*1855 – The first ascent of Monte Rosa, the second highest summit in the Alps.
*1863 – At the suggestion of Senator J. V. Snellman and the order of Emperor Alexander II, full rights are promised to the Finnish language by a language regulation in the Grand Duchy of Finland.
*1876 – Colorado is admitted as the 38th U.S. state.
*1893 – Henry Perky patents shredded wheat.
*1894 – The Empire of Japan and Qing China declare war on each other after a week of fighting over Korea, formally inaugurating the First Sino-Japanese War.
1901–present
*1907 – The start of the first Scout camp on Brownsea Island, the origin of the worldwide Scouting movement.
*1911 – Harriet Quimby takes her pilot's test and becomes the first U.S. woman to earn an Aero Club of America aviator's certificate.
*1914 – World War I: The German Empire declares war on the Russian Empire.
*1914 – World War I: The Swiss Army mobilizes because of World War I.
*1915 – Patrick Pearse gives his famous speech "Ireland unfree shall never be at peace" at O'Donovan Rossa's funeral in Dublin.
*1927 – The Nanchang Uprising marks the first significant battle in the Chinese Civil War between the Kuomintang and Chinese Communist Party. This day is commemorated as the anniversary of the founding of the People's Liberation Army.
*1933 – Anti-Fascist activists Bruno Tesch, Walter Möller, Karl Wolff and August Lütgens are executed by the Nazi regime in Altona.
*1936 – The Olympics opened in Berlin with a ceremony presided over by Adolf Hitler.
*1937 – Josip Broz Tito reads the resolution "Manifesto of constitutional congress of KPH" to the constitutive congress of KPH (Croatian Communist Party) in woods near Samobor.
*1943 – World War II: Operation Tidal Wave also known as "Black Sunday", was a failed American attempt to destroy Romanian oil fields.
*1944 – World War II: The Warsaw Uprising against the Nazi German occupation breaks out in Warsaw, Poland.
*1946 – Leaders of the Russian Liberation Army, a force of Russian prisoners of war that collaborated with Nazi Germany, are executed in Moscow, Soviet Union for treason.
*1950 – Guam is organized as an unincorporated territory of the United States as the President Harry S. Truman signs the Guam Organic Act.
*1957 – The United States and Canada form the North American Aerospace Defense Command (NORAD).
*1960 – Dahomey (later renamed Benin) declares independence from France.
* 1960 – Islamabad is declared the federal capital of the Government of Pakistan.
*1961 – U.S. Defense Secretary Robert McNamara orders the creation of the Defense Intelligence Agency (DIA), the nation's first centralized military espionage organization.
*1964 – The former Belgian Congo is renamed the Democratic Republic of the Congo.
*1965 – Frank Herbert's novel, Dune was published for the first time. It was named as the world's best-selling science fiction novel in 2003.
*1966 – Charles Whitman kills 15 people at the University of Texas at Austin before being killed by the police.
* 1966 – Purges of intellectuals and imperialists becomes official China policy at the beginning of the Cultural Revolution.
*1968 – The coronation of Hassanal Bolkiah, the 29th Sultan of Brunei, is held.
*1971 – The Concert for Bangladesh, organized by former Beatle George Harrison, is held at Madison Square Garden in New York City.
*1974 – Cyprus dispute: The United Nations Security Council authorizes the UNFICYP to create the "Green Line", dividing Cyprus into two zones.
*1976 – Niki Lauda has a severe accident that almost claims his life at the German Grand Prix at Nürburgring.
*1980 – Vigdís Finnbogadóttir is elected President of Iceland and becomes the world's first democratically elected female head of state.
* 1980 – A train crash kills 18 people and injures over 170 more in County Cork, Ireland.
*1981 – MTV begins broadcasting in the United States and airs its first video, "Video Killed the Radio Star" by The Buggles.
*1984 – Commercial peat-cutters discover the preserved bog body of a man, called Lindow Man, at Lindow Moss, Cheshire, England.
*1988 – A British soldier was killed in the Inglis Barracks bombing in London, England.
*1990 – A plane crash in the Karabakh Range kills 46 people.
*1993 – The Great Mississippi and Missouri Rivers Flood of 1993 comes to a peak.
*1998 – Puntland, an autonomous state in northeastern Somalia, was officially established following a constitutional conference in Garowe, Issims and tribal chiefs agreed to create a self-declared government until Somalia recovered.
*2004 – A supermarket fire kills 396 people and injures 500 others in Asunción, Paraguay.
*2007 – The I-35W Mississippi River bridge spanning the Mississippi River in Minneapolis, Minnesota, collapses during the evening rush hour, killing 13 people and injuring 145.
*2008 – The Beijing–Tianjin Intercity Railway begins operation as the fastest commuter rail system in the world.
* 2008 – Eleven mountaineers from international expeditions died on K2, the second-highest mountain on Earth in the worst single accident in the history of K2 mountaineering.
*2017 – A suicide attack on a mosque in Herat, Afghanistan kills 20 people.
*2023 – Former US President Donald Trump is indicted for his role in the January 6 United States Capitol attack, his third indictment in 2023.
Births
Pre-1600
*10 BC – Claudius, Roman emperor (d. 54)
*126 – Pertinax, Roman emperor (d. 193)
* 845 – Sugawara no Michizane, Japanese scholar and politician (d. 903)
* 992 – Hyeonjong of Goryeo, Korean king (d. 1031)
*1068 – Emperor Taizu of Jin, Chinese emperor (d. 1123)
*1313 – Kōgon, Japanese emperor (d. 1364)
*1377 – Go-Komatsu, Japanese emperor (d. 1433)
*1385 – John Fitzalan, 6th Earl of Arundel (d. 1421)
*1410 – John IV, Count of Nassau-Siegen, German count (d. 1475)
*1492 – Wolfgang, Prince of Anhalt-Köthen, German prince (d. 1566)
*1520 – Sigismund II, Polish king (d. 1572)
*1545 – Andrew Melville, Scottish theologian and scholar (d. 1622)
*1555 – Edward Kelley, English spirit medium (d. 1597)
*1579 – Luis Vélez de Guevara, Spanish author and playwright (d. 1644)
1601–1900
*1626 – Sabbatai Zevi, Montenegrin rabbi and theorist (d. 1676)
*1630 – Thomas Clifford, 1st Baron Clifford of Chudleigh, English politician, Lord High Treasurer (d. 1673)
*1659 – Sebastiano Ricci, Italian painter (d. 1734)
*1713 – Charles I, German duke and prince (d. 1780)
*1714 – Richard Wilson, Welsh painter and academic (d. 1782)
*1738 – Jacques François Dugommier, French general (d. 1794)
*1744 – Jean-Baptiste Lamarck, French soldier, biologist, and academic (d. 1829)
*1770 – William Clark, American soldier, explorer, and politician, 4th Governor of Missouri Territory (d. 1838)
*1779 – Francis Scott Key, American lawyer, author, and poet (d. 1843)
* 1779 – Lorenz Oken, German-Swiss botanist, biologist, and ornithologist (d. 1851)
*1809 – William B. Travis, American colonel and lawyer (d. 1836)
*1815 – Richard Henry Dana Jr., American lawyer and politician (d. 1882)
*1818 – Maria Mitchell, American astronomer and academic (d. 1889)
*1819 – Herman Melville, American novelist, short story writer, and poet (d. 1891)
*1831 – Antonio Cotogni, Italian opera singer and educator (d. 1918)
*1843 – Robert Todd Lincoln, American lawyer and politician, 35th United States Secretary of War (d. 1926)
*1856 – George Coulthard, Australian footballer and cricketer (d. 1883)
*1858 – Gaston Doumergue, French lawyer and politician, 13th President of France (d. 1937)
* 1858 – Hans Rott, Austrian organist and composer (d. 1884)
*1860 – Bazil Assan, Romanian engineer and explorer (d. 1918)
*1861 – Sammy Jones, Australian cricketer (d. 1951)
*1865 – Isobel Lilian Gloag, English painter (d. 1917)
*1871 – John Lester, American cricketer and soccer player (d. 1969)
*1877 – George Hackenschmidt, Estonian-English wrestler and strongman (d. 1968)
*1878 – Konstantinos Logothetopoulos, Greek physician and politician, Prime Minister of Greece (d. 1961)
*1881 – Otto Toeplitz, German mathematician and academic (d. 1940)
*1885 – George de Hevesy, Hungarian-German chemist and academic, Nobel Prize laureate (d. 1966)
*1889 – Walter Gerlach, German physicist and academic (d. 1979)
*1891 – Karl Kobelt, Swiss lawyer and politician, 52nd President of the Swiss Confederation (d. 1968)
*1893 – Alexander of Greece (d. 1920)
*1894 – Ottavio Bottecchia, Italian cyclist (d. 1927)
*1898 – Morris Stoloff, American composer and musical director (d. 1980)
*1899 – Raymond Mays, English race car driver and businessman (d. 1980)
*1900 – Otto Nothling, Australian cricketer and rugby player (d. 1965)
1901–present
*1901 – Francisco Guilledo, Filipino boxer (d. 1925)
*1903 – Paul Horgan, American historian, author, and academic (d. 1995)
*1905 – Helen Sawyer Hogg, American-Canadian astronomer and academic (d. 1993)
*1907 – Eric Shipton, Sri Lankan-English mountaineer and explorer (d. 1977)
*1910 – James Henry Govier, English painter and illustrator (d. 1974)
* 1910 – Walter Scharf, American pianist and composer (d. 2003)
* 1910 – Gerda Taro, German war photographer (d. 1937)
*1911 – Jackie Ormes, American journalist and cartoonist (d. 1985)
*1912 – David Brand, Australian politician, 19th Premier of Western Australia (d. 1979)
* 1912 – Gego, German-Venezuelan sculptor and academic (d. 1994)
* 1912 – Henry Jones, American actor (d. 1999)
*1914 – Jack Delano, American photographer and composer (d. 1997)
* 1914 – Alan Moore, Australian painter and educator (d. 2015)
* 1914 – J. Lee Thompson, English-Canadian director, producer, and screenwriter (d. 2002)
*1916 – Fiorenzo Angelini, Italian cardinal (d. 2014)
* 1916 – Anne Hébert, Canadian author and poet (d. 2000)
*1918 – T. J. Jemison, American minister and activist (d. 2013)
*1919 – Stanley Middleton, English author (d. 2009)
*1920 – Raul Renter, Estonian economist and chess player (d. 1992)
* 1920 – James Mourilyan Tanner, British paediatric endocrinologist (d. 2010)
*1921 – Jack Kramer, American tennis player, sailor, and sportscaster (d. 2009)
* 1921 – Pat McDonald, Australian actress (d. 1990)
*1922 – Arthur Hill, Canadian-American actor (d. 2006)
*1924 – Abdullah of Saudi Arabia (d. 2015)
* 1924 – Frank Havens, American canoeist (d. 2018)
* 1924 – Marcia Mae Jones, American actress and singer (d. 2007)
* 1924 – Frank Worrell, Barbadian cricketer (d. 1967)
*1925 – Ernst Jandl, Austrian poet and author (d. 2000)
*1926 – George Habash, Palestinian politician, founder of the PFLP (d. 2008)
* 1926 – George Hauptfuhrer, American basketball player and lawyer (d. 2013)
* 1926 – Hannah Hauxwell, English TV personality (d. 2018)
*1927 – María Teresa López Boegeholz, Chilean oceanographer (d. 2006)
* 1927 – Anthony G. Bosco, American bishop (d. 2013)
*1928 – Jack Shea, American director, producer, and screenwriter (d. 2013)
*1929 – Leila Abashidze, Georgian actress (d. 2018)
* 1929 – Hafizullah Amin, Afghan educator and politician, Afghan Minister of Foreign Affairs (d. 1979)
* 1929 – Ann Calvello, American roller derby racer (d. 2006)
*1930 – Lionel Bart, English composer (d. 1999)
* 1930 – Pierre Bourdieu, French sociologist, anthropologist, and philosopher (d. 2002)
* 1930 – Julie Bovasso, American actress and writer (d. 1991)
* 1930 – Lawrence Eagleburger, American lieutenant and politician, 62nd United States Secretary of State (d. 2011)
* 1930 – Károly Grósz, Hungarian politician, 51st Prime Minister of Hungary (d. 1996)
* 1930 – Geoffrey Holder, Trinidadian-American actor, singer, dancer, and choreographer (d. 2014)
*1931 – Ramblin' Jack Elliott, American singer-songwriter and guitarist
* 1931 – Trevor Goddard, South African cricketer (d. 2016)
*1932 – Meir Kahane, American-Israeli rabbi and activist, founded the Jewish Defense League (d. 1990)
*1933 – Dom DeLuise, American actor, singer, director, and producer (d. 2009)
* 1933 – Masaichi Kaneda, Japanese baseball player and manager (d. 2019)
* 1933 – Meena Kumari, Indian actress (d. 1972)
* 1933 – Teri Shields, American actress, producer, and agent (d. 2012)
* 1933 – Dušan Třeštík, Czech historian and author (d. 2007)
*1934 – John Beck, New Zealand cricketer (d. 2000)
* 1934 – Derek Birdsall, English graphic designer (d. 2024)
*1935 – Geoff Pullar, English cricketer (d. 2014)
*1936 – W. D. Hamilton, British biologist, psychologist, and academic (d. 2000)
* 1936 – Yves Saint Laurent, Algerian-French fashion designer, co-founded Yves Saint Laurent (d. 2008)
* 1936 – Laurie Taylor, English sociologist, radio host, and academic
*1937 – Al D'Amato, American lawyer and politician
*1939 – Bob Frankford, English-Canadian physician and politician (d. 2015)
* 1939 – Terry Kiser, American actor
* 1939 – Stephen Sykes, English bishop and theologian (d. 2014)
* 1939 – Robert James Waller, American author and photographer (d. 2017)
*1940 – Mahmoud Dowlatabadi, Iranian writer and actor
* 1940 – Mervyn Kitchen, English cricketer and umpire
* 1940 – Henry Silverman, American businessman, founded Cendant
*1941 – Ron Brown, American captain and politician, 30th United States Secretary of Commerce (d. 1996)
* 1941 – Étienne Roda-Gil, French songwriter and screenwriter (d. 2004)
*1942 – Jerry Garcia, American singer-songwriter and guitarist (d. 1995)
* 1942 – Giancarlo Giannini, Italian actor, director, producer, and screenwriter
*1944 – Dmitry Nikolayevich Filippov, Russian banker and politician (d. 1998)
*1945 – Douglas Osheroff, American physicist and academic, Nobel Prize laureate
*1946 – Boz Burrell, English singer-songwriter, bass player, and guitarist (d. 2006)
* 1946 – Rick Coonce, American drummer (d. 2011)
* 1946 – Richard O. Covey, American colonel, pilot, and astronaut
* 1946 – Fiona Stanley, Australian epidemiologist and academic
*1947 – Lorna Goodison, Jamaican poet and author
* 1947 – Chantal Montellier, French comics creator and artist
*1948 – Avi Arad, Israeli-American screenwriter and producer, founded Marvel Studios
* 1948 – Cliff Branch, American football player (d. 2019)
* 1948 – David Gemmell, English journalist and author (d. 2006)
*1949 – Bettina Arndt, Australian writer and commentator
* 1949 – Kurmanbek Bakiyev, Kyrgyzstani politician, 2nd President of Kyrgyzstan
* 1949 – Jim Carroll, American poet, author, and musician (d. 2009)
* 1949 – Ray Nettles, American football player (d. 2009)
*1950 – Roy Williams, American basketball player and coach
*1951 – Tim Bachman, Canadian singer-songwriter and guitarist (d. 2023)
* 1951 – Tommy Bolin, American singer-songwriter and guitarist (d. 1976)
* 1951 – Pete Mackanin, American baseball player, coach, and manager
*1952 – Zoran Đinđić, Serbian philosopher and politician, 6th Prime Minister of Serbia (d. 2003)
*1953 – Robert Cray, American blues singer-songwriter and guitarist
* 1953 – Howard Kurtz, American journalist and author
*1954 – Trevor Berbick, Jamaican-Canadian boxer (d. 2006)
* 1954 – James Gleick, American journalist and author
* 1954 – Benno Möhlmann, German footballer and manager
*1957 – Anne-Marie Hutchinson, British lawyer (d. 2020)
* 1957 – Taylor Negron, American actor and screenwriter (d. 2015)
*1958 – Rob Buck, American guitarist and songwriter (d. 2000)
* 1958 – Michael Penn, American singer-songwriter and guitarist
* 1958 – Kiki Vandeweghe, American basketball player and coach
*1959 – Joe Elliott, English singer-songwriter, guitarist, and producer
*1960 – Chuck D, American rapper and songwriter
* 1960 – Suzi Gardner, American rock singer-songwriter and guitarist
*1962 – Jacob Matlala, South African boxer (d. 2013)
*1963 – Demián Bichir, Mexican-American actor and producer
* 1963 – Coolio, American rapper, producer, and actor (d. 2022)
* 1963 – John Carroll Lynch, American actor
* 1963 – Koichi Wakata, Japanese astronaut and engineer
* 1963 – Dean Wareham, New Zealand singer-songwriter and guitarist
*1964 – Adam Duritz, American singer-songwriter and producer
* 1964 – Fiona Hyslop, Scottish businesswoman and politician
*1965 – Brandt Jobe, American golfer
* 1965 – Sam Mendes, English director and producer
*1966 – James St. James, American club promoter and author
*1967 – Gregg Jefferies, American baseball player and coach
* 1967 – José Padilha, Brazilian director, producer and screenwriter
*1968 – Stacey Augmon, American basketball player and coach
* 1968 – Dan Donegan, American heavy metal guitarist and songwriter
* 1968 – Shigetoshi Hasegawa, Japanese baseball player and sportscaster
*1969 – Andrei Borissov, Estonian footballer and manager
* 1969 – Kevin Jarvis, American baseball player and scout
* 1969 – Graham Thorpe, English cricketer and journalist (d. 2024)
*1970 – Quentin Coryatt, American football player
* 1970 – David James, English footballer and manager
* 1970 – Eugenie van Leeuwen, Dutch cricketer
*1972 – Nicke Andersson, Swedish singer-songwriter and guitarist
* 1972 – Christer Basma, Norwegian footballer and coach
* 1972 – Todd Bouman, American football player and coach
* 1972 – Thomas Woods, American historian, economist, and academic
*1973 – Gregg Berhalter, American soccer player and coach
* 1973 – Tempestt Bledsoe, American actress
* 1973 – Veerle Dejaeghere, Belgian runner
* 1973 – Edurne Pasaban, Spanish mountaineer
*1974 – Cher Calvin, American journalist
* 1974 – Marek Galiński, Polish cyclist (d. 2014)
* 1974 – Tyron Henderson, South African cricketer
* 1974 – Dennis Lawrence, Trinidadian footballer and coach
* 1974 – Beckie Scott, Canadian skier
*1975 – Vhrsti, Czech author and illustrator
*1976 – Don Hertzfeldt, American animator, producer, screenwriter, and voice actor
* 1976 – Søren Jochumsen, Danish footballer
* 1976 – Nwankwo Kanu, Nigerian footballer
* 1976 – David Nemirovsky, Canadian ice hockey player
* 1976 – Hasan Şaş, Turkish footballer and manager
* 1976 – Cristian Stoica, Romanian-Italian rugby player
*1977 – Marc Denis, Canadian ice hockey player and sportscaster
* 1977 – Haspop, French-Moroccan dancer, choreographer, and actor
* 1977 – Darnerien McCants, American-Canadian football player
* 1977 – Damien Saez, French singer-songwriter and guitarist
* 1977 – Yoshi Tatsu, Japanese wrestler and boxer
*1978 – Andy Blignaut, Zimbabwean cricketer
* 1978 – Björn Ferry, Swedish biathlete
* 1978 – Dhani Harrison, English singer-songwriter and guitarist
* 1978 – Chris Iwelumo, Scottish footballer
* 1978 – Edgerrin James, American football player
*1979 – Junior Agogo, Ghanaian footballer (d. 2019)
* 1979 – Nathan Fien, Australian-New Zealand rugby league player
* 1979 – Jason Momoa, American actor, director, and producer
* 1979 – Grant Wooden, Australian rugby league player
*1980 – Mancini, Brazilian footballer
* 1980 – Romain Barras, French decathlete
* 1980 – Esteban Paredes, Chilean footballer
*1981 – Dean Cox, Australian footballer
* 1981 – Pia Haraldsen, Norwegian journalist and author
* 1981 – Christofer Heimeroth, German footballer
* 1981 – Stephen Hunt, Irish footballer
* 1981 – Jamie Jones-Buchanan, English rugby player
*1982 – Basem Fathi, Jordanian footballer
* 1982 – Montserrat Lombard, English actress, director, and screenwriter
*1983 – Bobby Carpenter, American football player
* 1983 – Craig Clarke, New Zealand rugby player
* 1983 – Julien Faubert, French footballer
* 1983 – David Gervasi, Swiss decathlete
*1984 – Steve Feak, American game designer
* 1984 – Francesco Gavazzi, Italian cyclist
* 1984 – Brandon Kintzler, American baseball player
* 1984 – Bastian Schweinsteiger, German footballer
*1985 – Stuart Holden, Scottish-American soccer player
* 1985 – Adam Jones, American baseball player
* 1985 – Cole Kimball, American baseball player
* 1985 – Tendai Mtawarira, South African rugby player
* 1985 – Kris Stadsgaard, Danish footballer
* 1985 – Dušan Švento, Slovak footballer
*1986 – Damien Allen, English footballer
* 1986 – Anton Strålman, Swedish ice hockey player
* 1986 – Andrew Taylor, English footballer
* 1986 – Elena Vesnina, Russian tennis player
* 1986 – Mike Wallace, American football player
*1987 – Iago Aspas, Spanish footballer
* 1987 – Karen Carney, English women's footballer
* 1987 – Taapsee Pannu, Indian actress
* 1987 – Sébastien Pocognoli, Belgian footballer
* 1987 – Lee Wallace, Scottish footballer
*1988 – Mustafa Abdellaoue, Norwegian footballer
* 1988 – Travis Boak, Australian footballer
* 1988 – Patryk Małecki, Polish footballer
* 1988 – Nemanja Matić, Serbian footballer
* 1988 – Bodene Thompson, New Zealand rugby league player
*1989 – Madison Bumgarner, American baseball player
* 1989 – Tiffany Young, Korean American singer, songwriter, and actress
*1990 – Aledmys Díaz, Cuban baseball player
* 1990 – Elton Jantjies, South African rugby player
*1991 – Piotr Malarczyk, Polish footballer
* 1991 – Marco Puntoriere, Italian footballer
*1992 – Austin Rivers, American basketball player
* 1992 – Mrunal Thakur, Indian actress
*1993 – Álex Abrines, Spanish basketball player
* 1993 – Leon Thomas III, American actor and singer
* 1993 – Saleh Gomaa, Egyptian footballer
*1994 – Sergeal Petersen, South African rugby player
* 1994 – Ayaka Wada, Japanese singer
*1995 – Madison Cawthorn, American politician
*1996 – Katie Boulter, British tennis player
*2000 – Kim Chaewon, South Korean singer
*2001 – Scottie Barnes, American basketball player
* 2001 – Park Si-eun, South Korean actress
* 2001 – Ben Trbojevic, Australian rugby league player
*2003 – Joseph Sua'ali'i, Australian-Samoan rugby league player
<!--Do not add your own name or people without Wikipedia articles to this list. No red links, please. Do not trust "this year in history" websites for accurate date information. Do not link multiple occurrences of the same year, just link the first occurrence.-->
Deaths
Pre-1600
*30 BC – Mark Antony, Roman general and politician (b. 83 BC)
* 371 – Eusebius of Vercelli, Italian bishop and saint (b. 283)
* 527 – Justin I, Byzantine emperor (b. 450)
* 690s – Jonatus, abbot and saint
* 873 – Thachulf, duke of Thuringia
* 946 – Ali ibn Isa al-Jarrah, Abbasid vizier (b. 859)
* 946 – Lady Xu Xinyue, Chinese queen (b. 902)
* 953 – Yingtian, Chinese Khitan empress (b. 879)
* 984 – Æthelwold, bishop of Winchester
*1098 – Adhemar of Le Puy, French papal legate
*1137 – Louis VI, king of France (b. 1081)
*1146 – Vsevolod II of Kiev, Russian prince
*1227 – Shimazu Tadahisa, Japanese warlord (b. 1179)
*1252 – Giovanni da Pian del Carpine, Italian archbishop and explorer (b. 1180)
*1299 – Conrad de Lichtenberg, Bishop of Strasbourg (b. 1240)
*1402 – Edmund of Langley, 1st Duke of York, English politician, Lord Warden of the Cinque Ports (b. 1341)
*1457 – Lorenzo Valla, Italian author and educator (b. 1406)
*1464 – Cosimo de' Medici, Italian ruler (b. 1386)
*1494 – Giovanni Santi, artist and father of Raphael (b. c. 1435)
*1541 – Simon Grynaeus, German theologian and scholar (b. 1493)
*1543 – Magnus I, Duke of Saxe-Lauenburg (b. 1488)
*1546 – Peter Faber, French Jesuit theologian (b. 1506)
*1557 – Olaus Magnus, Swedish archbishop, historian, and cartographer (b. 1490)
*1580 – Albrecht Giese, Polish-German politician and diplomat (b. 1524)
*1589 – Jacques Clément, French assassin of Henry III of France (b. 1567)
1601–1900
*1603 – Matthew Browne, English politician (b. 1563)
*1714 – Anne, Queen of Great Britain (b. 1665)
*1787 – Alphonsus Maria de' Liguori, Italian bishop and saint (b. 1696)
*1795 – Clas Bjerkander, Swedish meteorologist, botanist, and entomologist (b. 1735)
*1796 – Sir Robert Pigot, 2nd Baronet, English colonel and politician (b. 1720)
*1797 – Emanuel Granberg, Finnish church painter (b. 1754)
*1798 – François-Paul Brueys d'Aigalliers, French admiral (b. 1753)
*1807 – John Boorman, English cricketer (b. c. 1754)
* 1807 – John Walker, English actor, philologist, and lexicographer (b. 1732)
*1808 – Lady Diana Beauclerk, English painter and illustrator (b. 1734)
*1812 – Yakov Kulnev, Russian general (b. 1763)
*1851 – William Joseph Behr, German publicist and academic (b. 1775)
*1863 – Jind Kaur Majarani (Regent) of the Sikh Empire (b. 1817)
*1866 – John Ross, American tribal chief (b. 1790)
*1869 – Richard Dry, Australian politician, 7th Premier of Tasmania (b. 1815)
* 1869 – Peter Julian Eymard, French Priest and founder of the Congregation of the Blessed Sacrament (b. 1811)
1901–present
*1903 – Calamity Jane, American frontierswoman and scout (b. 1853)
*1905 – Henrik Sjöberg, Swedish gymnast and medical student (b. 1875)
*1911 – Edwin Austin Abbey, American painter and illustrator (b. 1852)
* 1911 – Samuel Arza Davenport, American lawyer and politician (b. 1843)
*1918 – John Riley Banister, American cowboy and police officer (b. 1854)
*1920 – Bal Gangadhar Tilak, Indian freedom fighter, lawyer and journalist (b. 1856)
*1921 – T.J. Ryan, Australian politician, 19th Premier of Queensland (b. 1876)
*1922 – Donát Bánki, Hungarian engineer (b. 1856)
*1929 – Syd Gregory, Australian cricketer (b. 1870)
*1938 – Edmund C. Tarbell, American painter and academic (b. 1862)
*1943 – Lydia Litvyak, Soviet lieutenant and pilot (b. 1921)
*1944 – Manuel L. Quezon, Filipino soldier, lawyer, and politician, 2nd President of the Philippines (b. 1878)
*1957 – Rose Fyleman, English writer and poet (b. 1877)
*1959 – Jean Behra, French race car driver (b. 1921)
*1963 – Theodore Roethke, American poet (b. 1908)
*1966 – Charles Whitman, American mass murderer (b. 1941)
*1967 – Richard Kuhn, Austrian-German biochemist and academic, Nobel Prize Laureate (b. 1900)
*1970 – Frances Farmer, American actress (b. 1913)
* 1970 – Doris Fleeson, American journalist (b. 1901)
* 1970 – Otto Heinrich Warburg, German physician and physiologist, Nobel Prize laureate (b. 1883)
*1973 – Gian Francesco Malipiero, Italian composer and educator (b. 1882)
* 1973 – Walter Ulbricht, German soldier and politician (b. 1893)
*1974 – Ildebrando Antoniutti, Italian cardinal (b. 1898)
*1977 – Francis Gary Powers, American captain and pilot (b. 1929)
*1980 – Patrick Depailler, French race car driver (b. 1944)
* 1980 – Strother Martin, American actor (b. 1919)
*1981 – Paddy Chayefsky, American author, playwright, and screenwriter (b. 1923)
* 1981 – Kevin Lynch, Irish Republican, Hunger Striker
*1982 – T. Thirunavukarasu, Sri Lankan lawyer and politician (b. 1933)
*1989 – John Ogdon, English pianist and composer (b. 1937)
*1990 – Norbert Elias, German-Dutch sociologist, author, and academic (b. 1897)
*1996 – Tadeusz Reichstein, Polish-Swiss chemist and academic, Nobel Prize laureate (b. 1897)
* 1996 – Lucille Teasdale-Corti, Canadian physician and surgeon (b. 1929)
*1998 – Eva Bartok, Hungarian-British actress (b. 1927)
*2001 – Korey Stringer, American football player (b. 1974)
*2003 – Guy Thys, Belgian footballer, coach, and manager (b. 1922)
* 2003 – Marie Trintignant, French actress and screenwriter (b. 1962)
*2004 – Philip Abelson, American physicist and author (b. 1913)
*2005 – Al Aronowitz, American journalist (b. 1928)
* 2005 – Wim Boost, Dutch cartoonist and educator (b. 1918)
* 2005 – Constant Nieuwenhuys, Dutch painter and sculptor (b. 1920)
* 2005 – Fahd of Saudi Arabia (b. 1923)
*2006 – Bob Thaves, American illustrator (b. 1924)
* 2006 – Iris Marion Young, American political scientist and activist (b. 1949)
*2007 – Tommy Makem, Irish singer-songwriter and banjo player (b. 1932)
*2008 – Gertan Klauber, Czech-English actor (b. 1932)
* 2008 – Harkishan Singh Surjeet, Indian lawyer and politician (b. 1916)
*2009 – Corazon Aquino, Filipino politician, 11th President of the Philippines (b. 1933)
*2010 – Lolita Lebrón, Puerto Rican-American activist (b. 1919)
* 2010 – Eric Tindill, New Zealand rugby player and cricketer (b. 1910)
*2012 – Aldo Maldera, Italian footballer and agent (b. 1953)
* 2012 – Douglas Townsend, American composer and musicologist (b. 1921)
* 2012 – Barry Trapnell, English cricketer and academic (b. 1924)
*2013 – John Amis, English journalist and critic (b. 1922)
* 2013 – Gail Kobe, American actress and producer (b. 1932)
* 2013 – Babe Martin, American baseball player (b. 1920)
* 2013 – Toby Saks, American cellist and educator (b. 1942)
* 2013 – Wilford White, American football player (b. 1928)
*2014 – Valyantsin Byalkevich, Belarusian footballer and manager (b. 1973)
* 2014 – Jan Roar Leikvoll, Norwegian author (b. 1974)
* 2014 – Charles T. Payne, American soldier (b. 1925)
* 2014 – Mike Smith, English radio and television host (b. 1955)
*2015 – Stephan Beckenbauer, German footballer and manager (b. 1968)
* 2015 – Cilla Black, English singer and actress (b. 1943)
* 2015 – Bernard d'Espagnat, French physicist, philosopher, and author (b. 1921)
* 2015 – Bob Frankford, English-Canadian physician and politician (b. 1939)
* 2015 – Hong Yuanshuo, Chinese footballer and manager (b. 1948)
*2016 – Queen Anne of Romania (b. 1923)
*2020 – Wilford Brimley, American actor and singer (b. 1934)
* 2020 – Rickey Dixon, American professional football player (b. 1966)
* 2020 – Rodney H. Pardey, American poker player (b. 1945)
*2021 – Abdalqadir as-Sufi, Scottish Islamic scholar and writer (b. 1930)
* 2021 – Jerry Ziesmer, American assistant director, production manager and occasional actor (b. 1939)
* 2024 – Joyce Brabner, American writer and artist (b. 1952)
<!--Do not add people without Wikipedia articles to this list. Do not trust "this year in history" websites for accurate date information. Do not link multiple occurrences of the same year, just link the first occurrence.-->
Holidays and observances
*Armed Forces Day (Lebanon)
*Armed Forces Day (China) or Anniversary of the Founding of the People's Liberation Army (People's Republic of China)
*Azerbaijani Language and Alphabet Day (Azerbaijan)
*Emancipation Day is commemorated in many parts of the former British Empire, which marks the day the Slavery Abolition Act 1833 came into effect which abolished chattel slavery in the British Empire:
**Emancipation Day is a public holiday in Barbados, Bermuda, Guyana, Jamaica, Saint Vincent and the Grenadines, Trinidad and Tobago
*Christian feast day:
**Abgar V of Edessa (Syrian Church)
**Alphonsus Maria de' Liguori
**Æthelwold of Winchester
**Bernard Võ Văn Duệ (one of Vietnamese Martyrs)
**Blessed Gerhard Hirschfelder
**Eusebius of Vercelli
**Exuperius of Bayeux
**Felix of Girona
**Peter Apostle in Chains
**Procession of the Cross and the beginning of Dormition Fast (Eastern Orthodoxy)
**The Holy Maccabees
**August 1 (Eastern Orthodox liturgics)
*Minden Day (United Kingdom)
*National Day, celebrates the independence of Benin from France in 1960.
*Official Birthday and Coronation Day of the King of Tonga (Tonga)
*Parents' Day (Democratic Republic of the Congo)
*Statehood Day (Colorado)
*Swiss National Day, commemorates Switzerland becoming a single unit in 1291.
*The beginning of autumn observances in the Northern hemisphere and spring observances in the Southern hemisphere (Neopagan Wheel of the Year):
**Lughnasadh in the Northern hemisphere, Imbolc in the Southern hemisphere; traditionally begins on the eve of August 1. (Gaels, Ireland, Scotland, Neopagans)
**Lammas (England, Scotland, Neopagans)
**Pachamama Raymi (Quechuan in Ecuador and Peru)
*Victory Day (Cambodia, Laos, Vietnam)
*World Scout Scarf Day
*Yorkshire Day (Yorkshire, England)
References
External links
*
*
*
Category:Days of August | https://en.wikipedia.org/wiki/August_1 | 2025-04-05T18:25:36.402615 |
1256 | Antoninus Pius | | birth_date = 19 September 86
| birth_place = Lanuvium, Italia, Roman Empire
| death_date = 7 March 161 (aged 74)
| death_place = Lorium, Italia, Roman Empire
| burial_place = Hadrian's Mausoleum
| spouse = Annia Galeria Faustina
| issue =
| issue-link = #Descendants
| full name Titus Aelius Caesar Antoninus (after adoption)
| regnal name Imperator Caesar Titus Aelius Hadrianus Antoninus Augustus Pius ; 19 September 86 – 7 March 161) was Roman emperor from AD 138 to 161. He was the fourth of the Five Good Emperors from the Nerva–Antonine dynasty.
Born into a senatorial family, Antoninus held various offices during the reign of Emperor Hadrian. He married Hadrian's niece Faustina, and Hadrian adopted him as his son and successor shortly before his death. Antoninus acquired the cognomen Pius after his accession to the throne, either because he compelled the Senate to deify his adoptive father, or because he had saved senators sentenced to death by Hadrian in his later years. His reign is notable for the peaceful state of the Empire, with no major revolts or military incursions during this time. A successful military campaign in southern Scotland early in his reign resulted in the construction of the Antonine Wall.
Antoninus was an effective administrator, leaving his successors a large surplus in the treasury, expanding free access to drinking water throughout the Empire, encouraging legal conformity, and facilitating the enfranchisement of freed slaves. He died of illness in AD 161 and was succeeded by his adopted sons Marcus Aurelius and Lucius Verus as co-emperors.
Early life
Childhood and family
Antoninus Pius was born Titus Aurelius Fulvus Boionius Antoninus in 86, near Lanuvium (modern-day Lanuvio) in Italy to Titus Aurelius Fulvus, consul in 89, and wife Arria Fadilla. The Aurelii Fulvi were an Aurelian family settled in Nemausus (modern Nîmes). Titus Aurelius Fulvus was the son of a senator of the same name, who, as legate of Legio III Gallica, had supported Vespasian in his bid to the Imperial office and been rewarded with a suffect consulship, plus an ordinary one under Domitian in 85. The Aurelii Fulvi were therefore a relatively new senatorial family from Gallia Narbonensis whose rise to prominence was supported by the Flavians. The link between Antoninus' family and their home province explains the increasing importance of the post of proconsul of Gallia Narbonensis during the late second century.
Antoninus' father had no other children and died shortly after his 89 ordinary consulship. Antoninus was raised by his maternal grandfather Gnaeus Arrius Antoninus, reputed by contemporaries to be a man of integrity and culture and a friend of Pliny the Younger. The Arrii Antonini were an older senatorial family from Italy, very influential during Nerva's reign. Arria Fadilla, Antoninus' mother, married afterwards Publius Julius Lupus, suffect consul in 98; from that marriage came two daughters, Arria Lupula and Julia Fadilla.
Marriage and children
]]
Some time between 110 and 115, Antoninus married Annia Galeria Faustina the Elder. They are believed to have enjoyed a happy marriage. Faustina was the daughter of consul Marcus Annius Verus (II) and Rupilia Faustina (often thought to be a step-sister to the Empress Vibia Sabina or more likely a granddaughter of the emperor Vitellius.) Faustina was a beautiful woman, and despite rumours about her character, it is clear that Antoninus cared for her deeply.
Faustina bore Antoninus four children, two sons and two daughters. They were:
* Marcus Aurelius Fulvus Antoninus (died before 138); his sepulchral inscription has been found at the Mausoleum of Hadrian in Rome.
* Marcus Galerius Aurelius Antoninus (died before 138); his sepulchral inscription has been found at the Mausoleum of Hadrian in Rome. His name appears on a Greek Imperial coin.
* Aurelia Fadilla (died in 135); she married Lucius Plautius Lamia Silvanus, consul 145. She appeared to have no children with her husband; and her sepulchral inscription has been found in Italy.
* Annia Galeria Faustina Minor or Faustina the Younger (between 125 and 130–175), a future Roman Empress, married her maternal cousin Marcus Aurelius in 146.
When Faustina died in 141, Antoninus was greatly distressed. In honour of her memory, he asked the Senate to deify her as a goddess, and authorised the construction of a temple to be built in the Roman Forum in her name, with priestesses serving in her temple. He had various coins with her portrait struck in her honor. These coins were scripted "DIVA FAUSTINA" and were elaborately decorated. He further founded a charity, calling it Puellae Faustinianae or Girls of Faustina, which assisted destitute girls Finally, Antoninus created a new alimenta, a Roman welfare programme, as part of Cura Annonae.
The emperor never remarried. Instead, he lived with Galeria Lysistrate, Faustina's freedwoman. Concubinage was a form of female companionship sometimes chosen by powerful men in Ancient Rome, especially widowers like Vespasian, and Marcus Aurelius. Their union could not produce any legitimate offspring who could threaten any heirs, such as those of Antoninus. Also, as one could not have a wife and an official concubine (or two concubines) at the same time, Antoninus avoided being pressed into a marriage with a noblewoman from another family. (Later, Marcus Aurelius would also reject the advances of his former fiancée Ceionia Fabia, Lucius Verus's sister, on the grounds of protecting his children from a stepmother, and took a concubine instead.) Favour with Hadrian Having filled the offices of quaestor and praetor with more than usual success, he obtained the consulship in 120 He was next appointed by the Emperor Hadrian as one of the four proconsuls to administer Italia, his district including Etruria, where he had estates. He then greatly increased his reputation by his conduct as proconsul of Asia, probably during 134–135.
He acquired much favor with Hadrian, who adopted him as his son and successor on 25 February 138, after the death of his first adopted son Lucius Aelius, on the condition that Antoninus would in turn adopt Marcus Annius Verus, the son of his wife's brother, and Lucius, son of Lucius Aelius, who afterwards became the emperors Marcus Aurelius and Lucius Verus.
Emperor
On his accession, Antoninus' name and style became Imperator Caesar Titus Aelius Hadrianus Antoninus Augustus Pontifex Maximus. One of his first acts as emperor was to persuade the Senate to grant divine honours to Hadrian, which they had at first refused; his efforts to persuade the Senate to grant these honours is the most likely reason given for his title of Pius (dutiful in affection; compare pietas). Two other reasons for this title are that he would support his aged father-in-law with his hand at Senate meetings and that he had saved those men that Hadrian, during his period of ill health, had condemned to death.
Immediately after Hadrian's death, Antoninus approached Marcus and requested that his marriage arrangements be amended: Marcus' betrothal to Ceionia Fabia would be annulled, and he would be betrothed to Faustina, Antoninus' daughter instead. Faustina's betrothal to Ceionia's brother Lucius Commodus, Marcus' future co-emperor, would also have to be annulled. Marcus consented to Antoninus' proposal.
Antoninus built temples, theaters, and mausoleums, promoted the arts and sciences, and bestowed honours and financial rewards upon the teachers of rhetoric and philosophy.
He owned palatial villas near Lanuvium and Villa Magna (Latium) and his ancestral estate at Lorium (Etruria).
Lack of warfare
in the Roman Forum (now the church of San Lorenzo in Miranda). The emperor and his Augusta were deified after their death by Marcus Aurelius.]]
There are no records of his involvement in military acts during his tenure, with J. J. Wilkes noting that he likely never saw or commanded a Roman army and was never within five hundred miles of a legion throughout his twenty-three-year reign.
His reign was the most peaceful in the entire history of the Principate, even though there were several military disturbances in the Empire in his time. Such disturbances happened in Mauretania, where a senator was named as governor of Mauretania Tingitana in place of the usual equestrian procurator and cavalry reinforcements from Pannonia were brought in, towns such as Sala and Tipasa being fortified. Similar disturbances took place in Judea, and amongst the Brigantes in Britannia; however, these were considered less serious than prior (and later) revolts among both. It was however in Britain that Antoninus decided to follow a new, more aggressive path, with the appointment of a new governor in 139, Quintus Lollius Urbicus, a native of Numidia and previously governor of Germania Inferior as well as a new man.
Under instructions from the emperor, Lollius undertook an invasion of southern Scotland, winning some significant victories and constructing the Antonine Wall from the Firth of Forth to the Firth of Clyde. However, the wall was soon gradually decommissioned during the mid-150s and eventually abandoned late during the reign (early 160s) for reasons that are still unclear. Antonine's Wall is mentioned in just one literary source, Antoninus' biography in the Historia Augusta. Pausanias makes a brief and confused mention of a war in Britain. In one inscription honouring Antoninus, erected by Legio II Augusta, which participated in the building of the Wall, a relief showing four naked prisoners, one of them beheaded, seems to stand for some actual warfare.
, from the Museo Chiaramonti (Vatican Museums)]]
Although Antonine's Wall was, in principle, much shorter (37 miles in length as opposed to 73) and, at first sight, more defensible than Hadrian's Wall, the additional area that it enclosed within the Empire was barren, with land use for grazing already in decay. This meant that supply lines to the wall were strained enough such that the costs of maintaining the additional territory outweighed the benefits of doing so. Also, in the absence of urban development and the ensuing Romanization process, the rear of the wall could not be lastingly pacified.
It has been speculated that the invasion of Lowland Scotland and the building of the wall had to do mostly with internal politics, that is, offering Antoninus an opportunity to gain some modicum of necessary military prestige at the start of his reign. An Imperial salutation followed the campaign in Britannia—that is, Antoninus formally took for the second (and last) time the title of Imperator in 142. The fact that around the same time coins were struck announcing a victory in Britain points to Antoninus' need to publicise his achievements. The orator Fronto was later to say that, although Antoninus bestowed the direction of the British campaign to others, he should be regarded as the helmsman who directed the voyage, whose glory, therefore, belonged to him.
That this quest for some military achievement responded to an actual need is proved by the fact that, although generally peaceful, Antoninus' reign was not free from attempts at usurpation: Historia Augusta mentions two, made by the senators Cornelius Priscianus ("for disturbing the peace of Spain"; Priscianus had also been Lollius Urbicus' successor as governor of Britain) and Atilius Rufius Titianus (possibly a troublemaker already exiled under Hadrian). Both attempts are confirmed by the Fasti Ostienses and by the erasing of Priscianus' name from an inscription. In both cases, Antoninus was not in formal charge of the ensuing repression: Priscianus committed suicide and Titianus was found guilty by the Senate, with Antoninus abstaining from sequestering their families' properties.
(PAR-TH-IA on the reverse) handing the crown to him, an empty claim that Parthia was still subject to Rome after the events surrounding Parthamaspates]]
There were also some troubles in Dacia Inferior, which required the granting of additional powers to the procurator governor and the dispatch of additional soldiers to the province. On the northern Black Sea coast, the Greek city of Olbia was held against the Scythians. Also during his reign the governor of Upper Germany, probably Gaius Popillius Carus Pedo, built new fortifications in the Agri Decumates, advancing the Limes Germanicus fifteen miles forward in his province and neighboring Raetia. In the East, Roman suzerainty over Armenia was retained by the choice in AD 140 of Arsacid scion Sohaemus as client king.
Nevertheless, Antoninus was virtually unique among emperors in that he dealt with these crises without leaving Italy once during his reign, but instead dealt with provincial matters of war and peace through their governors or through imperial letters to the cities such as Ephesus (of which some were publicly displayed). His contemporaries and later generations highly praised this style of government.
Antoninus was the last Roman Emperor recognised by the Indian Kingdoms, especially the Kushan Empire.
Economy and administration
of Antoninus Pius, 145 AD. Inscription: ANTONINVS PIVS / IIII]]
Antoninus was regarded as a skilled administrator and builder. Despite an extensive building directive—the free access of the people of Rome to drinking water was expanded with the construction of aqueducts, not only in Rome but throughout the Empire, as well as bridges and roads—the emperor still managed to leave behind a sizable public treasury of around 2.7 billion sesterces. Rome would not witness another Emperor leaving his successor with a surplus for a long time, but the treasury was depleted almost immediately after Antoninus's reign due to the Antonine Plague brought back by soldiers after the Parthian victory.
The Emperor also famously suspended the collection of taxes from multiple cities affected by natural disasters, such as when fires struck Rome and Narbona, and earthquakes affected Rhodes and the Province of Asia. He offered hefty financial grants for rebuilding and recovery of various Greek cities after two serious earthquakes: the first, , which mainly affected Rhodes and other islands; the second, in 152, which hit Cyzicus (where the huge and newly built Temple to Hadrian was destroyed), Ephesus, and Smyrna. Antoninus' financial help earned him praise from Greek writers such as Aelius Aristides and Pausanias. These cities received the usual honorific accolades from Antoninus, such as when he commanded that all governors of Asia should enter the province when taking office through Ephesus. Ephesus was especially favoured by Antoninus, who confirmed and upheld its distinction of having two temples for the imperial cult (neocorate), therefore having first place in the list of imperial honor titles, surpassing both Smyrna and Pergamon.
In his dealings with Greek-speaking cities, Antoninus followed the policy adopted by Hadrian of ingratiating himself with local elites, especially with local intellectuals: philosophers, teachers of literature, rhetoricians, and physicians were explicitly exempted from any duties involving private spending for civic purposes, a privilege granted by Hadrian that Antoninus confirmed by means of an edict preserved in the Digest (27.1.6.8). Antoninus also created a chair for the teaching of rhetoric in Athens.
Antoninus was known as an avid observer of rites of religion and formal celebrations, both Roman and foreign. He is known for having increasingly formalized the official cult offered to the Great Mother, which from his reign onwards included a bull sacrifice, a taurobolium, formerly only a private ritual, now being also performed for the sake of the Emperor's welfare. Antoninus also offered patronage to the worship of Mithras, to whom he erected a temple in Ostia. In 148, he presided over the celebrations of the 900th anniversary of the founding of Rome.
Legal reforms
at Ephesus, 140–144 AD, explaining how the emperor resolved a dispute between the Roman cities of Ephesus and Smyrna.<br/> British Museum, London.]]
Antoninus tried to portray himself as a magistrate of the res publica, no matter how extended and ill-defined his competencies were. He is credited with splitting the imperial treasury, the fiscus. This splitting had to do with the division of imperial properties into two parts. Firstly, the fiscus itself, or patrimonium, meaning the properties of the "Crown", the hereditary properties of each succeeding person that sat on the throne, transmitted to his successors in office, regardless of their previous membership in the imperial family. Secondly, the res privata, the "private" properties tied to the personal maintenance of the emperor and his family, something like a Privy Purse. An anecdote in the Historia Augusta biography, where Antoninus replies to Faustina (who complained about his stinginess) that "we have gained an empire [and] lost even what we had before," possibly relates to Antoninus' actual concerns at the creation of the res privata. While still a private citizen, Antoninus had increased his personal fortune significantly using various legacies, the consequence of his caring scrupulously for his relatives. Also, Antoninus left behind him a reputation for stinginess and was probably determined not to leave his personal property to be "swallowed up by the demands of the imperial throne".
The res privata lands could be sold and/or given away, while the patrimonium properties were regarded as public. It was a way of pretending that the Imperial function—and most properties attached to it—was a public one, formally subject to the authority of the Senate and the Roman people. That the distinction played no part in subsequent political history—that the personal power of the princeps absorbed his role as office-holder—proves that the autocratic logic of the imperial order had already subsumed the old republican institutions.
Of the public transactions of this period, there is only the scantiest of information. However, to judge by what is extant, those twenty-two years were not remarkably eventful compared to those before and after the reign. However, Antoninus did take a great interest in the revision and practice of the law throughout the empire. One of his chief concerns was to having local communities conform their legal procedures to existing Roman norms: in a case concerning the repression of banditry by local police officers ("irenarchs", Greek for "peacekeepers") in Asia Minor, Antoninus ordered that these officers should not treat suspects as already condemned, and also keep a detailed copy of their interrogations, to be used in the possibility of an appeal to the Roman governor. Also, although Antoninus was not an innovator, he would not always follow the absolute letter of the law. Rather, he was driven by concerns over humanity and equality and introduced into Roman law many important new principles based upon this notion.
In this, the emperor was assisted by five chief lawyers: Lucius Fulvius Aburnius Valens, an author of legal treatises; Lucius Ulpius Marcellus, a prolific writer; and three others. Of these three, the most prominent was Lucius Volusius Maecianus, a former military officer turned by Antoninus into a civil procurator, and who, given his subsequent career (discovered on the basis of epigraphical and prosopographic research), was the emperor's most important legal adviser. Maecianus would eventually be chosen to occupy various prefectures (see below) as well as to conduct the legal studies of Marcus Aurelius. He also authored an extensive work on Fidei commissa (Testamentary Trusts). As a hallmark of the increased connection between jurists and the imperial government, Antoninus' reign also saw the appearance of the Institutes of Gaius, an elementary legal textbook for beginners.
of Antoninus, 153 AD. ANTONINVS AVG PIVS PP TR P XVII]]
Antoninus passed measures to facilitate the enfranchisement of slaves. Mostly, he favoured the principle of favor libertatis, giving the putative freedman the benefit of the doubt when the claim to freedom was not clear-cut. Also, he punished the killing of a slave by their master without previous trial and determined that slaves could be forcibly sold to another master by a proconsul in cases of consistent mistreatment. Antoninus upheld the enforcement of contracts for selling of female slaves forbidding their further employment in prostitution. In criminal law, Antoninus introduced the important principle of the presumption of innocence—namely, that accused persons are not to be treated as guilty before trial, as in the case of the irenarchs (see above). Antoninus also asserted the principle that the trial was to be held and the punishment inflicted in the place where the crime had been committed. He mitigated the use of torture in examining slaves by certain limitations. Thus, he prohibited the application of torture to children under fourteen years, though this rule had exceptions. However, it must be stressed that Antoninus extended, using a rescript, the use of torture as a means of obtaining evidence to pecuniary cases, when it had been applied up until then only in criminal cases. Also, already at the time torture of free men of low status (humiliores) had become legal, as proved by the fact that Antoninus exempted town councillors expressly from it, and also free men of high rank (honestiores'') in general.
One highlight during his reign occurred in 148, with the 900th anniversary of the foundation of Rome being celebrated by hosting magnificent games in the city. It lasted many days, and a host of exotic animals were killed, including elephants, giraffes, tigers, rhinoceroses, crocodiles and hippopotamuses. While this increased Antoninus's popularity, the frugal emperor had to debase the Roman currency. He decreased the silver purity of the denarius from 89% to 83.5, the actual silver weight dropping from 2.88 grams to 2.68 grams.
Antoninus is a likely candidate for the Antoninus named multiple times in the Talmud as a friend of Rabbi Judah Ha-Nasi. In the Talmudic tractate Avodah Zarah 10a–b, Rabbi Judah—exceptionally wealthy and highly revered in Rome—shared a close friendship with a man named Antoninus (possibly Antoninus Pius), who frequently sought his counsel on spiritual (in this context, Jewish), philosophical, and governance matters. Diplomatic mission to China
cup unearthed from an Eastern Han dynasty (25–220 AD) tomb, Guangxi, China]]
The first group of people claiming to be an ambassadorial mission of Romans to China was recorded in 166 AD by the Hou Hanshu. states that the embassy was likely to be a group of merchants, as many Roman merchants traveled to India and some might have gone beyond, while there are no records of official ambassadors of Rome travelling as far east. The group came to Emperor Huan of Han China and claimed to be an embassy from "Andun" (; for Anton-inus), "king of Daqin" (Rome). As Antoninus Pius died in 161, leaving the empire to his adoptive son Marcus Aurelius (Antoninus), and the envoy arrived in 166, confusion remains about who sent the mission, given that both emperors were named "Antoninus". The Roman mission came from the south (therefore probably by sea), entering China by the frontier province of Jiaozhi at Rinan or Tonkin (present-day northern Vietnam). It brought presents of rhinoceros horns, ivory, and tortoise shell, probably acquired in South Asia. The text states explicitly that it was the first time there had been direct contact between the two countries.
Furthermore, a piece of Republican-era Roman glassware has been found at a Western Han tomb in Guangzhou along the South China Sea, dated to the early 1st century BC. Roman golden medallions made during the reign of Antoninus Pius and perhaps even Marcus Aurelius have been found at Óc Eo in southern Vietnam, then part of the Kingdom of Funan near the Chinese province of Jiaozhi. Roman coins from the reigns of Tiberius to Aurelian have been discovered in Xi'an, China (site of the Han capital Chang'an), although the significantly greater amount of Roman coins unearthed in India suggest the Roman maritime trade for purchasing Chinese silk was centered there, not in China or even the overland Silk Road running through ancient Iran.
Death and legacy
of Antoninus Pius outside the Sanctuary of Demeter and Kore in Eleusis, Greece, imitating Hadrian's Arch in Athens]]
In 156, Antoninus Pius turned 70. He found it difficult to keep himself upright without stays. He started nibbling on dry bread to give him the strength to stay awake through his morning receptions.
Marcus Aurelius had already been created consul with Antoninus in 140, receiving the title of Caesar, i.e., heir apparent. As Antoninus aged, Marcus took on more administrative duties. Marcus's administrative duties increased again after the death, in 156 or 157, of one of Antoninus' most trusted advisers, Marcus Gavius Maximus.
For twenty years, Gavius Maximus had been praetorian prefect, an office that was as much secretarial as military. Gavius Maximus had been awarded with the consular insignia and the honours due a senator. He had a reputation as a most strict disciplinarian (vir severissimus, according to Historia Augusta) and some fellow equestrian procurators held lasting grudges against him. A procurator named Gaius Censorius Niger died while Gavius Maximus was alive. In his will, Censorius Niger vilified Maximus, creating serious embarrassment for one of the heirs, the orator Fronto.
Gavius Maximus' death initiated a change in the ruling team. It has been speculated that it was the legal adviser Lucius Volusius Maecianus who assumed the role of grey eminence. Maecianus was briefly Praefect of Egypt, and subsequently Praefectus annonae in Rome. If it was Maecianus who rose to prominence, he may have risen precisely in order to prepare the incoming—and unprecedented—joint succession. In 160, Marcus and Lucius were designated joint consuls for the following year. Perhaps Antoninus was already ill; in any case, he died before the year was out, probably on 7 March.}}
, Madrid]]
Two days before his death, the biographer reports, Antoninus was at his ancestral estate at Lorium, in Etruria, He ate Alpine cheese at dinner quite greedily. In the night he vomited; he had a fever the next day. The day after that, he summoned the imperial council, and passed the state and his daughter to Marcus. The emperor gave the keynote to his life in the last word that he uttered: when the tribune of the night-watch came to ask the password, he responded, "aequanimitas" (equanimity). He then turned over, as if going to sleep, and died. His death closed out the longest reign since Augustus (surpassing Tiberius by a couple of months). His record for the second-longest reign would be unbeaten for 168 years, until 329 when it was surpassed by Constantine the Great.
Antoninus Pius' funeral ceremonies were, in the words of the biographer, "elaborate". If his funeral followed the pattern of past funerals, his body would have been incinerated on a pyre at the Campus Martius, while his spirit would rise to the gods' home in the heavens. However, it seems that this was not the case: according to his Historia Augusta biography (which seems to reproduce an earlier, detailed report) Antoninus' body (and not his ashes) was buried in Hadrian's mausoleum. After a seven-day interval (justitium), Marcus and Lucius nominated their father for deification. In contrast to their behaviour during Antoninus' campaign to deify Hadrian, the senate did not oppose the emperors' wishes. A flamen, or cultic priest, was appointed to minister the cult of the deified Antoninus, now Divus Antoninus.
A column was dedicated to Antoninus on the Campus Martius,
Antoninus in many ways was the ideal of the landed gentleman praised not only by ancient Romans, but also by later scholars of classical history, such as Edward Gibbon or the author of the article on Antoninus Pius in the Encyclopædia Britannica Eleventh Edition.
}}
Some historians have a less positive view of his reign. According to the historian J. B. Bury,
}}
German historian Ernst Kornemann has had it in his Römische Geschichte [2 vols., ed. by H. Bengtson, Stuttgart 1954] that the reign of Antoninus comprised "a succession of grossly wasted opportunities", given the upheavals that were to come. There is more to this argument, given that the Parthians in the East were themselves soon to make no small amount of mischief after Antoninus' death. Kornemann's brief is that Antoninus might have waged preventive wars to head off these outsiders. Michael Grant agrees that it is possible that had Antoninus acted decisively sooner (it appears that, on his death bed, he was preparing a large-scale action against the Parthians), the Parthians might have been unable to choose their own time, but current evidence is not conclusive. Grant opines that Antoninus and his officers did act in a resolute manner dealing with frontier disturbances of his time, although conditions for long-lasting peace were not created. On the whole, according to Grant, Marcus Aurelius' eulogistic picture of Antoninus seems deserved, and Antoninus appears to have been a conservative and nationalistic (although he respected and followed Hadrian's example of Philhellenism moderately) emperor who was not tainted by the blood of either citizen or foe, combined and maintained Numa Pompilius' good fortune, pacific dutifulness and religious scrupulousness, and whose laws removed anomalies and softened harshnesses.
Krzysztof Ulanowski argues that the claims of military inability are exaggerated, considering that although the sources praise Antoninus' love for peace and his efforts "rather to defend, than enlarge the provinces", he could hardly be considered a pacifist, as shown by the conquest of the Lowlands, the building of the Antonine Wall and the expansion of Germania Superior. Ulanowski also praises Antoninus for being successful in deterrence by diplomatic means.
Descendants
Although only one of his four children survived to adulthood, Antoninus came to be ancestor to four generations of prominent Romans, including the Emperor Commodus. Hans-Georg Pflaum has identified five direct descendants of Antoninus and Faustina who were consuls in the first half of the third century.
# Marcus Aurelius Fulvus Antoninus (died before 138), died young without issue
# Marcus Galerius Aurelius Antoninus (died before 138), died young without issue
# Aurelia Fadilla (died in 135), who married Lucius Plautius Lamia Silvanus, suffect consul in 145; no children known for certain.
# Annia Galeria Faustina the Younger (21 September between 125 and 130–175), had several children; those who had children were:
## Annia Aurelia Galeria Lucilla (7 March 150–182?), whose children included:
### Tiberius Claudius Pompeianus
## Annia Galeria Aurelia Faustina (151–?), whose children included:
### Tiberius Claudius Severus Proculus
#### Empress Annia Faustina, Elagabalus' third wife
## Annia Aurelia Fadilla (159–after 211)
## Annia Cornificia Faustina Minor (160–213)
ReferencesSources
;Primary sources
* Cassius Dio, Roman History, Book 70, [https://penelope.uchicago.edu/Thayer/E/Roman/Texts/Cassius_Dio/70*.html English translation]
* Aurelius Victor, Epitome de Caesaribus", [https://web.archive.org/web/20220311020340/http://www.roman-emperors.org/epitome.htm English translation]
* Historia Augusta, The Life of Antoninus Pius, [https://penelope.uchicago.edu/Thayer/E/Roman/Texts/Historia_Augusta/Antoninus_Pius*.html English translation]. Note that the Historia Augusta includes pseudohistorical elements.
;Secondary sources
*
*
*
*
* |author-linkAlison E. Cooley |ref }}
*
*
* Kienast, Dietmar, Römische Kaisertabelle: Grundzüge einer römischen Kaiserchronologie, Darmstadt, 1990.
* This source lists:
** Bossart-Mueller, Zur Geschichte des Kaisers A. (1868)
** Bryant, The Reign of Antonine (Cambridge Historical Essays, 1895)
** Lacour-Gayet, A. le Pieux et son Temps (1888)
**
Further reading
* Hund, Ragnar (2017). Studien zur Außenpolitik der Kaiser Antoninus Pius und Marc Aurel im Schatten der Markomannenkriege [Studies on the foreign policy of the emperors Antoninus Pius and Marcus Aurelius in the shadow of the Marcomannic Wars]. Pharos, vol. 40. Rahden: Verlag Marie Leidorf, .
* Michels, Christoph (2018). Antoninus Pius und die Rollenbilder des römischen Princeps. Herrscherliches Handeln und seine Repräsentation in der Hohen Kaiserzeit [Antoninus Pius and the role models of the Roman Princeps. Imperial activity and its representation in the High Imperial Age]. Berlin/Boston: De Gruyter, .
* Rémy, Bernard (2005). Antonine le Pieux, 138–161. Le siècle d’or de Rome [Antoninus Pius, 138-161. The Golden Age of Rome]. Paris: Fayard, .
External links
Category:86 births
Category:161 deaths
Category:2nd-century Gallo-Roman people
Category:2nd-century Roman emperors
Category:Adult adoptees
Category:Aelii
Category:Ancient Roman adoptees
Category:Arrii
Category:Aurelii Fulvi
Category:Burials at the Castel Sant'Angelo
Category:Deified Roman emperors
Category:Gaulish people
Category:2nd-century Roman consuls
Category:Imperial Roman praetors
Category:Nerva–Antonine dynasty
Category:People from Gallia Narbonensis
Category:People from Lanuvio
Category:Roman governors of Asia
Category:Roman quaestors
Category:Roman pharaohs | https://en.wikipedia.org/wiki/Antoninus_Pius | 2025-04-05T18:25:36.459435 |
1259 | August 3 | Events
Pre-1600
*8 – Roman Empire general Tiberius defeats the Dalmatae on the river Bosna.
* 435 – Deposed Ecumenical Patriarch of Constantinople Nestorius, considered the originator of Nestorianism, is exiled by Roman Emperor Theodosius II to a monastery in Egypt.
* 881 – Battle of Saucourt-en-Vimeu: Louis III of France defeats the Vikings, an event celebrated in the poem Ludwigslied.
* 908 – Battle of Eisenach: An invading Hungarian force defeats an East Frankish army under Duke Burchard of Thuringia.
*1031 – Olaf II of Norway is canonized as Saint Olaf by Grimketel, the English Bishop of Selsey.
*1057 – Frederick of Lorraine elected as Pope Stephen IX.
*1342 – The Siege of Algeciras commences during the Spanish Reconquista.
*1492 – Christopher Columbus sets sail from Palos de la Frontera, Spain.
*1527 – The first known letter from North America is sent by John Rut while at St. John's, Newfoundland.
1601–1900
*1601 – Long War: Austria captures Transylvania in the Battle of Goroszló.
*1645 – Thirty Years' War: The Second Battle of Nördlingen sees French forces defeating those of the Holy Roman Empire.
*1678 – Robert LaSalle builds the Le Griffon, the first known ship built on the Great Lakes.
*1778 – The theatre La Scala in Milan is inaugurated with the première of Antonio Salieri's Europa riconosciuta.
*1795 – Treaty of Greenville is signed, ending the Northwest Indian War in the Ohio Country.
*1811 – First ascent of Jungfrau, third highest summit in the Bernese Alps by brothers Johann Rudolf and Hieronymus Meyer.
*1829 – The Treaty of Lewistown is signed by the Shawnee and Seneca peoples, exchanging land in Ohio for land west of the Mississippi River.
*1852 – Harvard University wins the first Boat Race between Yale University and Harvard. The race is also known as the first ever American intercollegiate athletic event.
*1859 – The American Dental Association is founded in Niagara Falls, New York.
*1900 – The Firestone Tire and Rubber Company is founded.
1901–present
*1903 – Macedonian rebels in Kruševo proclaim the Kruševo Republic, which exists for only ten days before Ottoman Turks lay waste to the town.
*1907 – Judge Kenesaw Mountain Landis fines Standard Oil of Indiana a record $29.4 million for illegal rebating to freight carriers; the conviction and fine are later reversed on appeal.
*1914 – World War I: Germany declares war against France, while Romania declares its neutrality.
*1921 – Major League Baseball Commissioner Kenesaw Mountain Landis confirms the ban of the eight Chicago Black Sox, the day after they were acquitted by a Chicago court.
*1936 – Jesse Owens wins the 100 metre dash, defeating Ralph Metcalfe, at the Berlin Olympics.
* 1936 – A fire wipes out Kursha-2 in the Meshchera Lowlands, Ryazan Oblast, Russia, killing 1,200 and leaving only 20 survivors.
*1940 – World War II: Italian forces begin the invasion of British Somaliland.
*1946 – Santa Claus Land, the world's first themed amusement park, opens in Santa Claus, Indiana, United States.
*1948 – Whittaker Chambers accuses Alger Hiss of being a communist and a spy for the Soviet Union.
*1949 – The Basketball Association of America and the National Basketball League finalize the merger that would create the National Basketball Association.
*1958 – The world's first nuclear submarine, the USS Nautilus, becomes the first vessel to complete a submerged transit of the geographical North Pole.
*1959 – Portugal's state police force PIDE fires upon striking workers in Bissau, Portuguese Guinea, killing over 50 people.
*1960 – Niger gains independence from France.
*1972 – The United States Senate ratifies the Anti-Ballistic Missile Treaty.
*1975 – A privately chartered Boeing 707 strikes a mountain peak and crashes near Agadir, Morocco, killing 188.
*1977 – Tandy Corporation announces the TRS-80, one of the world's first mass-produced personal computers.
*1981 – Senegalese opposition parties, under the leadership of Mamadou Dia, launch the Antiimperialist Action Front – Suxxali Reew Mi.
*1997 – Oued El-Had and Mezouara massacre in Algeria: A total of 116 villagers killed, 40 in Oued El-Had and 76 in Mezouara.
* 1997 – The tallest free-standing structure in the Southern Hemisphere, Sky Tower in downtown Auckland, New Zealand, opens after two-and-a-half years of construction.
*2004 – The pedestal of the Statue of Liberty reopens after being closed since the September 11 attacks.
*2005 – President of Mauritania Maaouya Ould Sid'Ahmed Taya is overthrown in a military coup while attending the funeral of King Fahd in Saudi Arabia.
*2007 – Former deputy director of the Chilean secret police Raúl Iturriaga is captured after having been on the run following a conviction for kidnapping.
*2010 – Widespread rioting erupts in Karachi, Pakistan, after the assassination of a local politician, leaving at least 85 dead and at least 17 billion Pakistani rupees (US$200 million) in damage.
*2014 – A 6.1 magnitude earthquake kills at least 617 people and injures more than 2,400 in Yunnan, China.
* 2014 – The genocide of Yazidis by ISIL begins.
*2018 – Two burka-clad men kill 29 people and injure more than 80 in a suicide attack on a Shia mosque in eastern Afghanistan.
*2019 – Six hundred protesters, including opposition leader Lyubov Sobol, are arrested in an election protest in Moscow, Russia.
* 2019 – Twenty-three people are killed and 22 injured in a mass shooting in El Paso, Texas.
*2023 – Worst floods hit major parts of Slovenia.
Births
Pre-1600
*1442 – Galeotto I Pico, Duke of Mirandola (d. 1499)
*1486 – Imperia Cognati, Italian courtesan (d. 1512)
*1491 – Maria of Jülich-Berg, German noblewoman (d. 1543)
*1509 – Étienne Dolet, French scholar and translator (d. 1546)
1601–1900
*1622 – Wolfgang Julius, Count of Hohenlohe-Neuenstein, German field marshal (d. 1698)
*1692 – John Henley, English minister and poet (d. 1759)
*1724 – Alvise Foscari, Venetian admiral (d. 1790)
*1766 – Aaron Chorin, Hungarian rabbi and author (d. 1844)
*1770 – Frederick William III of Prussia (d. 1840)
*1803 – Joseph Paxton, English gardener and architect, designed The Crystal Palace (d. 1865)
*1808 – Hamilton Fish, American lawyer and politician, 26th United States Secretary of State (d. 1893)
*1811 – Elisha Otis, American businessman, founded the Otis Elevator Company (d. 1861)
*1817 – Archduke Albrecht, Duke of Teschen (d. 1895)
*1823 – Thomas Francis Meagher, Irish-American revolutionary and military leader, territorial governor of Montana (d. 1867)
*1832 – Ivan Zajc, Croatian composer, conductor, and director (d. 1914)
*1837 – Julien Reverchon, French botanist (d. 1905)
*1840 – John Bigham, 1st Viscount Mersey, English jurist and politician (d. 1929)
*1850 – Reginald Heber Roe, English-Australian swimmer, tennis player, and academic (d. 1926)
*1856 – Alfred Deakin, Australian lawyer and politician, 2nd Prime Minister of Australia (d. 1919)
*1860 – William Kennedy Dickson, French-Scottish actor, director, and producer (d. 1935)
*1863 – Géza Gárdonyi, Hungarian author and journalist (d. 1922)
*1867 – Stanley Baldwin, English businessman and politician, Prime Minister of the United Kingdom (d. 1947)
*1871 – Vernon Louis Parrington, American historian and scholar (d. 1929)
*1872 – Haakon VII of Norway (d. 1957)
*1886 – Maithili Sharan Gupt, Indian poet and playwright (d. 1964)
*1887 – Rupert Brooke, English poet (d. 1915)
* 1887 – August Wesley, Finnish journalist, trade unionist, and revolutionary (d. ?)
*1890 – Konstantin Melnikov, Russian architect, designed the Rusakov Workers' Club (d. 1974)
*1894 – Harry Heilmann, American baseball player and sportscaster (d. 1951)
*1895 – Allen Bathurst, Lord Apsley, English politician (d. 1942)
*1896 – Ralph Horween, American football player and coach (d. 1997)
*1899 – Louis Chiron, Monegasque race car driver (d. 1979)
*1900 – Ernie Pyle, American soldier and journalist (d. 1945)
* 1900 – John T. Scopes, American educator (d. 1970)1901–present*1901 – John C. Stennis, American lawyer and politician (d. 1995)
* 1901 – Stefan Wyszyński, Polish cardinal (d. 1981)
*1902 – Regina Jonas, German rabbi (d. 1944)
* 1902 – David Buttolph, American film composer (d. 1983)
*1903 – Habib Bourguiba, Tunisian journalist and politician, 1st President of the Republic of Tunisia (d. 2000)
*1904 – Dolores del Río, Mexican actress (d. 1983)
* 1904 – Clifford D. Simak, American journalist and author (d. 1988)
*1905 – Franz König, Austrian cardinal (d. 2004)
*1907 – Lawrence Brown, American trombonist and composer (d. 1988)
* 1907 – Ernesto Geisel, Brazilian general and politician, 29th President of Brazil (d. 1996)
* 1907 – Yang Shangkun, Chinese politician, and 4th President of China (d. 1998)
*1909 – Walter Van Tilburg Clark, American author and educator (d. 1971)
*1911 – Alex McCrindle, Scottish actor and producer (d. 1990)
*1912 – Fritz Hellwig, German politician (d. 2017)
*1913 – Mel Tolkin, Ukrainian-American screenwriter and producer (d. 2007)
*1916 – Shakeel Badayuni, Indian poet and songwriter (d. 1970)
* 1916 – José Manuel Moreno, Argentinian footballer and manager (d. 1978)
*1917 – Les Elgart, American trumpet player and bandleader (d. 1995)
*1918 – James MacGregor Burns, American historian, political scientist, and author (d. 2014)
* 1918 – Sidney Gottlieb, American chemist and theorist (d. 1999)
* 1918 – Larry Haines, American actor (d. 2008)
* 1918 – Eddie Jefferson, American singer-songwriter (d. 1979)
*1920 – Norman Dewis, English test driver and engineer (d. 2019)
* 1920 – Max Fatchen, Australian journalist and author (d. 2012)
* 1920 – P. D. James, English author (d. 2014)
* 1920 – Charlie Shavers, American trumpet player and composer (d. 1971)
* 1920 – Elmar Tampõld, Estonian-Canadian architect (d. 2013)
*1921 – Richard Adler, American composer and producer (d. 2012)
* 1921 – Hayden Carruth, American poet and critic (d. 2008)
* 1921 – Marilyn Maxwell, American actress (d. 1972)
*1922 – John Eisenhower, American historian, general, and diplomat, 45th United States Ambassador to Belgium (d. 2013)
*1923 – Jean Hagen, American actress (d. 1977)
* 1923 – Pope Shenouda III of Alexandria (d. 2012)
*1924 – Connie Converse, American musician and singer-songwriter
* 1924 – Leon Uris, American soldier and author (d. 2003)
*1925 – Marv Levy, American-Canadian football player, coach, and manager
* 1925 – Lewis Rowland, American neurologist (d. 2017)
*1926 – Rona Anderson, Scottish actress (d. 2013)
* 1926 – Tony Bennett, American singer and actor (d. 2023)
* 1926 – Anthony Sampson, English journalist and author (d. 2004)
* 1926 – Gordon Scott, American actor (d. 2007)
* 1926 – Rushdy Abaza, Egyptian actor (d. 1980)
*1928 – Cécile Aubry, French actress, director, and screenwriter (d. 2010)
* 1928 – Henning Moritzen, Danish actor (d. 2012)
*1930 – James Komack, American actor, director, producer, and screenwriter (d. 1997)
*1933 – Pat Crawford, Australian cricketer (d. 2009)
*1934 – Haystacks Calhoun, American wrestler and actor (d. 1989)
* 1934 – Michael Chapman, English bassoon player (d. 2005)
* 1934 – Jonas Savimbi, Angolan general, founded UNITA (d. 2002)
*1935 – John Erman, American actor, director, and producer (d. 2021)
* 1935 – Georgy Shonin, Ukrainian-Russian general, pilot, and cosmonaut (d. 1997)
* 1935 – Vic Vogel, Canadian pianist, composer, and bandleader (d. 2019)
*1936 – Jerry G. Bishop, American radio and television host (d. 2013)
* 1936 – Edward Petherbridge, English actor
*1937 – Steven Berkoff, English actor, director, and playwright
* 1937 – Roland Burris, American lawyer and politician, 39th Illinois Attorney General
* 1937 – Duncan Sharpe, Pakistani-Australian cricketer
*1938 – Terry Wogan, Irish radio and television host (d. 2016)
*1939 – Jimmie Nicol, English drummer
* 1939 – Apoorva Sengupta, Indian general and cricketer (d. 2013)
*1940 – Lance Alworth, American football player
* 1940 – Martin Sheen, American actor and producer
* 1940 – James Tyler, American guitarist and songwriter (d. 2010)
*1941 – Beverly Lee, American singer
* 1941 – Martha Stewart, American businesswoman, publisher, and author, founded Martha Stewart Living Omnimedia
*1943 – Béla Bollobás, Hungarian-English mathematician and academic
* 1943 – Princess Christina, Mrs. Magnuson of Sweden
* 1943 – Steven Millhauser, American novelist and short story writer
*1944 – Morris Berman, American historian and social critic
* 1944 – Nino Bravo, Spanish singer (d. 1973)
*1945 – Eamon Dunphy, Irish footballer and journalist
*1946 – Robert Ayling, English businessman
* 1946 – Jack Straw, English lawyer and politician, Shadow Deputy Prime Minister of the United Kingdom
* 1946 – John York, American bass player, songwriter, and producer
*1947 – Ralph Wright, English footballer (d. 2020)
*1948 – Jean-Pierre Raffarin, French lawyer and politician, 166th Prime Minister of France
*1949 – Philip Casnoff, American actor and director
* 1949 – B. B. Dickerson, American bass player and songwriter (d. 2021)
* 1949 – Sue Slipman, English politician
*1950 – Linda Howard, American author
* 1950 – John Landis, American actor, director, producer, and screenwriter
* 1950 – Jo Marie Payton, American actress and singer
* 1950 – Ernesto Samper, Colombian economist and politician, 29th President of Colombia
*1951 – Marcel Dionne, Canadian ice hockey player
* 1951 – Jay North, American actor
*1952 – Osvaldo Ardiles, Argentinian footballer and manager
*1953 – Ian Bairnson, Scottish saxophonist and keyboard player (d. 2023)
* 1953 – Marlene Dumas, South African painter
*1954 – Michael Arthur, English physician and academic
* 1954 – Gary Peters, English footballer and manager
*1956 – Kirk Brandon, English singer-songwriter and guitarist
* 1956 – Todd Christensen, American football player and sportscaster (d. 2013)
* 1956 – Dave Cloud, American singer-songwriter and actor (d. 2015)
* 1956 – Balwinder Sandhu, Indian cricketer and coach
*1957 – Bodo Rudwaleit, German footballer and manager
* 1957 – Kate Wilkinson, New Zealand lawyer and politician, 11th New Zealand Minister of Conservation
*1958 – Lindsey Hilsum, English journalist and author
* 1958 – Ana Kokkinos, Australian director and screenwriter
*1959 – Martin Atkins, English drummer and producer
* 1959 – Mike Gminski, American basketball player and sportscaster
* 1959 – John C. McGinley, American actor and producer
* 1959 – Koichi Tanaka, Japanese chemist and engineer, Nobel Prize laureate
*1960 – Tim Mayotte, American tennis player and coach
* 1960 – Gopal Sharma, Indian cricketer
*1961 – Molly Hagan, American actress
* 1961 – Nick Harvey, English politician, Minister of State for the Armed Forces
* 1961 – Lee Rocker, American bassist
*1963 – Tasmin Archer, English pop singer
* 1963 – Frano Botica, New Zealand rugby player and coach
* 1963 – James Hetfield, American singer-songwriter and guitarist
* 1963 – David Knox, Australian rugby player
* 1963 – Ed Roland, American singer-songwriter, guitarist, and producer
* 1963 – Lisa Ann Walter, American actress, producer, and screenwriter
* 1963 – Isaiah Washington, American actor and producer
* 1964 – Ralph Knibbs, British rugby union player
* 1964 – Nate McMillan, American basketball player and coach
* 1964 – Kevin Sumlin, American football player and coach
* 1964 – Abhisit Vejjajiva, English-Thai economist and politician, 27th Prime Minister of Thailand
*1966 – Brent Butt, Canadian actor, producer, and screenwriter
* 1966 – Gizz Butt, English singer-songwriter and guitarist
* 1966 – Eric Esch, American wrestler, boxer, and mixed martial artist
* 1966 – Robert Laimer, Austrian politician
*1967 – Mathieu Kassovitz, French actor, director, producer, and screenwriter
* 1967 – Skin, English singer and guitarist
*1968 – Rod Beck, American baseball player (d. 2007)
*1969 – Doug Overton, American basketball player and coach
*1970 – Stephen Carpenter, American guitarist and songwriter
* 1970 – Gina G, Australian singer-songwriter
* 1970 – Masahiro Sakurai, Japanese video game designer
*1971 – Forbes Johnston, Scottish footballer (d. 2007)
* 1971 – DJ Spinderella, American DJ, rapper, producer, and actress
*1972 – Sandis Ozoliņš, Latvian ice hockey player and politician
*1973 – Jay Cutler, American bodybuilder
* 1973 – Nikos Dabizas, Greek footballer
* 1973 – Michael Ealy, American actor
* 1973 – Chris Murphy, American politician
*1975 – Wael Gomaa, Egyptian footballer
* 1975 – Argyro Strataki, Greek heptathlete
*1976 – Troy Glaus, American baseball player
*1977 – Tom Brady, American football player
* 1977 – Justin Lehr, American baseball player
* 1977 – Óscar Pereiro, Spanish cyclist and footballer
*1978 – Joi Chua, Singaporean singer-songwriter and actress
* 1978 – Mariusz Jop, Polish footballer
* 1978 – Jenny Tinmouth, English motorcycle racer
* 1978 – Dimitrios Zografakis, Greek footballer
*1979 – Evangeline Lilly, Canadian actress
*1980 – Nadia Ali, Libyan-American singer-songwriter
* 1980 – Dominic Moore, Canadian ice hockey player
* 1980 – Tony Pashos, American football player
* 1980 – Brandan Schieppati, American singer-songwriter and guitarist
* 1980 – Hannah Simone, Canadian television host and actress
*1981 – Fikirte Addis, Ethiopian fashion designer
* 1981 – Travis Bowyer, American baseball player
* 1981 – Pablo Ibáñez, Spanish footballer
*1982 – Kaspar Kokk, Estonian skier
* 1982 – Jesse Lumsden, Canadian bobsledder and football player
* 1982 – Damien Sandow, American wrestler
*1983 – Ryan Carter, American ice hockey player
* 1983 – Mark Reynolds, American baseball player
*1984 – Yasin Avcı, Turkish footballer
* 1984 – Sunil Chhetri, Indian footballer
* 1984 – Matt Joyce, American baseball player
* 1984 – Ryan Lochte, American swimmer
* 1984 – Chris Maurer, former bassist of ska band Suburban Legends
*1985 – Georgina Haig, Australian actress
* 1985 – Brent Kutzle, American bass player and producer
* 1985 – Ats Purje, Estonian footballer
* 1985 – Sonny Bill Williams, New Zealand rugby player and boxer
*1986 – Charlotte Casiraghi, Monégasque journalist, co-founded Ever Manifesto
* 1986 – Darya Domracheva, Belarusian biathlete
*1987 – Kim Hyung-jun, South Korean singer and dancer <!-- "Kim" is family name -->
* 1987 – Chris McQueen, Australian-English rugby league player
*1988 – Denny Cardin, Italian footballer
* 1988 – Leigh Tiffin, American football player
* 1988 – Sven Ulreich, German footballer
*1989 – Jules Bianchi, French race car driver (d. 2015)
* 1989 – Sam Hutchinson, English footballer
* 1989 – Tyrod Taylor, American football player
* 1989 – Nick Viergever, Dutch footballer
*1990 – Jourdan Dunn, English model
* 1990 – Kang Min-kyung, South Korean singer
*1992 – Gamze Bulut, Turkish runner
* 1992 – Gesa Felicitas Krause, German runner
* 1992 – Diāna Marcinkēviča, Latvian tennis player
* 1992 – Aljon Mariano, Filipino basketball player
* 1992 – Lum Rexhepi, Finnish footballer
* 1992 – Karlie Kloss, American fashion model
*1993 – Ola Abidogun, English sprinter
* 1993 – Yurina Kumai, Japanese singer
*1994 – Kwon Alexander, American football player
* 1994 – Manaia Cherrington, New Zealand rugby league player
* 1994 – Esther Earl, American author, vlogger, and online personality. (d. 2010) Celebrated annually as Esther day
* 1994 – Todd Gurley, American football player
* 1994 – Younghoe Koo, South Korean-born American football player
*1995 – Zac Gallen, American baseball player
* 1995 – Victoria Kan, Russian tennis player
*1996 – Alec Bohm, American baseball player
* 1996 – Bokondji Imama, Canadian ice hockey player
* 1996 – Derwin James, American football player
*1997 – Luis Robert Jr., Cuban baseball player
*1999 – Zach Wilson, American football player
* 1999 – Brahim Díaz, Spanish-Moroccan footballer
* 1999 – Yoo Yeon-jung, South Korean singer
<!--Do not add yourself or people without Wikipedia articles to this list. Do not trust "this year in history" websites for accurate date information. Do not link multiple occurrences of the same year, just link the first occurrence.-->
Deaths
Pre-1600
* 908 – Burchard, duke of Thuringia
* 908 – Egino, duke of Thuringia
* 908 – Rudolf I, bishop of Würzburg
* 925 – Cao, Chinese empress dowager
* 979 – Thietmar, margrave of Meissen
*1003 – At-Ta'i, Abbasid caliph (b. 929)
*1355 – Bartholomew de Burghersh, 1st Baron Burghersh, English nobleman
*1460 – James II, king of Scotland (b. 1430)
*1527 – Scaramuccia Trivulzio, Italian cardinal
*1530 – Francesco Ferruccio, Italian captain (b. 1489)
*1546 – Antonio da Sangallo the Younger, Italian architect, designed the Apostolic Palace (b. 1484)
* 1546 – Étienne Dolet, French scholar and translator (b. 1509)
1601–1900
*1604 – Bernardino de Mendoza, Spanish commander and diplomat (b. 1540)
*1621 – Guillaume du Vair, French lawyer and author (b. 1556)
*1712 – Joshua Barnes, English historian and scholar (b. 1654)
*1720 – Anthonie Heinsius, Dutch politician (b. 1641)
*1721 – Grinling Gibbons, Dutch-English sculptor and woodcarver (b. 1648)
*1761 – Johann Matthias Gesner, German scholar and academic (b. 1691)
*1773 – Stanisław Konarski, Polish poet and playwright (b. 1700)
*1780 – Étienne Bonnot de Condillac, French epistemologist and philosopher (b. 1715)
*1792 – Richard Arkwright, English engineer and businessman (b. 1732)
*1797 – Jeffery Amherst, 1st Baron Amherst, English field marshal and politician, Colonial Governor of Virginia (b. 1717)
*1805 – Christopher Anstey, English author and poet (b. 1724)
*1835 – Wenzel Müller, Austrian composer and conductor (b. 1767)
*1839 – Dorothea von Schlegel, German author and translator (b. 1763)
*1857 – Eugène Sue, French author and politician (b. 1804)
*1866 – Gábor Klauzál, Hungarian politician, Hungarian Minister of Agriculture (b. 1804)
*1867 – Philipp August Böckh, German historian and scholar (b. 1785)
*1877 – William B. Ogden, American businessman and politician, 1st Mayor of Chicago (b. 1805)
*1879 – Joseph Severn, English painter (b. 1793)
*1894 – George Inness, American painter (b. 1825)
1901–present
*1913 – William Lyne, Australian politician, 13th Premier of New South Wales (b. 1844)
*1916 – Roger Casement, Irish poet and activist (b. 1864)
*1917 – Ferdinand Georg Frobenius, German mathematician and academic (b. 1849)
*1920 – Peeter Süda, Estonian organist and composer (b. 1883)
*1922 – Ture Malmgren, Swedish journalist and politician (b. 1851)
*1924 – Joseph Conrad, British novelist (b. 1857)
*1925 – William Bruce, Australian cricketer (b. 1864)
*1929 – Emile Berliner, German-American inventor and businessman, invented the phonograph (b. 1851)
* 1929 – Thorstein Veblen, American economist and sociologist (b. 1857)
*1936 – Konstantin Konik, Estonian surgeon and politician, 19th Estonian Minister of Education (b. 1873)
*1942 – Richard Willstätter, German-Swiss chemist and academic, Nobel Prize laureate (b. 1872)
*1943 – Frumka Płotnicka, Polish resistance fighter during World War II (b. 1914)
*1949 – Ignotus, Hungarian poet and author (b. 1869)
*1954 – Colette, French novelist and journalist (b. 1873)
*1958 – Peter Collins, English race car driver (b. 1931)
*1959 – Herb Byrne, Australian footballer (b. 1887)
*1961 – Hilda Rix Nicholas, Australian artist (b. 1884)
*1964 – Flannery O'Connor, American short story writer and novelist (b. 1925)
*1966 – Lenny Bruce, American comedian, actor, and screenwriter (b. 1925)
*1968 – Konstantin Rokossovsky, Marshal of the Soviet Union during World War II (b. 1896)
*1969 – Alexander Mair, Australian politician, 26th Premier of New South Wales (b. 1889)
*1972 – Giannis Papaioannou, Turkish-Greek composer (b. 1913)
*1973 – Richard Marshall, American general (b. 1895)
*1974 – Edgar Johan Kuusik, Estonian architect and interior designer (b. 1888)
*1975 – Andreas Embirikos, Greek poet and photographer (b. 1901)
*1977 – Makarios III, Cypriot archbishop and politician, 1st President of the Republic of Cyprus (b. 1913)
* 1977 – Alfred Lunt, American actor and director (b. 1892)
*1979 – Bertil Ohlin, Swedish economist and politician, Nobel Prize laureate (b. 1899)
* 1979 – Angelos Terzakis, Greek author and playwright (b. 1907)
*1983 – Carolyn Jones, American actress (b. 1930)
*1992 – Wang Hongwen, Chinese labor activist and politician, member of the Gang of Four (b. 1935)
*1995 – Ida Lupino, English-American actress and director (b. 1918)
* 1995 – Edward Whittemore, American soldier and author (b. 1933)
*1996 – Jørgen Garde, Danish admiral (b. 1939)
*1997 – Pietro Rizzuto, Italian-Canadian lawyer and politician (b. 1934)
*1998 – Alfred Schnittke, Russian composer and journalist (b. 1934)
*1999 – Rod Ansell, Australian hunter (b. 1953)
* 1999 – Byron Farwell, American historian and author (b. 1921)
*2000 – Joann Lõssov, Estonian basketball player and coach (b. 1921)
*2001 – Christopher Hewett, English actor and director (b. 1922)
*2003 – Roger Voudouris, American singer-songwriter and guitarist (b. 1954)
*2004 – Henri Cartier-Bresson, French photographer and painter (b. 1908)
*2005 – Françoise d'Eaubonne, French author and poet (b. 1920)
*2006 – Arthur Lee, American singer-songwriter, guitarist, and producer (b. 1945)
* 2006 – Elisabeth Schwarzkopf, German-English soprano and actress (b. 1915)
*2007 – John Gardner, English author (b. 1926)
* 2007 – Peter Thorup, Danish singer-songwriter, guitarist, and producer (b. 1948)
*2008 – Skip Caray, American sportscaster (b. 1939)
* 2008 – Erik Darling, American singer-songwriter (b. 1933)
* 2008 – Aleksandr Solzhenitsyn, Russian novelist, dramatist and historian, Nobel Prize laureate (b. 1918)
*2009 – Nikolaos Makarezos, Greek soldier and politician, Deputy Prime Minister of Greece (b. 1919)
*2010 – Bobby Hebb, American singer-songwriter (b. 1938)
*2011 – William Sleator, American author (b. 1945)
* 2011 – Bubba Smith, American football player and actor (b. 1945)
*2012 – Frank Evans, American baseball player, coach, and manager (b. 1921)
* 2012 – Martin Fleischmann, Czech-English chemist and academic (b. 1927)
* 2012 – Paul McCracken, American economist and academic (b. 1915)
* 2012 – John Pritchard, American basketball player (b. 1927)
* 2012 – George Shanard, American politician and agribusinessman (b. 1926)
*2013 – John Coombs, English-Monegasque race car driver and businessman (b. 1922)
* 2013 – Jack English Hightower, American lawyer and politician (b. 1926)
* 2013 – Jack Hynes, Scottish-American soccer player and manager (b. 1920)
*2014 – Miangul Aurangzeb, Pakistani captain and politician, 19th Governor of Khyber Pakhtunkhwa (b. 1928)
* 2014 – Edward Clancy, Australian cardinal (b. 1923)
* 2014 – Dorothy Salisbury Davis, American author (b. 1916)
* 2014 – Kenny Drew, Jr., American pianist and composer (b. 1958)
* 2014 – Lydia Yu-Jose, Filipino political scientist and academic (b. 1944)
*2015 – Robert Conquest, English-American historian, poet, and academic (b. 1917)
* 2015 – Mel Farr, American football player and businessman (b. 1944)
* 2015 – Coleen Gray, American actress (b. 1922)
* 2015 – Margot Loyola, Chilean singer-songwriter and guitarist (b. 1918)
* 2015 – Johanna Quandt, German businesswoman (b. 1926)
* 2015 – Jef Murray, American artist and author (b. 1960)
*2020 – John Hume, Northern Irish politician (b. 1937)
*2022 – Jackie Walorski, American politician (b. 1963)
*2023 – Mark Margolis, American actor (b. 1939)
* 2023 – Bram Moolenaar, Dutch software engineer (b. 1961)
* 2024 – Yamini Krishnamurthy, Indian dancer (b. 1940)
<!--Do not add people without Wikipedia articles to this list. Do not trust “this year in history” websites for accurate date information. Do not link multiple occurrences of the same year, just link the first occurrence.-->
Holidays and observances
* Anniversary of the Killing of Pidjiguiti (Guinea-Bissau)
* Armed Forces Day (Equatorial Guinea)
* Christian feast day:
** George Freeman Bragg, W. E. B. Du Bois (Episcopal Church)
** Lydia of Thyatira
** Myrrhbearers (Lutheran Church)
** Nicodemus
** Olaf II of Norway (Translation of the relic)
** Stephen (Discovery of the relic)
** Waltheof of Melrose
** August 3 (Eastern Orthodox liturgics)
* Flag Day (Venezuela)
* Independence Day, celebrates the independence of Niger from France in 1960.
**Arbor Day (Niger)
* National Guard Day (Venezuela)
References
External links
*
*
*
Category:Days of August | https://en.wikipedia.org/wiki/August_3 | 2025-04-05T18:25:36.625576 |
1260 | Advanced Encryption Standard | (Rijndael)
| image | caption Visualization of the AES round function
| designers = Joan Daemen, Vincent Rijmen
| publish date = 1998
| derived from = Square
| derived to = Anubis, Grand Cru, Kalyna
| related to | certification AES winner, CRYPTREC, NESSIE, NSA
| key size 128, 192 or 256 bits
| block size 128 bits
| structure = Substitution–permutation network
| rounds = 10, 12 or 14 (depending on key size)
| cryptanalysis Attacks have been published that are computationally faster than a full brute-force attack, though none as of 2023 are computationally feasible.
For AES-128, the key can be recovered with a computational complexity of 2<sup>126.1</sup> using the biclique attack. For biclique attacks on AES-192 and AES-256, the computational complexities of 2<sup>189.7</sup> and 2<sup>254.4</sup> respectively apply. Related-key attacks can break AES-256 and AES-192 with complexities 2<sup>99.5</sup> and 2<sup>176</sup> in both time and data, respectively.
Another attack was blogged and released as a preprint in 2009. This attack is against AES-256 that uses only two related keys and 2<sup>39</sup> time to recover the complete 256-bit key of a 9-round version, or 2<sup>45</sup> time for a 10-round version with a stronger type of related subkey attack, or 2<sup>70</sup> time for an 11-round version.
}}
The Advanced Encryption Standard (AES), also known by its original name Rijndael (),
AES is a variant of the Rijndael block cipher developed by two Belgian cryptographers, Joan Daemen and Vincent Rijmen, who submitted a proposal to NIST during the AES selection process. Rijndael is a family of ciphers with different key and block sizes. For AES, NIST selected three members of the Rijndael family, each with a block size of 128 bits, but three different key lengths: 128, 192 and 256 bits.
AES has been adopted by the U.S. government. It supersedes the Data Encryption Standard (DES), which was published in 1977. The algorithm described by AES is a symmetric-key algorithm, meaning the same key is used for both encrypting and decrypting the data.
In the United States, AES was announced by the NIST as U.S. FIPS PUB 197 (FIPS 197) on November 26, 2001.
AES is included in the ISO/IEC 18033-3 standard. AES became effective as a U.S. federal government standard on May 26, 2002, after approval by U.S. Secretary of Commerce Donald Evans. AES is available in many different encryption packages, and is the first (and only) publicly accessible cipher approved by the U.S. National Security Agency (NSA) for top secret information when used in an NSA approved cryptographic module. Definitive standards
The Advanced Encryption Standard (AES) is defined in each of:
* FIPS PUB 197: Advanced Encryption Standard (AES)
Description of the ciphers
AES is based on a design principle known as a substitution–permutation network, and is efficient in both software and hardware. Unlike its predecessor DES, AES does not use a Feistel network. AES is a variant of Rijndael, with a fixed block size of 128 bits, and a key size of 128, 192, or 256 bits. By contrast, Rijndael per se is specified with block and key sizes that may be any multiple of 32 bits, with a minimum of 128 and a maximum of 256 bits. Most AES calculations are done in a particular finite field.
AES operates on a 4 × 4 column-major order array of 16 bytes ,,...,}} termed the state:
::<math>
\begin{bmatrix}
b_0 & b_4 & b_8 & b_{12} \\
b_1 & b_5 & b_9 & b_{13} \\
b_2 & b_6 & b_{10} & b_{14} \\
b_3 & b_7 & b_{11} & b_{15}
\end{bmatrix}
</math>
The key size used for an AES cipher specifies the number of transformation rounds that convert the input, called the plaintext, into the final output, called the ciphertext. The number of rounds are as follows:
* 10 rounds for 128-bit keys.
* 12 rounds for 192-bit keys.
* 14 rounds for 256-bit keys.
Each round consists of several processing steps, including one that depends on the encryption key itself. A set of reverse rounds are applied to transform ciphertext back into the original plaintext using the same encryption key.
High-level description of the algorithm
# round keys are derived from the cipher key using the AES key schedule. AES requires a separate 128-bit round key block for each round plus one more.
# Initial round key addition:
## each byte of the state is combined with a byte of the round key using bitwise xor.
# 9, 11 or 13 rounds:
## a non-linear substitution step where each byte is replaced with another according to a lookup table.
## a transposition step where the last three rows of the state are shifted cyclically a certain number of steps.
## a linear mixing operation which operates on the columns of the state, combining the four bytes in each column.
##
# Final round (making 10, 12 or 14 rounds in total):
##
##
##
The step
In the step, each byte <math>a_{i,j}</math> in the state array is replaced with a <math>S(a_{i,j})</math> using an 8-bit substitution box. Before round 0, the state array is simply the plaintext/input. This operation provides the non-linearity in the cipher. The S-box used is derived from the multiplicative inverse over , known to have good non-linearity properties. To avoid attacks based on simple algebraic properties, the S-box is constructed by combining the inverse function with an invertible affine transformation. The S-box is also chosen to avoid any fixed points (and so is a derangement), i.e., <math> S(a_{i,j}) \neq a_{i,j} </math>, and also any opposite fixed points, i.e., <math> S(a_{i,j}) \oplus a_{i,j} \neq \text{FF}_{16} </math>.
While performing the decryption, the step (the inverse of ) is used, which requires first taking the inverse of the affine transformation and then finding the multiplicative inverse.
The step
The step operates on the rows of the state; it cyclically shifts the bytes in each row by a certain offset. For AES, the first row is left unchanged. Each byte of the second row is shifted one to the left. Similarly, the third and fourth rows are shifted by offsets of two and three respectively. In this way, each column of the output state of the step is composed of bytes from each column of the input state. The importance of this step is to avoid the columns being encrypted independently, in which case AES would degenerate into four independent block ciphers. The step
In the step, the four bytes of each column of the state are combined using an invertible linear transformation. The function takes four bytes as input and outputs four bytes, where each input byte affects all four output bytes. Together with , provides diffusion in the cipher.
During this operation, each column is transformed using a fixed matrix (matrix left-multiplied by column gives new value of column in the state):
::<math>
\begin{bmatrix}
b_{0,j} \\ b_{1,j} \\ b_{2,j} \\ b_{3,j}
\end{bmatrix} = \begin{bmatrix}
2 & 3 & 1 & 1 \\
1 & 2 & 3 & 1 \\
1 & 1 & 2 & 3 \\
3 & 1 & 1 & 2
\end{bmatrix} \begin{bmatrix}
a_{0,j} \\ a_{1,j} \\ a_{2,j} \\ a_{3,j}
\end{bmatrix}
\qquad 0 \le j \le 3
</math>
Matrix multiplication is composed of multiplication and addition of the entries. Entries are bytes treated as coefficients of polynomial of order <math>x^7</math>. Addition is simply XOR. Multiplication is modulo irreducible polynomial <math>x^8+x^4+x^3+x+1</math>. If processed bit by bit, then, after shifting, a conditional XOR with 1B<sub>16</sub> should be performed if the shifted value is larger than FF<sub>16</sub> (overflow must be corrected by subtraction of generating polynomial). These are special cases of the usual multiplication in <math>\operatorname{GF}(2^8)</math>.
In more general sense, each column is treated as a polynomial over <math>\operatorname{GF}(2^8)</math> and is then multiplied modulo <math>{01}_{16} \cdot z^4+{01}_{16}</math> with a fixed polynomial <math>c(z) {03}_{16} \cdot z^3 + {01}_{16} \cdot z^2 +{01}_{16} \cdot z + {02}_{16}</math>. The coefficients are displayed in their hexadecimal equivalent of the binary representation of bit polynomials from <math>\operatorname{GF}(2)[x]</math>. The step can also be viewed as a multiplication by the shown particular MDS matrix in the finite field <math>\operatorname{GF}(2^8)</math>. This process is described further in the article Rijndael MixColumns. The
operation (⊕).]]
In the step, the subkey is combined with the state. For each round, a subkey is derived from the main key using Rijndael's key schedule; each subkey is the same size as the state. The subkey is added by combining of the state with the corresponding byte of the subkey using bitwise XOR.
Optimization of the cipher
On systems with 32-bit or larger words, it is possible to speed up execution of this cipher by combining the and steps with the step by transforming them into a sequence of table lookups. This requires four 256-entry 32-bit tables (together occupying 4096 bytes). A round can then be performed with 16 table lookup operations and 12 32-bit exclusive-or operations, followed by four 32-bit exclusive-or operations in the step. Alternatively, the table lookup operation can be performed with a single 256-entry 32-bit table (occupying 1024 bytes) followed by circular rotation operations.
Using a byte-oriented approach, it is possible to combine the , , and steps into a single round operation.
Security
The National Security Agency (NSA) reviewed all the AES finalists, including Rijndael, and stated that all of them were secure enough for U.S. Government non-classified data. In June 2003, the U.S. Government announced that AES could be used to protect classified information:
<blockquote>The design and strength of all key lengths of the AES algorithm (i.e., 128, 192 and 256) are sufficient to protect classified information up to the SECRET level. TOP SECRET information will require use of either the 192 or 256 key lengths. The implementation of AES in products intended to protect national security systems and/or information must be reviewed and certified by NSA prior to their acquisition and use.</blockquote>
AES has 10 rounds for 128-bit keys, 12 rounds for 192-bit keys, and 14 rounds for 256-bit keys.
Known attacks
For cryptographers, a cryptographic "break" is anything faster than a brute-force attacki.e., performing one trial decryption for each possible key in sequence )}}. A break can thus include results that are infeasible with current technology. Despite being impractical, theoretical breaks can sometimes provide insight into vulnerability patterns. The largest successful publicly known brute-force attack against a widely implemented block-cipher encryption algorithm was against a 64-bit RC5 key by distributed.net in 2006.
The key space increases by a factor of 2 for each additional bit of key length, and if every possible value of the key is equiprobable; this translates into a doubling of the average brute-force key search time with every additional bit of key length. This implies that the effort of a brute-force search increases exponentially with key length. Key length in itself does not imply security against attacks, since there are ciphers with very long keys that have been found to be vulnerable.
AES has a fairly simple algebraic framework. In 2002, a theoretical attack, named the "XSL attack", was announced by Nicolas Courtois and Josef Pieprzyk, purporting to show a weakness in the AES algorithm, partially due to the low complexity of its nonlinear components. Since then, other papers have shown that the attack, as originally presented, is unworkable; see XSL attack on block ciphers.
During the AES selection process, developers of competing algorithms wrote of Rijndael's algorithm "we are concerned about [its] use ... in security-critical applications." In October 2000, however, at the end of the AES selection process, Bruce Schneier, a developer of the competing algorithm Twofish, wrote that while he thought successful academic attacks on Rijndael would be developed someday, he "did not believe that anyone will ever discover an attack that will allow someone to read Rijndael traffic."
By 2006, the best known attacks were on 7 rounds for 128-bit keys, 8 rounds for 192-bit keys, and 9 rounds for 256-bit keys.
Until May 2009, the only successful published attacks against the full AES were side-channel attacks on some specific implementations. In 2009, a new related-key attack was discovered that exploits the simplicity of AES's key schedule and has a complexity of 2<sup>119</sup>. In December 2009 it was improved to 2<sup>99.5</sup>. However, related-key attacks are not of concern in any properly designed cryptographic protocol, as a properly designed protocol (i.e., implementational software) will take care not to allow related keys, essentially by constraining an attacker's means of selecting keys for relatedness.
Another attack was blogged by Bruce Schneier
on July 30, 2009, and released as a preprint
on August 3, 2009. This new attack, by Alex Biryukov, Orr Dunkelman, Nathan Keller, Dmitry Khovratovich, and Adi Shamir, is against AES-256 that uses only two related keys and 2<sup>39</sup> time to recover the complete 256-bit key of a 9-round version, or 2<sup>45</sup> time for a 10-round version with a stronger type of related subkey attack, or 2<sup>70</sup> time for an 11-round version. 256-bit AES uses 14 rounds, so these attacks are not effective against full AES.
The practicality of these attacks with stronger related keys has been criticized, for instance, by the paper on chosen-key-relations-in-the-middle attacks on AES-128 authored by Vincent Rijmen in 2010.
In November 2009, the first known-key distinguishing attack against a reduced 8-round version of AES-128 was released as a preprint.
This known-key distinguishing attack is an improvement of the rebound, or the start-from-the-middle attack, against AES-like permutations, which view two consecutive rounds of permutation as the application of a so-called Super-S-box. It works on the 8-round version of AES-128, with a time complexity of 2<sup>48</sup>, and a memory complexity of 2<sup>32</sup>. 128-bit AES uses 10 rounds, so this attack is not effective against full AES-128.
The first key-recovery attacks on full AES were by Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger, and were published in 2011. The attack is a biclique attack and is faster than brute force by a factor of about four. It requires 2<sup>126.2</sup> operations to recover an AES-128 key. For AES-192 and AES-256, 2<sup>190.2</sup> and 2<sup>254.6</sup> operations are needed, respectively. This result has been further improved to 2<sup>126.0</sup> for AES-128, 2<sup>189.9</sup> for AES-192, and 2<sup>254.3</sup> for AES-256 by Biaoshuai Tao and Hongjun Wu in a 2015 paper, which are the current best results in key recovery attack against AES.
This is a very small gain, as a 126-bit key (instead of 128 bits) would still take billions of years to brute force on current and foreseeable hardware. Also, the authors calculate the best attack using their technique on AES with a 128-bit key requires storing 2<sup>88</sup> bits of data. That works out to about 38 trillion terabytes of data, which was more than all the data stored on all the computers on the planet in 2016. A paper in 2015 later improved the space complexity to 2<sup>56</sup> bits,
At present, there is no known practical attack that would allow someone without knowledge of the key to read data encrypted by AES when correctly implemented. Side-channel attacks
<!-- possibly out of date? -->
Side-channel attacks do not attack the cipher as a black box, and thus are not related to cipher security as defined in the classical context, but are important in practice. They attack implementations of the cipher on hardware or software systems that inadvertently leak data. There are several such known attacks on various implementations of AES.
In April 2005, D. J. Bernstein announced a cache-timing attack that he used to break a custom server that used OpenSSL's AES encryption. The attack required over 200 million chosen plaintexts. The custom server was designed to give out as much timing information as possible (the server reports back the number of machine cycles taken by the encryption operation). However, as Bernstein pointed out, "reducing the precision of the server's timestamps, or eliminating them from the server's responses, does not stop the attack: the client simply uses round-trip timings based on its local clock, and compensates for the increased noise by averaging over a larger number of samples." One attack was able to obtain an entire AES key after only 800 operations triggering encryptions, in a total of 65 milliseconds. This attack requires the attacker to be able to run programs on the same system or platform that is performing AES.
In December 2009 an attack on some hardware implementations was published that used differential fault analysis and allows recovery of a key with a complexity of 2<sup>32</sup>.
In November 2010 Endre Bangerter, David Gullasch and Stephan Krenn published a paper which described a practical approach to a "near real time" recovery of secret keys from AES-128 without the need for either cipher text or plaintext. The approach also works on AES-128 implementations that use compression tables, such as OpenSSL. Like some earlier attacks, this one requires the ability to run unprivileged code on the system performing the AES encryption, which may be achieved by malware infection far more easily than commandeering the root account.
In March 2016, C. Ashokkumar, Ravi Prakash Giri and Bernard Menezes presented a side-channel attack on AES implementations that can recover the complete 128-bit AES key in just 6–7 blocks of plaintext/ciphertext, which is a substantial improvement over previous works that require between 100 and a million encryptions. The proposed attack requires standard user privilege and key-retrieval algorithms run under a minute.
Many modern CPUs have built-in hardware instructions for AES, which protect against timing-related side-channel attacks.
Quantum attacks
AES-256 is considered to be quantum resistant, as it has similar quantum resistance to AES-128's resistance against traditional, non-quantum, attacks at 128 bits of security. AES-192 and AES-128 are not considered quantum resistant due to their smaller key sizes. AES-192 has a strength of 96 bits against quantum attacks and AES-128 has 64 bits of strength against quantum attacks, making them both insecure.
NIST/CSEC validation
The Cryptographic Module Validation Program (CMVP) is operated jointly by the United States Government's National Institute of Standards and Technology (NIST) Computer Security Division and the Communications Security Establishment (CSE) of the Government of Canada. The use of cryptographic modules validated to NIST FIPS 140-2 is required by the United States Government for encryption of all data that has a classification of Sensitive but Unclassified (SBU) or above. From NSTISSP #11, National Policy Governing the Acquisition of Information Assurance: "Encryption products for protecting classified information will be certified by NSA, and encryption products intended for protecting sensitive information will be certified in accordance with NIST FIPS 140-2."
The Government of Canada also recommends the use of FIPS 140 validated cryptographic modules in unclassified applications of its departments.
Although NIST publication 197 ("FIPS 197") is the unique document that covers the AES algorithm, vendors typically approach the CMVP under FIPS 140 and ask to have several algorithms (such as Triple DES or SHA1) validated at the same time. Therefore, it is rare to find cryptographic modules that are uniquely FIPS 197 validated and NIST itself does not generally take the time to list FIPS 197 validated modules separately on its public web site. Instead, FIPS 197 validation is typically just listed as an "FIPS approved: AES" notation (with a specific FIPS 197 certificate number) in the current list of FIPS 140 validated cryptographic modules.
The Cryptographic Algorithm Validation Program (CAVP) allows for independent validation of the correct implementation of the AES algorithm. Successful validation results in being listed on the NIST validations page. This testing is a pre-requisite for the FIPS 140-2 module validation. However, successful CAVP validation in no way implies that the cryptographic module implementing the algorithm is secure. A cryptographic module lacking FIPS 140-2 validation or specific approval by the NSA is not deemed secure by the US Government and cannot be used to protect government data. There is a standardized battery of tests as well as an element of source code review that must be passed over a period of a few weeks. The cost to perform these tests through an approved laboratory can be significant (e.g., well over $30,000 US) Performance
High speed and low RAM requirements were some of the criteria of the AES selection process. As the chosen algorithm, AES performed well on a wide variety of hardware, from 8-bit smart cards to high-performance computers.
On a Pentium Pro, AES encryption requires 18 clock cycles per byte (cpb), equivalent to a throughput of about 11 MiB/s for a 200 MHz processor.
On Intel Core and AMD Ryzen CPUs supporting AES-NI instruction set extensions, throughput can be multiple GiB/s. On an Intel Westmere CPU, AES encryption using AES-NI takes about 1.3 cpb for AES-128 and 1.8 cpb for AES-256. Implementations See also
*AES modes of operation
*Disk encryption
*Whirlpool – hash function created by Vincent Rijmen and Paulo S. L. M. Barreto
*List of free and open-source software packages
Notes
<references group"note" /> References
*
*
* [https://archive.today/20130105232834/http://wiki.crypto.rub.de/Buch/sample_chapters.php alternate link] (companion web site contains online lectures on AES)
External links
*
*
* [http://csrc.nist.gov/archive/aes/rijndael/wsdindex.html AES algorithm archive information – (old, unmaintained)]
*
* [http://www.formaestudio.com/rijndaelinspector/archivos/Rijndael_Animation_v4_eng.swf Animation of Rijndael] – AES deeply explained and animated using Flash (by Enrique Zabala / University ORT / Montevideo / Uruguay). This animation (in English, Spanish, and German) is also part of CrypTool 1 (menu Indiv. Procedures → Visualization of Algorithms → AES).
* [https://formaestudio.com/rijndaelinspector/archivos/Rijndael_Animation_v4_eng-html5.html HTML5 Animation of Rijndael] – Same Animation as above made in HTML5.
Category:Advanced Encryption Standard
Category:Cryptography | https://en.wikipedia.org/wiki/Advanced_Encryption_Standard | 2025-04-05T18:25:36.652642 |
1261 | April 26 | Events
Pre-1600
*1336 – Francesco Petrarca (Petrarch) ascends Mont Ventoux.
*1478 – The Pazzi family attack on Lorenzo de' Medici in order to displace the ruling Medici family kills his brother Giuliano during High Mass in Florence Cathedral.
*1564 – Playwright William Shakespeare is baptized in Stratford-upon-Avon, Warwickshire, England (date of birth is unknown).
1601–1900
*1607 – The Virginia Company colonists make landfall at Cape Henry.
*1721 – A massive earthquake devastates the Iranian city of Tabriz.
*1777 – Sybil Ludington, aged 16, allegedly rode to alert American colonial forces to the approach of the British regular forces
*1794 – Battle of Beaumont during the Flanders Campaign of the War of the First Coalition.
*1802 – Napoleon Bonaparte signs a general amnesty to allow all but about one thousand of the most notorious émigrés of the French Revolution to return to France.
*1803 – Thousands of meteor fragments fall from the skies of L'Aigle, France; the event convinces European scientists that meteors exist.
*1805 – First Barbary War: United States Marines captured Derne under the command of First Lieutenant Presley O'Bannon.
*1865 – Union cavalry troopers corner and shoot dead John Wilkes Booth, assassin of President Abraham Lincoln, in Virginia.
*1900 – Fires destroy Canadian cities Ottawa and Hull, reducing them to ashes in 12 hours. Twelve thousand people are left without a home.
1901–present
*1903 – Atlético Madrid Association football club is founded
*1915 – World War I: Italy secretly signs the Treaty of London pledging to join the Allied Powers.
*1916 – Easter Rising: Battle of Mount Street Bridge
*1920 – Ice hockey makes its Olympic debut at the Antwerp Games with center Frank Fredrickson scoring seven goals in Canada's 12–1 drubbing of Sweden in the gold medal match.
*1923 – The Duke of York weds Lady Elizabeth Bowes-Lyon at Westminster Abbey.
*1925 – Paul von Hindenburg defeats Wilhelm Marx in the second round of the German presidential election to become the first directly elected head of state of the Weimar Republic.
*1933 – The Gestapo, the official secret police force of Nazi Germany, is established by Hermann Göring.
*1937 – Spanish Civil War: Guernica, Spain, is bombed by the German Condor Legion and the Italian Aviazione Legionaria.
*1942 – Benxihu Colliery accident in Manchukuo leaves 1,549 Chinese miners dead.
*1943 – The Easter Riots break out in Uppsala, Sweden.
*1944 – Georgios Papandreou becomes head of the Greek government-in-exile based in Egypt.
* 1944 – Heinrich Kreipe is captured by Allied commandos in occupied Crete.
*1945 – World War II: Battle of Bautzen: Last successful German tank-offensive of the war and last noteworthy victory of the Wehrmacht.
* 1945 – World War II: Filipino troops of the 66th Infantry Regiment, Philippine Commonwealth Army, USAFIP-NL and the American troops of the 33rd and 37th Infantry Division, United States Army liberate Baguio as they fight against the Japanese forces under General Tomoyuki Yamashita.
*1954 – The Geneva Conference, an effort to restore peace in Indochina and Korea, begins.
* 1954 – The first clinical trials of Jonas Salk's polio vaccine begin in Fairfax County, Virginia.
*1956 – , the world's first successful container ship, leaves Port Newark, New Jersey, for Houston, Texas.
*1958 – Final run of the Baltimore and Ohio Railroad's Royal Blue from Washington, D.C., to New York City after 68 years, the first U.S. passenger train to use electric locomotives.
*1960 – Forced out by the April Revolution, President of South Korea Syngman Rhee resigns after 12 years of dictatorial rule.
*1962 – NASA's Ranger 4 spacecraft crashes into the Moon.
* 1962 – The British space programme launches its first satellite, the Ariel 1.
*1963 – In Libya, amendments to the constitution transform Libya (United Kingdom of Libya) into one national unity (Kingdom of Libya) and allows for female participation in elections.
*1964 – Tanganyika and Zanzibar merge to form the United Republic of Tanzania.
*1966 – The magnitude 5.1 Tashkent earthquake affects the largest city in Soviet Central Asia with a maximum MSK intensity of VII (Very strong). Tashkent is mostly destroyed and 15–200 are killed.
* 1966 – A new government is formed in the Republic of the Congo, led by Ambroise Noumazalaye.
*1970 – The Convention Establishing the World Intellectual Property Organization enters into force.
*1981 – Dr. Michael R. Harrison of the University of California, San Francisco Medical Center performs the world's first human open fetal surgery.
*1986 – The Chernobyl disaster occurs in the Ukrainian Soviet Socialist Republic.
*1989 – The deadliest known tornado strikes Central Bangladesh, killing upwards of 1,300, injuring 12,000, and leaving as many as 80,000 homeless.
* 1989 – ''People's Daily'' publishes the April 26 Editorial which inflames the nascent Tiananmen Square protests.
*1991 – Fifty-five tornadoes break out in the central United States. Before the outbreak's end, Andover, Kansas, would record the year's only F5 tornado.
*1993 – The Space Shuttle Columbia is launched on mission STS-55 to conduct experiments aboard the Spacelab module.
*1994 – China Airlines Flight 140 crashes at Nagoya Airport in Japan, killing 264 of the 271 people on board.
* 1994 – South Africa begins its first multiracial election, which is won by Nelson Mandela's African National Congress.
*2002 – Robert Steinhäuser kills 16 at Gutenberg-Gymnasium in Erfurt, Germany before committing suicide.
*2005 – Cedar Revolution: Under international pressure, Syria withdraws the last of its 14,000 troop military garrison in Lebanon, ending its 29-year military domination of that country (Syrian occupation of Lebanon).
*2015 – Nursultan Nazarbayev is re-elected President of Kazakhstan with 97.7% of the vote, one of the biggest vote shares in Kazakhstan's history.BirthsPre-1600
<!-- Please do not add yourself or anyone else without a biography in Wikipedia to this list.-->
*121 – Marcus Aurelius, Roman emperor (d. 180)
*757 – Hisham I of Córdoba (d. 796)
* 764 – Al-Hadi, Abbasid caliph (d. 786)
*1284 – Alice de Toeni, Countess of Warwick (d. 1324)
*1319 – John II of France (d. 1364)
*1538 – Gian Paolo Lomazzo, Italian painter and academic (d. 1600)
*1575 – Marie de' Medici, queen of Henry IV of France (d. 1642)
1601–1900
*1647 – William Ashhurst, English banker, Sheriff of London, Lord Mayor of London and politician (d. 1720)
*1648 – Peter II of Portugal (d. 1706)
*1697 – Adam Falckenhagen, German lute player and composer (d. 1754)
*1710 – Thomas Reid, Scottish philosopher and academic (d. 1796)
*1718 – Esek Hopkins, American commander (d. 1802)
*1774 – Christian Leopold von Buch, German geologist and paleontologist (d. 1853)
*1782 – Maria Amalia of Naples and Sicily, Queen of France (d. 1866)
*1785 – John James Audubon, French-American ornithologist and painter (d. 1851)
*1787 – Ludwig Uhland, German poet, philologist, and historian (d. 1862)
*1798 – Eugène Delacroix, French painter and lithographer (d. 1863)
*1801 – Ambrose Dudley Mann, American politician and diplomat, 1st United States Assistant Secretary of State (d. 1889)
*1804 – Charles Goodyear, American banker, lawyer, and politician (d. 1876)
*1822 – Frederick Law Olmsted, American journalist and designer, co-designed Central Park (d. 1903)
*1834 – Charles Farrar Browne, American author (d. 1867)
*1856 – Joseph Ward, Australian-New Zealand businessman and politician, 17th Prime Minister of New Zealand (d. 1930)
*1862 – Edmund C. Tarbell, American painter and educator (d. 1938)
*1865 – Akseli Gallen-Kallela, Finnish artist (d. 1931)
*1876 – Ernst Felle, German rower (d. 1959)
*1877 – James Dooley, Irish-Australian politician, 21st Premier of New South Wales (d. 1950)
*1878 – Rafael Guízar y Valencia, Mexican bishop and saint (d. 1938)
*1879 – Eric Campbell, British actor (d. 1917)
* 1879 – Owen Willans Richardson, English physicist and academic, Nobel Prize laureate (d. 1959)
*1886 – Ma Rainey, American singer-songwriter (d. 1939)
* 1886 – Ğabdulla Tuqay, Russian poet and publicist (d. 1913)
*1889 – Anita Loos, American author, playwright, and screenwriter (d. 1981)
* 1889 – Ludwig Wittgenstein, Austrian-English philosopher and academic (d. 1951)
*1894 – Rudolf Hess, German politician and Deputy Führer in Nazi regime until 1941 (d. 1987)
*1896 – Ruut Tarmo, Estonian actor and director (d. 1967)
* 1896 – Ernst Udet, leading German fighter pilot in World War I and Chief of Procurement and Supply in the Luftwaffe (d. 1941)
*1897 – Eddie Eagan, American boxer and bobsledder (d. 1967)
* 1897 – Douglas Sirk, German-American director and screenwriter (d. 1987)
*1898 – Vicente Aleixandre, Spanish poet and author, Nobel Prize laureate (d. 1984)
* 1898 – John Grierson, Scottish director and producer (d. 1972)
*1899 – Oscar Rabin, Latvian-English saxophonist and bandleader (d. 1958)
*1900 – Eva Aschoff, German bookbinder and calligrapher (d. 1969)
* 1900 – Charles Francis Richter, American seismologist and physicist (d. 1985)
* 1900 – Hack Wilson, American baseball player (d. 1948)
1901–present
*1904 – Paul-Émile Léger, Canadian cardinal (d. 1991)
* 1904 – Xenophon Zolotas, Greek economist and politician, 177th Prime Minister of Greece (d. 2004)
*1905 – Jean Vigo, French director and screenwriter (d. 1934)
*1907 – Ilias Tsirimokos, Greek politician, Prime Minister of Greece (d. 1968)
*1909 – Marianne Hoppe, German actress (d. 2002)
*1910 – Tomoyuki Tanaka, Japanese screenwriter and producer (d. 1997)
*1911 – Paul Verner, German soldier and politician (d. 1986)
*1912 – A. E. van Vogt, Canadian-American author (d. 2000)
*1914 – Bernard Malamud, American novelist and short story writer (d. 1986) <!--His work dealt with Jewish topics-->
* 1914 – James Rouse, American real estate developer (d. 1996)
*1916 – Eyvind Earle, American artist, author, and illustrator (d. 2000)
* 1916 – Ken Wallis, English commander, engineer, and pilot (d. 2013)
* 1916 – Morris West, Australian author and playwright (d. 1999)
*1917 – Sal Maglie, American baseball player and coach (d. 1992)
* 1917 – I. M. Pei, Chinese-American architect, designed the National Gallery of Art and Bank of China Tower (d. 2019)
* 1917 – Virgil Trucks, American baseball player and coach (d. 2013)
*1918 – Fanny Blankers-Koen, Dutch sprinter and long jumper (d. 2004)
*1921 – Jimmy Giuffre, American clarinet player, saxophonist, and composer (d. 2008)
*1922 – J. C. Holt, English historian and academic (d. 2014)
* 1922 – Jeanne Sauvé, Canadian journalist and politician, Governor General of Canada (d. 1993)
* 1922 – Margaret Scott, South African-Australian ballerina and choreographer (d. 2019)
*1924 – Browning Ross, American runner and soldier (d. 1998)
*1925 – Vladimir Boltyansky, Russian mathematician, educator and author (d. 2019)
* 1925 – Gerard Cafesjian, American businessman and philanthropist (d. 2013)
* 1925 – Michele Ferrero, Italian entrepreneur (d. 2015)
* 1925 – Frank Hahn, British economist (d. 2013)
*1926 – Michael Mathias Prechtl, German soldier and illustrator (d. 2003)
*1927 – Jack Douglas, English actor (d. 2008)
* 1927 – Anne McLaren, British scientist (d. 2007)
* 1927 – Harry Gallatin, American basketball player and coach (d. 2015)
* 1927 – Granny Hamner, American baseball player (d. 1993)
*1929 – Richard Mitchell, American author and educator (d. 2002)
*1930 – Roger Moens, Belgian runner and sportscaster
*1931 – Paul Almond, Canadian director, producer, and screenwriter (d. 2015)
* 1931 – Bernie Brillstein, American talent agent and producer (d. 2008)
* 1931 – John Cain Jr., Australian politician, 41st Premier of Victoria (d. 2019)
*1932 – Israr Ahmed, Indian-Pakistani theologian, philosopher, and scholar (d. 2010)
* 1932 – Shirley Cawley, English long jumper
* 1932 – Frank D'Rone, American singer and guitarist (d. 2013)
* 1932 – Francis Lai, French accordion player and composer (d. 2018)
* 1932 – Michael Smith, English-Canadian biochemist and geneticist, Nobel Prize laureate (d. 2000)
*1933 – Carol Burnett, American actress, singer, and producer
* 1933 – Al McCoy, American sports announcer (d. 2024)
* 1933 – Filiberto Ojeda Ríos, Puerto Rican-American general (d. 2005)
* 1933 – Arno Allan Penzias, German-American physicist and academic, Nobel Prize laureate (d. 2024)
*1937 – Jean-Pierre Beltoise, French racing driver and motorcycle racer (d. 2015)
*1938 – Duane Eddy, American singer-songwriter, guitarist, and actor (d. 2024)
* 1938 – Maurice Williams, American doo-wop/R&B singer-songwriter
*1940 – Giorgio Moroder, Italian singer-songwriter and producer
* 1940 – Cliff Watson, English rugby league player (d. 2018)
*1941 – Claudine Auger, French model and actress (d. 2019)
*1942 – Svyatoslav Belza, Russian journalist, author, and critic (d. 2014)
* 1942 – Sharon Carstairs, Canadian lawyer and politician, Leader of the Government in the Senate
* 1942 – Michael Kergin, Canadian diplomat, Canadian Ambassador to the United States
* 1942 – Bobby Rydell, American singer and actor (d. 2022)
* 1942 – Jadwiga Staniszkis, Polish sociologist, political scientist, and academic (d. 2024)
*1943 – Gary Wright, American singer-songwriter, keyboard player, and producer (d. 2023)
* 1943 – Peter Zumthor, Swiss architect and academic, designed the Therme Vals
*1944 – Richard Bradshaw, English conductor (d. 2007)
*1945 – Howard Davies, English director and producer (d. 2016)
* 1945 – Dick Johnson, Australian racing driver
* 1945 – Sylvain Simard, Canadian academic and politician
*1946 – Ralph Coates, English international footballer (d. 2010)
* 1946 – Marilyn Nelson, American poet and author
* 1946 – Alberto Quintano, Chilean footballer
*1949 – Carlos Bianchi, Argentinian footballer and manager
* 1949 – Jerry Blackwell, American wrestler (d. 1995)
*1950 – Junko Ohashi, Japanese singer (d. 2023)
*1951 – John Battle, English politician
*1954 – Tatyana Fomina, Estonian chess player
* 1954 – Alan Hinkes, English mountaineer and explorer
*1955 – Kurt Bodewig, German politician
*1956 – Koo Stark, American actress and photographer
*1958 – John Crichton-Stuart, 7th Marquess of Bute, Scottish racing driver (d. 2021)
* 1958 – Giancarlo Esposito, American actor, director, and producer
* 1958 – Georgios Kostikos, Greek footballer, coach, and manager
*1959 – John Corabi, American singer-songwriter and guitarist
* 1959 – Pedro Pierluisi, Puerto Rican politician
*1960 – H. G. Carrillo, American writer and academic (d. 2020)
* 1960 – Steve Lombardozzi, American baseball player and coach
* 1960 – Roger Taylor, English drummer
*1961 – Joan Chen, Chinese-American actress, director, producer, and screenwriter
* 1970 – Melania Trump, Slovene-American model; 47th First Lady of the United States
* 1973 – Óscar, Spanish footballer and coach
*1975 – Joey Jordison, American musician and songwriter (d. 2021)
* 1975 – Rahul Verma, Indian social worker and activist
*1976 – Václav Varaďa, Czech ice hockey player
*1977 – Samantha Cristoforetti, Italian astronaut
* 1977 – Kosuke Fukudome, Japanese baseball player
*1978 – Stana Katic, Canadian actress
* 1978 – Peter Madsen, Danish footballer
*1980 – Jordana Brewster, Panamanian-American actress
* 1980 – Marlon King, English footballer
* 1980 – Anna Mucha, Polish actress and journalist
* 1980 – Channing Tatum, American actor and producer
*1981 – Caro Emerald, Dutch pop and jazz singer
* 1981 – Ms. Dynamite, English rapper and producer
* 1981 – Sandra Schmitt, German skier (d. 2000)
*1982 – Novlene Williams-Mills, Jamaican sprinter
*1983 – José María López, Argentinian racing driver
* 1983 – Jessica Lynch, American soldier
*1985 – John Isner, American tennis player
*1986 – Lior Refaelov, Israeli footballer
* 1986 – Yuliya Zaripova, Russian runner
*1987 – Jorge Andújar Moreno, Spanish footballer
*1989 – Melvin Ingram, American football player
* 1989 – Kang Daesung, South Korean singer
*1990 – Jonathan dos Santos, Mexican footballer
* 1990 – Mitch Rein, Australian rugby league player
* 1990 – Nevin Spence, Northern Irish rugby player (d. 2012)
* 1990 – Joey Wendle, American baseball player
* 1991 – Peter Handscomb, Australian cricketer
* 1991 – Isaac Liu, New Zealand rugby league player
*1992 – Aaron Judge, American baseball player
* 1992 – Delon Wright, American basketball player
*1994 – Daniil Kvyat, Russian racing driver
* 1994 – Odysseas Vlachodimos, Greek international footballer
*1996 – Jordan Pefok, American footballer
*1997 – Calvin Verdonk, Indonesian footballer
*2001 – Thiago Almada, Argentine footballer
<!-- Please do not add yourself, non-notable people, fictional characters, or people without Wikipedia articles to this list. No red links, please. Do not link multiple occurrences of the same year, just link the first occurrence. If there are multiple people in the same birth year, put them in alphabetical order. Do not trust "this year in history" websites for accurate date information. -->
Deaths
Pre-1600
* 499 – Emperor Xiaowen of Northern Wei (b. 467)
* 645 – Richarius, Frankish monk and saint (b. 560)
* 680 – Mu'awiya I, Umayyad caliph (b. 602)
*757 – Pope Stephen II (b. 715)
* 893 – Chen Jingxuan, general of the Tang Dynasty
* 962 – Adalbero I, bishop of Metz
*1192 – Emperor Go-Shirakawa of Japan (b. 1127)
*1366 – Simon Islip, Archbishop of Canterbury
*1392 – Chŏng Mong-ju, Korean civil minister, diplomat and scholar (b. 1338)
*1444 – Robert Campin, Flemish painter (b. 1378)
*1478 – Giuliano de' Medici, Italian ruler (b. 1453)
*1489 – Ashikaga Yoshihisa, Japanese shōgun (b. 1465)
*1558 – Jean Fernel, French physician (b. 1497)1601–1900
*1686 – Magnus Gabriel De la Gardie, Swedish statesman and military man (b. 1622)
*1716 – John Somers, 1st Baron Somers, English jurist and politician, Lord High Chancellor of Great Britain (b. 1651)
*1784 – Nano Nagle, Irish nun and educator, founded the Presentation Sisters (b. 1718)
*1789 – Petr Ivanovich Panin, Russian general (b. 1721)
*1809 – Bernhard Schott, German music publisher (b. 1748)
*1865 – John Wilkes Booth, American actor, assassin of Abraham Lincoln (b. 1838)
*1881 – Ludwig Freiherr von und zu der Tann-Rathsamhausen, German general (b. 1815)
*1895 – Eric Stenbock, Estonian-English author and poet (b. 1860)
1901–present
*1910 – Bjørnstjerne Bjørnson, Norwegian-French author, poet, and playwright, Nobel Prize laureate (b. 1832)
*1915 – John Bunny, American actor (b. 1863)
* 1915 – Ida Hunt Udall, American diarist (b. 1858)
*1916 – Mário de Sá-Carneiro, Portuguese poet and writer (b. 1890)
*1920 – Srinivasa Ramanujan, Indian mathematician and theorist (b. 1887)
*1932 – William Lockwood, English cricketer (b. 1868)
*1934 – Arturs Alberings, Latvian politician, former Prime Minister of Latvia (b. 1876)
* 1934 – Konstantin Vaginov, Russian poet and novelist (b. 1899)
*1940 – Carl Bosch, German chemist and engineer, Nobel Prize laureate (b. 1874)
*1944 – Violette Morris, French footballer, shot putter, and discus thrower (b. 1893)
*1945 – Sigmund Rascher, German physician (b. 1909)
* 1945 – Pavlo Skoropadskyi, German-Ukrainian general and politician, Hetman of Ukraine (b. 1871)
*1946 – James Larkin White, American miner, explorer, and park ranger (b. 1882)
*1950 – George Murray Hulbert, American lawyer, judge, and politician (b. 1881)
*1951 – Arnold Sommerfeld, German physicist and academic (b. 1868)
*1956 – Edward Arnold, American actor (b. 1890)
*1957 – Gichin Funakoshi, Japanese martial artist, founded Shotokan (b. 1868)
*1964 – E. J. Pratt, Canadian poet and author (b. 1882)
*1968 – John Heartfield, German illustrator and photographer (b. 1891)
*1969 – Morihei Ueshiba, Japanese martial artist, founded aikido (b. 1883)
*1970 – Erik Bergman, Swedish minister and author (b. 1886)
* 1970 – Gypsy Rose Lee, American actress, striptease dancer, and writer (b. 1911)
*1973 – Irene Ryan, American actress and philanthropist (b. 1902)
*1976 – Sidney Franklin, American bullfighter (b. 1903)
* 1976 – Sid James, South African-English actor (b. 1913)
* 1976 – Armstrong Sperry, American author and illustrator (b. 1897)
*1980 – Cicely Courtneidge, Australian-born British actress, comedian and singer (b. 1893)
*1981 – Jim Davis, American actor (b. 1909)
*1984 – Count Basie, American pianist, composer, and bandleader (b. 1904)
*1986 – Broderick Crawford, American actor (b. 1911)
* 1986 – Bessie Love, American actress (b. 1898)
* 1986 – Dechko Uzunov, Bulgarian painter (b. 1899)
*1987 – Shankar, Indian composer and conductor (b. 1922)
* 1987 – John Silkin, English lawyer and politician, Shadow Leader of the House of Commons (b. 1923)
*1989 – Lucille Ball, American model, actress, comedian, and producer (b. 1911)
*1991 – Leo Arnaud, French-American composer and conductor (b. 1904)
* 1991 – Carmine Coppola, American composer and conductor (b. 1910)
* 1991 – A. B. Guthrie, Jr., American novelist and historian, (b. 1901)
* 1991 – Richard Hatfield, Canadian lawyer and politician, 26th Premier of New Brunswick (b. 1931)
*1994 – Masutatsu Ōyama, Japanese martial artist, founded Kyokushin kaikan (b. 1923)
*1996 – Stirling Silliphant, American screenwriter and producer (b. 1918)
*1999 – Adrian Borland, English singer-songwriter, guitarist, and producer (b. 1957)
* 1999 – Jill Dando, English journalist and television personality (b. 1961)
*2003 – Rosemary Brown, Jamaican-Canadian academic and politician (b. 1930)
* 2003 – Yun Hyon-seok, South Korean poet and author (b. 1984)
* 2003 – Edward Max Nicholson, Irish environmentalist, co-founded the World Wide Fund for Nature (b. 1904)
*2004 – Hubert Selby, Jr., American author, poet, and screenwriter (b. 1928)
*2005 – Mason Adams, American actor (b. 1919)
* 2005 – Elisabeth Domitien, Prime Minister of the Central African Republic (b. 1925)
* 2005 – Maria Schell, Austrian-Swiss actress (b. 1926)
* 2005 – Augusto Roa Bastos, Paraguayan journalist, author, and academic (b. 1917)
*2007 – Jack Valenti, American businessman, created the MPAA film rating system (b. 1921)
*2008 – Árpád Orbán, Hungarian footballer (b. 1938)
*2009 – Hans Holzer, Austrian-American paranormal investigator and author (b. 1920)
*2010 – Mariam A. Aleem, Egyptian graphic designer and academic (b. 1930)
* 2010 – Urs Felber, Swiss engineer and businessman (b. 1942)
*2011 – Phoebe Snow, American singer-songwriter and guitarist (b. 1950)
*2012 – Terence Spinks, English boxer and trainer (b. 1938)
*2013 – Jacqueline Brookes, American actress and educator (b. 1930)
* 2013 – George Jones, American singer-songwriter and guitarist (b. 1931)
* 2013 – Earl Silverman, Canadian men's rights advocate (b. 1948)
*2014 – Gerald Guralnik, American physicist and academic (b. 1936)
* 2014 – Paul Robeson, Jr., American historian and author (b. 1927)
* 2014 – DJ Rashad, American electronic musician, producer and DJ (b. 1979)
*2015 – Jayne Meadows, American actress (b. 1919)
* 2015 – Marcel Pronovost, Canadian ice hockey player and coach (b. 1930)
*2016 – Harry Wu, Chinese human rights activist (b. 1937)
*2017 – Jonathan Demme, American filmmaker, producer and screenwriter (b. 1944)
*2022 – Klaus Schulze, German composer and musician (b. 1947)
*2023 – Jerry Apodaca, American politician, 24th Governor of New Mexico (b. 1934)
* 2023 – Tangaraju Suppiah, Singaporean drug trafficker (b. 1977)
<!--Do not add non-notable people, or other people without Wikipedia articles to this list. Do not add fictional characters to this list
Do not trust "this year in history" websites for accurate date information. Do not link multiple occurrences of the same year, just link the first occurrence.-->
Holidays and observances
*Chernobyl disaster related observances:
**Day of Remembrance of the Chernobyl tragedy (Belarus)
**Memorial Day of Radiation Accidents and Catastrophes (Russia)
*Christian feast day:
**Aldobrandesca (or Alda)
**Franca Visalta
**Lucidius of Verona
**Our Lady of Good Counsel
**Pope Anacletus and Marcellinus
**Rafael Arnáiz Barón
**Riquier
**Paschasius Radbertus
**Peter of Rates (or of Braga)
**Robert Hunt (Episcopal Church (USA))
**Stephen of Perm, see also Old Permic Alphabet Day
**Trudpert
**April 26 (Eastern Orthodox liturgics)
*Confederate Memorial Day (Florida, United States)
*Union Day (Tanzania)
*World Intellectual Property DayReferencesExternal links
* [http://news.bbc.co.uk/onthisday/hi/dates/stories/april/26 BBC: On This Day]
*
* [https://www.onthisday.com/events/april/26 Historical Events on April 26]
Category:Days of April | https://en.wikipedia.org/wiki/April_26 | 2025-04-05T18:25:36.691963 |
1264 | Anisotropy | image of the tiny anisotropies in the cosmic microwave background radiation]]
Anisotropy () is the structural property of non-uniformity in different directions, as opposed to isotropy. An anisotropic object or pattern has properties that differ according to direction of measurement. For example, many materials exhibit very different physical or mechanical properties when measured along different axes, e.g. absorbance, refractive index, conductivity, and tensile strength.
An example of anisotropy is light coming through a polarizer. Another is wood, which is easier to split along its grain than across it because of the directional non-uniformity of the grain (the grain is the same in one direction, not all directions).
Fields of interest
Computer graphics
In the field of computer graphics, an anisotropic surface changes in appearance as it rotates about its geometric normal, as is the case with velvet.
Anisotropic filtering (AF) is a method of enhancing the image quality of textures on surfaces that are far away and viewed at a shallow angle. Older techniques, such as bilinear and trilinear filtering, do not take into account the angle a surface is viewed from, which can result in aliasing or blurring of textures. By reducing detail in one direction more than another, these effects can be reduced easily.
Chemistry
A chemical anisotropic filter, as used to filter particles, is a filter with increasingly smaller interstitial spaces in the direction of filtration so that the proximal regions filter out larger particles and distal regions increasingly remove smaller particles, resulting in greater flow-through and more efficient filtration.
In fluorescence spectroscopy, the fluorescence anisotropy, calculated from the polarization properties of fluorescence from samples excited with plane-polarized light, is used, e.g., to determine the shape of a macromolecule. Anisotropy measurements reveal the average angular displacement of the fluorophore that occurs between absorption and subsequent emission of a photon.
In NMR spectroscopy, the orientation of nuclei with respect to the applied magnetic field determines their chemical shift. In this context, anisotropic systems refer to the electron distribution of molecules with abnormally high electron density, like the pi system of benzene. This abnormal electron density affects the applied magnetic field and causes the observed chemical shift to change.
Real-world imagery
Images of a gravity-bound or man-made environment are particularly anisotropic in the orientation domain, with more image structure located at orientations parallel with or orthogonal to the direction of gravity (vertical and horizontal).
Physics<!-- This section is linked from Birefringence -->
displaying the nature of plasmas, in this case, the phenomenon of "filamentation"]]
Physicists from University of California, Berkeley reported about their detection of the cosmic anisotropy in cosmic microwave background radiation in 1977. Their experiment demonstrated the Doppler shift caused by the movement of the earth with respect to the early Universe matter, the source of the radiation. Cosmic anisotropy has also been seen in the alignment of galaxies' rotation axes and polarization angles of quasars.
Physicists use the term anisotropy to describe direction-dependent properties of materials. Magnetic anisotropy, for example, may occur in a plasma, so that its magnetic field is oriented in a preferred direction. Plasmas may also show "filamentation" (such as that seen in lightning or a plasma globe) that is directional.
An anisotropic liquid has the fluidity of a normal liquid, but has an average structural order relative to each other along the molecular axis, unlike water or chloroform, which contain no structural ordering of the molecules. Liquid crystals are examples of anisotropic liquids.
Some materials conduct heat in a way that is isotropic, that is independent of spatial orientation around the heat source. Heat conduction is more commonly anisotropic, which implies that detailed geometric modeling of typically diverse materials being thermally managed is required. The materials used to transfer and reject heat from the heat source in electronics are often anisotropic.
Many crystals are anisotropic to light ("optical anisotropy"), and exhibit properties such as birefringence. Crystal optics describes light propagation in these media. An "axis of anisotropy" is defined as the axis along which isotropy is broken (or an axis of symmetry, such as normal to crystalline layers). Some materials can have multiple such optical axes.Geophysics and geology
Seismic anisotropy is the variation of seismic wavespeed with direction. Seismic anisotropy is an indicator of long range order in a material, where features smaller than the seismic wavelength (e.g., crystals, cracks, pores, layers, or inclusions) have a dominant alignment. This alignment leads to a directional variation of elasticity wavespeed. Measuring the effects of anisotropy in seismic data can provide important information about processes and mineralogy in the Earth; significant seismic anisotropy has been detected in the Earth's crust, mantle, and inner core.
Geological formations with distinct layers of sedimentary material can exhibit electrical anisotropy; electrical conductivity in one direction (e.g. parallel to a layer), is different from that in another (e.g. perpendicular to a layer). This property is used in the gas and oil exploration industry to identify hydrocarbon-bearing sands in sequences of sand and shale. Sand-bearing hydrocarbon assets have high resistivity (low conductivity), whereas shales have lower resistivity. Formation evaluation instruments measure this conductivity or resistivity, and the results are used to help find oil and gas in wells. The mechanical anisotropy measured for some of the sedimentary rocks like coal and shale can change with corresponding changes in their surface properties like sorption when gases are produced from the coal and shale reservoirs.
The hydraulic conductivity of aquifers is often anisotropic for the same reason. When calculating groundwater flow to drains or to wells, the difference between horizontal and vertical permeability must be taken into account; otherwise the results may be subject to error.
Most common rock-forming minerals are anisotropic, including quartz and feldspar. Anisotropy in minerals is most reliably seen in their optical properties. An example of an isotropic mineral is garnet.
Igneous rock like granite also shows the anisotropy due to the orientation of the minerals during the solidification process.
Medical acoustics
Anisotropy is also a well-known property in medical ultrasound imaging describing a different resulting echogenicity of soft tissues, such as tendons, when the angle of the transducer is changed. Tendon fibers appear hyperechoic (bright) when the transducer is perpendicular to the tendon, but can appear hypoechoic (darker) when the transducer is angled obliquely. This can be a source of interpretation error for inexperienced practitioners.Materials science and engineeringAnisotropy, in materials science, is a material's directional dependence of a physical property. This is a critical consideration for materials selection in engineering applications. A material with physical properties that are symmetric about an axis that is normal to a plane of isotropy is called a transversely isotropic material. Tensor descriptions of material properties can be used to determine the directional dependence of that property. For a monocrystalline material, anisotropy is associated with the crystal symmetry in the sense that more symmetric crystal types have fewer independent coefficients in the tensor description of a given property. When a material is polycrystalline, the directional dependence on properties is often related to the processing techniques it has undergone. A material with randomly oriented grains will be isotropic, whereas materials with texture will be often be anisotropic. Textured materials are often the result of processing techniques like cold rolling, wire drawing, and heat treatment.
Mechanical properties of materials such as Young's modulus, ductility, yield strength, and high-temperature creep rate, are often dependent on the direction of measurement. Fourth-rank tensor properties, like the elastic constants, are anisotropic, even for materials with cubic symmetry. The Young's modulus relates stress and strain when an isotropic material is elastically deformed; to describe elasticity in an anisotropic material, stiffness (or compliance) tensors are used instead.
In metals, anisotropic elasticity behavior is present in all single crystals with three independent coefficients for cubic crystals, for example. For face-centered cubic materials such as nickel and copper, the stiffness is highest along the <111> direction, normal to the close-packed planes, and smallest parallel to <100>. Tungsten is so nearly isotropic at room temperature that it can be considered to have only two stiffness coefficients; aluminium is another metal that is nearly isotropic.
For an isotropic material, <math display"block">G E/[2(1 + \nu)], </math> where <math> G </math> is the shear modulus, <math> E </math> is the Young's modulus, and <math> \nu </math> is the material's Poisson's ratio. Therefore, for cubic materials, we can think of anisotropy, <math> a_r </math>, as the ratio between the empirically determined shear modulus for the cubic material and its (isotropic) equivalent:
<math display"block">a_r \frac{G}{E/[2(1 + \nu)]} = \frac{2(1+\nu)G}{E} \equiv \frac{2 C_{44}}{C_{11} - C_{12}}.</math>
The latter expression is known as the Zener ratio, <math> a_r </math>, where <math>C_{ij}</math> refers to elastic constants in Voigt (vector-matrix) notation. For an isotropic material, the ratio is one.
Limitation of the Zener ratio to cubic materials is waived in the Tensorial anisotropy index A<sup>T</sup> that takes into consideration all the 27 components of the fully anisotropic stiffness tensor. It is composed of two major parts <math>A^I</math>and <math>A^A </math>, the former referring to components existing in cubic tensor and the latter in anisotropic tensor so that <math>A^T A^I+A^A .</math> This first component includes the modified Zener ratio and additionally accounts for directional differences in the material, which exist in orthotropic material, for instance. The second component of this index <math>A^A </math> covers the influence of stiffness coefficients that are nonzero only for non-cubic materials and remains zero otherwise.
Fiber-reinforced or layered composite materials exhibit anisotropic mechanical properties, due to orientation of the reinforcement material. In many fiber-reinforced composites like carbon fiber or glass fiber based composites, the weave of the material (e.g. unidirectional or plain weave) can determine the extent of the anisotropy of the bulk material. The tunability of orientation of the fibers allows for application-based designs of composite materials, depending on the direction of stresses applied onto the material.
Amorphous materials such as glass and polymers are typically isotropic. Due to the highly randomized orientation of macromolecules in polymeric materials, polymers are in general described as isotropic. However, mechanically gradient polymers can be engineered to have directionally dependent properties through processing techniques or introduction of anisotropy-inducing elements. Researchers have built composite materials with aligned fibers and voids to generate anisotropic hydrogels, in order to mimic hierarchically ordered biological soft matter. 3D printing, especially Fused Deposition Modeling, can introduce anisotropy into printed parts. This is because FDM is designed to extrude and print layers of thermoplastic materials. This creates materials that are strong when tensile stress is applied in parallel to the layers and weak when the material is perpendicular to the layers.
Microfabrication
Anisotropic etching techniques (such as deep reactive-ion etching) are used in microfabrication processes to create well defined microscopic features with a high aspect ratio. These features are commonly used in MEMS (microelectromechanical systems) and microfluidic devices, where the anisotropy of the features is needed to impart desired optical, electrical, or physical properties to the device. Anisotropic etching can also refer to certain chemical etchants used to etch a certain material preferentially over certain crystallographic planes (e.g., KOH etching of silicon [100] produces pyramid-like structures)
Neuroscience
Diffusion tensor imaging is an MRI technique that involves measuring the fractional anisotropy of the random motion (Brownian motion) of water molecules in the brain. Water molecules located in fiber tracts are more likely to move anisotropically, since they are restricted in their movement (they move more in the dimension parallel to the fiber tract rather than in the two dimensions orthogonal to it), whereas water molecules dispersed in the rest of the brain have less restricted movement and therefore display more isotropy. This difference in fractional anisotropy is exploited to create a map of the fiber tracts in the brains of the individual.
Remote sensing and radiative transfer modeling
Radiance fields (see Bidirectional reflectance distribution function (BRDF)) from a reflective surface are often not isotropic in nature. This makes calculations of the total energy being reflected from any scene a difficult quantity to calculate. In remote sensing applications, anisotropy functions can be derived for specific scenes, immensely simplifying the calculation of the net reflectance or (thereby) the net irradiance of a scene.
For example, let the BRDF be <math>\gamma(\Omega_i, \Omega_v)</math> where 'i' denotes incident direction and 'v' denotes viewing direction (as if from a satellite or other instrument). And let P be the Planar Albedo, which represents the total reflectance from the scene.
<math display"block">P(\Omega_i) \int_{\Omega_v} \gamma(\Omega_i, \Omega_v)\hat{n} \cdot d\hat\Omega_v</math>
<math display"block">A(\Omega_i, \Omega_v) \frac{\gamma(\Omega_i, \Omega_v)}{P(\Omega_i)}</math>
It is of interest because, with knowledge of the anisotropy function as defined, a measurement of the BRDF from a single viewing direction (say, <math>\Omega_v</math>) yields a measure of the total scene reflectance (planar albedo) for that specific incident geometry (say, <math>\Omega_i</math>).
See also
* Circular symmetry
*
*
References
External links
* [https://web.archive.org/web/20100303080919/http://aluminium.matter.org.uk/content/html/eng/default.asp?catid99&pageid1028022659 "Overview of Anisotropy"]
* [https://www.doitpoms.ac.uk/tlplib/anisotropy/index.php DoITPoMS Teaching and Learning Package: "Introduction to Anisotropy"]
* [https://knitty.com/ISSUEsummer05/FEATsum05TBP.html "Gauge, and knitted fabric generally, is an anisotropic phenomenon"]
Category:Orientation (geometry)
Category:Asymmetry | https://en.wikipedia.org/wiki/Anisotropy | 2025-04-05T18:25:36.706776 |
1267 | Alpha decay | thumb|240px|right|Visual representation of alpha decay
Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus). The parent nucleus transforms or "decays" into a daughter product, with a mass number that is reduced by four and an atomic number that is reduced by two. An alpha particle is identical to the nucleus of a helium-4 atom, which consists of two protons and two neutrons. It has a charge of and a mass of . For example, uranium-238 decays to form thorium-234.
While alpha particles have a charge , this is not usually shown because a nuclear equation describes a nuclear reaction without considering the electrons – a convention that does not imply that the nuclei necessarily occur in neutral atoms.
Alpha decay typically occurs in the heaviest nuclides. Theoretically, it can occur only in nuclei somewhat heavier than nickel (element 28), where the overall binding energy per nucleon is no longer a maximum and the nuclides are therefore unstable toward spontaneous fission-type processes. In practice, this mode of decay has only been observed in nuclides considerably heavier than nickel, with the lightest known alpha emitter being the second lightest isotope of antimony, 104Sb. Exceptionally, however, beryllium-8 decays to two alpha particles.
Alpha decay is by far the most common form of cluster decay, where the parent atom ejects a defined daughter collection of nucleons, leaving another defined product behind. It is the most common form because of the combined extremely high nuclear binding energy and relatively small mass of the alpha particle. Like other cluster decays, alpha decay is fundamentally a quantum tunneling process. Unlike beta decay, it is governed by the interplay between both the strong nuclear force and the electromagnetic force.
Alpha particles have a typical kinetic energy of 5 MeV (or ≈ 0.13% of their total energy, 110 TJ/kg) and have a speed of about 15,000,000 m/s, or 5% of the speed of light. There is surprisingly small variation around this energy, due to the strong dependence of the half-life of this process on the energy produced. Because of their relatively large mass, the electric charge of and relatively low velocity, alpha particles are very likely to interact with other atoms and lose their energy, and their forward motion can be stopped by a few centimeters of air.
Approximately 99% of the helium produced on Earth is the result of the alpha decay of underground deposits of minerals containing uranium or thorium. The helium is brought to the surface as a by-product of natural gas production.
History
Alpha particles were first described in the investigations of radioactivity by Ernest Rutherford in 1899, and by 1907 they were identified as He2+ ions.
By 1928, George Gamow had solved the theory of alpha decay via tunneling. The alpha particle is trapped inside the nucleus by an attractive nuclear potential well
and a repulsive electromagnetic potential barrier. Classically, it is forbidden to escape, but according to the (then) newly discovered principles of quantum mechanics, it has a tiny (but non-zero) probability of "tunneling" through the barrier and appearing on the other side to escape the nucleus. Gamow solved a model potential for the nucleus and derived, from first principles, a relationship between the half-life of the decay, and the energy of the emission, which had been previously discovered empirically and was known as the Geiger–Nuttall law.
Mechanism
The nuclear force holding an atomic nucleus together is very strong, in general much stronger than the repulsive electromagnetic forces between the protons. However, the nuclear force is also short-range, dropping quickly in strength beyond about 3 femtometers, while the electromagnetic force has an unlimited range. The strength of the attractive nuclear force keeping a nucleus together is thus proportional to the number of the nucleons, but the total disruptive electromagnetic force of proton-proton repulsion trying to break the nucleus apart is roughly proportional to the square of its atomic number. A nucleus with 210 or more nucleons is so large that the strong nuclear force holding it together can just barely counterbalance the electromagnetic repulsion between the protons it contains. Alpha decay occurs in such nuclei as a means of increasing stability by reducing size.
One curiosity is why alpha particles, helium nuclei, should be preferentially emitted as opposed to other particles like a single proton or neutron or other atomic nuclei. Part of the reason is the high binding energy of the alpha particle, which means that its mass is less than the sum of the masses of two free protons and two free neutrons. This increases the disintegration energy. Computing the total disintegration energy given by the equation
E_{di} = (m_\text{i} - m_\text{f} - m_\text{p})c^2,
where is the initial mass of the nucleus, is the mass of the nucleus after particle emission, and is the mass of the emitted (alpha-)particle, one finds that in certain cases it is positive and so alpha particle emission is possible, whereas other decay modes would require energy to be added. For example, performing the calculation for uranium-232 shows that alpha particle emission releases 5.4 MeV of energy, while a single proton emission would require 6.1 MeV. Most of the disintegration energy becomes the kinetic energy of the alpha particle, although to fulfill conservation of momentum, part of the energy goes to the recoil of the nucleus itself (see atomic recoil). However, since the mass numbers of most alpha-emitting radioisotopes exceed 210, far greater than the mass number of the alpha particle (4), the fraction of the energy going to the recoil of the nucleus is generally quite small, less than 2%. and by Ronald Wilfred Gurney and Edward Condon in 1928, was hailed as a very striking confirmation of quantum theory. Essentially, the alpha particle escapes from the nucleus not by acquiring enough energy to pass over the wall confining it, but by tunneling through the wall. Gurney and Condon made the following observation in their paper on it:
It has hitherto been necessary to postulate some special arbitrary 'instability' of the nucleus, but in the following note, it is pointed out that disintegration is a natural consequence of the laws of quantum mechanics without any special hypothesis... Much has been written of the explosive violence with which the α-particle is hurled from its place in the nucleus. But from the process pictured above, one would rather say that the α-particle almost slips away unnoticed.
Working out the details of the theory leads to an equation relating the half-life of a radioisotope to the decay energy of its alpha particles, a theoretical derivation of the empirical Geiger–Nuttall law.
Uses
Americium-241, an alpha emitter, is used in smoke detectors. The alpha particles ionize air in an open ion chamber and a small current flows through the ionized air. Smoke particles from the fire that enter the chamber reduce the current, triggering the smoke detector's alarm.
Radium-223 is also an alpha emitter. It is used in the treatment of skeletal metastases (cancers in the bones).
Alpha decay can provide a safe power source for radioisotope thermoelectric generators used for space probes and were used for artificial heart pacemakers. Alpha decay is much more easily shielded against than other forms of radioactive decay.
Static eliminators typically use polonium-210, an alpha emitter, to ionize the air, allowing the "static cling" to dissipate more rapidly.
Toxicity
Highly charged and heavy, alpha particles lose their several MeV of energy within a small volume of material, along with a very short mean free path. This increases the chance of double-strand breaks to the DNA in cases of internal contamination, when ingested, inhaled, injected or introduced through the skin. Otherwise, touching an alpha source is typically not harmful, as alpha particles are effectively shielded by a few centimeters of air, a piece of paper, or the thin layer of dead skin cells that make up the epidermis; however, many alpha sources are also accompanied by beta-emitting radio daughters, and both are often accompanied by gamma photon emission.
Relative biological effectiveness (RBE) quantifies the ability of radiation to cause certain biological effects, notably either cancer or cell-death, for equivalent radiation exposure. Alpha radiation has a high linear energy transfer (LET) coefficient, which is about one ionization of a molecule/atom for every angstrom of travel by the alpha particle. The RBE has been set at the value of 20 for alpha radiation by various government regulations. The RBE is set at 10 for neutron irradiation, and at 1 for beta radiation and ionizing photons.
However, the recoil of the parent nucleus (alpha recoil) gives it a significant amount of energy, which also causes ionization damage (see ionizing radiation). This energy is roughly the weight of the alpha () divided by the weight of the parent (typically about 200 Da) times the total energy of the alpha. By some estimates, this might account for most of the internal radiation damage, as the recoil nucleus is part of an atom that is much larger than an alpha particle, and causes a very dense trail of ionization; the atom is typically a heavy metal, which preferentially collect on the chromosomes. In some studies, this has resulted in an RBE approaching 1,000 instead of the value used in governmental regulations.
The largest natural contributor to public radiation dose is radon, a naturally occurring, radioactive gas found in soil and rock. If the gas is inhaled, some of the radon particles may attach to the inner lining of the lung. These particles continue to decay, emitting alpha particles, which can damage cells in the lung tissue. The death of Marie Curie at age 66 from aplastic anemia was probably caused by prolonged exposure to high doses of ionizing radiation, but it is not clear if this was due to alpha radiation or X-rays. Curie worked extensively with radium, which decays into radon, along with other radioactive materials that emit beta and gamma rays. However, Curie also worked with unshielded X-ray tubes during World War I, and analysis of her skeleton during a reburial showed a relatively low level of radioisotope burden.
The Russian defector Alexander Litvinenko's 2006 murder by radiation poisoning is thought to have been carried out with polonium-210, an alpha emitter.
References
Alpha emitters by increasing energy (Appendix 1)
Notes
External links
Image:Ndslivechart.png The LIVEChart of Nuclides - IAEA with filter on alpha decay
Alpha decay with 3 animated examples showing the recoil of daughter
See also
Beta decay
Gamma decay
Category:Helium
Category:Nuclear physics
Category:Radioactivity | https://en.wikipedia.org/wiki/Alpha_decay | 2025-04-05T18:25:36.726106 |
1270 | Extreme poverty | }}
thumb|upright=1.6|Number of people living in extreme poverty from 1820 to 2015.
thumb|upright=1.6|Total population living in extreme poverty, by world region 1990 to 2015.
thumb|upright=1.6|The number of people living on less than $1.90, $3.20, $5.50, and $10 globally from 1981 to 2015.
Extreme poverty is the most severe type of poverty, defined by the United Nations (UN) as "a condition characterized by severe deprivation of basic human needs, including food, safe drinking water, sanitation facilities, health, shelter, education and information. It depends not only on income but also on access to services". Historically, other definitions have been proposed within the United Nations.
In 2018, extreme poverty mainly refers to an income below the international poverty line of $1.90 per day (in 2011 prices, $}} in dollars), set by the World Bank. In October 2017, the World Bank updated the international poverty line, a global absolute minimum, to $1.90 a day. This is the equivalent of $1.00 a day in 1996 US prices, hence the widely used expression "living on less than a dollar a day". The vast majority of those in extreme poverty reside in South Asia and Sub-Saharan Africa. As of 2018, it is estimated that the country with the most people living in extreme poverty is Nigeria, at 86 million.
In the past, the vast majority of the world population lived in conditions of extreme poverty.
The percentage of the global population living in absolute poverty fell from over 80% in 1800 to around 10% by 2015. According to UN estimates, roughly 734 million people or 10% remained under those conditions. The number had previously been measured as 1.9 billion in 1990, and 1.2 billion in 2008. Despite the significant number of individuals still below the international poverty line, these figures represent significant progress for the international community, as they reflect a decrease of more than one billion people over 15 years.
The reduction of extreme poverty and hunger was the first Millennium Development Goal (MDG1), as set by the United Nations in 2000. Specifically, the target was to reduce the extreme poverty rate by half by 2015, a goal that was met five years ahead of schedule. by Fr. Joseph Wresinski, founder of the International Movement ATD Fourth World, distinguishing "lack of basic security" (poverty) and "chronic poverty" (extreme poverty), linking the eradication of extreme poverty by allowing people currently experiencing it a real opportunity to exercise all their human rights:
This definition was mentioned previously, in June 1989, in the preliminary report on the realization of economic, social and cultural rights by the UN Special Rapporteur Danilo Türk. It is still in use today, among others, in the current UN Guiding Principles on Extreme Poverty and Human Rights adopted by the UN Human Rights Council in September 2012.
Consumption-based definition
at $1.90 a day (2011 PPP) (% of population). Based on World Bank data ranging from 1998 to 2018.]]
Extreme poverty is defined by the international community as living below $1.90 a day, as measured in 2011 international prices (equivalent to $2.12 in 2018). This number, also known as the international poverty line, is periodically updated to account for inflation and differences in the cost of living; it was originally defined at $1.00 a day in 1996. The updates are made according to new price data to portray the costs of basic food, health services, clothing, and shelter around the world as accurately as possible. The latest revision was made in 2015 when the World Bank increased the line to international-$1.90.
Because many of the world's poorest people do not have a monetary income, the poverty measurement is based on the monetary value of a person's consumption. Otherwise the poverty measurement would be missing the home production of subsistence farmers that consume largely their own production.
Alternative definitions
The $1.90/day extreme poverty line remains the most widely used metric as it highlights the reality of those in the most severe conditions. Although widely used by most international organizations, it has come under scrutiny due to a variety of factors. For example, it does not account for how far below the line people are, referred to as the depth of poverty. For this purpose, the same institutions publish data on the poverty gap.
The international poverty line is designed to stay constant over time, to allow comparisons between different years. It is therefore a measure of absolute poverty and is not measuring relative poverty. It is also not designed to capture how people view their own financial situation (known as the socially subjective poverty line). Moreover, the calculation of the poverty line relies on information about consumer prices to calculate purchasing power parity, which are very hard to measure and are necessarily debatable. As with all other metrics, there may also be missing data from the poorest and most fragile countries.
Several alternative instruments for measuring extreme poverty have been suggested which incorporate other factors such as malnutrition and lack of access to a basic education. The Multidimensional Poverty Index (MPI), based on the Alkire-Foster Method, is published by the Oxford Poverty & Human Development Initiative (OPHI): it measures deprivation in basic needs and can be broken down to reflect both the incidence and the intensity of poverty. For example, under conventional measures, in both Ethiopia and Uzbekistan about 40% of the population is considered extremely poor, but based on the MPI, 90% of Ethiopians but only 2% of Uzbeks are in multidimensional poverty.
The MPI is useful for development officials to determine the most likely causes of poverty within a region, using the M0 measure of the method (which is calculated by multiplying the fraction of people in poverty by the fraction of dimensions they are deprived in). For example, in the Gaza Strip of Palestine, using the M0 measure of the Alkire-Foster method reveals that poverty in the region is primarily caused by a lack of access to electricity, lack of access to drinking water, and widespread overcrowding. In contrast, data from the Chhukha District of Bhutan reveals that income is a much larger contributor to poverty as opposed to other dimensions within the region. However, the MPI only presents data from 105 countries, so it cannot be used for global measurements.
Share of the population living in extreme poverty
{| class="wikitable sortable"
|+Number of people pushed below the $1.90 ($2011 PPP) poverty line (in millions)
|+
!Region
!1990
!1995
!2000
!2005
!2010
!2015
!2017
|-
|Developed countries
|4.06
|4.99
|4.7
|5.48
|5.28
|7.91
|7.45
|-
|Latin America & Caribbean
|66.61
|64.75
|65.77
|54.04
|35.3
|22.95
|23.73
|-
|Middle East & North Africa
|14.8
|16.49
|9.95
|9.6
|6.86
|15.74
|24.16
|-
|South Asia
|557.05
|550.44
|564.92
|533.28
|425.32
|230.51
|173.1
|-
|East Asia & Pacific
|977.29
|766.14
|632.26
|347.99
|212.12
|42.08
|29.15
|-
|Europe & Central Asia
|11.51
|32
|34.28
|22.04
|11.27
|7.35
|6.37
|-
|Sub-Saharan Africa
|280.95
|352.76
|388.27
|393.57
|412.49
|417.6
|432.5
|-
|Total
|1,910
|1,790
|1,700
|1,370
|1,110
|744.14
|696.45
|-
|}
Current trends
Getting to zero
Using the World Bank definition of $1.90/day, , roughly 710 million people remained in extreme poverty (or roughly 1 in 10 people worldwide). Nearly half of them live in India and China, with more than 85% living in just 20 countries. Since the mid-1990s, there has been a steady decline in both the worldwide poverty rate and the total number of extreme poor. In 1990, the percentage of the global population living in extreme poverty was 43%, but in 2011, that percentage had dropped down to 21%. However, there have been many positive signs for extensive, global poverty reduction as well. Since 1999, the total number of extreme poor has declined by an average of 50 million per year. Moreover, in 2005, for the first time in recorded history, poverty rates began to fall in every region of the world, including Africa.
As aforementioned, the number of people living in extreme poverty has reduced from 1.9 billion to 766 million over the span of the last decades. If we remain on our current trajectory, many economists predict we could reach global zero by 2030–2035, thus ending extreme poverty. Global zero entails a world in which fewer than 3% of the global population lives in extreme poverty (projected under most optimistic scenarios to be fewer than 200 million people). This zero figure is set at 3% in recognition of the fact that some amount of frictional (temporary) poverty will continue to exist, whether it is caused by political conflict or unexpected economic fluctuations, at least for the foreseeable future. However, the Brookings Institution notes that any projection about poverty more than a few years into the future runs the risk of being highly uncertain. This is because changes in consumption and distribution throughout the developing world over the next two decades could result in monumental shifts in global poverty, for better or worse.
Others are more pessimistic about this possibility, predicting a range of 193 million to 660 million people still living in extreme poverty by 2035. Additionally, some believe the rate of poverty reduction will slow down in the developing world, especially in Africa, and as such it will take closer to five decades to reach global zero. Despite these reservations, several prominent international and national organizations, including the UN, the World Bank and the United States Federal Government (via USAID), have set a target of reaching global zero by the end of 2030.
More recent analyses in 2022 on real wages have questioned whether extreme poverty was a "natural" condition of humanity and decreased with the rise of capitalism.Exacerbating factorsThere are a variety of factors that may reinforce or instigate the existence of extreme poverty, such as weak institutions, cycles of violence and a low level of growth. Recent World Bank research shows that some countries can get caught in a "fragility trap", in which self-reinforcing factors prevent the poorest nations from emerging from low-level equilibrium in the long run. Moreover, most of the reduction in extreme poverty over the past twenty years has taken place in countries that have not experienced a civil conflict or have had governing institutions with a strong capacity to actually govern. Thus, to end extreme poverty, it is also important to focus on the interrelated problems of fragility and conflict.
USAID defines fragility as a government's lack of both legitimacy (the perception the government is adequate at doing its job) and effectiveness (how good the government is at maintaining law and order, in an equitable manner). As fragile nations are unable to equitably and effectively perform the functions of a state, these countries are much more prone to violent unrest and mass inequality. Additionally, in countries with high levels of inequality (a common problem in countries with inadequate governing institutions), much higher growth rates are needed to reduce the rate of poverty when compared with other nations. Additionally, if China and India are removed from the equation, up to 70% of the world's poor live in fragile states by some definitions of fragility. Some analysts project that extreme poverty will be increasingly concentrated in fragile, low-income states like Haiti, Yemen and the Central African Republic. However, some academics, such as Andy Sumner, say that extreme poverty will be increasingly concentrated in middle-income countries, creating a paradox where the world's poor do not actually live in the poorest countries.
To help low-income earners, fragile states make the transition towards peace and prosperity, the New Deal for Engagement in Fragile States, endorsed by roughly forty countries and multilateral institutions, was created in 2011. This represents an important step towards redressing the problem of fragility as it was originally articulated by self-identified fragile states who called on the international community to not only "do things differently", but to also "do different things".
Civil conflict also remains a prime cause for the perpetuation of poverty throughout the developing world. Armed conflict can have severe effects on economic growth for many reasons such as the destruction of assets, destruction of livelihoods, creation of unwanted mass migration, and diversion of public resources towards war.
In 2013, a prominent finding in a report by the World Bank was that extreme poverty is most prevalent in low-income countries. In these countries, the World Bank found that progress in poverty reduction is the slowest, the poor live under the worst conditions, and the most affected persons are children age 12 and under.
International initiatives
Millennium Summit and Millennium Development Goals
In September 2000, world leaders gathered at the Millennium Summit held in New York, launching the United Nations Millennium Project suggested by then UN Secretary-General Kofi Annan. Prior to the launch of the conference, the office of Secretary-General Annan released a report entitled "We The Peoples: The Role of the United Nations in the 21st Century". In this document, now widely known as the Millennium Report, Kofi Annan called on the international community to reduce the proportion of people in extreme poverty by half by 2015, a target that would affect over 1 billion people. Citing the close correlation between economic growth and the reduction of poverty in poor countries, Annan urged international leaders to indiscriminately target the problem of extreme poverty across every region. In charge of managing the project was Jeffrey Sachs, a noted development economist, who in 2005 released a plan for action called "Investing in Development: A Practical Plan to Achieve the Millennium Development Goals". Thomas Pogge criticized the 2000 Millennium Declaration for being less ambitious than a previous declaration from the World Food Summit due to using 1990 as the benchmark rather than 1996.
Overall, there has been significant progress towards reducing extreme poverty, with the MDG1 target of reducing extreme poverty rates by half being met five years early, representing 700 million people being lifted out of extreme poverty from 1990 to 2010, with 1.2 billion people still remaining under those conditions. The notable exception to this trend was in Sub-Saharan Africa, the only region where the number of people living in extreme poverty rose from 290 million in 1990 to 414 million in 2010, comprising more than a third of those living in extreme poverty worldwide.
The HLP report, entitled A New Global Partnership: Eradicate Poverty and Transform Economies Through Sustainable Development, was published in May 2013. In the report, the HLP wrote that:
<blockquote> Ending extreme poverty is just the beginning, not the end. It is vital, but our vision must be broader: to start countries on the path of sustainable development – building on the foundations established by the 2012 UN Conference on Sustainable Development in Rio de Janeiro, and meeting a challenge that no country, developed or developing, has met so far. We recommend to the Secretary-General that deliberations on a new development agenda must be guided by the vision of eradicating extreme poverty once and for all, in the context of sustainable development.</blockquote>
Therefore, the report determined that a central goal of the Post-Millennium Development agenda is to eradicate extreme poverty by 2030. However, the report also emphasized that the MDGs were not enough on their own, as they did not "focus on the devastating effects of conflict and violence on development ... the importance to development of good governance and institution ... nor the need for inclusive growth..." Consequently, there now exists synergy between the policy position papers put forward by the United States (through USAID), the World Bank and the UN itself in terms of viewing fragility and a lack of good governance as exacerbating extreme poverty. However, in a departure from the views of other organizations, the commission also proposed that the UN focus not only on extreme poverty (a line drawn at $1.25), but also on a higher target, such as $2. The report notes this change could be made to reflect the fact that escaping extreme poverty is only a first step.
In addition to the UN, a host of other supranational and national actors such as the European Union and the African Union have published their own positions or recommendations on what should be incorporated in the Post-2015 agenda. The European Commission's communication, published in A decent Life for all: from vision to collective action, affirmed the UN's commitment to "eradicate extreme poverty in our lifetime and put the world on a sustainable path to ensure a decent life for all by 2030". A unique vision of the report was the commission's environmental focus (in addition to a plethora of other goals such as combating hunger and gender inequality). Specifically, the Commission argued, "long-term poverty reduction ... requires inclusive and sustainable growth. Growth should create decent jobs, take place with resource efficiency and within planetary boundaries, and should support efforts to mitigate climate change." The African Union's report, entitled Common African Position (CAP) on the Post-2015 Development Agenda, likewise encouraged the international community to focus on eradicating the twin problems of poverty and exclusion in our lifetime. Moreover, the CAP pledged that "no person – regardless of ethnicity, gender, geography, disability, race or other status – is denied universal human rights and basic economic opportunities".
Least developed country conferences
The UN least developed country (LDC) conferences were a series of summits organized by the UN to promote the substantial and even development of the world's least developed countries.
Organizations working to end extreme poverty
International organizations
World Bank
In 2013, the Board of Governors of the World Bank Group (WBG) set two overriding goals for the WBG to commit itself to in the future. First, to end extreme poverty by 2030, an objective that echoes the sentiments of the UN and the Obama administration. Additionally, the WBG set an interim target of reducing extreme poverty to below 9% by 2020. Second, to focus on growth among the bottom 40% of people, as opposed to standard GDP growth. This commitment ensures that the growth of the developing world lifts people out of poverty, rather than exacerbating inequality.
Moreover, the World Bank engages in a variety of nutritional, transfer payments and transport-based initiatives. Children who experience under-nutrition from conception to two years of age have a much higher risk of physical and mental disability. Thus, they are often trapped in poverty and are unable to make a full contribution to the social and economic development of their communities as adults. The WBG estimates that as much as 3% of GDP can be lost as a result of under-nutrition among the poorest nations. To combat undernutrition, the WBG has partnered with UNICEF and the WHO to ensure all small children are fully fed. The WBG also offers conditional cash transfers to poor households who meet certain requirements such as maintaining children's healthcare or ensuring school attendance. Finally, the WBG understands investment in public transportation and better roads is key to breaking rural isolation, improving access to healthcare and providing better job opportunities for the World's poor.
United Nations
The UN Office for the Coordination of Humanitarian Affairs (OCHA) works to synchronize the disparate international, national and non-governmental efforts to contest poverty. OCHA seeks to prevent "confusion" in relief operations and to ensure that the humanitarian response to disaster situations has greater accountability and predictability. To do so, OCHA has begun deploying Humanitarian Coordinators and Country Teams to provide a solid architecture for the international community to work through.
The United Nation's Children's Fund (UNICEF) was created by the UN to provide food, clothing and healthcare to European children facing famine and disease in the immediate aftermath of World War II. After the UN General Assembly extended UNICEF's mandate indefinitely in 1953, it actively worked to help children in extreme poverty in more than 190 countries and territories to overcome the obstacles that poverty, violence, disease and discrimination place in a child's path. Its current focus areas are 1) Child survival & development 2) Basic education & gender equality 3) Children and HIV/AIDS and 4) Child protection.
The UN Refugee Agency (UNHCR) is mandated to lead and coordinate international action to protect refugees worldwide. Its primary purpose is to safeguard the rights of refugees by ensuring anyone can exercise the right to seek asylum in another state, with the option to return home voluntarily, integrate locally or resettle in a third country. The UNHCR operates in over 125 countries, helping approximately 33.9 million persons.
The World Food Programme (WFP) is the largest agency dedicated to fighting hunger worldwide. On average, the WFP brings food assistance to more than 90 million people in 75 countries. The WFP not only strives to prevent hunger in the present, but also in the future by developing stronger communities which will make food even more secure on their own. The WFP has a range of expertise from Food Security Analysis, Nutrition, Food Procurement and Logistics.
The World Health Organization (WHO) is responsible for providing leadership on global health matters, shaping the health research agenda, articulating evidence-based policy decisions and combating diseases that are induced from poverty, such as HIV/AIDS, malaria and tuberculosis. Moreover, the WHO deals with pressing issues ranging from managing water safety, to dealing with maternal and newborn health.
Governmental agencies
USAID
The US Agency for International Development (USAID) is the lead US government agency dedicated to ending extreme poverty. Currently the largest bilateral donor in the world, the United States channels the majority of its development assistance through USAID and the US Department of State. In President Obama's 2013 State of the Union address, he declared, "So the United States will join with our allies to eradicate such extreme poverty in the next two decades ... which is within our reach." In response to Obama's call to action, USAID has made ending extreme poverty central to its mission statement. Under its New Model of Development, USAID seeks to eradicate extreme poverty through the use of innovation in science and technology, by putting a greater emphasis on evidence based decision-making, and through leveraging the ingenuity of the private sector and global citizens.
A major initiative of the Obama administration is Power Africa, which aims to bring energy to 20 million people in Sub-Saharan Africa. By reaching out to its international partners, whether commercial or public, the US has leveraged over $14 billion in outside commitments after investing only US$7 billion of its own. To ensure that Power Africa reaches the region's poorest, the initiative engages in a transaction based approach to create systematic change. This includes expanding access to electricity to more than 20,000 additional households which already live without power.
In terms of specific programming, USAID works in a variety of fields from preventing hunger, reducing HIV/AIDS, providing general health assistance and democracy assistance, as well as dealing with gender issues. To deal with food security, which affects roughly 842 million people (who go to bed hungry each night), USAID coordinates the Feed the Future Initiative (FtF). FtF aims to reduce poverty and under-nutrition each by 20% over five years. Because of the President's Emergency Plan for AIDS Relief (PEPFAR) and a variety of congruent actors, the incidence of AIDS and HIV, which used to ravage Africa, reduced in scope and intensity. Through PEPFAR, the United States has ensured over five million people have received life-saving antiviral drugs, a significant proportion of the eight million people receiving treatment in relatively poor nations.
In terms of general health assistance, USAID has worked to reduce maternal mortality by 30%, under-five child mortality by 35%, and has accomplished a host of other goals. USAID also supports the gamut of democratic initiatives, from promoting human rights and accountable, fair governance, to supporting free and fair elections and the rule of law. In pursuit of these goals, USAID has increased global political participation by training more than 9,800 domestic election observers and providing civic education to more than 6.5 million people. Since 2012, the Agency has begun integrating critical gender perspectives across all aspects of its programming to ensure all USAID initiatives work to eliminate gender disparities. To do so, USAID seeks to increase the capability of women and girls to realize their rights and determine their own life outcomes. Moreover, USAID supports additional programs to improve women's access to capital and markets, builds theirs skills in agriculture, and supports women's desire to own businesses.
Others
Other major government development agencies with annual aid programmes of more than $10 billion include: GIZ (Germany), FCDO (United Kingdom), JICA (Japan), European Union and AFD (France).
Non-Governmental Organizations
A multitude of non-governmental organizations operate in the field of extreme poverty, actively working to alleviate the poorest of the poor of their deprivation. To name but a few notable organizations: Save the Children, the Overseas Development Institute, Concern Worldwide, ONE, Trickle Up and Oxfam have all done a considerable amount of work in extreme poverty.
Save the Children is the leading international organization dedicated to helping the world's indigent children. In 2013, Save the Children reached over 143 million children through their work, including over 52 million children directly. Save the Children also recently released their own report titled "Getting to Zero", in which they argued the international community could feasibly do more than lift the world's poor above $1.25/day.
The Overseas Development Institute (ODI) is a UK based think tank on international development and humanitarian issues. ODI is dedicated to alleviating the suffering of the world's poor by providing high-quality research and practical policy advice to the World's development officials. ODI also recently released a paper entitled, "The Chronic Poverty Report 2014–2015: The road to zero extreme poverty", in which its authors assert that though the international communities' goal of ending extreme poverty by 2030 is laudable, much more targeted resources will be necessary to reach said target. The report states that "To eradicate extreme poverty, massive global investment is required in social assistance, education and pro-poorest economic growth".
Concern Worldwide is an international humanitarian organization whose mission is to end extreme poverty by influencing decision makers at all levels of government (from local to international). Concern has also produced a report on extreme poverty in which they explain their own conception of extreme poverty from a NGO's standpoint. In this paper, named "How Concern Understands Extreme Poverty", the report's creators write that extreme poverty entails more than just living under $1.25/day, it also includes having a small number of assets and being vulnerable to severe negative shocks (whether natural or man made).
ONE, the organization co-founded by Bono, is a non-profit organization funded almost entirely by foundations, individual philanthropists and corporations. ONE's goals include raising public awareness and working with political leaders to fight preventable diseases, increase government accountability and increase investment in nutrition. Finally, Trickle Up is a micro-enterprise development program targeted at those living on under $1.25/day, which provides the indigent with resources to build a sustainable livelihood through both direct financing and considerable training efforts.
Oxfam is a non-governmental organization that works prominently in Africa; their mission is to improve local community organizations and it works to reduce impediments to the development of the country. Oxfam helps families suffering from poverty receive food and healthcare to survive. There are many children in Africa experiencing growth stunting, and this is one example of an issue that Oxfam targets and aims to resolve.
Cash transfers appear to be an effective intervention for reducing extreme poverty, while at the same time improving health and education outcomes.
Campaigns
*Giving What We Can
*Global Poverty Project
*Live Below the Line
*Make Poverty History
See also
*Cost of poverty
*Income inequality metrics
*Least developed countries
*List of countries by percentage of population living in poverty
*Millennium Development Goals (2015)
*Poverty reduction
*Poverty threshold
*Sustainable Development Goals (2030)
Notes
References
External links
*[https://archive.today/20130403094958/http://knowledgenetwork.alumni.msu.edu/msu-latin-american-caribbean-studies/unmillenniumdevelopmentgoalseradicateextremepovertyandhunger.html Eradicate Extreme Poverty and Hunger by 2015 | UN Millennium Development Goal] curated by the Center for Latin American and Caribbean Studies at Michigan State University
*[http://www.thelifeyoucansave.org/ The Life You Can Save – Acting Now to End World Poverty]
*[http://www.scientificamerican.com/article/can-extreme-poverty-be-el-2005-09/ Scientific American Magazine (September 2005 Issue) Can Extreme Poverty Be Eliminated?]
*[http://www.atd-fourthworld.org/ International Movement ATD Fourth World]
*[http://www.walkinhershoes.org.au/ Walk In Her Shoes]
Category:Measurements and definitions of poverty | https://en.wikipedia.org/wiki/Extreme_poverty | 2025-04-05T18:25:36.776856 |
1271 | Analytical engine | thumb|Portion of the calculating machine with a printing mechanism of the analytical engine, built by Charles Babbage, as displayed at the Science Museum (London)
The analytical engine was a proposed digital mechanical general-purpose computer designed by English mathematician and computer pioneer Charles Babbage. It was first described in 1837 as the successor to Babbage's Difference Engine, which was a design for a simpler mechanical calculator.
The analytical engine incorporated an arithmetic logic unit, control flow in the form of conditional branching and loops, and integrated memory, making it the first design for a general-purpose computer that could be described in modern terms as Turing-Complete. In other words, the structure of the analytical engine was essentially the same as that which has dominated computer design in the electronic era. It was not until 1941 that Konrad Zuse built the first general-purpose computer, Z3, more than a century after Babbage had proposed the pioneering analytical engine in 1837.
During this project, Babbage realised that a much more general design, the analytical engine, was possible. The work on the design of the analytical engine started around 1833.
The input, consisting of programs ("formulae") and data, was to be provided to the machine via punched cards, a method being used at the time to direct mechanical looms such as the Jacquard loom. For output, the machine would have a printer, a curve plotter, and a bell. The machine would also be able to punch numbers onto cards to be read in later. It employed ordinary base-10 fixed-point arithmetic.
There was to be a store (that is, a memory) capable of holding 1,000 numbers of 40 decimal digits each (ca. 16.6 kB). An arithmetic unit (the "mill") would be able to perform all four arithmetic operations, plus comparisons and optionally square roots. Initially (1838) it was conceived as a difference engine curved back upon itself, in a generally circular layout, with the long store exiting off to one side. Later drawings (1858) depict a regularised grid layout. Like the central processing unit (CPU) in a modern computer, the mill would rely upon its own internal procedures, roughly equivalent to microcode in modern CPUs, to be stored in the form of pegs inserted into rotating drums called "barrels", to carry out some of the more complex instructions the user's program might specify.
The programming language to be employed by users was akin to modern day assembly languages. Loops and conditional branching were possible, and so the language as conceived would have been Turing-complete as later defined by Alan Turing. Three different types of punch cards were used: one for arithmetical operations, one for numerical constants, and one for load and store operations, transferring numbers from the store to the arithmetical unit or back. There were three separate readers for the three types of cards. Babbage developed some two dozen programs for the analytical engine between 1837 and 1840, and one program later. These programs treat polynomials, iterative formulas, Gaussian elimination, and Bernoulli numbers.
In 1842, the Italian mathematician Luigi Federico Menabrea published a description of the engine in French, based on lectures Babbage gave when he visited Turin in 1840. In 1843, the description was translated into English and extensively annotated by Ada Lovelace, who had become interested in the engine eight years earlier. In recognition of her additions to Menabrea's paper, which included a way to calculate Bernoulli numbers using the machine (widely considered to be the first complete computer program), she has been described by many as the first computer programmer, although others have challenged this view.
Construction
Late in his life, Babbage sought ways to build a simplified version of the machine, and assembled a small part of it before his death in 1871.
In 1878, a committee of the British Association for the Advancement of Science described the analytical engine as "a marvel of mechanical ingenuity", but recommended against constructing it. The committee acknowledged the usefulness and value of the machine, but could not estimate the cost of building it, and were unsure whether the machine would function correctly after being built.
thumb|Henry Babbage's analytical engine mill, built in 1910, Babbage's son Henry Prevost Babbage was constructing a part of the mill and the printing apparatus. In 1910, it was able to calculate a (faulty) list of multiples of pi. This constituted only a small part of the whole engine; it was not programmable and had no storage. (Popular images of this section have sometimes been mislabelled, implying that it was the entire mill or even the entire engine.) Henry Babbage's "analytical engine mill" is on display at the Science Museum in London. Henry also proposed building a demonstration version of the full engine, with a smaller storage capacity: "perhaps for a first machine ten (columns) would do, with fifteen wheels in each". Such a version could manipulate 20 numbers of 25 digits each, and what it could be told to do with those numbers could still be impressive. "It is only a question of cards and time", wrote Henry Babbage in 1888, "... and there is no reason why (twenty thousand) cards should not be used if necessary, in an analytical engine for the purposes of the mathematician".
In October 2010, John Graham-Cumming started a "Plan 28" campaign to raise funds by "public subscription" to enable serious historical and academic study of Babbage's plans, with a view to then build and test a fully working virtual design which will then in turn enable construction of the physical analytical engine. As of May 2016, actual construction had not been attempted, since no consistent understanding could yet be obtained from Babbage's original design drawings. In particular it was unclear whether it could handle the indexed variables which were required for Lovelace's Bernoulli program. By 2017, the "Plan 28" effort reported that a searchable database of all catalogued material was available, and an initial review of Babbage's voluminous Scribbling Books had been completed.
Many of Babbage's original drawings have been digitised and are publicly available online.
Instruction set
thumb|upright=3|center|Plan diagram of the Analytical Engine from 1840
Babbage is not known to have written down an explicit set of instructions for the engine in the manner of a modern processor manual. Instead he showed his programs as lists of states during their execution, showing what operator was run at each step with little indication of how the control flow would be guided.
Allan G. Bromley has assumed that the card deck could be read in forwards and backwards directions as a function of conditional branching after testing for conditions, which would make the engine Turing-complete:
...the cards could be ordered to move forward and reverse (and hence to loop)...
The introduction for the first time, in 1845, of user operations for a variety of service functions including, most importantly, an effective system for user control of looping in user programs.
There is no indication how the direction of turning of the operation and variable cards is specified. In the absence of other evidence I have had to adopt the minimal default assumption that both the operation and variable cards can only be turned backward as is necessary to implement the loops used in Babbage's sample programs. There would be no mechanical or microprogramming difficulty in placing the direction of motion under the control of the user.
In their emulator of the engine, Fourmilab say:
The Engine's Card Reader is not constrained to simply process the cards in a chain one after another from start to finish. It can, in addition, directed by the very cards it reads and advised by whether the Mill's run-up lever is activated, either advance the card chain forward, skipping the intervening cards, or backward, causing previously-read cards to be processed once again.
This emulator does provide a written symbolic instruction set, though this has been constructed by its authors rather than based on Babbage's original works. For example, a factorial program would be written as:
N0 6
N1 1
N2 1
×
L1
L0
S1
–
L0
L2
S0
L2
L0
CB?11
where the CB is the conditional branch instruction or "combination card" used to make the control flow jump, in this case backward by 11 cards.
Influence
Predicted influence
Babbage understood that the existence of an automatic computer would kindle interest in the field now known as algorithmic efficiency, writing in his Passages from the Life of a Philosopher, "As soon as an analytical engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will then arise—By what course of calculation can these results be arrived at by the machine in the shortest time?"
Computer science
From 1872, Henry continued diligently with his father's work and then intermittently in retirement in 1875.
Percy Ludgate wrote about the engine in 1914 and published his own design for an analytical engine in 1909. It was drawn up in detail, but never built, and the drawings have never been found. Ludgate's engine would be much smaller (about , which corresponds to cube of side length ) than Babbage's, and hypothetically would be capable of multiplying two 20-decimal-digit numbers in about six seconds.
In his work Essays on Automatics (1914) Leonardo Torres Quevedo, inspired by Babbage, designed a theoretical electromechanical calculating machine which was to be controlled by a read-only program. The paper also contains the idea of floating-point arithmetic. In 1920, to celebrate the 100th anniversary of the invention of the arithmometer, Torres presented in Paris the Electromechanical Arithmometer, which consisted of an arithmetic unit connected to a (possibly remote) typewriter, on which commands could be typed and the results printed automatically.
Vannevar Bush's paper Instrumental Analysis (1936) included several references to Babbage's work. In the same year he started the Rapid Arithmetical Machine project to investigate the problems of constructing an electronic digital computer.
Despite this groundwork, Babbage's work fell into historical obscurity, and the analytical engine was unknown to builders of electromechanical and electronic computing machines in the 1930s and 1940s when they began their work, resulting in the need to re-invent many of the architectural innovations Babbage had proposed. Howard Aiken, who built the quickly-obsoleted electromechanical calculator, the Harvard Mark I, between 1937 and 1945, praised Babbage's work likely as a way of enhancing his own stature, but knew nothing of the analytical engine's architecture during the construction of the Mark I, and considered his visit to the constructed portion of the analytical engine "the greatest disappointment of my life". The Mark I showed no influence from the analytical engine and lacked the analytical engine's most prescient architectural feature, conditional branching. J. Presper Eckert and John W. Mauchly similarly were not aware of the details of Babbage's analytical engine work prior to the completion of their design for the first electronic general-purpose computer, the ENIAC.
Comparison to other early computers
If the analytical engine had been built, it would have been digital, programmable and Turing-complete. It would, however, have been very slow. Luigi Federico Menabrea reported in Sketch of the Analytical Engine: "Mr. Babbage believes he can, by his engine, form the product of two numbers, each containing twenty figures, in three minutes".
By comparison the Harvard Mark I could perform the same task in just six seconds (though it is debatable that computer is Turing complete; the ENIAC, which is, would also have been faster). A modern CPU could do the same thing in under a billionth of a second.
Name First operational Numeral system Computing mechanism Programming Turing complete Memory Difference engine Not built until the 1990s (design 1820s) Decimal Mechanical Not programmable; initial numerical constants of polynomial differences set physically Physical state of wheels in axes Analytical Engine Not built (design 1830s) Decimal Mechanical Program-controlled by punched cards (design; not built, yet) Physical state of wheels in axes Ludgate's Analytical Engine Not built (design 1909) Decimal Mechanical Program-controlled by punched cards (not built) Physical state of rods Torres' Analytical Machine 1920 Decimal Electro-mechanical Not programmable; input and output settings specified by patch cables Mechanical relays Zuse Z1 1939 Binary floating point Mechanical Not programmable; cipher input settings specified by patch cables Physical state of rods Bombe 1939 (Polish), March 1940 (British), May 1943 (US) Character computations Electro-mechanical Not programmable; cipher input settings specified by patch cables Physical state of rotors
Zuse Z2 1940 Binary fixed point Electro-mechanical (mechanical memory) Program-controlled by punched film stock (no conditional branch) Physical state of rods Zuse Z3 May 1941 Binary floating point Electro-mechanical Program-controlled by punched film stock (but no conditional branch) In theory Mechanical relays Atanasoff–Berry Computer 1942 Binary Electronic Not programmable; linear system coefficients input using punched cards Regenerative capacitor memory Colossus Mark 1 December 1943 Binary Electronic Program-controlled by patch cables and switches Thermionic valves (vacuum tubes) and thyratrons Harvard Mark I – IBM ASCC May 1944 Decimal Electro-mechanical Program-controlled by 24-channel punched paper tape (but no conditional branch) Debatable Mechanical relays
Colossus Mark 2 1 June 1944 Binary Electronic Program-controlled by patch cables and switches Conjectured Zuse Z4 March 1945 (or 1948) Binary floating point Electro-mechanical Program-controlled by punched film stock In 1950 Mechanical relays ENIAC December 1945 Decimal Electronic Program-controlled by patch cables and switches Vacuum tube triode flip-flops Manchester Baby June 1948 Binary Electronic Binary program entered into memory by keyboard (first electronic stored-program digital computer) Williams cathode ray tube
EDSAC May 1949 Binary Electronic Five-bit opcode and variable-length operand (first stored-program computer offering computing services to a wide community). Mercury delay lines
In popular culture
The cyberpunk novelists William Gibson and Bruce Sterling co-authored a steampunk novel of alternative history titled The Difference Engine in which Babbage's difference and analytical engines became available to Victorian society. The novel explores the consequences and implications of the early introduction of computational technology.
Moriarty by Modem, a short story by Jack Nimersheim, describes an alternative history where Babbage's analytical engine was indeed completed and had been deemed highly classified by the British government. The characters of Sherlock Holmes and Moriarty had in reality been a set of prototype programs written for the analytical engine. This short story follows Holmes as his program is implemented on modern computers and he is forced to compete against his nemesis yet again in the modern counterparts of Babbage's analytical engine.
A similar setting to The Difference Engine is used by Sydney Padua in the webcomic The Thrilling Adventures of Lovelace and Babbage. It features an alternative history where Ada Lovelace and Babbage have built the analytical engine and use it to fight crime at Queen Victoria's request. The comic is based on thorough research on the biographies of and correspondence between Babbage and Lovelace, which is then twisted for humorous effect.
The Orion's Arm online project features the Machina Babbagenseii, fully sentient Babbage-inspired mechanical computers. Each is the size of a large asteroid, only capable of surviving in microgravity conditions, and processes data at 0.5% the speed of a human brain.
Charles Babbage and Ada Lovelace appear in an episode of Doctor Who, "Spyfall Part 2", where the engine is displayed and referenced.
References
Bibliography
External links
The Babbage Papers, Science Museum archive
The Analytical Engine at Fourmilab, includes historical documents and online simulations
Image of a later Plan of Analytical Engine with grid layout (1858)
First working Babbage "barrel" actually assembled, circa 2005
Special issue, IEEE Annals of the History of Computing, Volume 22, Number 4, October–December 2000
Babbage, Science Museum, London (archived)
Plan 28: Building Charles Babbage's Analytical Engine
Category:Charles Babbage
Category:Computer-related introductions in 1837
Category:English inventions
Category:Mechanical calculators
Category:Mechanical computers
Category:One-of-a-kind computers
Category:Ada Lovelace | https://en.wikipedia.org/wiki/Analytical_engine | 2025-04-05T18:25:36.863876 |
1273 | Augustus | Augustus (title)|and|Augustus (disambiguation)|and|Octavian (disambiguation)}}
| image = Augustus of Prima Porta (inv. 2290).jpg
| image_size = 250px
| alt = Statue of Augustus
| caption = Augustus of Prima Porta, 1st century
| succession = Roman emperor
| reign = 16 January 27 BC –
| predecessor | successor Tiberius
| occupation =
| birth_name = Gaius Octavius
| birth_date = 23 September 63 BC
| birth_place = Rome, Italy
| death_date = 19 August AD 14 (aged 75)
| death_place = Nola, Italy
| burial_place = Mausoleum of Augustus, Rome
| spouses |Claudia<br />(; div. 40 BC)|Scribonia<br />(m. 40 BC; div. 38 BC)|Livia<br />(m. 37 BC)}}
| issue =
| regnal name = Imperator Caesar Augustus
| dynasty = Julio-Claudian
| father =
| mother = Atia
| module
* War of Mutina
** Battle of Forum Gallorum
** Battle of Mutina
* Liberators' Civil War
** Battle of Philippi
* Perusine War
* Bellum Siculum
** Battle of Tauromenium
* Illyricum Campaigns
* War of Actium
** Battle of Actium
** Battle of Alexandria
* Cantabrian Wars
}}
}}
Gaius Julius Caesar Augustus (born Gaius Octavius; 23 September 63 BC – 19 August AD 14), also known as Octavian (), was the founder of the Roman Empire. He reigned as the first Roman emperor from 27 BC until his death in AD 14.}} The reign of Augustus initiated an imperial cult, as well as an era of imperial peace (the or ) in which the Roman world was largely free of armed conflict. The Principate system of government was established during his reign and lasted until the Crisis of the Third Century.
Octavian was born into an equestrian branch of the plebeian Octavia. His maternal great-uncle Julius Caesar was assassinated in 44 BC, and Octavian was named in Caesar's will as his adopted son and heir; as a result, he inherited Caesar's name, estate, and the loyalty of his legions. He, Mark Antony, and Marcus Lepidus formed the Second Triumvirate to defeat the assassins of Caesar. Following their victory at the Battle of Philippi (42 BC), the Triumvirate divided the Roman Republic among themselves and ruled as de facto dictators. The Triumvirate was eventually torn apart by the competing ambitions of its members; Lepidus was exiled in 36 BC, and Antony was defeated by Octavian at the Battle of Actium in 31 BC. Antony and his wife Cleopatra, the Ptolemaic queen of Egypt, killed themselves during Octavian's invasion of Egypt, which then became a Roman province.
After the demise of the Second Triumvirate, Augustus restored the outward facade of the free republic, with governmental power vested in the Roman Senate, the executive magistrates and the legislative assemblies, yet he maintained autocratic authority by having the Senate grant him lifetime tenure as commander-in-chief, tribune and censor. A similar ambiguity is seen in his chosen names, the implied rejection of monarchical titles whereby he called himself 'First Citizen' juxtaposed with his adoption of the title Augustus.
Augustus dramatically enlarged the empire, annexing Egypt, Dalmatia, Pannonia, Noricum, and Raetia, expanding possessions in Africa, and completing the conquest of Hispania, but he suffered a major setback in Germania. Beyond the frontiers, he secured the empire with a buffer region of client states and made peace with the Parthian Empire through diplomacy. He reformed the Roman system of taxation, developed networks of roads with an official courier system, established a standing army, established the Praetorian Guard as well as official police and fire-fighting services for Rome, and rebuilt much of the city during his reign. Augustus died in AD 14 at age 75, probably from natural causes. Persistent rumors, substantiated somewhat by deaths in the imperial family, have claimed his wife Livia poisoned him. He was succeeded as emperor by his adopted son Tiberius, Livia's son and former husband of Augustus's only biological child, Julia.
Name
As a consequence of Roman customs, society, and personal preference, Augustus ( ) was known by many names throughout his life:
* ( ; ). According to Suetonius, the cognomen (, 'of Thurii') was added to his birth name as a toddler in 60 BC., probably a corruption of "Caesar".}} Later, after he had taken the name of Caesar, his rival Mark Antony referred to him as in order to belittle him. In response, he merely said he was surprised that "using his old name was thought to be an insult".
* After his adoption by Julius Caesar on the latter's death in 44 BC, he took Caesar's nomen and cognomen. He was often distinguished by historians from his adoptive father by the addition () after the name, denoting that he was a former member of the gens Octavia in conformance with Roman naming conventions. There is no evidence that Augustus did this himself, although Cicero seems to have (see below). In English he is mainly known by the anglicisation "Octavian" ( ) for the period between 44 and 27 BC.
* 'Commander-in-Chief Caesar'. Octavian's early coins and inscriptions all refer to him simply as Gaius Caesar, but by 38 BC he had replaced with the victory title 'commander'. The use of signified a permanent link to the Roman tradition of victory. on 16 April 43 BC, after the Battle of Forum Gallorum.}} He transformed , a cognomen for one branch of the Julian family, into a new family line that began with him. Occasionally the epithet or 'son of the divine Julius' was included, alluding to Julius Caesar's deification in 42 BC.
* On 16 January 27 BC, partly on his own insistence, the Roman Senate granted him the honorific () (see below). Historians use this name to refer to him from 27 BC until his death in AD 14. The name is sometimes given as "Augustus Caesar". Also included at times is and the title . Early life
He was born in Rome on 23 September 63 BC. His paternal family was from the Volscian town of Velletri, approximately south-east of the city. He was born at Ox Head, a small property on the Palatine Hill, very close to the Roman Forum. In his childhood, he received the cognomen "Thurinus", possibly commemorating his father's victory at Thurii over a rebellious band of slaves which occurred a few years after his birth. Suetonius wrote: "There are many indications that the Octavian family was in days of old a distinguished one at Velitrae; for not only was a street in the most frequented part of town long ago called Octavius, but an altar was shown there besides, consecrated by an Octavius. This man was leader in a war with a neighbouring town ..."
Due to the crowded nature of Rome at the time, Octavian was taken to his father's home village at Velletri to be raised. Octavian mentions his father's equestrian family only briefly in his memoirs. His paternal great-grandfather Octavius was a military tribune in Sicily during the Second Punic War. His grandfather had served in several local political offices. His father, also named Octavius, had been governor of Macedonia. His mother, Atia, was the niece of Julius Caesar.
}} from 44 BC, showing Julius Caesar on the obverse and the goddess Venus on the reverse of the coin. Caption: ]]
His father died in 59 BC when Octavian was four years old. His mother married a former governor of Syria, Lucius Marcius Philippus. Philippus claimed descent from Alexander the Great and was elected consul in 56 BC. Philippus never had much of an interest in young Octavian. Because of this, Octavian was raised by his grandmother, Julia, the sister of Julius Caesar. Julia died in 52 or 51 BC, and Octavian delivered the funeral oration for his grandmother. From this point, his mother and stepfather took a more active role in raising him. He donned the 'toga of manhood' four years later and was elected to the College of Pontiffs in 47 BC. The following year he was put in charge of the Greek games that were staged in honour of the Temple of Venus Genetrix, built by Julius Caesar.
According to Nicolaus of Damascus, Octavian wished to join Caesar's staff for his campaign in Africa but gave way when his mother protested. In 46 BC, she consented for him to join Caesar in Hispania, where he planned to fight the forces of Pompey, Caesar's late enemy, but Octavian fell ill and was unable to travel. When he had recovered, he sailed to the front but was shipwrecked. After coming ashore with a handful of companions, he crossed hostile territory to Caesar's camp, which impressed Caesar considerably. Rise to power Heir to Caesar
. On 15 March 44 BC, Octavian's adoptive father Julius Caesar was assassinated by a conspiracy led by Marcus Junius Brutus and Gaius Cassius Longinus. Galleria Nazionale d'Arte Moderna, Rome.]]
Octavian was studying and undergoing military training in Apollonia, Illyria, when Julius Caesar was assassinated on the Ides of March (15 March) 44 BC. He rejected the advice of some army officers to take refuge with the troops in Macedonia and sailed to Italy to ascertain whether he had any potential political fortunes or security. Caesar had no living legitimate children under Roman law
Upon his adoption, Octavian assumed his great-uncle's name Gaius Julius Caesar. there is no evidence that Octavian officially used the name , as it would have made his adoptive origins too obvious. Historians usually refer to the new Caesar as "Octavian" during the time between his adoption and his assumption of the name Augustus in 27 BC in order to avoid confusing the dead dictator with his heir.
Octavian could not rely on his limited funds to make a successful entry into the upper echelons of the Roman political hierarchy. After a warm welcome by Caesar's soldiers at Brundisium, Octavian demanded a portion of the funds that were allotted by Caesar for the intended war against the Parthian Empire in the Middle East. This amounted to 700 million sesterces stored at Brundisium, the staging ground in Italy for military operations in the east. A later senatorial investigation into the disappearance of the public funds took no action against Octavian since he subsequently used that money to raise troops against the Senate's archenemy Mark Antony. Octavian made another bold move in 44 BC when, without official permission, he appropriated the annual tribute that had been sent from Rome's Near Eastern province<!--Asia (Roman province)?--> to Italy.
Octavian began to bolster his personal forces with Caesar's veteran legionaries and with troops designated for the Parthian war, gathering support by emphasizing his status as heir to Caesar. On his march to Rome through Italy, Octavian's presence and newly acquired funds attracted many, winning over Caesar's former veterans stationed in Campania. By June, he had gathered an army of 3,000 loyal veterans, paying each a bonus of 500 .
Growing tensions
, Rome]]
Arriving in Rome on 6 May 44 BC, Octavian found consul Mark Antony, Caesar's former colleague, in an uneasy truce with the dictator's assassins. They had been granted a general amnesty on 17 March, yet Antony had succeeded in driving most of them out of Rome with an inflammatory eulogy at Caesar's funeral, mounting public opinion against the assassins.
Mark Antony was amassing political support, but Octavian still had the opportunity to rival him as the leading member of the faction supporting Caesar. Antony had lost the support of many Romans and supporters of Caesar when he initially opposed the motion to elevate Caesar to divine status. It is alleged that Antony refused to hand over the money due Octavian as Caesar's adopted heir, possibly on grounds that it would take time to disentangle it from state funds. During the summer, Octavian won the support of Caesarian veterans and also made common cause with those senators—many of whom were themselves former Caesarians—who perceived Antony as a threat to the state. After an abortive attempt by the veterans to reconcile Octavian and Antony, Antony's bellicose edicts against Brutus and Cassius alienated him from the moderate Caesarians in the Senate, who feared a renewed civil war. In September, Marcus Tullius Cicero began to attack Antony in a series of speeches portraying him as a threat to the republican order.
First conflict with Antony
With opinion in Rome turning against him and his year of consular power nearing its end, Antony attempted to pass laws that would assign him the province of Cisalpine Gaul. Octavian meanwhile built up a private army in Italy by recruiting Caesarian veterans, and on 28 November he won over two of Antony's legions with the enticing offer of monetary gain.
In the face of Octavian's large and capable force, Antony saw the danger of staying in Rome and, to the relief of the Senate, he left Rome for Cisalpine Gaul, which was to be handed to him on 1 January. However, the province had earlier been assigned to Decimus Junius Brutus Albinus, one of Caesar's assassins, who now refused to yield to Antony. Antony besieged him at Mutina and rejected the resolutions passed by the Senate to stop the fighting. The Senate had no army to enforce their resolutions. This provided an opportunity for Octavian, who already was known to have armed forces. Cicero also defended Octavian against Antony's taunts about Octavian's lack of noble lineage and aping of Julius Caesar's name, stating "we have no more brilliant example of traditional piety among our youth."
At the urging of Cicero, the Senate inducted Octavian as senator on 1 January 43 BC, yet he also was given the power to vote alongside the former consuls. In addition, Octavian was granted 'commanding power' which legalized his command of troops, sending him to relieve the siege along with Hirtius and Pansa (the consuls for 43 BC). He assumed the fasces on 7 January, a date that he would later commemorate as the beginning of his public career. Antony's forces were defeated at the battles of Forum Gallorum (14 April) and Mutina (21 April), forcing Antony to retreat to Transalpine Gaul. Both consuls were killed, however, leaving Octavian in sole command of their armies. These victories earned him his first acclamation as , a title reserved for victorious commanders.
The Senate heaped many more rewards on Decimus Brutus than on Octavian for defeating Antony, then attempted to give command of the consular legions to Decimus Brutus. In response, Octavian stayed in the Po Valley and refused to aid any further offensive against Antony. In July, an embassy of centurions sent by Octavian entered Rome and demanded the consulship left vacant by Hirtius and Pansa and also that the decree should be rescinded which declared Antony a public enemy. When this was refused, he marched on the city with eight legions. He encountered no military opposition in Rome and on 19 August 43 BC was elected consul with his relative Quintus Pedius as co-consul. Meanwhile, Antony formed an alliance with Marcus Aemilius Lepidus, another leading Caesarian.
Second Triumvirate
Proscriptions
}} bearing the portraits of Mark Antony (left) and Octavian (right), issued in 41 BC to celebrate the establishment of the Second Triumvirate. Both sides bear the inscription }}, meaning 'One of Three Men for the regulation of the Republic'. Caption: }}}} here refers to the religious office of , not the title created in 27 BC.}} / caesar IIIvir rpc}}.]]
In a meeting near Bononia in October 43 BC, Octavian, Antony, and Lepidus formed the Second Triumvirate. Their powers were made official by the Senate on 27 November. This explicit arrogation of special powers lasting five years was then legalised by law passed by the plebs, unlike the unofficial First Triumvirate formed by Pompey, Julius Caesar, and Marcus Licinius Crassus. The triumvirs then set in motion proscriptions, in which between 130 and 300 senators}} and 2,000 were branded as outlaws and deprived of their property and, for those who failed to escape, their lives. This decree issued by the triumvirate was motivated in part by a need to raise money to pay the salaries of their troops for the upcoming conflict against Caesar's assassins, Marcus Junius Brutus and Gaius Cassius Longinus. Rewards for their arrest gave incentive for Romans to capture those proscribed, while the assets and properties of those arrested were seized by the triumvirs.
Contemporary Roman historians provide conflicting reports as to which triumvir was most responsible for the proscriptions and killing. However, the sources agree that enacting the proscriptions was a means by all three factions to eliminate political enemies. Marcus Velleius Paterculus asserted that Octavian tried to avoid proscribing officials whereas Lepidus and Antony were to blame for initiating them. Cassius Dio defended Octavian as trying to spare as many as possible, whereas Antony and Lepidus, being older and involved in politics longer, had many more enemies to deal with. This claim was rejected by Appian, who maintained that Octavian shared an equal interest with Lepidus and Antony in eradicating his enemies. Suetonius said that Octavian was reluctant to proscribe officials but did pursue his enemies with more vigor than the other triumvirs. Plutarch described the proscriptions as a ruthless and cutthroat swapping of friends and family among Antony, Lepidus, and Octavian. For example, Octavian allowed the proscription of his ally Cicero, Antony the proscription of his maternal uncle Lucius Julius Caesar (the consul for 64 BC), and Lepidus his brother Paullus. Battle of Philippi and division of territory
}} minted . Obverse: ; reverse: comet of eight rays with tail upward; 'divine Julius'.]]
On 1 January 42 BC, the Senate posthumously recognised Julius Caesar as a divinity of the Roman state, . Octavian was able to further his cause by emphasizing the fact that he was 'Son of the Divine'. Antony and Octavian then sent twenty-eight legions by sea to face the armies of Brutus and Cassius, who had built their base of power in Greece. After two battles at Philippi in Macedonia in October 42, the Caesarian army was victorious and Brutus and Cassius committed suicide. Mark Antony later used the examples of these battles as a means to belittle Octavian, as both battles were decisively won with the use of Antony's forces. In addition to claiming responsibility for both victories, Antony branded Octavian as a coward for handing over his direct military control to Marcus Vipsanius Agrippa instead.
After Philippi, a new territorial arrangement was made among the members of the Second Triumvirate. Gaul and the province of Hispania were placed in the hands of Octavian. Antony travelled east to Egypt where he allied himself with Queen Cleopatra, the former lover of Julius Caesar and mother of Caesar's son Caesarion. Lepidus was left with the province of Africa, stymied by Antony, who conceded Hispania to Octavian instead.
Octavian was left to decide where in Italy to settle the tens of thousands of veterans of the Macedonian campaign, whom the triumvirs had promised to discharge. The tens of thousands who had fought on the republican side with Brutus and Cassius could easily ally with a political opponent of Octavian if not appeased, and they also required land. There was no more government-controlled land to allot as settlements for their soldiers, so Octavian had to choose one of two options: alienating many Roman citizens by confiscating their land, or alienating many Roman soldiers who could mount a considerable opposition against him in the Roman heartland. Octavian chose the former. There were as many as eighteen Roman towns affected by the new settlements, with entire populations driven out or at least given partial evictions. Rebellion and marriage alliances There was widespread dissatisfaction with Octavian over these settlements of his soldiers, and this encouraged many to rally at the side of Lucius Antonius, who was brother of Mark Antony and supported by a majority in the Senate. Meanwhile, Octavian asked for a divorce from Claudia, the daughter of Fulvia (Antony's wife) and her first husband Publius Clodius Pulcher. He returned Claudia to her mother, claiming that their marriage had never been consummated. Fulvia decided to take action. Together with Lucius Antonius, she raised an army in Italy to fight for Antony's rights against Octavian. Lucius and Fulvia took a political and martial gamble in opposing Octavian however, since the Roman army still depended on the triumvirs for their salaries. Lucius and his allies ended up in a defensive siege at Perusia, where Octavian forced them into surrender in early 40 BC.
, his residence during his reign as emperor]]
Lucius and his army were spared because of his kinship with Antony, the strongman of the East, while Fulvia was exiled to Sicyon. Octavian showed no mercy, however, for the mass of allies loyal to Lucius. On 15 March, the anniversary of Julius Caesar's assassination, he had 300 Roman senators and equestrians executed for allying with Lucius. Perusia also was pillaged and burned as a warning for others. This bloody event sullied Octavian's reputation and was criticised by many, such as Augustan poet Sextus Propertius.
Sextus Pompeius, the son of Pompey and still a renegade general, following Julius Caesar's victory over his father, had established himself in Sicily and Sardinia as part of an agreement reached with the Second Triumvirate in 39 BC. Both Antony and Octavian were vying for an alliance with Pompeius. Octavian succeeded in a temporary alliance in 40 BC when he married Scribonia, a sister (or daughter) of Pompeius's father-in-law Lucius Scribonius Libo. Scribonia gave birth to Octavian's only natural child, Julia, the same day that he divorced her to marry Livia Drusilla, little more than a year after their marriage.
While in Egypt, Antony had been engaged in an affair with Cleopatra and had fathered three children with her. Aware of his deteriorating relationship with Octavian, Antony left Cleopatra; he sailed to Italy in 40 BC with a large force to oppose Octavian, laying siege to Brundisium. This new conflict proved untenable for both Octavian and Antony, however. Their centurions, who had become important figures politically, refused to fight because of their Caesarian cause, while the legions under their command followed suit. Meanwhile, in Sicyon, Antony's wife Fulvia died of a sudden illness while Antony was en route to meet her. Fulvia's death and the mutiny of their centurions allowed the two remaining triumvirs to effect a reconciliation.
In the autumn of 40, Octavian and Antony approved the Treaty of Brundisium, by which Lepidus would remain in Africa, Antony in the East, Octavian in the West. The Italian Peninsula was left open to all for the recruitment of soldiers, but in reality this provision was useless for Antony in the East. To further cement relations of alliance with Antony, Octavian gave his sister, Octavia Minor, in marriage to Antony in late 40 BC. War with Sextus Pompeius
Sextus Pompeius threatened Octavian in Italy by denying shipments of grain through the Mediterranean Sea to the peninsula. Pompeius's own son was put in charge as naval commander in the effort to cause widespread famine in Italy. Pompeius's control over the sea prompted him to take on the name 'son of Neptune'. A temporary peace agreement was reached in 39 BC with the Pact of Misenum; the blockade on Italy was lifted once Octavian granted Pompeius Sardinia, Corsica, Sicily, and the Peloponnese, and ensured him a future position as consul for 35 BC.
The territorial agreement between the triumvirate and Sextus Pompeius began to crumble once Octavian divorced Scribonia and married Livia on 17 January 38 BC. One of Pompeius's naval commanders betrayed him and handed over Corsica and Sardinia to Octavian. Octavian lacked the resources to confront Pompeius alone, so an agreement was reached with the Second Triumvirate's extension for another five-year period beginning in 37 BC.
, minted for his victory over Octavian's fleet. Obverse: the place where he defeated Octavian, Pharus of Messina decorated with a statue of Neptune; before that galley adorned with aquila, sceptre & trident; . Reverse, the monster Scylla, her torso of dogs and fish tails, wielding a rudder as a club. Caption: ]]
In supporting Octavian, Antony expected to gain support for his own campaign against the Parthian Empire, desiring to avenge Rome's defeat at Carrhae in 53 BC. In an agreement reached at Tarentum, Antony provided 120 ships for Octavian to use against Pompeius, while Octavian was to send 20,000 legionaries to Antony for use against Parthia. Octavian sent only a tenth of those promised, which Antony viewed as an intentional provocation.
Octavian and Lepidus launched a joint operation against Sextus in Sicily in 36 BC. Despite setbacks for Octavian, the naval fleet of Sextus Pompeius was almost entirely destroyed on 3 September by General Agrippa at the naval battle of Naulochus. Sextus fled to the east with his remaining forces, where he was captured and executed in Miletus by one of Antony's generals the following year. As Lepidus and Octavian accepted the surrender of Pompeius's troops, Lepidus attempted to claim Sicily for himself, ordering Octavian to leave. Lepidus's troops deserted him, however, and defected to Octavian since they were weary of fighting and were enticed by Octavian's promises of money.
Lepidus surrendered to Octavian and was permitted to retain the office of , the head of the college of priests, but was ejected from the Triumvirate. His public career at an end, he effectively was exiled to a villa at Cape Circei in Italy. The Roman dominions were divided between Octavian in the West and Antony in the East. Octavian ensured Rome's citizens of their rights to property in order to maintain peace and stability in his portion of the empire. This time, he settled his discharged soldiers outside of Italy, while also returning 30,000 slaves to their former Roman owners—slaves who had fled to join Pompeius's army and navy. Octavian had the Senate grant him, his wife, and his sister tribunal immunity, or , in order to ensure his own safety and that of Livia and Octavia once he returned to Rome.
War with Antony and Cleopatra
]]
'', by Laureys a Castro, painted 1672, National Maritime Museum, London]]
Meanwhile, Antony's campaign turned disastrous against Parthia, tarnishing his image as a leader, and the mere 2,000 legionaries sent by Octavian to Antony were hardly enough to replenish his forces. On the other hand, Cleopatra could restore his army to full strength; he already was engaged in a romantic affair with her, so he decided to send Octavia back to Rome. Octavian used this to spread propaganda implying that Antony was becoming less than Roman because he rejected a legitimate Roman spouse for an "Oriental paramour". In 36 BC, Octavian used a political ploy to make himself look less autocratic and Antony more the villain by proclaiming that the civil wars were coming to an end and that he would step down as triumvir—if only Antony would do the same. Antony refused.
Roman troops captured the Kingdom of Armenia in 34 BC, and Antony made his son Alexander Helios the ruler of Armenia. He also awarded the title "Queen of Kings" to Cleopatra, acts that Octavian used to convince the Roman Senate that Antony had ambitions to diminish the preeminence of Rome. Octavian became consul once again on 1 January 33 BC, and he opened the following session in the Senate with a vehement attack on Antony's grants of titles and territories to his relatives and to his queen.
The breach between Antony and Octavian prompted a large portion of the senators, as well as both of that year's consuls, to leave Rome and defect to Antony. However, Octavian received two key deserters from Antony in the autumn of 32 BC: Munatius Plancus and Marcus Titius. These defectors gave Octavian the information that he needed to confirm with the Senate all the accusations that he made against Antony. Octavian forcibly entered the temple of the Vestal Virgins and seized Antony's secret will, which he promptly publicized. The will would have given away Roman-conquered territories as kingdoms for his sons to rule and designated Alexandria as the site for a tomb for him and his queen. In late 32 BC, the Senate officially revoked Antony's powers as consul and declared war on Cleopatra's regime in Egypt.
in the House of Marcus Fabius Rufus, Pompeii, is most likely a depiction of Cleopatra VII of Ptolemaic Egypt as Venus Genetrix, with her son Caesarion as Cupid, similar in appearance to the now-lost statue of Cleopatra erected by Julius Caesar in the Temple of Venus Genetrix (within the Forum of Caesar). Its owner walled off the room with this painting, most likely in immediate reaction to the execution of Caesarion on orders of Augustus in 30 BC, when artistic depictions of Caesarion would have been considered a sensitive issue for the ruling regime.]]
In early 31 BC, Antony and Cleopatra were temporarily stationed in Greece when Octavian gained a preliminary victory: the navy successfully ferried troops across the Adriatic Sea under the command of Agrippa. Agrippa cut off Antony and Cleopatra's main force from their supply routes at sea, while Octavian landed on the mainland opposite the island of Corcyra (modern Corfu) and marched south. Trapped on land and sea, deserters of Antony's army fled to Octavian's side daily while Octavian's forces were comfortable enough to make preparations.
Antony's fleet sailed through the bay of Actium on the western coast of Greece in a desperate attempt to break free of the naval blockade. It was there that Antony's fleet faced the much larger fleet of smaller, more maneuverable ships under commanders Agrippa and Gaius Sosius in the Battle of Actium on 2 September 31 BC. Antony and his remaining forces were spared by a last-ditch effort from Cleopatra's fleet that had been waiting nearby.
of Octavian, , British Museum]]
A year later, Octavian defeated their forces in Alexandria on 1 August 30 BC—after which Antony and Cleopatra committed suicide. Antony fell on his own sword and was taken by his soldiers back to Alexandria where he died in Cleopatra's arms. Cleopatra died soon after by poisoning, contrary to the popular belief that she was bitten by an asp. Octavian had exploited his position as Caesar's heir to further his own political career, and he was well aware of the dangers in allowing another person to do the same. He therefore followed the advice of the Greek philosopher Arius Didymus that "two Caesars are one too many", ordering Caesarion killed while sparing Cleopatra's children by Antony, with the exception of Antony's older son. Octavian had previously shown little mercy to surrendered enemies and acted in ways that had proven unpopular with the Roman people, yet he was given credit for pardoning many of his opponents after the Battle of Actium.
Sole ruler of Rome
After Actium and the defeat of Antony and Cleopatra, Octavian was in a position to rule the entire republic under an unofficial principate—but he had to achieve this through incremental power gains. He did so by courting the Senate and the people while upholding the republican traditions of Rome, appearing that he was not aspiring to dictatorship or monarchy. Marching into Rome, Octavian and Agrippa were elected as consuls by the Senate.
Years of civil war had left Rome in a state of near lawlessness, but the republic was not prepared to accept the control of Octavian as a despot. At the same time, Octavian could not give up his authority without risking further civil wars among the Roman generals, and even if he desired no position of authority his position demanded that he look to the well-being of the city of Rome and the Roman provinces. Octavian's aims from this point forward were to return Rome to a state of stability, traditional legality, and civility by lifting the overt political pressure imposed on the courts of law and ensuring free elections—in name at least. First settlement
On 13 January 27 BC, Octavian made a show of returning full power to the Roman Senate and relinquishing his control of the Roman provinces and their armies. Under his consulship, however, the Senate had little power in initiating legislation by introducing bills for senatorial debate. Octavian was no longer in direct control of the provinces and their armies, but he retained the loyalty of active duty soldiers and veterans alike. The careers of many clients and adherents depended on his patronage, as his financial power was unrivaled in the Roman Republic. Historian Werner Eck states:
, which he himself emphasized as the foundation of his political actions.}}
To a large extent, the public was aware of the vast financial resources that Octavian commanded. He failed to encourage enough senators to finance the building and maintenance of networks of roads in Italy in 20 BC, but he undertook direct responsibility for them. This was publicized on the Roman currency issued in 16 BC, after he donated vast amounts of money to the , the public treasury.
, Paris)]]
According to historian H. H. Scullard, however, Octavian's power was based on the exercise of "a predominant military power and ... the ultimate sanction of his authority was force, however much the fact was disguised." The Senate proposed to Octavian, the victor of Rome's civil wars, that he once again assume command of the provinces. The Senate's proposal was a ratification of Octavian's extra-constitutional power. Through the Senate, Octavian was able to continue the appearance of a still-functional constitution. Feigning reluctance, he accepted a ten-year responsibility of overseeing provinces that were considered chaotic. The provinces ceded to Augustus for that ten-year period comprised much of the conquered Roman world, including all of Hispania and Gaul, Syria, Cilicia, Cyprus, and Egypt. Moreover, command of these provinces provided Octavian with control over the majority of Rome's legions.
While Octavian acted as consul in Rome, he dispatched senators to the provinces under his command as his representatives to manage provincial affairs and ensure that his orders were carried out. The provinces not under Octavian's control were overseen by governors chosen by the Roman Senate. Octavian became the most powerful political figure in the city of Rome and in most of its provinces, but he did not have a monopoly on political and martial power. The Senate still controlled North Africa, an important regional producer of grain, as well as Illyria and Macedonia, two strategic regions with several legions. However, the Senate had control of only five or six legions distributed among three senatorial proconsuls, compared to the twenty legions under the control of Octavian, and their control of these regions did not amount to any political or military challenge to Octavian. The Senate's control over some of the Roman provinces helped maintain a republican facade for the autocratic principate. Also, Octavian's control of entire provinces followed republican-era precedents for the objective of securing peace and creating stability, in which such prominent Romans as Pompey had been granted similar military powers in times of crisis and instability.
Change to Augustus
}} minted , marked: ]]
On 16 January 27 BC. Ovid's gives 13 January, the very same date in which the Senate powers were "restored". The 3rd-century gives 17 January, a mistake.}} the Senate gave Octavian the new title of . , from the Latin 'to increase', can be translated as 'illustrious one' or 'sublime'. but in this case it became an almost regnal title for a leader who was first in charge. The honorific was inherited by all future emperors and became the de facto main title of the emperor. As a result, modern historians usually regard this event as the beginning of his reign as "emperor". Augustus himself appears to have reckoned his "reign" from 27 BC. in 28 BC. However, he also states that Augustus "added five years to his own terms as , since his ten-year period was about to expire (this was in the consulship of Publius and Gnaeus Lentulus [18 BC])" [https://penelope.uchicago.edu/Thayer/E/Roman/Texts/Cassius_Dio/54*.html#12 (54.12)], meaning that his official tenure as began in 27 BC.}}
Augustus styled himself as 'Commander Caesar son of the deified one'. With this title, he boasted his familial link to deified Julius Caesar, and the use of signified a permanent link to the Roman tradition of victory. on 16 April 43 BC, after the Battle of Forum Gallorum.}} He transformed , a cognomen for one branch of the Julian family, into a new family line that began with him.
in Rimini (), dedicated to Augustus by the Roman Senate in 27 BC, is one of the oldest preserved arches in Italy.]]
Augustus was granted the right to hang the (civic crown) above his door and to have laurels drape his doorposts. However, he renounced flaunting insignia of power such as holding a scepter, wearing a diadem, or wearing the golden crown and purple toga of his predecessor Julius Caesar. If he refused to symbolize his power by donning and bearing these items on his person, the Senate nonetheless awarded him with a golden shield displayed in the meeting hall of the Curia, bearing the inscription – 'valor, piety, clemency, and justice'.
Second settlement
By 23 BC, some of the un-republican implications were becoming apparent concerning the settlement of 27 BC. Augustus's retention of an annual consulate drew attention to his de facto dominance over the Roman political system and cut in half the opportunities for others to achieve what was still nominally the preeminent position in the Roman state. Further, he was causing political problems by desiring to have his nephew Marcus Claudius Marcellus follow in his footsteps and eventually assume the principate in his turn,}} alienating his three greatest supporters: Agrippa, Maecenas, and Livia. He appointed noted republican Calpurnius Piso (who had fought against Julius Caesar and supported Cassius and Brutus) as co-consul in 23 BC, after his choice Aulus Terentius Varro Murena died unexpectedly.
In the late spring Augustus had a severe illness and on his supposed deathbed made arrangements that would ensure the continuation of the principate in some form, while allaying senators' suspicions of his anti-republicanism. Augustus prepared to hand down his signet ring to his favored general Agrippa. However, Augustus handed over to his co-consul Piso all of his official documents, an account of public finances, and authority over listed troops in the provinces while Augustus's supposedly favored nephew Marcellus came away empty-handed. This was a surprise to many who believed Augustus would have named an heir to his position as an unofficial emperor.
Augustus bestowed only properties and possessions to his designated heirs, as an obvious system of institutionalized imperial inheritance would have provoked resistance and hostility among the republican-minded Romans fearful of monarchy. With regards to the principate, it was obvious to Augustus that Marcellus was not ready to take on his position; nonetheless, by giving his signet ring to Agrippa, Augustus intended to signal to the legions that Agrippa was to be his successor and that they should continue to obey Agrippa, constitutional procedure notwithstanding.
showing Augustus wearing a gorgoneion'' on a three layered sardonyx cameo, AD 20–50]]
Soon after his bout of illness subsided, Augustus gave up his consulship. The only other times Augustus would serve as consul would be in the years 5 and 2 BC, both times to introduce his grandsons into public life. This was a clever ploy by Augustus; ceasing to serve as one of two annually elected consuls allowed aspiring senators a better chance to attain the consular position while allowing Augustus to exercise wider patronage within the senatorial class. Although Augustus had resigned as consul, he desired to retain his consular not just in his provinces but throughout the empire. This desire, as well as the Marcus Primus affair, led to a second compromise between him and the Senate known as the second settlement.
The primary reasons for the second settlement were as follows. First, after Augustus relinquished the annual consulship, he was no longer in an official position to rule the state, yet his dominant position remained unchanged over his Roman, 'imperial' provinces where he was still a proconsul. When he annually held the office of consul, he had the power to intervene with the affairs of the other provincial proconsuls appointed by the Senate throughout the empire, when he deemed necessary.
A second problem later arose showing the need for the second settlement in what became known as the "Marcus Primus affair". In late 24 or early 23 BC, charges were brought against Marcus Primus, the former proconsul (governor) of Macedonia, for waging a war without prior approval of the Senate on the Odrysian kingdom of Thrace, whose king was a Roman ally. He was defended by Lucius Licinius Varro Murena who told the trial that his client had received specific instructions from Augustus ordering him to attack the client state. Later, Primus testified that the orders came from the recently deceased Marcellus. Such orders, had they been given, would have been considered a breach of the Senate's prerogative under the constitutional settlement of 27 BC and its aftermath—i.e., before Augustus was granted —as Macedonia was a senatorial province under the Senate's jurisdiction, not an imperial province under the authority of Augustus. Such an action would have ripped away the veneer of republican restoration as promoted by Augustus, and exposed his fraud of merely being the first citizen, a first among equals. Even worse, the involvement of Marcellus provided some measure of proof that Augustus's policy was to have the youth take his place as princeps, instituting a form of monarchy—accusations that had already played out.
Conspiracy
of Herculaneum, seated and wearing a laurel wreath]]
Many of the political subtleties of the second settlement seem to have evaded the comprehension of the plebeian class, who were Augustus's greatest supporters and clientele. This caused them to insist upon Augustus's participation in imperial affairs from time to time. Augustus failed to stand for election as consul in 22 BC, and fears arose once again that he was being forced from power by the aristocratic Senate. In 22, 21, and 19 BC, the people rioted in response and only allowed a single consul to be elected for each of those years, ostensibly to leave the other position open for Augustus.
Likewise, there was a food shortage in Rome in 22 BC which sparked panic, while many urban plebs called for Augustus to take on dictatorial powers to personally oversee the crisis. After a theatrical display of refusal before the Senate, Augustus finally accepted authority over Rome's grain supply "by virtue of his proconsular ", and ended the crisis almost immediately. It was not until AD 8 that a food crisis of this sort prompted Augustus to establish a , a permanent prefect who was in charge of procuring food supplies for Rome.
There were some who were concerned by the expansion of powers granted to Augustus by the second settlement, and this came to a head with the apparent conspiracy of Fannius Caepio. Some time prior to 1 September 22 BC, a certain Castricius provided Augustus with information about a conspiracy led by Fannius Caepio. Murena, the outspoken consul who defended Primus in the Marcus Primus affair, was named among the conspirators. The conspirators were tried in absentia with Tiberius acting as prosecutor; the jury found them guilty, but it was not a unanimous verdict. All the accused were sentenced to death for treason and executed as soon as they were captured—without ever giving testimony in their defence. Augustus ensured that the façade of Republican government continued with an effective cover-up of the events.
In 19 BC, the Senate granted Augustus a form of "general consular imperium", which was probably , like the proconsular powers that he received in 23 BC. Like his tribune authority, the consular powers were another instance of gaining power from offices that he did not actually hold. In addition, Augustus was allowed to wear the consul's insignia in public and before the Senate, as well as to sit in the symbolic chair between the two consuls and hold the fasces, an emblem of consular authority. This seems to have assuaged the populace; regardless of whether or not Augustus was a consul, the importance was that he both appeared as one before the people and could exercise consular power if necessary. On 6 March 12 BC, after the death of Lepidus, he additionally took up the position of , the high priest of the college of the pontiffs, the most important position in Roman religion.}}}} On 5 February 2 BC, Augustus was also given the title 'father of the country'.
Stability and staying power
, at Glyptothek, Munich]]
A final reason for the second settlement was to give the principate constitutional stability and staying power in case something happened to Princeps Augustus. His illness of early 23 BC and the Caepio conspiracy showed that the regime's existence hung by the thin thread of the life of one man, Augustus himself, who had several severe and dangerous illnesses throughout his life. If he were to die from natural causes or fall victim to assassination, Rome could be subjected to another round of civil war. The memories of Pharsalus, the Ides of March, the proscriptions, Philippi, and Actium, barely twenty-five years distant, were still vivid in the minds of many citizens. Proconsular imperium was conferred upon Agrippa for five years, similar to Augustus's power, in order to accomplish this constitutional stability. The exact nature of the grant is uncertain but it probably covered Augustus's imperial provinces, east and west, perhaps lacking authority over the provinces of the Senate. That came later, as did the jealously guarded tribunicia potestas. Augustus's accumulation of powers was now complete. War and expansion
By AD 13, Augustus boasted 21 occasions where his troops proclaimed him after a successful battle. Almost the entire fourth chapter in his publicly released memoirs of achievements known as the is devoted to his military victories and honours.
Augustus also promoted the ideal of a superior Roman civilisation with a task of ruling the world (to the extent to which the Romans knew it), a sentiment embodied in words that the contemporary poet Virgil attributes to a legendary ancestor of Augustus: —"Roman, remember to rule the Earth's peoples with authority!" The impulse for expansionism was apparently prominent among all classes at Rome, and it is accorded divine sanction by Virgil's Jupiter in Book 1 of the Aeneid, where Jupiter promises Rome 'sovereignty without end'.
By the end of his reign, the armies of Augustus had conquered northern Hispania (modern Spain and Portugal) and the Alpine regions of Raetia and Noricum (modern Switzerland, Bavaria, Austria, Slovenia), Illyricum and Pannonia (modern Albania, Croatia, Hungary, Serbia, etc.), and had extended the borders of Africa Proconsularis to the east and south. Judea was added to the province of Syria when Augustus deposed Herod Archelaus, successor to client king Herod the Great. Syria (like Egypt after Antony) was governed by a high prefect of the equestrian class rather than by a proconsul or legate of Augustus.
, a successful military commander under Augustus who was designated as his heir and successor]]
Again, no military effort was needed in 25 BC when Galatia (part of modern Turkey) was converted to a Roman province shortly after Amyntas of Galatia was killed by an avenging widow of a slain prince from Homonada. The rebellious tribes of Asturias and Cantabria in modern-day Spain were finally quelled in 19 BC, and the territory fell under the provinces of Hispania and Lusitania. This region proved to be a major asset in funding Augustus's future military campaigns, as it was rich in mineral deposits that could be fostered in Roman mining projects, especially the very rich gold deposits at Las Médulas.
in the Chera Kingdom of Southern India, as shown in the Tabula Peutingeriana, with depiction of a temple of Augustus ()]]
Conquering the peoples of the Alps in 16 BC was another important victory for Rome, since it provided a large territorial buffer between the Roman citizens of Italy and Rome's enemies in Germania to the north. Horace dedicated an ode to the victory, while the monumental Trophy of Augustus near Monaco was built to honour the occasion. The capture of the Alpine region also served the next offensive in 12 BC, when Tiberius began the offensive against the Pannonian tribes of Illyricum, and his brother Nero Claudius Drusus moved against the Germanic tribes of the eastern Rhineland. Both campaigns were successful, as Drusus's forces reached the Elbe River by 9 BC—though he died shortly after by falling off his horse. It was recorded that the pious Tiberius walked in front of his brother's body all the way back to Rome.
To protect Rome's eastern territories from the Parthian Empire, Augustus relied on the client states of the east to act as territorial buffers and areas that could raise their own troops for defense. To ensure security of the empire's eastern flank, Augustus stationed a Roman army in Syria, while his skilled stepson Tiberius negotiated with the Parthians as Rome's diplomat to the East. Tiberius was responsible for restoring Tigranes V to the throne of the Kingdom of Armenia.
Arguably his greatest diplomatic achievement was negotiating with Phraates IV of Parthia (37–2 BC) in 20 BC for the return of the battle standards lost by Crassus in the Battle of Carrhae, a symbolic victory and great boost of morale for Rome. Werner Eck claims that this was a great disappointment for Romans seeking to avenge Crassus's defeat by military means. However, Maria Brosius explains that Augustus used the return of the standards as propaganda symbolizing the submission of Parthia to Rome. The event was celebrated in art such as the breastplate design on the statue Augustus of Prima Porta and in monuments such as the Temple of Mars Ultor ('Mars the Avenger') built to house the standards. Parthia had always posed a threat to Rome in the east, but the real battlefront was along the Rhine and Danube rivers. Before the final fight with Antony, Octavian's campaigns against the tribes in Dalmatia were the first step in expanding Roman dominions to the Danube. Victory in battle was not always a permanent success, as newly conquered territories were constantly retaken by Rome's enemies in Germania.
), depiction of the Battle of the Teutoburg Forest, by Peter Janssen, 1873]]
A prime example of Roman loss in battle was the Battle of the Teutoburg Forest in AD 9, where three entire legions led by Publius Quinctilius Varus were destroyed by Arminius, leader of the Cherusci, an apparent Roman ally. Augustus retaliated by dispatching Tiberius and Drusus to the Rhineland to pacify it, which had some success although the battle brought the end to Roman expansion into Germany. The Roman general Germanicus took advantage of a Cherusci civil war between Arminius and Segestes; at the Battle of Idistaviso in AD 16, he defeated Arminius. Death and succession The illness of Augustus in 23 BC brought the problem of succession to the forefront of political issues and the public. To ensure stability, he needed to designate an heir to his unique position in Roman society and government. This was to be achieved in small, undramatic and incremental ways that did not stir senatorial fears of monarchy. If someone was to succeed to Augustus's unofficial position of power, he would have to earn it through his own publicly proven merits.
Some Augustan historians argue that indications pointed toward his sister's son Marcellus, who had been quickly married to Augustus's daughter Julia the Elder. Other historians dispute this since Augustus's will was read aloud to the Senate while he was seriously ill in 23 BC, indicating a preference for Marcus Agrippa, who was Augustus's second in charge and arguably the only one of his associates who could have controlled the legions and held the empire together.
After the death of Marcellus in 23 BC, Augustus married his daughter to Agrippa. This union produced five children, three sons and two daughters: Gaius Caesar, Lucius Caesar, Vipsania Julia, Agrippina, and Agrippa Postumus, so named because he was born after Marcus Agrippa died. Shortly after the second settlement, Agrippa was granted a five-year term of administering the eastern half of the empire with the of a proconsul and the same granted to Augustus (although not trumping Augustus's authority), his seat of governance stationed at Samos in the eastern Aegean. This granting of power showed Augustus's favor for Agrippa, but it was also a measure to please members of his Caesarian party by allowing one of their members to share a considerable amount of power with him.
Augustus's intent became apparent to make his grandsons Gaius and Lucius his heirs when he adopted them as his own children. He took the consulship in 5 and 2 BC so that he could personally usher them into their political careers, and they were nominated for the consulships of AD 1 and 4. Augustus also showed favour to his stepsons, Livia's children from her first marriage, Nero Claudius Drusus Germanicus (henceforth referred to as Drusus) and Tiberius Claudius (henceforth Tiberius), granting them military commands and public office, though seeming to favour Drusus. After Agrippa died in 12 BC, Tiberius was ordered to divorce his own wife, Vipsania Agrippina, and marry Augustus's widowed daughter, Julia, as soon as a period of mourning for Agrippa had ended. Drusus's marriage to Augustus's niece Antonia was considered an unbreakable affair, whereas Vipsania was "only" the daughter of the late Agrippa from his first marriage.
Tiberius shared in Augustus's tribune powers as of 6 BC but shortly thereafter went into retirement, reportedly wanting no further role in politics while he exiled himself to Rhodes. No specific reason is known for his departure, though it could have been a combination of reasons, including a failing marriage with Julia as well as a sense of envy and exclusion over Augustus's apparent favouring of the younger Gaius and Lucius. (Gaius and Lucius joined the college of priests at an early age, were presented to spectators in a more favourable light, and were introduced to the army in Gaul.)
After the deaths of both Lucius and Gaius in AD 2 and 4 respectively, and the earlier death of his brother Drusus (9 BC), Tiberius was recalled to Rome in June AD 4, where he was adopted by Augustus on the condition that he, in turn, adopt his nephew Germanicus. This continued the tradition of presenting at least two generations of heirs. In that year, Tiberius was also granted the powers of a tribune and proconsul, emissaries from foreign kings had to pay their respects to him and by AD 13 was awarded with his second triumph and equal level of with that of Augustus.
.]]
The only other possible claimant as heir was Agrippa Postumus, who had been exiled by Augustus in AD 7, his banishment made permanent by senatorial decree, and Augustus officially disowned him. He certainly fell out of Augustus's favour as an heir; the historian Erich S. Gruen notes various contemporary sources that state Agrippa Postumus was a "vulgar young man, brutal and brutish, and of depraved character".
On 19 August AD 14, Augustus died while visiting Nola where his father had died. Both Tacitus and Cassius Dio wrote that Livia was rumored to have brought about Augustus's death by poisoning fresh figs. This element features in many modern works of historical fiction pertaining to Augustus's life, but some historians view it as likely to have been a salacious fabrication made by those who had favoured Postumus as heir, or other political enemies of Tiberius. Livia had long been the target of similar rumors of poisoning on the behalf of her son, most or all of which are unlikely to have been true. Alternatively, it is possible that Livia did supply a poisoned fig (she did cultivate a variety of fig named for her that Augustus is said to have enjoyed), but did so as a means of assisted suicide rather than murder. Augustus's health had been in decline in the months immediately before his death, and he had made significant preparations for a smooth transition in power, having at last reluctantly settled on Tiberius as his choice of heir. It is likely that Augustus was not expected to return alive from Nola, but it seems that his health improved once there; it has therefore been speculated that Augustus and Livia conspired to end his life at the anticipated time, having committed all political process to accepting Tiberius, in order to not endanger that transition.
restored, 2021]]
Augustus's famous last words were, "Have I played the part well? Then applaud as I exit" ()—referring to the play-acting and regal authority that he had put on as emperor. An enormous funerary procession of mourners travelled with Augustus's body from Nola to Rome, and all public and private businesses closed on the day of his burial. Tiberius and his son Drusus delivered the eulogy while standing atop two . Augustus's body was coffin-bound and cremated on a pyre close to his mausoleum. It was proclaimed that Augustus joined the company of the gods as a member of the Roman pantheon.
Historian D. C. A. Shotter states that Augustus's policy of favoring the Julian family line over the Claudian might have afforded Tiberius sufficient cause to show open disdain for Augustus after the latter's death; instead, Tiberius was always quick to rebuke those who criticized Augustus. Shotter suggests that Augustus's deification obliged Tiberius to suppress any open resentment that he might have harbored, coupled with Tiberius's "extremely conservative" attitude towards religion. Also, historian R. Shaw-Smith points to letters of Augustus to Tiberius which display affection towards Tiberius and high regard for his military merits. Shotter states that Tiberius focused his anger and criticism on Gaius Asinius Gallus (for marrying Vipsania after Augustus forced Tiberius to divorce her), as well as toward the two young Caesars, Gaius and Lucius—instead of Augustus, the real architect of his divorce and imperial demotion.
Legacy
bottom left and the emperor Augustus in the bottom right, from the . The likeness of Augustus is that of the Byzantine emperor Manuel II Palaiologos.]]
]]
Augustus created a regime which maintained peace and prosperity in the Roman west and the Greek east for two centuries. Its dominance also laid the foundations of a concept of universal empire in the Byzantine Empire and the Holy Roman Empires down to their dissolutions in 1453 and 1806, respectively. Both his adoptive surname, Caesar, and his title became the permanent titles of the rulers of the Roman Empire for fourteen centuries after his death, in use both at Old Rome and at New Rome. In many languages, became the word for emperor, as in the German and in the Bulgarian and subsequently Russian (sometimes or ). The cult of continued until the state religion of the empire was changed to Christianity in 391 by Theodosius I. Consequently, there are many statues and busts of the first emperor. He had composed an account of his achievements, the , to be inscribed in bronze in front of his mausoleum. Copies of the text were inscribed throughout the empire upon his death. The inscriptions in Latin featured translations in Greek beside it and were inscribed on many public edifices, such as the temple in Ankara dubbed the , called the "queen of inscriptions" by historian Theodor Mommsen.
The is the only work to have survived from antiquity, though Augustus is also known to have composed poems entitled , , and , an autobiography of 13 books, a philosophical treatise, and a written rebuttal to Brutus's Eulogy of Cato. Historians are able to analyze excerpts of letters penned by Augustus, preserved in other works, to others for additional facts or clues about his personal life.
Many consider Augustus to be Rome's greatest emperor; his policies certainly extended the empire's life span and initiated the celebrated or . The Roman Senate wished subsequent emperors to "be more fortunate than Augustus and better than Trajan". Augustus was intelligent, decisive, and a shrewd politician, but he was not perhaps as charismatic as Julius Caesar and was influenced on occasion by Livia (sometimes for the worse). Nevertheless, his legacy proved more enduring. The city of Rome was utterly transformed under Augustus, with Rome's first institutionalized police force, firefighting force, and the establishment of the municipal prefect as a permanent office. The police force was divided into cohorts of 500 men each, while the units of firemen ranged from 500 to 1,000 men each, with 7 units assigned to 14 divided city sectors.
A 'prefect of the watch' was put in charge of the vigiles, Rome's fire brigade and police. With Rome's civil wars at an end, Augustus was also able to create a standing army for the Roman Empire, fixed at a size of 28 legions of about 170,000 soldiers. This was supported by numerous auxiliary units of 500 non-citizen soldiers each, often recruited from recently conquered areas.
With his finances securing the maintenance of roads throughout Italy, Augustus installed an official courier system of relay stations overseen by a military officer known as the . Besides the advent of swifter communication among Italian polities, his extensive building of roads throughout Italy also allowed Rome's armies to march swiftly and at an unprecedented pace across the country. In the year 6 Augustus established the , donating 170 million sesterces to the new military treasury that provided for both active and retired soldiers.
One of the most enduring institutions of Augustus was the establishment of the Praetorian Guard in 27 BC, originally a personal bodyguard unit on the battlefield that evolved into an imperial guard as well as an important political force in Rome. They had the power to intimidate the Senate, install new emperors, and depose ones they disliked; the last emperor they served was Maxentius, as it was Constantine I who disbanded them in the early 4th century and destroyed their barracks, the Castra Praetoria.
in an Egyptian-style depiction, a stone carving of the Kalabsha Temple in Nubia]]
Although the most powerful individual in the Roman Empire, Augustus wished to embody the spirit of Republican virtue and norms. He also wanted to relate to and connect with the concerns of the plebs and lay people. He achieved this through various means of generosity and a cutting back of lavish excess. In the year 29 BC, Augustus gave 400 sesterces (equal to one-tenth of a Roman pound of gold) each to 250,000 citizens, 1,000 sesterces each to 120,000 veterans in the colonies, and spent 700 million sesterces in purchasing land for his soldiers to settle upon. He also restored 82 different temples to display his care for the Roman pantheon of deities. In 28 BC, he melted down 80 silver statues erected in his likeness and in honour of him, an attempt of his to appear frugal and modest.
The longevity of Augustus's reign and its legacy to the Roman world should not be overlooked as a key factor in its success. As Tacitus wrote, the younger generations alive in AD 14 had never known any form of government other than the principate. Had Augustus died earlier, matters might have turned out differently. The attrition of the civil wars on the old Republican oligarchy and the longevity of Augustus, therefore, must be seen as major contributing factors in the transformation of the Roman state into a de facto monarchy in these years. Augustus's own experience, his patience, his tact, and his political acumen also played their parts. He directed the future of the empire down many lasting paths, from the existence of a standing professional army stationed at or near the frontiers, to the dynastic principle so often employed in the imperial succession, to the embellishment of the capital at the emperor's expense. Augustus's ultimate legacy was the peace and prosperity the Empire enjoyed for the next two centuries under the system he initiated. His memory was enshrined in the political ethos of the Imperial age as a paradigm of the good emperor. Every emperor of Rome adopted his name, Caesar Augustus, which gradually lost its character as a name and eventually became a title. The Augustan era poets Virgil and Horace praised Augustus as a defender of Rome, an upholder of moral justice, and an individual who bore the brunt of responsibility in maintaining the empire.
However, for his rule of Rome and establishing the principate, Augustus has also been subjected to criticism throughout the ages. The contemporary Roman jurist Marcus Antistius Labeo, fond of the days of pre-Augustan republican liberty in which he had been born, openly criticised the Augustan regime. In the beginning of his Annals, Tacitus wrote that Augustus had cunningly subverted Republican Rome into a position of slavery. He continued to say that, with Augustus's death and swearing of loyalty to Tiberius, the people of Rome traded one slaveholder for another. In a 2006 biography on Augustus, Anthony Everitt asserts that through the centuries, judgments on Augustus's reign have oscillated between these two extremes.
Tacitus was of the belief that Nerva (r. 96–98) successfully "mingled two formerly alien ideas, principate and liberty". The 3rd-century historian Cassius Dio acknowledged Augustus as a benign, moderate ruler, yet like most other historians after the death of Augustus, Dio viewed Augustus as an autocrat. The poet Marcus Annaeus Lucanus (AD 39–65) was of the opinion that Caesar's victory over Pompey and the fall of Cato the Younger (95–46 BC) marked the end of traditional liberty in Rome; historian Chester Starr writes of his avoidance of criticizing Augustus, "perhaps Augustus was too sacred a figure to accuse directly."
The Anglo-Irish writer Jonathan Swift (1667–1745), in his Discourse on the Contests and Dissentions in Athens and Rome, criticised Augustus for installing tyranny over Rome, and likened what he believed Great Britain's virtuous constitutional monarchy to Rome's moral Republic of the 2nd century BC. In his criticism of Augustus, the admiral and historian Thomas Gordon (1658–1741) compared Augustus to the puritanical tyrant Oliver Cromwell (1599–1658). Thomas Gordon and the French political philosopher Montesquieu (1689–1755) both remarked that Augustus was a coward in battle. In his Memoirs of the Court of Augustus, the Scottish scholar Thomas Blackwell (1701–1757) deemed Augustus a Machiavellian ruler, "a bloodthirsty vindicative usurper", "wicked and worthless", "a mean spirit", and a "tyrant". Revenue reforms
hoard, from an ancient Tamil country, Pandyan Kingdom of present-day Tamil Nadu in India, a testimony to Indo-Roman trade. British Museum. Caption: . (The vertical slice, not part of the original design, was likely an old test cut to make sure the coin was solid rather than a fourrée.)]]
Augustus's public revenue reforms had a great impact on the subsequent success of the Empire. Augustus brought a far greater portion of the Empire's expanded land base under consistent, direct taxation from Rome, instead of exacting varying, intermittent, and somewhat arbitrary tributes from each local province as Augustus's predecessors had done. This reform greatly increased Rome's net revenue from its territorial acquisitions, stabilized its flow, and regularized the financial relationship between Rome and the provinces, rather than provoking fresh resentments with each new arbitrary exaction of tribute.
Kingdom located in the southern Arabian Peninsula. It is also an imitation of a coin of Augustus.]]
The measures of taxation in the reign of Augustus were determined by population census, with fixed quotas for each province. Citizens of Rome and Italy paid indirect taxes, while direct taxes were exacted from the provinces. Indirect taxes included a 4% tax on the price of slaves, a 1% tax on goods sold at auction, and a 5% tax on the inheritance of estates valued at over 100,000 sesterces by persons other than the next of kin.
An equally important reform was the abolition of private tax farming, which was replaced by salaried civil service tax collectors. Private contractors who collected taxes for the State were the norm in the Republican era. Some of them were powerful enough to influence the number of votes for men running for offices in Rome. These tax farmers called publicans were infamous for their depredations, great private wealth, and the right to tax local areas.
The use of Egypt's immense land rents to finance the Empire's operations resulted from Augustus's conquest of Egypt and the shift to a Roman form of government. As it was effectively considered Augustus's private property rather than a province of the Empire, it became part of each succeeding emperor's patrimonium.
Instead of a legate or proconsul, Augustus installed a prefect from the equestrian class to administer Egypt and maintain its lucrative seaports; this position became the highest political achievement for any equestrian besides becoming Prefect of the Praetorian Guard. The highly productive agricultural land of Egypt yielded enormous revenues that were available to Augustus and his successors to pay for public works and military expeditions.
Month of August
The month of August (Latin: ) is named after Augustus; until his time it was called Sextilis (named so because it had been the sixth month of the original Roman calendar, with the Latin word for 'six' being ). Commonly repeated lore has it that August has 31 days because Augustus wanted his month to match the length of Julius Caesar's July, but this is an invention of the 13th-century scholar Johannes de Sacrobosco. Sextilis in fact had 31 days before it was renamed, and it was not chosen for its length (see Julian calendar).
According to a quoted by Macrobius, Sextilis was renamed to honour Augustus because several of the most significant events in his rise to power, culminating in the fall of Alexandria, fell in that month.
Creation of <span lang"la">Italia</span> Roman Italy was established by Augustus in 7 BC with the Latin name . This was the first time that the Italian peninsula was united administratively and politically under the same name. Due to this act, Augustus was called the Father of Italy by Italian historians such as G. Giannelli. Building projects
|italic=no}} (Altar of Peace), 13–9 BC]]
On his deathbed, Augustus boasted "I found a Rome of bricks; I leave to you one of marble." Although there is some truth in the literal meaning of this, Cassius Dio asserts that it was a metaphor for the Empire's strength. Marble could be found in buildings of Rome before Augustus, but it was not extensively used as a building material until the reign of Augustus.
Although this did not apply to the Subura slums, which were still as rickety and fire-prone as ever, he did leave a mark on the monumental topography of the centre and of the Campus Martius, with the (Altar of Peace) and monumental sundial, whose central gnomon was an obelisk taken from Egypt. The relief sculptures decorating the visually augmented the written record of Augustus's triumphs in the . Its reliefs depicted the imperial pageants of the praetorians, the Vestals, and the citizenry of Rome.
He also built the Temple of Caesar, the Temple of Jupiter Tonans, the Temple of Apollo Palatinus and the Baths of Agrippa, and the Forum of Augustus with its Temple of Mars Ultor. Other projects were either encouraged by him, such as the Theatre of Balbus, and Agrippa's construction of the Pantheon, or funded by him in the name of others, often relations (e.g. Portico of Octavia, Theatre of Marcellus). Even his Mausoleum of Augustus was built before his death to house members of his family. To celebrate his victory at the Battle of Actium, the Arch of Augustus was built in 29 BC near the entrance of the Temple of Castor and Pollux, and widened in 19 BC to include a triple-arch design.
in Vienne, late 1st century BC]]
After the death of Agrippa in 12 BC, a solution had to be found in maintaining Rome's water supply system. This came about because it was overseen by Agrippa when he served as aedile, and was even funded by him afterwards when he was a private citizen paying at his own expense. In that year, Augustus arranged a system where the Senate designated three of its members as prime commissioners in charge of the water supply and to ensure that Rome's aqueducts did not fall into disrepair.
In the late Augustan era, the commission of five senators called the (translated as "Supervisors of Public Property") was put in charge of maintaining public buildings and temples of the state cult. Augustus created the senatorial group of the 'supervisors for roads' for the upkeep of roads; this senatorial commission worked with local officials and contractors to organize regular repairs.
The Corinthian order of architectural style originating from ancient Greece was the dominant architectural style in the age of Augustus and the imperial phase of Rome. Suetonius once commented that Rome was unworthy of its status as an imperial capital, yet Augustus and Agrippa set out to dismantle this sentiment by transforming the appearance of Rome upon the classical Greek model. Residences The official residence of Augustus was the on the Palatine which he made into a palace after buying it in 41/40 BC. He had other residences such as the in Rome where Augustus preferred to stay whenever he became ill and which Maecenas left to him in his will in 8 BC. The great villa of Vedius Pollio at Posilipo near Naples was bequeathed (probably forced) to him in 15 BC.
Augustus built the Palazzo a Mare palace on Capri. He also built the immense Villa Giulia on the island of Ventotene as a summer residence early in his reign. The family home of Augustus was probably the villa at Somma Vesuviana, Nola. This was the location where he died and where his father also died. Physical appearance and official images
]]
His biographer Suetonius, writing about a century after Augustus's death, described his appearance as: "... unusually handsome and exceedingly graceful at all periods of his life, though he cared nothing for personal adornment. He was so far from being particular about the dressing of his hair, that he would have several barbers working in a hurry at the same time, and as for his beard he now had it clipped and now shaved, while at the very same time he would either be reading or writing something ... He had clear, bright eyes ... His teeth were wide apart, small, and ill-kept; his hair was slightly curly and inclined to golden;}} his eyebrows met. His ears were of moderate size, and his nose projected a little at the top and then bent ever so slightly inward. His complexion was between dark and fair. He was short of stature, although Julius Marathus, his freedman and keeper of his records, says that he was five feet and nine inches (just under 5 ft. 7 in., or 1.70 meters, in modern height measurements), but this was concealed by the fine proportion and symmetry of his figure, and was noticeable only by comparison with some taller person standing beside him...", adding that "his shoes [were] somewhat high-soled, to make him look taller than he really was". Scientific analysis of traces of paint found in his official statues shows that he most likely had light brown hair.
Right: The faience head of Augustus, the first half of the 1st century AD, Museo degli Argenti, Florence
}}
His official images were very tightly controlled and idealised, drawing from a tradition of Hellenistic portraiture rather than the tradition of realism in Roman portraiture. He first appeared on coins at the age of 19, and from about 29 BC "the explosion in the number of Augustan portraits attests a concerted propaganda campaign aimed at dominating all aspects of civil, religious, economic and military life with Augustus's person." The early images did indeed depict a young man, but although there were gradual changes his images remained youthful until he died in his seventies, by which time they had "a distanced air of ageless majesty", according to the classicist R. R. R. Smith. Among the best known of many surviving portraits are the Augustus of Prima Porta, the image on the Ara Pacis, and the Via Labicana Augustus, which depicts him in his role as . Several cameo portraits include the Blacas Cameo and . See also
* Augustan and Julio-Claudian art
* Augustan literature (ancient Rome)
* Indo-Roman trade relations
* Julio-Claudian family tree
* Temple of Augustus
Notes
References
Sources
Ancient sources
* |orig-date=c. AD 10}}
* |orig-datec. AD 15}}
* |orig-datec. AD 30}}
* |orig-datec. AD 110}}
* |orig-date=c. AD 121}}
* |orig-datec. 230}}
Modern sources
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
Further reading
* Besl, Marco (2025). Augustus als Programm. Eine Rezeptionsgeschichte des ersten Princeps (14–500 n. Chr.) [Augustus as a programme. A history of the reception of the first Princeps (14-500 AD)]. Historia Einzelschriften, vol. 276. Stuttgart: Steiner, .
*
*
*
*
*
*
*
* Havener, Wolfgang (2016). Imperator Augustus. Die diskursive Konstituierung der militärischen „persona“ des ersten römischen „princeps“ [Imperator Augustus. The discursive constitution of the military ‘persona’ of the first Roman ‘princeps’]. Studies in ancient monarchies, vol. 4. Stuttgart: Steiner, .
*
*
*
*
*
*
*
*
*
*
*
*
External links
<small></small>
* [https://www.perseus.tufts.edu/hopper/searchresults?qAugustus&redirecttrue Works by and about Augustus at Perseus Digital Library]
* [http://ancientrome.ru/art/artworken/result.htm?altAugust&pnumber30 Gallery of the Ancient Art: August]
* [https://web.archive.org/web/20061117112806/http://www.viajuliaaugusta.com/en/home.html The Via Iulia Augusta: road built by the Romans; constructed on the orders of Augustus between the 13–12 B.C.]
* [https://archive.today/20140325114122/http://www.academia.edu/6339880/Augustan_Legionaries Augustan Legionaries] – Augustus's legions and legionaries
* [https://www.bbc.co.uk/history/historic_figures/augustus.shtml Augustus] – short biography at the BBC
* Brown, F. [https://web.archive.org/web/20130209200013/http://cliojournal.wikispaces.com/The%2BAchievements%2Bof%2BAugustus%2BCaesar The Achievements of Augustus Caesar], Clio History Journal, 2009.
* [http://www.historyguide.org/ancient/lecture12b.html "Augustus Caesar and the Pax Romana"] – essay by Steven Kreis about Augustus's legacy
* [http://www.roman-emperors.org/auggie.htm "De Imperatoribus Romanis"] ([https://web.archive.org/web/20220317020723/http://www.roman-emperors.org/auggie.htm archived] 17 March 2022) – article about Augustus at Garrett G. Fagan's online encyclopedia of Roman emperors
* [https://politeia.org.uk/augustus/ Augustus] – article by Andrew Selkirk
Category:63 BC births
Category:14 deaths
Category:1st-century BC Roman augurs
Category:1st-century BC Roman consuls
Category:1st-century BC monarchs in Europe
Category:1st-century Roman emperors
Category:1st-century clergy
Category:Ancient Roman adoptees
Category:Ancient Roman military personnel
Category:Burials at the Mausoleum of Augustus
Category:Characters in Book VI of the Aeneid
Category:Characters in the Divine Comedy
Category:Children of Julius Caesar
Category:Deified Roman emperors
Category:Founding monarchs
Category:Julii Caesares
Category:Julio-Claudian dynasty
Category:People in the canonical gospels
Category:Political spokespersons
Category:Pontifices
Category:Roman pharaohs
Category:Shipwreck survivors
Category:1st-century Romans
Category:Octavii
Category:People of the War of Mutina
Category:Natalist politicians | https://en.wikipedia.org/wiki/Augustus | 2025-04-05T18:25:36.971082 |
1274 | Geography of Antarctica | <!-- This short description is INTENTIONALLY "none" - please see WP:SDNONE before you consider changing it! -->
| area ranking = 2nd (unofficially)
| km area = 14,200,000
| percent land = 98
| km coastline = 17968
| borders = None
| highest point Vinson Massif,
| lowest point Denman Glacier,
| longest river = Onyx River, 32 km
| largest lake = Lake Vostok, 26,000 sq m (est.)
| climate = subantarctic to antarctic
| terrain = ice and barren rock
| natural resources = krill, fin fish, crab
| natural hazards = high winds, blizzards, cyclonic storms, volcanism
| environmental issues = depleting ozone layer, rising sea level
|}}
The geography of Antarctica is dominated by its south polar location and, thus, by ice. The Antarctic continent, located in the Earth's southern hemisphere, is centered asymmetrically around the South Pole and largely south of the Antarctic Circle. It is washed by the Southern (or Antarctic) Ocean or, depending on definition, the southern Pacific, Atlantic, and Indian Oceans. It has an area of more than . Antarctica is the largest ice desert in the world.
Some 98% of Antarctica is covered by the Antarctic ice sheet, the world's largest ice sheet and also its largest reservoir of fresh water. Averaging at least thick, the ice is so massive that it has depressed the continental bedrock in some areas more than below sea level; subglacial lakes of liquid water also occur (e.g. Lake Vostok). Ice shelves and rises populate the ice sheet on the periphery. The present Antarctic ice sheet accounts for 90 percent of Earth's total ice volume and 70 percent of its fresh water. It houses enough water to raise global sea level by .
In September 2018, researchers at the National Geospatial-Intelligence Agency released a high resolution terrain map (detail down to the size of a car, and less in some areas) of Antarctica, named the "Reference Elevation Model of Antarctica" (REMA).
Regions
Physically, Antarctica is divided in two by the Transantarctic Mountains, close to the neck between the Ross Sea and the Weddell Sea. Western Antarctica and Eastern Antarctica correspond roughly to the western and eastern hemispheres relative to the Greenwich meridian.
West Antarctica is covered by the West Antarctic Ice Sheet. There has been some concern about this ice sheet, as there is a small chance it will collapse due to rising temperatures in the region. If it does, global ocean levels will rise by a few metres in a short period of time.VolcanoesVolcanic activity occurring beneath glacial ice sheets is known as glaciovolcanism. An article published in 2017 claims that researchers from the University of Edinburgh discovered 91 new volcanoes below the Antarctic ice sheet, adding to the 47 volcanoes that were already known. As of 2017, 138 possible volcanoes have been identified in West Antarctica. There is limited knowledge about West Antarctic Volcanoes due to the presence of the West Antarctic Ice Sheet, which heavily covers the West Antarctic Rift System—a likely hub for volcanic activity. Researchers find it difficult to properly identify volcanic activity due to the comprehensive ice covering.
East Antarctica is significantly larger than West Antarctica, and similarly remains widely unexplored in terms of its volcanic potential. While there are some indications that there is volcanic activity under the East Antarctic Ice Sheet, there is not a significant amount of present information on the subject.
Mount Erebus, as the southernmost historically active volcanic site on the planet, is one of the most notable sites in the study of Antarctic volcanism.
Deception Island is another active Antarctic volcano. It is one of the most protected areas in the Antarctic, given its situation between the South Shetland Islands and the Antarctic Peninsula. As the most active volcano in the Antarctic Peninsula, it has been studied closely since its initial discovery in 1820.
There are four volcanoes on the mainland of Antarctica that are
considered to be active on the basis of observed fumarolic activity or
"recent" tephra deposits:
# Mount Melbourne (2,730 m) (74°21'S., 164°42'E.), a stratovolcano;
# Mount Berlin (3,500 m) (76°03'S., 135°52'W.), a stratovolcano;
# Mount Kauffman (2,365 m) (75°37'S., 132°25'W.), a stratovolcano; and
# Mount Hampton (3,325 m) (76°29'S., 125°48'W.), a volcanic caldera.
Mount Rittmann (2,600 m) (73.45°S 165.5° E), a volcanic caldera, is dormant.
Several volcanoes on offshore islands have records of historic activity.
Mount Erebus (3,795 m), a stratovolcano on
Ross Island with 10 known eruptions and 1 suspected eruption.
On the opposite side of the continent,
Deception Island
(62°57'S., 60°38'W.), a volcanic caldera with 10 known
and 4 suspected eruptions, has been the most active.
Buckle Island in the Balleny Islands (66°50'S., 163°12'E.),
Penguin Island (62°06'S., 57°54'W.),
Paulet Island (63°35'S., 55°47'W.), and
Lindenberg Island (64°55'S., 59°40'W.) are also
considered to be active. In 2017, the researchers of Edinburgh University discovered 91 underwater volcanoes under West Antarctica.
Marie Byrd Land
Marie Byrd Land makes up a large portion of West Antarctica, consisting of the Area below the Antarctic Peninsula. The Marie Byrd Land is a large formation of volcanic rock, characterized by 18 exposed and subglacial volcanoes. 16 of the 18 volcanoes are entirely covered by the antarctic ice sheet. There have been no eruptions recorded from any of the volcanoes in this area, however scientists believe that some of the volcanoes may be potentially active. Activity Scientists and researchers debate whether or not the 138 identified possible volcanoes are active or dormant. It is very hard to definitively say, given that many of these volcanic structures are buried underneath several kilometers of ice. However, ash layers within the West Antarctic Ice Sheet, as well as deformations in the ice surface indicate that the West Antarctic Rift System could be active and contain erupting volcanoes. Additionally, seismic activity in the region hints at magma movement beneath the crust, a sign of volcanic activity. Though there are other sources of subglacial water, such as geothermal heat, it almost always is a condition of volcanism. Scientists remain uncertain about the presence of liquid water underneath the West Antarctic Ice Sheet, with some claiming to have found evidence indicating its existence. Conditions of formation In West Antarctica's Marie Byrd Land, volcanoes are typically composed of alkaline and basaltic lava. Sometimes, the volcanoes are entirely basaltic in composition. Due to the geographic similarity of the Marie Byrd Land, it is believed that the volcanoes in the West Antarctic Rift System are also composed of basalt. However, West Antarctic Volcanoes form underneath ice sheets, and are thus categorized as subglacial volcanoes. Subglacial volcanoes that are monogenetic are far more narrow, steeper, flat topped structures. Polygenetic subglacial volcanoes have a wider variety of shapes and sizes due to being made up of many different eruptions. Often, they look more cone shaped, like stratovolcanoes. Hazards Hazardous ash Little has been studied about the implications of volcanic ash from eruptions within the Antarctic Circle. It is likely that an eruption at lower latitudes would cause global health and aviation hazards due to ash disbursement. The clockwise air circulation around the low pressure system at the South Pole forces air upwards, hypothetically sending ash upwards towards the Stratospheric jet streams, and thus quickly dispersing it throughout the globe. Melting ice Recently, in 2017, a study found evidence of subglacial volcanic activity within the West Antarctic Ice Sheet. This activity poses a threat to the stability of the Ice Sheet, as volcanic activity leads to increased melting. This could possibly plunge the West Antarctic Ice Sheet into a positive feedback loop of rising temperatures and increased melting.
Canyons
There are three vast canyons that run for hundreds of kilometers, cutting through tall mountains. None of the canyons are visible at the snow-covered surface of the continent since they are buried under hundreds of meters of ice. The largest of the canyons is called Foundation Trough and is over 350 km long and 35 km wide. The Patuxent Trough is more than 300 km long and over 15 km wide, while the Offset Rift Basin is 150 km long and 30 km wide. These three troughs all lie under and cross the so-called "ice divide" - the high ice ridge that runs all the way from the South Pole out towards the coast of West Antarctica.West Antarctica
area, with fjords, high coastal mountains and islands. Click on the image for geographical details.]]
West Antarctica is the smaller part of the continent, <small>(50° – 180°W)</small>, divided into:
Areas
* Antarctic Peninsula <small>(55° – 75°W)</small>
** Graham Land
** Palmer Land
* Queen Elizabeth Land <small>(20°W – 80°W)</small>
* Ellsworth Land <small>(79°45' – 103°24'W)</small>
** English Coast
** Bryan Coast
** Eights Coast
* Marie Byrd Land <small>(103°24' – 158°W)</small>
** Walgreen Coast
** Bakutis Coast
** Hobbs Coast
** Ruppert Coast
** Saunders Coast
* King Edward VII Land <small>(166°E – 155°W)</small>
** Shirase Coast
Seas
* Scotia Sea <small>(26°30' – 65°W)</small>
* Weddell Sea <small>(57°18' – 102°20'W)</small>
* Bellingshausen Sea <small>(57°18' – 102°20'W)</small>
* Amundsen Sea <small>(102°20′ – 126°W)</small>
Ice shelves
Larger ice shelves are:
* Filchner-Ronne Ice Shelf <small>(30° – 83°W)</small>
* Larsen Ice Shelf
* Abbot Ice Shelf <small>(89°35' – 103°W)</small>
* Getz Ice Shelf <small>(114°30' – 136°W)</small>
* Sulzberger Ice Shelf
* Ross Ice Shelf <small>(166°E – 155°W)</small>
For all ice shelves see List of Antarctic ice shelves.
Islands
For a list of all Antarctic islands see List of Antarctic and sub-Antarctic islands.
East Antarctica
East Antarctica is the larger part of the continent, <small>(50°W – 180°E)</small>, both the South Magnetic Pole and geographic South Pole are situated here. Divided into:
Areas
* Coats Land <small>(20° – 36°W)</small>
* Queen Maud Land <small>(20°W – 45°E)</small>
** Princess Martha Coast
** Princess Astrid Coast
** Princess Ragnhild Coast
** Prince Harald Coast
** Prince Olav Coast
* Enderby Land <small>(44°38' – 56°25'E)</small>
* Kemp Land <small>(56°25' – 59°34'E)</small>
* Mac. Robertson Land <small>(59°34' – 73°E)</small>
* Princess Elizabeth Land <small>(73° – 87°43'E)</small>
* Wilhelm II Land <small>(87°43' – 91°54'E)</small>
* Queen Mary Land <small>(91°54' – 100°30'E)</small>
* Wilkes Land <small>(100°31' – 136°11'E)</small>
* Adélie Land <small>(136°11′ – 142°02′E)</small>
* George V Land <small>(142°02' – 153°45'E)</small>
**George V Coast
**Zélée Subglacial Trench
* Oates Land <small>(153°45' – 160°E)</small>
* Victoria Land <small>(70°30' – 78°'S)</small>
Seas
* Weddell Sea <small>(57°18' – 102°20'W)</small>
* King Haakon VII Sea <small>(20°W – 45°E)</small>
* Davis Sea <small>(82° – 96°E)</small>
* Mawson Sea <small>(95°45' – 113°E)</small>
* D'Urville Sea <small>(140°E)</small>
* Ross Sea <small>(166°E – 155°W)</small>
* Bellingshausen Sea <small>(57°18' – 102°20'W)</small>
* Scotia Sea <small>(26°30' – 65°W)</small>
Ice shelves
Larger ice shelves are:
* Riiser-Larsen Ice Shelf
* Ekstrom Ice Shelf
* Amery Ice Shelf
* West Ice Shelf
* Shackleton Ice Shelf
* Voyeykov Ice Shelf
For all ice shelves see List of Antarctic ice shelves.
Islands
For a list of all Antarctic islands see List of Antarctic and sub-Antarctic islands.
Research stations
Territorial landclaims
Seven nations have made official Territorial claims in Antarctica.
Dependences and territories
*Bouvet Island
*French Southern and Antarctic Lands
*Heard and McDonald Islands
*South Georgia and the South Sandwich Islands
*Peter I Island
See also
* Bibliography of Antarctica
* List of Antarctic and Subantarctic islands
* Geology of Antarctica
Notes
ReferencesGeneral references* Ivanov, L. [https://web.archive.org/web/20080424075823/http://www.comnap.aq/facilities General Geography and History of Livingston Island.] In: Bulgarian Antarctic Research: A Synthesis. Eds. C. Pimpirev and N. Chipev. Sofia: St. Kliment Ohridski University Press, 2015. pp. 17–28. External links
* High resolution map (2018) – [https://www.pgc.umn.edu/data/rema/ Reference Elevation Model of Antarctica] (REMA)
* [http://sd-www.jhuapl.edu/FlareGenesis/Antarctica/1999/pictures/antarctica_pol_map.jpg Political Claims Map]
* [https://web.archive.org/web/20050301052209/http://terraweb.wr.usgs.gov/TRS/projects/Antarctica/AVHRR.html USGS TerraWeb: Satellite Image Map of Antarctica] (archived 1 March 2005)
* [http://erg.usgs.gov/isb/pubs/factsheets/fs05101.html United States Antarctic Resource Center (USARC)]
* [https://web.archive.org/web/20051025163511/http://www.antarctica.ac.uk/aedc/bedmap/ BEDMAP] (archived 25 January 2005)
* [http://www.add.scar.org/ Antarctic Digital Database (Topographic data for Antarctica, including web map browser)]
* [http://lima.usgs.gov/ Landsat Image Mosaic of Antarctica (LIMA; USGS web pages)]
* [https://web.archive.org/web/20150214121701/http://lima.nasa.gov/ Landsat Image Mosaic of Antarctica (LIMA; NASA web pages)] (archived 14 February 2015)
* Geography of the land under the ice of Antarctica:
**http://www.cbc.ca/news/technology/nasa-map-shows-what-antarctica-would-look-like-without-ice-1.1304997
**https://www.bas.ac.uk/project/bedmap-2/
**https://www.bas.ac.uk/data/our-data/maps/thematic-maps/bedmap2/
**https://www.the-cryosphere.net/7/375/2013/tc-7-375-2013.pdf article in The Cryosphere, 7, 375–393, 2013 | https://en.wikipedia.org/wiki/Geography_of_Antarctica | 2025-04-05T18:25:36.987409 |
1279 | Transport in Antarctica | thumb|300px|Part of a traverse, which was bringing fuel, food, and other supplies from Dumont d'Urville Station to Dome C (Concordia Station). January 2005
Transport in Antarctica has transformed from explorers crossing the isolated remote area of Antarctica by foot to a more open era due to human technologies enabling more convenient and faster transport, predominantly by air and water, but also by land as well.
Transportation technologies on a remote area like Antarctica need to be able to deal with extremely low temperatures and continuous winds to ensure the travelers' safety. Due to the fragility of the Antarctic environment, only a limited amount of transport movements can take place and sustainable transportation technologies have to be used to reduce the ecological footprint.
The infrastructure of land, water and air transport needs to be safe and sustainable.
Currently thousands of tourists and hundreds of scientists a year depend on the Antarctic transportation system.
Important parts of Antarctic transport include ships, but unlike warmer areas access may also require an icebreaker ship. Aircraft and airports are important but have some unique aspects; airstrips may be built on ice or compacted snow and aircraft with ski may be used. On the ground, transport includes traditionally wheeled vehicles adapted to the cold, but also vehicles with skis, such as snowmobiles are important as are towed sleds.
Land transport
Roads and traverses
thumb|Cargo caravan on the ice highway in early 2006
thumb|A Tucker Sno-Cat at Rothera on Adelaide Island off Antarctica
Winds continuously blow snow on roads in Antarctica.
The South Pole Traverse (McMurdo–South Pole highway) is approximately long and links the United States McMurdo Station on the coast to the Amundsen–Scott South Pole Station. It was constructed by leveling snow and in crevasses, but is not paved. There are flags to mark the road.
Also, the United States Antarctic Program maintains two ice roads during the austral summer. One provides access to Pegasus Field on the Ross Ice Shelf. The ice road between Pegasus Field and McMurdo Station is about . The other road provides access to the Ice Runway, which is on sea ice. The road between the Ice Runway and McMurdo Station varies in length from year to year depending on many factors, including ice stability. These roads are critical for resupplying McMurdo Station, Scott Base, and Amundsen–Scott South Pole Station.
Vehicles
thumb|left|Tucker Sno-cat at McMurdo Station, Ross Island. 2010
The scarcity and poor quality of road infrastructure limits land transportation by conventional vehicles.
A normal car on tires has very limited capability in Antarctic conditions. Scientific bases are often built on snow-free areas (oases) close to the
ocean. Around these stations and on a hard packed snow or ice, tire based vehicles can drive but on deeper and softer snow, a normal tire-based vehicle cannot travel. Due to these limitations, vehicles on belts have been the preferred option in Antarctica. In 1997, two specialized cars with very large tires running tire pressure as low as travelled onto the high Antarctica Plateau, giving strong indication that tire based vehicles could be an option for efficient travelling in Antarctica.
thumb|Antarctica 1 towing a sleigh in 1963
Mawson Station used classic Volkswagen Beetles, the first production cars to be utilized in Antarctica, from 1963-1970. The first of these was named the Antarctica 1.
In December 1997 into February 1998 two AT44, 4x4 cars (built in Iceland by Arctic Trucks with tire size of 44-inch tall) joined an expedition by the Swedish Polar Institution (SWEA). The cars got used to transport people and supplies from the Ice shelf to WASA station, to perform scanning of the snow and support a drilling expedition to on the Antarctica Plateau 76°S 8°03'W. This is the first time tire based vehicles successfully travel on the Antarctica high plateau.
thumb|Ice Challenger vehicle at Patriot Hills, 2005
In 2005, a team of six people took part in the Ice Challenger Expedition. Travelling in a specially designed six wheel drive vehicle, the team completed the journey from the Antarctic coast at Patriot Hills to the geographic South Pole in 69 hours. In doing so they easily beat the previous record of 24 days. They arrived at the South Pole on December 12, 2005.
thumb|Foremost Nodwell 240 in Antarctica
The team members on that expedition were Andrew Regan, Jason De Carteret, Andrew Moon, Richard Griffiths, Gunnar Egilsson and Andrew Miles. The expedition successfully showed that wheeled transport on the continent is not only possible but also often more practical. The expedition also hoped to raise awareness about global warming and climate change.
From start of December 2008 into February 2009, four AT44, 4x4 cars were used to support a ski race by Amundsen Omega 3, from S82° 41' E17° 43' to South Pole. A film was made of this race by BBC called "On Thin Ice" with Ben Fogle and James Cracknell. The cars started from Novo airbase at S70° 49' E11° 38', establish a route onto the plateau through the crevasse areas in the Shcherbakov Mountain Range driving nearly to the start line of the ski race. For the return journey each car covered between with one fuel depot on the way.
From 2008 to date (Dec 2015) tire based cars, AT44 4x4 and AT44 6x6 have been used every season to support various NGO and scientific expedition/projects, supporting flights, fuel drops, filming, skiers, biker, a tractor, collecting snow samples and more. The combined distance covered on the Antarctica Plateau is over and even though towing capacity is much lower than for most belt based vehicles, the tire based cars multiply the travel speed and use only a fraction of the fuel making this an option for some expeditions/projects.
A second expedition led by Andrew Regan and Andrew Moon departed in November 2010. The Moon-Regan Trans Antarctic Expedition this time traversed the entire continent twice, using two six-wheel-drive vehicles and a Concept Ice Vehicle designed by Lotus. This time the team used the expedition to raise awareness about the global environmental importance of the Antarctic region and to show that biofuel can be a viable and environmentally friendly option.
Water transport
thumb|A tour boat in fast ice near the coast
Antarctica's only harbour is at McMurdo Station. Most coastal stations have offshore anchorages, and supplies are transferred from ship to shore by small boats, barges, and helicopters. A few stations have a basic wharf facility. All ships at port are subject to inspection in accordance with Article 7, Antarctic Treaty. Offshore anchorage is sparse and intermittent, but poses no problem to sailboats designed for the ice, typically with lifting keels and long shorelines.
McMurdo Station (), Palmer Station (); government use only except by permit (see Permit Office under "Legal System"). A number of tour boats, ranging from large motorized vessels to small sailing yachts, visit the Antarctic Peninsula during the summer months (January–March). Most are based in Ushuaia, Argentina.
Air transport
thumb|A US Air Force C-141 Starlifter participating in Operation Deep Freeze with penguins, 1997
thumb|C-17 lands in Antarctica for WinFly 2003
Transport in Antarctica takes place by air, using fixed-wing aircraft and helicopters.
Runways and helicopter pads have to be kept snow-free to ensure safe take off and landing conditions.
Antarctica has 20 airports, but there are no developed public-access airports or landing facilities. Thirty stations, operated by 16 national governments party to the Antarctic Treaty, have landing facilities for either helicopters and/or fixed-wing aircraft; commercial enterprises operate two additional air facilities.
thumb|A319 lands in 2010
thumb|Twin Otter at the WAIS Divide field camp,2012
thumb|Ski-equipped Hercules taxis on snow runway, 2023
Helicopter pads are available at 27 stations; runways at 15 locations are gravel, sea-ice, blue-ice, or compacted snow suitable for landing wheeled, fixed-wing aircraft; of these, one is greater than in length, six are between in length, three are between in length, three are less than in length, and two are of unknown length; snow surface skiways, limited to use by ski-equipped, fixed-wing aircraft, are available at another 15 locations; of these, four are greater than 3 km in length, three are between 2 km and 3 km in length, two are between 1 km and 2 km in length, two are less than 1 km in length, and data is unavailable for the remaining four.
Antarctic airports are subject to severe restrictions and limitations resulting from extreme seasonal and geographic conditions; they do not meet ICAO standards, and advance approval from the respective governmental or nongovernmental operating organization is required for landing (1999 est.) Flights to the continent in the permanent darkness of the winter are normally only undertaken in an emergency, with burning barrels of fuel to outline a runway. On September 11, 2008, a United States Air Force C-17 Globemaster III successfully completed the first landing in Antarctica using night-vision goggles at Pegasus Field.
In April 2001 an emergency evacuation of Dr. Ronald Shemenski was needed from Amundsen–Scott South Pole Station when he contracted pancreatitis. Three C-130 Hercules were called back before their final leg because of weather. Organizers then called on Kenn Borek Air based in Calgary, Alberta. Two de Havilland Twin Otters were dispatched out of Calgary with one being back-up. Twin Otters are specifically designed for the Canadian north and Kenn Borek Air's motto is "Anywhere, Anytime, World-Wide". The mission was a success but not without difficulties and drawbacks. Ground crews needed to create a runway with tracked equipment not designed to operate in the low temperatures at that time of year, the aircraft controls had to be "jerry-rigged" when the flaps were frozen in position after landing, and instruments were not reliable because of the cold. When they saw a "faint pink line on the horizon" they knew they were going in the right direction. This was the first rescue from the South Pole during winter. Canada honoured the Otter crew for bravery.
In 2021, an Airbus A340 aeroplane operated by Portuguese charter airline Hi Fly landed in Antarctica for the first time.
See also
Tourism in Antarctica
List of airports in Antarctica
Bibliography of Antarctica
WinFly
References
External links
Webpage of the Swedish Polar Research Secretariat on logistics | https://en.wikipedia.org/wiki/Transport_in_Antarctica | 2025-04-05T18:25:37.003720 |
1285 | Geography of Alabama | right|frame|Physiographic regions in Alabama
right|thumb|260px|Political Regions of Alabama
The geography of Alabama describes a state in the Southeastern United States in North America. It extends from high mountains to low valleys and sandy beaches.
Alabama is 30th in size and borders four U.S. states: Mississippi, Tennessee, Georgia, and Florida. It also borders the Gulf of Mexico.
Physical features
Extending entirely across the state of Alabama for about northern boundary, and in the middle stretching farther north, is the Cumberland Plateau, or Tennessee Valley region, broken into broad tablelands by the dissection of rivers. In the northern part of this plateau, west of Jackson county, there are about of level highlands from above sea level. South of these highlands, occupying a narrow strip on each side of the Tennessee River, is a country of gentle rolling lowlands varying in elevation from . To the northeast of these highlands and lowlands is a rugged section with steep mountain-sides, deep narrow coves and valleys, and flat mountain-tops. Its elevations range from . In the remainder of this region, the southern portion, the most prominent feature is Little Mountain, extending about from east to west between two valleys, and rising precipitously on the north side above them or above the sea.
Adjoining the Cumberland Plateau region on the southeast is the Appalachian Valley (locally known as Coosa Valley) region, which is the southern extremity of the Appalachian Mountains, and occupies an area within the state of about . This is a limestone belt with parallel hard rock ridges left standing by erosion to form mountains. Although the general direction of the mountains, ridges, and valleys is northeast and southwest, irregularity is one of the most prominent characteristics. In the northeast are several flat-topped mountains, of which Raccoon and Lookout are the most prominent, having a maximum elevation near the Georgia line of little more than and gradually decreasing in height toward the southwest, where Sand Mountain is a continuation of Raccoon. South of these the mountains are marked by steep northwest sides, sharp crests and gently sloping southeast sides.
Southeast of the Appalachian Valley region, the Piedmont Plateau also crosses the Alabama border from the N.E. and occupies a small triangular-shaped section of which Randolph and Clay counties, together with the northern part of Tallapoosa and Chambers, form the principal portion. Its surface is gently undulating and has an elevation of about above sea level. The Piedmont Plateau is a lowland worn down by erosion on hard crystalline rocks, then uplifted to form a plateau.
The remainder of the state is occupied by the Coastal Plain. This is crossed by foothills and rolling prairies in the central part of the state, where it has a mean elevation of about , becomes lower and more level toward the southwest, and in the extreme south is flat and but slightly elevated above the sea.
The Cumberland Plateau region is drained to the west-northwest by the Tennessee River and its tributaries; all other parts of the state are drained to the southwest. In the Appalachian Valley region the Coosa River is the principal river; and in the Piedmont Plateau, the Tallapoosa River. In the Coastal Plain are the Tombigbee River in the west, the Alabama River (formed by the Coosa and Tallapoosa) in the western central, and in the east the Chattahoochee River, which forms almost half of the Georgia boundary. The Tombigbee and Alabama rivers unite near the southwest corner of the state, their waters discharging into Mobile Bay by the Mobile and Tensas rivers. The Black Warrior River is a considerable stream which joins the Tombigbee from the east.
The valleys in the north and northeast are usually deep and narrow, but in the Coastal Plain they are broad and in most cases rise in three successive terraces above the stream. The harbour of Mobile was formed by the drowning of the lower part of the valley of the Alabama and Tombigbee rivers as a result of the sinking of the land here, such sinking having occurred on other parts of the Gulf coast.
Flora and fauna
The fauna and flora of Alabama are similar to those of the Gulf states in general and have no distinctive characteristics. However, the Mobile River system has a high incidence of endemism among freshwater mollusks and biodiversity is high.
In Alabama, vast forests of pine constitute the largest proportion of the state's forest growth. There is also an abundance of cypress, hickory, oak, populus, and eastern redcedar trees. In other areas, hemlock growths in the north and southern white cedar in the southwest. Other native trees include ash, hackberry, and holly. In the Gulf region of the state grow various species of palmetto and palm. In Alabama there are more than 150 shrubs, including mountain laurel and rhododendron. Among cultivated plants are wisteria and camellia.
While in the past the state enjoyed a variety of mammals such as plains bison, eastern elk, North American cougar, bear, and deer, only the white-tailed deer remains abundant. Still fairly common are the bobcat, American beaver, muskrat, raccoon, Virginia opossum, rabbit, squirrel, red and gray foxes, and long-tailed weasel. Coypu and nine-banded armadillo have been introduced to the state and now also common.
Alabama's birds include golden and bald eagles, osprey and other hawks, yellow-shafted flickers, and black-and-white warblers. Game birds include bobwhite quail, duck, wild turkey, and goose. Freshwater fish such as bream, shad, bass, and sucker are common. Along the Gulf Coast there are seasonal runs of tarpon, pompano, red drum, and bonito.
The U.S. Fish and Wildlife Service lists as endangered 99 animals, fish, and birds, and 18 plant species. The endangered animals include the Alabama beach mouse, gray bat, Alabama red-bellied turtle, fin and humpback whales, bald eagle, and wood stork.
American black bear, racking horse, yellow-shafted flicker, wild turkey, Atlantic tarpon, largemouth bass, southern longleaf pine, eastern tiger swallowtail, monarch butterfly, Alabama red-bellied turtle, Red Hills salamander, camellia, oak-leaf hydrangea, peach, pecan, and blackberry are Alabama's state symbols.
Climate and soil
The climate of Alabama is humid subtropical.
The heat of summer is tempered in the south by the winds from the Gulf of Mexico, and in the north by the elevation above the sea. The average annual temperature is highest in the southwest along the coast, and lowest in the northeast among the highlands. Thus at Mobile the annual mean is , the mean for the summer , and for the winter ; and at Valley Head, in De Kalb county, the annual mean is , the mean for the summer , and for the winter . At Montgomery, in the central region, the average annual temperature is , with a winter average of , and a summer average of . The average winter minimum for the entire state is , and there is an average of 35 days in each year in which the thermometer falls below the freezing-point. At extremely rare intervals the thermometer has fallen below zero (-18 °C), as was the case in the remarkable cold wave of the 12th-13 February 1899, when an absolute minimum of was registered at Valley Head. The highest temperature ever recorded was in Talladega county in 1902.
The amount of precipitation is greatest along the coast (62 inches/1,574 mm) and evenly distributed through the rest of the state (about 52 inches/1,320 mm). During each winter there is usually one fall of snow in the south and two in the north; but the snow quickly disappears, and sometimes, during an entire winter, the ground is not covered with snow. Heavy snowfall can occur, such as during the New Year's Eve 1963 snowstorm and the 1993 Storm of the Century. Hailstorms occur occasionally in the spring and summer, but are seldom destructive. Heavy fogs are rare, and are confined chiefly to the coast. Thunderstorms occur throughout the year - they are most common in the summer, but most severe in the spring and fall, when destructive winds and tornadoes occasionally occur. The prevailing winds are from the news. Hurricanes are quite common in the state, especially in the southern part, and major hurricanes occasionally strike the coast which can be very destructive.
As regards its soil, Alabama may be divided into four regions. Extending from the Gulf northward for about is the outer belt of the Coastal Plain, also called the Timber Belt, whose soil is sandy and poor, but responds well to fertilization. North of this is the inner lowland of the Coastal Plain, or the Black Prairie, which includes some and seventeen counties. It receives its name from its soil (weathered from the weak underlying limestone), which is black in colour, almost destitute of sand and loam, and rich in limestone and marl formations, especially adapted to the production of cotton; hence the region is also called the Cotton Belt. Between the Cotton Belt and the Tennessee Valley is the mineral region, the Old Land area—a region of resistant rocks—whose soils, also derived from weathering in silu, are of varied fertility, the best coming from the granites, sandstones and limestones, the poorest from the gneisses, schists and slates. North of the mineral region is the Cereal Belt, embracing the Tennessee Valley and the counties beyond, whose richest soils are the red clays and dark loams of the river valley; north of which are less fertile soils, produced by siliceous and sandstone formations.
Wetumpka Meteor Crater
Wetumpka is the home of "Alabama's greatest natural disaster." A -wide In 2002, Christian Koeberl with the Institute of Geochemistry University of Vienna published evidence and established the site as an internationally recognized impact crater.
Public lands
Alabama includes several types of public use lands. These include four national forests and one national preserve within state borders that provide over 25% of the state's public recreation land.
land regions
Alabama State Parks
Alabama Public Fishing Lakes
Alabama Wildlife Management Areas
Little River Canyon National Preserve
Russell Cave National Monument
National Forests
Conecuh National Forest
Talladega National Forest
Tuskegee National Forest
William B. Bankhead National Forest
Wilderness Areas
Cheaha Wilderness
Dugger Mountain Wilderness
Sipsey Wilderness
National Recreation Trail
Pinhoti National Recreation Trail
National Wildlife Refuge
Bon Secour National Wildlife Refuge
Cahaba River National Wildlife Refuge
Choctaw National Wildlife Refuge
Eufaula National Wildlife Refuge
Fern Cave National Wildlife Refuge
Key Cave National Wildlife Refuge
Mountain Longleaf National Wildlife Refuge
Sauta Cave National Wildlife Refuge
Watercress Darter National Wildlife Refuge
Wheeler National Wildlife Refuge
See also
Alabama
Geography of the United States
References
External links
State of Alabama Geological Survey
USGS - Tapestry of Time - Alabama
Summary of Alabama Park & Recreation Sites
Interactive Map of Park & Recreation Sites
Encyclopedia of Alabama: Cultural Geography
Encyclopedia of Alabama: Black Belt Region in Alabama | https://en.wikipedia.org/wiki/Geography_of_Alabama | 2025-04-05T18:25:37.025983 |
1286 | List of governors of Alabama | | department = Government of Alabama
| status =
| residence = Alabama Governor's Mansion
| termlength = Four years, renewable once consecutively
| precursor = Governor of Alabama Territory
| inaugural = William Wyatt Bibb
| formation
| succession = Line of succession
| deputy = Lieutenant Governor of Alabama
| salary $127,833 (2022)
| website =
}}
The governor of Alabama is the head of government of the U.S. state of Alabama. The governor is the head of the executive branch of Alabama's state government and is charged with enforcing state laws.
There have officially been 54 governors of the state of Alabama; this official numbering skips acting and military governors. The first governor, William Wyatt Bibb, served as the only governor of the Alabama Territory. Five people have served as acting governor, bringing the total number of people serving as governor to 59, spread over 63 distinct terms. Four governors have served multiple non-consecutive terms: Bibb Graves, Jim Folsom, and Fob James each served two, and George Wallace served three non-consecutive periods. Officially, these non-consecutive terms are numbered only with the number of their first term. William D. Jelks also served non-consecutive terms, but his first term was in an acting capacity.
The longest-serving governor was George Wallace, who served 16 years over four terms. The shortest term for a non-acting governor was that of Hugh McVay, who served four and a half months after replacing the resigning Clement Comer Clay. Lurleen Wallace, the first wife of George Wallace, was the first woman to serve as governor of Alabama, and the third woman to serve as governor of any state. The current governor is Republican Kay Ivey, who took office on April 10, 2017 following Robert J. Bentley's resignation amidst a corruption scandal. She is the second female governor of Alabama.
List of governors
Territory of Alabama
Alabama Territory was formed on March 3, 1817, from Mississippi Territory. It had only one governor appointed by the President of the United States before it became a state; he became the first state governor.
{| class"wikitable" style"text-align:center;"
|+ Governor of the Territory of Alabama
!scope"col" data-sort-type"number"|
!scope"colgroup" colspan"2"|Governor
!scope="col"|Term in office
!scope="col"|Appointed by
|- style="height:2em;"
!scope="row"|1
|
|William Wyatt Bibb<br><br>
|September 25, 1817<br />–<br />November 9, 1819<br>
|James Monroe
|}
State of Alabama
]]
before 1939]]
Alabama was admitted to the Union on December 14, 1819. It seceded from the Union on January 11, 1861, and was a founding member of the Confederate States of America on February 4, 1861. Following the end of the American Civil War, Alabama during Reconstruction was part of the Third Military District, which exerted some control over governor appointments and elections. Alabama was readmitted to the Union on July 14, 1868.
The first Alabama Constitution, ratified in 1819, provided that a governor be elected every two years, limited to serve no more than 4 out of every 6 years. This limit remained in place until the constitution of 1868, which simply allowed governors to serve terms of two years. The current constitution of 1901 increased terms to four years, but prohibited governors from succeeding themselves. An amendment in 1968 allowed governors to succeed themselves once; a governor serving two consecutive terms can run again after waiting out the next term. The constitution had no set date for the commencement of a governor's term until 1901, when it was set at the first Monday after the second Tuesday in the January following an election. However, the Alabama Supreme Court ruled in 1911 that a governor's term ends at midnight at the end of Monday, and the next governor's term begins the next day, regardless of if they were sworn in on Monday.<br />–<br />July 10, 1820<br />
|Democratic-<br />Republican
|1819
|colspan"2" rowspan"30" style="background:#EEEEEE;"|Office did not exist
|- style="height:2em;"
!scope="row"|2
|data-sort-value="Bibb, Thomas"|
|Thomas Bibb<br><br />
| or July 25.
|rowspan"2"|<br />–<br />November 25, 1825<br />
|rowspan"2"|Democratic-<br />Republican
|1821
|- style="height:2em;"
|1823
|- style="height:2em;"
!rowspan"2" scope"rowgroup"|4
|rowspan"2" data-sort-value"Murphy, John"|
|rowspan"5" style"background:; border-top: none; padding: .2em .2em !important;"|
|rowspan"5" style"background:; border-bottom: none; padding: .2em .2em !important;"|
|rowspan"2"|John Murphy<br> 1841)}}<br />
|rowspan"2"|<br />–<br />November 21, 1829<br />
|rowspan"2"|Jackson<br />Democrat
|1825
|- style="height:2em;"
|1827
|- style="height:2em;"
!scope="row"|5
|data-sort-value="Moore, Gabriel"|
|Gabriel Moore<br><br />
|<br />–<br />March 3, 1831<br /><br />–<br />November 26, 1831<br />
|Jackson<br />Democrat
|style="background:#EEEEEE;"|
|- style="height:2em;"
!rowspan"2" scope"rowgroup"|7
|rowspan"2" data-sort-value"Gayle, John"|
|rowspan"2"|John Gayle<br><br />
|rowspan"2"|<br />–<br />November 21, 1835<br />
|Jackson<br />Democrat
|1831
|- style="height:2em;"
|colspan"2" rowspan"7" style="background:; border-top: none;"|
|Democratic
|1833
|- style="height:2em;"
!scope="row"|8
|data-sort-value="Clay, Clement"|
|Clement Comer Clay<br><br />
|<br />–<br />July 17, 1837<br /><br />–<br />November 21, 1837<br />
|Democratic
|style="background:#EEEEEE;"|
|- style="height:2em;"
!rowspan"2" scope"rowgroup"|10
|rowspan"2" data-sort-value"Bagby, Arthur"|
|rowspan"2"|Arthur P. Bagby<br><br>
|rowspan"2"|<br />–<br />November 22, 1841<br />
|rowspan"2"|Democratic
|1837
|- style="height:2em;"
|1839
|- style="height:2em;"
!rowspan"2" scope"rowgroup"|11
|rowspan"2" data-sort-value"Fitzpatrick, Benjamin"|
|rowspan"2"|Benjamin Fitzpatrick<br><br>
|rowspan"2"|<br />–<br />December 9, 1845<br />
|rowspan"2"|Democratic
|1841
|- style="height:2em;"
|1843
|- style="height:2em;"
!scope="row"|12
|data-sort-value="Martin, Joshua"|
|colspan"2" style"color:inherit;background:;"|
|Joshua L. Martin<br><br>
|<br />–<br />December 16, 1847<br />
|Independent}}
|1845
|- style="height:2em;"
!scope="row"|13
|data-sort-value="Chapman, Reuben"|
|colspan"2" rowspan"8" style="background:;"|
|Reuben Chapman<br><br>
|<br />–<br />December 17, 1849<br />
|Democratic
|1847
|- style="height:2em;"
!rowspan"2" scope"rowgroup"|14
|rowspan"2" data-sort-value"Collier, Henry"|
|rowspan"2"|Henry W. Collier<br><br>
|rowspan"2"|<br />–<br />December 20, 1853<br />
|rowspan"2"|Democratic
|1849
|- style="height:2em;"
|1851
|- style="height:2em;"
!rowspan"2" scope"rowgroup"|15
|rowspan"2" data-sort-value"Winston, John"|
|rowspan"2"|John A. Winston<br><br>
|rowspan"2"|<br />–<br />December 1, 1857<br />
|rowspan"2"|Democratic
|1853
|- style="height:2em;"
|1855
|- style="height:2em;"
!rowspan"2" scope"rowgroup"|16
|rowspan"2" data-sort-value"Moore, Andrew"|
|rowspan"2"|Andrew B. Moore<br><br>
|rowspan"2"|<br />–<br />December 2, 1861<br />
|rowspan"2"|Democratic
|1857
|- style="height:2em;"
|1859
|- style="height:2em;"
!scope="row"|17
|data-sort-value="Shorter, John"|
|John Gill Shorter<br><br>
|<br />–<br />December 1, 1863<br />
|<br />–<br />May 3, 1865<br /><br />–<br />December 13, 1865<br />
|colspan"2" style"background:#EEEEEE;"|
|- style="height:2em;"
!scope="row"|20
|data-sort-value="Patton, Robert"|
|Robert M. Patton<br><br>
|<br />–<br />July 13, 1868 As news tended to link Smith taking office with the passage of the 14th amendment, which occurred on July 13, that date is used.|namedate-1868}}<br />
|Nonpartisan politically, Patton was a Whig.}}
|1865
|- style="height:2em;"
!scope="row"|—
|data-sort-value="Swayne, Wager"|
|Wager Swayne<br><br>
|<br />–<br />November 26, 1870<br />
|rowspan"2"|Republican
|rowspan="2"|1868
|style="background:;"|
|<br />
|- style="height:2em;"
|colspan"2" style"background:#EEEEEE;"|Vacant
|- style="height:2em;"
!scope="row"|22
|data-sort-value="Lindsay, Robert"|
|colspan"2" style"color:inherit;background:;"|
|Robert B. Lindsay<br><br>
|<br />–<br />November 25, 1872<br />
|<br />–<br />November 24, 1874<br />
|Republican
|1872
|style="color:inherit;background:;"|
|
|- style="height:2em;"
!rowspan"2" scope"rowgroup"|24
|rowspan"2" data-sort-value"Houston, George"|
|colspan"2" rowspan"39" style="background:;"|
|rowspan"2"|George S. Houston<br><br>
|rowspan"2"|<br />–<br />November 27, 1878<br /><br />–<br />December 1, 1882<br />
|rowspan"2"|Democratic
|1878
|- style="height:2em;"
|1880
|- style="height:2em;"
!rowspan"2" scope"rowgroup"|26
|rowspan"2" data-sort-value"O'Neal, Edward"|
|rowspan"2"|'''Edward A. O'Neal'''<br><br>
|rowspan="2"|<br />–<br />December 1, 1886<br />
|rowspan"2"|Democratic
|1882
|- style="height:2em;"
|1884
|- style="height:2em;"
!rowspan"2" scope"rowgroup"|27
|rowspan"2" data-sort-value"Seay, Thomas"|
|rowspan"2"|Thomas Seay<br><br>
|rowspan"2"|<br />–<br />December 1, 1890<br /><br />–<br />December 1, 1894<br />
|<br />–<br />December 1, 1896<br />
|rowspan"2"|<br />–<br />December 1, 1900<br /><br />–<br />December 26, 1900<br /> President of the Senate Jelks acted as governor until he could take office, with the formal request for him to act as governor made on December 3.|name=samford}}
|Democratic
|style="background:#EEEEEE;"|
|- style="height:2em;"
!scope="row"|31
|data-sort-value="Samford, William"|
|William J. Samford<br><br>
|<br />–<br />June 11, 1901<br />
|Democratic
|1900
|- style="height:2em;"
!rowspan"2" scope"rowgroup"|32
|rowspan"2" data-sort-value"Jelks, William"|
|rowspan"2"|William D. Jelks<br><br><br />–<br />January 14, 1907<br />
|rowspan"2"|Democratic
|style="background:#EEEEEE;"|
|- style="height:2em;"
|1902
|rowspan"9" style"color:inherit;background:;"|
|<br />}}
|- style="height:2em;"
!scope="row"|33
|data-sort-value="Comer, B. B."|
|B. B. Comer<br><br>
|<br />–<br />January 16, 1911<br />
|Democratic
|1906
|
|- style="height:2em;"
!scope="row"|34
|data-sort-value="O'Neal, Emmet"|
|'''Emmet O'Neal'''<br><br>
|<br />–<br />January 18, 1915<br />
|Democratic
|1910
|
|- style="height:2em;"
!scope="row"|35
|data-sort-value="Henderson, Charles"|
|Charles Henderson<br><br>
|<br />–<br />January 20, 1919<br />
|Democratic
|1914
|
|- style="height:2em;"
!scope="row"|36
|data-sort-value="Kilby, Thomas"|
|Thomas Kilby<br><br>
|<br />–<br />January 15, 1923<br />
|Democratic
|1918
|
|- style="height:2em;"
!scope="row"|37
|data-sort-value="Brandon, William"|
|William W. Brandon<br><br>
|<br />–<br />January 17, 1927<br />
|Democratic
|1922
|<br /><br />–<br />January 19, 1931<br />
|Democratic
|1926
|
|- style="height:2em;"
!scope="row"|39
|data-sort-value="Miller, Benjamin"|
|Benjamin M. Miller<br><br>
|<br />–<br />January 14, 1935<br />
|Democratic
|1930
|
|- style="height:2em;"
!rowspan"2" scope"rowgroup"|38
|rowspan"2" data-sort-value"Graves, Bibb"|
|rowspan"2"|Bibb Graves<br><br>
|rowspan"2"|<br />–<br />January 16, 1939<br />
|rowspan"2"|Democratic
|rowspan="2"|1934
|<br />
|- style="height:2em;"
|colspan"2" style"background:#EEEEEE;"|Vacant
|- style="height:2em;"
!scope="row"|40
|data-sort-value="Dixon, Frank"|
|Frank M. Dixon<br><br>
|<br />–<br />January 18, 1943<br />
|Democratic
|1938
|rowspan"8" style"color:inherit;background:;"|
|
|- style="height:2em;"
!scope="row"|41
|data-sort-value="Sparks, Chauncey"|
|Chauncey Sparks<br><br>
|<br />–<br />January 20, 1947<br />
|Democratic
|1942
|
|- style="height:2em;"
!scope="row"|42
|data-sort-value="Folsom, Jim 1"|
|Jim Folsom<br><br>
|<br />–<br />January 15, 1951<br />
|Democratic
|1946
|
|- style="height:2em;"
!scope="row"|43
|data-sort-value="Persons, Gordon"|
|Gordon Persons<br><br>
|<br />–<br />January 17, 1955<br />
|Democratic
|1950
|
|- style="height:2em;"
!scope="row"|42
|data-sort-value="Folsom, Jim 1"|
|Jim Folsom<br><br>
|<br />–<br />January 19, 1959<br />
|Democratic
|1954
|
|- style="height:2em;"
!scope="row"|44
|data-sort-value="Patterson, John"|
|John M. Patterson<br><br>
|<br />–<br />January 14, 1963<br />
|Democratic
|1958
|
|- style="height:2em;"
!scope="row"|45
|data-sort-value="Wallace, George"|
|George Wallace<br><br>
|<br />–<br />January 16, 1967<br />
|Democratic
|1962
|
|- style="height:2em;"
!scope="row"|46
|data-sort-value="Wallace, Lurleen"|
|Lurleen Wallace<br><br>
|<br />–<br />May 7, 1968<br />
|Democratic
|1966
|<br />
|- style="height:2em;"
!scope="row"|47
|data-sort-value="Brewer, Albert"|
|Albert Brewer<br><br>
|<br />–<br />January 18, 1971<br />
|Democratic
|style="background:#EEEEEE;"|
|colspan"2" style"background:#EEEEEE;"|Vacant
|- style="height:2em;"
!rowspan"2" scope"rowgroup"|45
|rowspan"2" data-sort-value"Wallace, George"|
|rowspan"2"|George Wallace<br><br>
|rowspan"2"|<br />–<br />January 15, 1979<br />
|rowspan"2"|Democratic
|1970
|rowspan"6" style"color:inherit;background:;"|
|rowspan"2"|<br />
|- style="height:2em;"
|1974
|- style="height:2em;"
!scope="row"|48
|data-sort-value="James, Fob"|
|Fob James<br> 1934)}}<br>
|<br />–<br />January 17, 1983<br />
|<br />–<br />January 19, 1987<br />
|rowspan"2"|<br />–<br />April 22, 1993<br />
|rowspan"2"|Republican}}
|- style="height:2em;"
|1990
|- style="height:2em;"
!scope="row"|50
|data-sort-value="Folsom, Jim 2"|
|colspan"2" style"color:inherit;background:;"|
|Jim Folsom Jr.<br> 1949)}}<br>
|
|<br />–<br />January 18, 1999<br />
|Republican
|<br />–<br />January 20, 2003<br />
|Democratic
|rowspan"2"|<br />–<br />January 17, 2011<br />
|rowspan"2"|Republican
|rowspan"2"|<br />–<br />April 10, 2017<br />
|rowspan"2"|Republican
|rowspan"3"|<br />–<br />Incumbent
|rowspan"3"|Republican<ref name"al-ivey" />
|style="background:#EEEEEE;"|
|colspan"2" style"background:#EEEEEE;"|Vacant
|- style="height:2em;"
|2018
|rowspan"2" style"color:inherit;background:;"|
|rowspan="2"|
|- style="height:2em;"
|2022
|}
See also
* List of Alabama state legislatures
Notes
References
;General
*
*
*
*
*
*
*
*
*
*
;Specific
External links
*[https://governor.alabama.gov/ Office of the Governor of Alabama]
Category:Lists of state governors of the United States
*
Governors
Category:Political history of Alabama | https://en.wikipedia.org/wiki/List_of_governors_of_Alabama | 2025-04-05T18:25:37.131428 |
1288 | Apocrypha | to the Pope (), published by Nicolae Iorga. Series 4: 1453–1476, Paris; Bucarest, 1915, pages 126–127]]
Apocrypha () are biblical or related writings not forming part of the accepted canon of scripture, some of which might be of doubtful authorship or authenticity. In Christianity, the word apocryphal (ἀπόκρυφος) was first applied to writings that were to be read privately rather than in the public context of church services. Apocrypha were edifying Christian works that were not always initially included as canonical scripture.
The adjective "apocryphal", meaning of doubtful authenticity, mythical, fictional, is recorded from the late 16th century, then taking on the popular meaning of "false," "spurious," "bad," or "heretical." It may be used for any book which might have scriptural claims but which does not appear in the canon accepted by the author. A related term for non-canonical apocryphal texts whose authorship seems incorrect is pseudepigrapha, a term that means "false attribution".
In Christianity, the name "the Apocrypha" is applied to a particular set of books which, when they appear in a Bible, are sometimes placed between the Old and New Testaments in a section called "Apocrypha." The canonicity of such books took longer to determine. Various of these books are accepted by the Catholic Church, Orthodox Churches and the Church of the East, as deuterocanonical. Some Protestant traditions reject them outright; others regard the Apocrypha as non-canonical books that are useful for instruction.
It comes from Greek and is formed from the combination of (away) and (hide or conceal).
The word apocrypha has undergone a major change in meaning throughout the centuries. The word apocrypha in its ancient Christian usage originally meant a text read in private, rather than in public church settings. In English, it later came to have a sense of the esoteric, suspicious, or heretical, largely because of the Protestant interpretation of the usefulness of non-canonical texts.
Esoteric writings and objects
The word apocryphal () was first applied to writings that were kept secret because they were the vehicles of esoteric knowledge considered too profound or too sacred to be disclosed to anyone other than the initiated. For example, the disciples of the Gnostic Prodicus boasted that they possessed the secret () books of Zoroaster. The term in general enjoyed high consideration among the Gnostics (see Acts of Thomas, pp. 10, 27, 44).
Sinologist Anna Seidel refers to texts and even items produced by ancient Chinese sages as apocryphal and studied their uses during Six Dynasties China (AD 220–589). These artifacts were used as symbols legitimizing and guaranteeing the Emperor's Heavenly Mandate. Examples of these include talismans, charts, writs, tallies, and registers. The first examples were stones, jade pieces, bronze vessels and weapons, but came to include talismans and magic diagrams.
From their roots in Zhou era China (1066–256 BC), these items came to be surpassed in value by texts by the Han dynasty (206 BC – AD 220). Most of these texts have been destroyed as Emperors, particularly during the Han dynasty, collected these legitimizing objects and proscribed, forbade and burnt nearly all of them to prevent them from falling into the hands of political rivals. The meaning of is here practically equivalent to "excluded from the public use of the church" and prepares the way for an even less favourable use of the word. This meaning also appears in Origen's prologue to his commentary on the Song of Songs, of which only the Latin translation survives:
Clement and others cited some apocryphal books as "scripture", "divine scripture", "inspired", and the like. Teachers connected with Palestine and familiar with the Hebrew canon (the protocanon) excluded from the canon all of the Old Testament not found there. This view is reflected in the canon of Melito of Sardis, and in the prefaces and letters of Jerome. A third view was that the books were not as valuable as the canonical scriptures of the Hebrew collection, but were of value for moral uses, as introductory texts for new converts from paganism, and to be read in congregations. They were referred to as "ecclesiastical" works by Rufinus. John Wycliffe, a 14th-century Christian Humanist, had declared in his biblical translation that "whatever book is in the Old Testament besides these twenty-five shall be set among the apocrypha, that is, without authority or belief."
Martin Luther did not class apocryphal books as being scripture, but in the German Luther Bible (1534) the apocrypha are published in a separate section from the other books, although the Lutheran and Anglican lists are different. Anabaptists use the Luther Bible, which contains the intertestamental books; Amish wedding ceremonies include "the retelling of the marriage of Tobias and Sarah in the Apocrypha".
In Reformed editions (like the Westminster), readers were warned that these books were not "to be any otherwise approved or made use of than other human writings". A milder distinction was expressed elsewhere, such as in the "argument" introducing them in the Geneva Bible, and in the Sixth Article of the Church of England, where it is said that "the other books the church doth read for example of life and instruction of manners," though not to establish doctrine.
Generally, Anabaptists and magisterial Protestants recognize the fourteen books of the Apocrypha as being non-canonical, but useful for reading "for example of life and instruction of manners": a view that continues today throughout the Lutheran Church, the worldwide Anglican Communion, among many other denominations, such as the Methodist Churches and Quaker Yearly Meetings.
According to the Orthodox Anglican Church:
Though Protestant Bibles historically include 80 books, 66 of these form the Protestant canon (such as listed in the Westminster Confession of 1646), which has been well established for centuries, with many today supporting the use of the Apocrypha and others contending against the Apocrypha using various arguments.
Metaphorical usage
The adjective apocryphal is commonly used in modern English to refer to any text or story considered to be of dubious veracity or authority, although it may contain some moral truth. In this broader metaphorical sense, the word suggests a claim that is in the nature of folklore, factoid or urban legend.
Buddhism
Apocryphal Jatakas of the Pāli Canon, such as those belonging to the Paññāsajātaka collection, have been adapted to fit local culture in certain Southeast Asian countries and have been retold with amendments to the plots to better reflect Buddhist morals.
Within the Pali tradition, the apocryphal Jatakas of later composition (some dated even to the 19th century) are treated as a separate category of literature from the "official" Jataka stories that have been more-or-less formally canonized from at least the 5th century—as attested to in ample epigraphic and archaeological evidence, such as extant illustrations in bas relief from ancient temple walls.
Judaism
The Jewish apocrypha, known in Hebrew as הספרים החיצונים (Sefarim Hachizonim: "the external books"), are books written in large part by Jews, especially during the Second Temple period, not accepted as sacred manuscripts when the Hebrew Bible was canonized. Some of these books are considered sacred by some Christians, and are included in their versions of the Old Testament. The Jewish apocrypha is distinctive from the New Testament apocrypha and biblical apocrypha as it is the only one of these collections that works within a Jewish theological framework.
Although Orthodox Jews believe in the exclusive canonization of the current 24 books in the Hebrew Bible, they also consider the Oral Torah, which they believe was handed down from Moses, to be authoritative. Some argue that the Sadducees, unlike the Pharisees but like the Samaritans, seem to have maintained an earlier and smaller number of texts as canonical, preferring to hold to only what was written in the Law of Moses (the Torah), making most of the presently accepted canon, both Jewish and Christian, apocryphal in their eyes. Others believe that it is often mistakenly asserted that the Sadducees only accepted the Pentateuch (Torah). The Essenes in Judea and the Therapeutae in Egypt were said to have a secret literature (see Dead Sea scrolls).
Other traditions maintained different customs regarding canonicity. The Ethiopian Jews, for instance, seem to have retained a spread of canonical texts similar to the Ethiopian Orthodox Christians.
Christianity
Intertestamental books
include the deuterocanonical books as an intertestamental section between the Old Testament and New Testament; they are termed the "Apocrypha" in many Protestant Churches.]]
, listing "The Books of the Old Testament", "The Books called Apocrypha", and "The Books of the New Testament".]]
During the Apostolic Age many Jewish texts of Hellenistic origin existed within Judaism and were frequently used by Christians. Patristic authorities frequently recognized these books as important to the emergence of Christianity, but the inspired authority and value of the apocrypha remained widely disputed. Christians included several of these books in the canons of the Christian Bibles, calling them the "apocrypha" or the "hidden books".
In the sixteenth century, during the Protestant Reformation, the canonical validity of the intertestamental books was challenged and fourteen books were classed in 80 book Protestant Bibles as an intertestamental section called the Apocrypha, which straddles the Old Testament and New Testament. Prior to 1629, all English-language Protestant Bibles included the Old Testament, Apocrypha, and New Testament; examples include the "Matthew's Bible (1537), the Great Bible (1539), the Geneva Bible (1560), the Bishop's Bible (1568), and the King James Bible (1611)".
Fourteen out of eighty biblical books comprise the Protestant Apocrypha, first published as such in Luther's Bible (1534). Many of these texts are considered canonical Old Testament books by the Catholic Church, affirmed by the Council of Rome (AD 382) and later reaffirmed by the Council of Trent (1545–63); all of the books of the Protestant Apocrypha are considered canonical by the Eastern Orthodox Church and are referred to as anagignoskomena per the Synod of Jerusalem (1672). To this date, scripture readings from the Apocrypha are included in the lectionaries of the Lutheran Churches and the Anglican Churches.
Anabaptists use the Luther Bible, which contains the intertestamental books; Amish wedding ceremonies include "the retelling of the marriage of Tobias and Sarah in the Apocrypha". The Anglican Communion accepts the Protestant Apocrypha "for instruction in life and manners, but not for the establishment of doctrine (Article VI in the Thirty-Nine Articles)", and many "lectionary readings in The Book of Common Prayer are taken from the Apocrypha", with these lessons being "read in the same ways as those from the Old Testament".
The first Methodist liturgical book, The Sunday Service of the Methodists, employs verses from the Apocrypha, such as in the Eucharistic liturgy. The Protestant Apocrypha contains three books (1 Esdras, 2 Esdras and the Prayer of Manasseh) that are accepted by many Eastern Orthodox Churches and Oriental Orthodox Churches as canonical, but are regarded as non-canonical by the Catholic Church and are therefore not included in modern Catholic Bibles.
In the 1800s, the British and Foreign Bible Society did not regularly publish the intertestamental section in its Bibles, citing the cost of printing the Apocrypha in addition to the Old Testament and New Testament as a major factor; this legacy came to characterize English-language Bibles in Great Britain and the Americas, unlike in Europe where Protestant Bibles are printed with 80 books in three sections: the Old Testament, Apocrypha, and New Testament.
In the present-day, "English Bibles with the Apocrypha are becoming more popular again", usually being printed as intertestamental books.
The status of the deuterocanonicals remains unchanged in Catholic and Orthodox Christianity, though there is a difference in number of these books between these two branches of Christianity. Some authorities began using term deuterocanonical to refer to this traditional intertestamental collection as books of "the second canon". These books are often seen as helping to explain the theological and cultural transitions that took place between the Old and New Testaments. They are also sometimes called "intertestamental" by religious groups who do not recognize Hellenistic Judaism as belonging with either Jewish or Christian testaments.
Slightly varying collections of apocryphal, deuterocanonical or intertestamental books of the Bible form part of the Catholic, Eastern Orthodox and Oriental Orthodox canons. The deuterocanonical or intertestamental books of the Catholic Church include Tobit, Judith, Baruch, Sirach, 1 Maccabees, 2 Maccabees, Wisdom and additions to Esther, Daniel, and Baruch.
The Book of Enoch is included in the biblical canon of the Oriental Orthodox churches of Ethiopia and Eritrea. The Epistle of Jude alludes to a story in the book of Enoch, and some believe the use of this book also appears in the four gospels and 1 Peter. While Jesus and his disciples sometimes used phrases also featured in some of the Apocryphal books, the Book of Enoch was never referenced by Jesus. The genuineness and inspiration of Enoch were believed in by the writer of the Epistle of Barnabas, Irenaeus, Tertullian and Clement of Alexandria Martin Luther, like Jerome, favored the Masoretic canon for the Old Testament, excluding apocryphal books in the Luther Bible as unworthy to be properly called scripture, but included most of them in a separate section. Luther did not include the deuterocanonical books in his Old Testament, terming them "Apocrypha, that are books which are not considered equal to the Holy Scriptures, but are useful and good to read."
The Eastern Orthodox Church accepts four other books into its canon than what are contained in the Catholic canon: Psalm 151, the Prayer of Manasseh, 3 Maccabees, and 1 Esdras.
Disputes
The status of the books that the Catholic Church terms Deuterocanonicals (second canon) and Protestantism refers to as Apocrypha has been an issue of disagreement that preceded the Reformation. Many believe that the pre-Christian-era Jewish translation (into Greek) of holy scriptures known as the Septuagint, a Greek translation of the Hebrew Scriptures originally compiled around 280 BC, originally included the apocryphal writings in dispute, with little distinction made between them and the rest of the Old Testament. Others argue that the Septuagint of the first century did not contain these books but they were added later by Christians.
The earliest extant manuscripts of the Septuagint are from the fourth century, and suffer greatly from a lack of uniformity as regards containing apocryphal books, and some also contain books classed as pseudepigrapha, from which texts were cited by some early writers in the second and later centuries as being scripture. it is generally considered not to have been finalized until about 100 AD or somewhat later, at which time considerations of Greek language and beginnings of Christian acceptance of the Septuagint weighed against some of the texts. Some were not accepted by the Jews as part of the Hebrew Bible canon and the Apocrypha is not part of the historical Jewish canon.
Early church fathers such as Athanasius, Melito, Origen, and Cyril of Jerusalem, spoke against the canonicity of much or all of the apocrypha, but the most weighty opposition was the fourth century Catholic scholar Jerome who preferred the Hebrew canon, whereas Augustine and others preferred the wider (Greek) canon, with both having followers in the generations that followed. The Catholic Encyclopedia states as regards the Middle Ages,
The prevailing attitude of Western medieval authors is substantially that of the Greek Fathers.
The wider Christian canon accepted by Augustine became the more established canon in the western Church after being promulgated for use in the Easter Letter of Athanasius (circa 372 A.D.), the Synod of Rome (382 A.D., but its Decretum Gelasianum is generally considered to be a much later addition) and the local councils of Carthage and Hippo in north Africa (391 and 393 A.D). Athanasius called canonical all books of the Hebrew Bible including Baruch, while excluding Esther. He adds that "there are certain books which the Fathers had appointed to be read to catechumens for edification and instruction; these are the Wisdom of Solomon, the Wisdom of Sirach (Ecclesiasticus), Esther, Judith, Tobias, the Didache, or Doctrine of the Apostles, and the Shepherd of Hermas. All others are apocrypha and the inventions of heretics (Festal Epistle for 367)".
Nevertheless, none of these constituted indisputable definitions, and significant scholarly doubts and disagreements about the nature of the Apocrypha continued for centuries and even into Trent, which provided the first infallible definition of the Catholic canon in 1546.
In the 16th century, the Protestant reformers challenged the canonicity of the books and partial-books found in the surviving Septuagint but not in the Masoretic Text. In response to this challenge, after the death of Martin Luther (February 8, 1546) the ecumenical Council of Trent officially ("infallibly") declared these books (called "deuterocanonical" by Catholics) to be part of the canon in April, 1546 A.D. While the Protestant Reformers rejected the parts of the canon that were not part of the Hebrew Bible, they included the four New Testament books Luther considered of doubtful canonicity along with the Apocrypha in his non-binding Luther's canon (although most were separately included in his Bible, as they were in some editions of the KJV bible until 1947).
Protestantism therefore established a 66 book canon with the 39 books based on the ancient Hebrew canon, along with the traditional 27 books of the New Testament. Protestants also rejected the Catholic term "deuterocanonical" for these writings, preferring to apply the term "apocryphal", which was already in use for other early and disputed writings. As today (but along with other reasons), some of which are accepted as canonical by Eastern Orthodox and some other churches. Protestants accept none of these additional books as canon, but see them having roughly the same status as the other Apocrypha.
Eastern Orthodoxy uses a different definition than the Roman Catholic Church does for the books of its canon that it calls deuterocanonical, referring to them as a class of books with less authority than other books of the Old Testament. In contrast, the Catholic Church uses this term to refer to a class of books that were added to its canon later than the other books in its Old Testament canon, considering them all of equal authority.New Testament apocrypha
New Testament apocrypha—books similar to those in the New Testament but almost universally rejected by Catholics, Orthodox and Protestants—include several gospels and lives of apostles. Some were written by early Jewish Christians (see the Gospel according to the Hebrews). Others of these were produced by Gnostic authors or members of other groups later defined as heterodox. Many texts believed lost for centuries were unearthed in the 19th and 20th centuries, producing lively speculation about their importance in early Christianity among religious scholars, while many others survive only in the form of quotations from them in other writings; for some, no more than the title is known. Artists and theologians have drawn upon the New Testament apocrypha for such matters as the names of Dismas and Gestas and details about the Three Wise Men. The first explicit mention of the perpetual virginity of Mary is found in the pseudepigraphical Infancy Gospel of James.
Before the fifth century, the Christian writings that were then under discussion for inclusion in the canon but had not yet been accepted were classified in a group known as the ancient antilegomenae. These were all candidates for the New Testament and included several books that were eventually accepted, such as: The Epistle to the Hebrews, 2 Peter, 3 John and the Revelation of John (Apocalypse). None of those accepted books can be considered Apocryphal now, since all Christendom accepts them as canonical. Of the uncanonized ones, the Early Church considered some heretical but viewed others quite positively. The Ethiopian Orthodox have in the past also included I & II Clement and Shepherd of Hermas in their New Testament canon.
List of Sixty
The List of Sixty, dating to around the 7th century, lists sixty books that the author claimed were the complete canonical scriptures. The unknown author also lists many apocryphal books that are not included amongst the sixty. These books are: Historically, some sects of the Kharijites also rejected the hadiths, while Mu'tazilites rejected the hadiths as the basis for Islamic law, while at the same time accepting the Sunnah and Ijma. The main points of internal Islamic criticism of hadith literature are based on questions regarding its authenticity. However, Muslim criticism of hadith is also based on arguments and criticisms of Islamic theology and philosophy.
Traditionally, some sects of the Kharijites have rejected Hadith. There are some who even oppose the writing of Hadith for fear that it will compete with or even replace the Quran. Mu'tazilite followers also reject hadith as the basis for Islamic law, while simultaneously accepting the Sunnah and ijma.<ref name"Sindima" /> For Mu'tazilites, the basic argument for rejecting hadith is that "because of its nature as the transmission of individuals, [it] cannot be a sure path to our understanding of the Prophet's teachings, unlike the Quran whose transmission has a general consensus among Muslims". Some Muslim critics of hadith have even gone so far as to completely reject them as fundamental texts of Islamic beliefs and instead adhere solely to Quran. This movement is also known as Quranism.TaoismProphetic texts called the ''Ch'an-wei were written by Han dynasty (206 BC – AD 220) Taoist priests to legitimize as well as curb imperial power.<ref name"SeidelAnna"/> They deal with treasure objects that were part of the Zhou (1066–256 BC) royal treasures. Emerging from the instability of the Warring States period (476–221 BC), ancient Chinese scholars saw the centralized rule of the Zhou as an ideal model for the new Han empire to emulate.
The Ch'an-wei'' are texts written by Han scholars about the Zhou royal treasures, only they were not written to record history for its own sake, but for legitimizing the current imperial reign. These texts took the form of stories about texts and objects being conferred upon the Emperors by Heaven and comprising these ancient sage-king's (this is how the Zhou emperors were referred to by this time, about 500 years after their peak) royal regalia.<ref name="SeidelAnna"/> The desired effect was to confirm the Han emperor's Heavenly Mandate through the continuity offered by his possession of these same sacred talismans.
It is because of this politicized recording of their history that it is difficult to retrace the exact origins of these objects. What is known is that these texts were most likely produced by a class of literati called the fangshi. These were a class of nobles who were not part of the state administration; they were considered specialists or occultists, for example diviners, astrologers, alchemists or healers.<ref name"SeidelAnna"/> It is from this class of nobles that the first Taoist priests are believed to have emerged. Seidel points out, however, that the scarcity of sources relating to the formation of early Taoism make the exact link between the apocryphal texts and the Taoist beliefs unclear.<ref name"SeidelAnna"/>
See also
* List of Gospels
* Lost work
* Occult
* Shakespeare apocrypha
* Fan fiction
Notes
References
Citations
Sources
*
External links
* [http://alinsuciu.com/ Alin Suciu's blog on various Coptic apocrypha]
* [http://wn.elib.com/Library/Religious/AP/Apocry_index.html The Apocrypha] is in the religion section at the e.Lib.
* [http://wesley.nnu.edu/biblical_studies/noncanon/index.htm Noncanonical Literature]
* [https://web.archive.org/web/20040614161145/http://www.comparative-religion.com/christianity/apocrypha/ Complete NT Apocrypha] Claims to be the largest collection of New Testament apocrypha online
* [http://st-takla.org/pub_Deuterocanon/Deuterocanon-Apocrypha_El-Asfar_El-Kanoneya_El-Tanya__0-index.html Deuterocanonical books] - Full text from Saint Takla Haymanot Church Website (also presents the full text in Arabic)
* [https://www.churchofjesuschrist.org/study/scriptures/bd/apocrypha LDS Bible Dictionary - Apocrypha] – Definition & LDS POV, including brief book descriptions.
* [https://archive.org/details/AldenicumTheTrilogy/ Aldenicum The Trilogy], an apocryphal view on life and reality around us.
* [http://www.lcms.org/ca/www/cyclopedia/02/display.asp?t1a&wordAPOCRYPHA Christian Cyclopedia article on Apocrypha]
* [https://web.archive.org/web/20071014070146/http://bombaxo.com/allusions.html New Testament Allusions to Apocrypha and Pseudepigrapha]
* [http://www.biblestudymagazine.com/interactive/canon/ Canon Comparison Chart]
*
*
* [http://www.earlychristianwritings.com EarlyChristianWritings.com] A chronological list of early Christian books and letters, both complete and incomplete works; canonical, apocryphal and Gnostic. Many with links to English translations.
Category:Christian terminology
Category:Esotericism | https://en.wikipedia.org/wiki/Apocrypha | 2025-04-05T18:25:37.181516 |
1291 | Antarctic Treaty System | <br /><br /></small>
| name = Antarctic Treaty
| image = Flag of the Antarctic Treaty.svgborder
| image_width = 180px
| caption = Flag of the Antarctic Treaty System
| type = Condominium
| date_drafted | date_signed 1 December 1959
| location_signed = Washington, D.C., United States
| date_sealed | date_effective 23 June 1961
| condition_effective = Ratification of all 12 signatories
| date_expiration | signatories 12
The main treaty was opened for signature on 1 December 1959, and officially entered into force on 23 June 1961. The original signatories were the 12 countries active in Antarctica during the International Geophysical Year (IGY) of 1957–58: Argentina, Australia, Belgium, Chile, France, Japan, New Zealand, Norway, South Africa, the Soviet Union, the United Kingdom, and the United States.
History
1940s
After World War II, the U.S. considered establishing a claim in Antarctica. From 26 August 1946, and until the beginning of 1947, it carried out Operation Highjump, the largest military expeditionary force that the United States had ever sent to Antarctica, consisting of 13 ships, 4,700 men, and numerous aerial devices. Its goals were to train military personnel and to test material in conditions of extreme cold for a hypothetical war in the Antarctic.
On 2 September 1947, the quadrant of Antarctica in which the United States was interested (between 24° W and 90° W) was included as part of the security zone of the Inter-American Treaty of Reciprocal Assistance, committing its members to defend it in case of external aggression.
In August 1948, the United States proposed that Antarctica be under the guardianship of the United Nations, as a trust territory administered by Argentina, Australia, Chile, France, the United States, the United Kingdom, and New Zealand. This idea was rejected by Argentina, Australia, Chile, France, and Norway. Before the rejection, on 28 August 1948, the United States proposed to the claimant countries some form of internationalization of Antarctica, and the United Kingdom supported this. Chile responded by presenting a plan to suspend all Antarctic claims for five to ten years while negotiating a final solution, but this did not find acceptance.
In 1950, the interest of the United States to keep the Soviet Union away from Antarctica was frustrated, when the Soviets informed the claimant states that they would not accept any Antarctic agreement in which they were not represented. The fear that the USSR would react by making a territorial claim, bringing the Cold War to Antarctica, led the United States to make none.
Some incidents had occurred during the Second World War, and a new one occurred in Hope Bay on 1 February 1952, when the Argentine military fired warning shots at a group of Britons. The response of the United Kingdom was to send a warship that landed marines at the scene on 4 February. In 1949, Argentina, Chile, and the United Kingdom signed a Tripartite Naval Declaration committing not to send warships south of the 60th parallel south, which was renewed annually until 1961 when it was deemed unnecessary when the treaty entered into force. This tripartite declaration was signed after the tension generated when Argentina sent a fleet of eight warships to Antarctica in February 1948.
On 17 January 1953, Argentina reopened the Lieutenant Lasala refuge on Deception Island, leaving a sergeant and a corporal in the Argentine Navy. On 15 February, in the incident on Deception Island, 32 royal marines landed from the British frigate HMS Snipe armed with Sten machine guns, rifles, and tear gas capturing the two Argentine sailors. The Argentine refuge and a nearby uninhabited Chilean shelter were destroyed, and the Argentine sailors were delivered to a ship from that country on 18 February near South Georgia. A British detachment remained three months on the island while the frigate patrolled its waters until April.
On 4 May 1955, the United Kingdom filed two lawsuits, against Argentina and Chile respectively, before the International Court of Justice to declare the invalidity of the claims of the sovereignty of the two countries over Antarctic and sub-Antarctic areas. On 15 July 1955, the Chilean government rejected the jurisdiction of the court in that case, and on 1 August, the Argentine government also did so, so on 16 March 1956, the claims were closed.
In 1956 and 1958, India tried unsuccessfully to bring the Antarctic issue to the United Nations General Assembly.
The positions of the United States, the Soviet Union, the United Kingdom, and New Zealand coincided in the establishment of an international administration for Antarctica, proposing that it should be within the framework of the United Nations. Australia and the United Kingdom expressed the need for inspections by observers, and the British also proposed the use of military personnel for logistical functions. Argentina proposed that all atomic explosions be banned in Antarctica, which caused a crisis that lasted until the last day of the conference, since the United States, along with other countries, intended to ban only those that were made without prior notice and without prior consultation. The support of the USSR and Chile for the Argentine proposal finally caused the United States to retract its opposition.
The signing of the treaty was the first arms control agreement that occurred in the framework of the Cold War, and the participating countries managed to avoid the internationalization of Antarctic sovereignty.
Starting from the year 2048, any of the consultative parties to the treaty may request the revision of the treaty and its entire normative system, with the approval of a three-quarters majority of consultative parties needed for the adoption of any changes. Other agreements
on King George Island, is no longer permitted by the Protocol on Environmental Protection.]]
Other agreements – some 200 recommendations adopted at treaty consultative meetings and ratified by governments – include:
* Agreed Measures for the Conservation of Antarctic Fauna and Flora (1964) (entered into force in 1982)
* The Convention for the Conservation of Antarctic Seals (1972)
* The Convention for the Conservation of Antarctic Marine Living Resources (1982)
* The Convention on the Regulation of Antarctic Mineral Resource Activities (1988) (signed in 1988, not in force)
* The Protocol on Environmental Protection to the Antarctic Treaty was signed 4 October 1991, and entered into force 14 January 1998; this agreement prevents development and provides for the protection of the Antarctic environment through five specific annexes on marine pollution, fauna and flora, environmental impact assessments, waste management, and protected areas. It prohibits all activities relating to mineral resources except scientific. A sixth annex on liability arising from environmental emergencies was adopted in 2005, but is yet to enter into force.
Bilateral treaties
* Exchange of Notes constituting an Agreement between the Governments of Australia, New Zealand and the United Kingdom of Great Britain and Northern Ireland, and the Government of the French Republic, regarding Aerial Navigation in the Antarctic (Paris, 25 October 1938)
* Treaty Between the Government of Australia and the Government of the French Republic on Cooperation in the Maritime Areas Adjacent to the French Southern and Antarctic Territories (TAAF), Heard Island and the McDonald Islands (Canberra, 24 November 2003)
* Agreement on Cooperative Enforcement of Fisheries Laws between the Government of Australia and the Government of the French Republic in the Maritime Areas Adjacent to the French Southern and Antarctic Territories, Heard Island and the McDonald Islands (Paris, 8 January 2007)
Meetings
The Antarctic Treaty System's yearly Antarctic Treaty Consultative Meetings (ATCM) are the international forum for the administration and management of the region. Only 29 of the 58 parties to the agreements have the right to participate in decision-making at these meetings, though the other 29 are still allowed to attend. The decision-making participants are the Consultative Parties and, in addition to the 12 original signatories, including 17 countries that have demonstrated their interest in Antarctica by carrying out substantial scientific activity there. The Antarctic Treaty also has Special Antarctic Treaty Consultative Meetings (SATCM), which are generally summoned to treat more important topics but are less frequents and Meetings of Experts.
Parties
As of 2024, there are 58 states party to the treaty, 29 of which, including all 12 original signatories to the treaty, have consultative (voting) status. The consultative members include the 7 countries that claim portions of Antarctica as their territory. The 51 non-claimant countries do not recognize the claims of others. 42 parties to the Antarctic Treaty have also ratified the "Protocol on Environmental Protection to the Antarctic Treaty".
432px|right|thumb|
Overview of parties to the Antarctic Treaty System
{| class="wikitable sortable"
!scope"col" | Country
!scope="col"| Signature
!scope="col"| Ratification/<br />Accession
!scope"col"| Consultative<br />status
|-
|scope="row"|
|No
|
|No
|
|-
|scope="row"|
|No
|
|No
|
|-
|scope="row"|
|No
|
|No
|
|-
|scope="row"|
|No
|
|
|Succession from , which acceded on 14 June 1962.
|-
|scope="row"|
|No
|
|No
|<!-- apply to and or not? -->
|-
|scope="row"|
|No
|
|
|
|-
|scope="row"|
|No
|
|No
|
|-
|scope="row"|
|No
|
|
|
|-
|scope="row"| (claim)
|
|
|
|
|-
|scope="row"| (historical claim)
|No
|
|
|Ratified as .
also acceded on 19 November 1974, and received consultative status on 5 October 1987, prior to its reunification with West Germany.
|-
|scope="row"|
|No
|
|No
|
|-
|scope="row"|
|No
|
|No
|
|-
|scope="row"|
|No
|
|No
|
|-
|scope="row"|
|No
|
|No
|
|-
|scope="row"|
|No
|
|
|
|-
|scope="row"|
|No
|
|
|
|-
|scope="row"| (historical claim)
|
|
|
|
|-
|scope="row"|
|No
|
|No
|
|-
|scope="row"|
|No
|
|No
|
|-
|scope="row"|
|No
|
|No
|
|-
|scope="row"|
|No
|
|No
|
|-
|scope="row"|
|No
|
|
|Applies to all constituent countries of Kingdom of the Netherlands. Formerly applied to until its independence on 25 November 1975.
|-
|scope="row"| (claim)
|
|
|
|
|-
|scope="row"|
|No
|
|No
|
|-
|scope="row"| (claim)
|
|
|
|
|-
|scope="row"|
|No
|
|No
|
|-
|scope="row"|
|No
|
|No
|Succession from . Effective from their independence on 16 September 1975.
|-
|scope="row"|
|No
|
|
|
|-
|scope="row"|
|No
|
|
|
|-
|scope="row"|
|No
|
|No
|
|-
|scope="row"|
|No
|
|No
|
|-
|scope="row"|<sup>†</sup>
|
|
|
|Ratified as the .
|-
|scope"row"|
|No
|
|No
|
|-
|scope="row"|
|No
|
|No
|
|-
|scope="row"|
|No
|
|No
|Succession from , which acceded on 14 June 1962.
|-
|scope="row"|
|No
|
|No
|
|-
|scope"row"|
|
|
|
|
|-
|scope="row"|
|No
|
|
|
|-
|scope="row"|
|No
|
|
|
|-
|scope="row"|
|No
|
|
|
|-
|scope="row"|
|No
|
|No
|
|-
|scope="row"|
|No
|
|No
|
|-
|scope="row"|
|No
|
|
|
|-
|scope="row"|
|No
|
|No
|
|-
|scope="row"| (claim)<sup>*</sup>
|
|
|
|<!-- apply to Overseas Territories and Crown Dependencies or not? -->
|-
|scope="row"|<sup>†</sup>
|
|
|
|
|-
|scope="row"|
|No
|
|
|
|-
|scope="row"|
|No
|
|No
|
|}
<sup>*</sup> Has an overlapping claim with another one or two claimants.<br />
<sup>†</sup> Reserved the right to make a claim. Until 2015 the interior of the Norwegian Sector, the extent of which had never been officially defined, was considered to be unclaimed. That year, Norway formally laid claim to the area between its Queen Maud Land and the South Pole.
Governments that are party to the Antarctic Treaty and its Protocol on Environmental Protection implement the articles of these agreements, and decisions taken under them, through national laws. These laws generally apply only to their own citizens, wherever they are in Antarctica, and serve to enforce the consensus decisions of the consultative parties: about which activities are acceptable, which areas require permits to enter, what processes of environmental impact assessment must precede activities, and so on. The Antarctic Treaty is often considered to represent an example of the common heritage of mankind principle.
Australia
Since the designation of the Australian Antarctic Territory pre-dated the signing of the Antarctic Treaty, Australian laws that relate to Antarctica date from more than two decades before the Antarctic Treaty era. In terms of criminal law, the laws that apply to the Jervis Bay Territory (which follows the laws of the Australian Capital Territory) apply to the Australian Antarctic Territory. Key Australian legislation applying Antarctic Treaty System decisions include the Antarctic Treaty Act 1960, the Antarctic Treaty (Environment Protection) Act 1980 and the Antarctic Marine Living Resources Conservation Act 1981.
United States
The law of the United States, including certain criminal offences by or against U.S. nationals, such as murder, may apply to areas not under jurisdiction of other countries. To this end, the United States now stations special deputy U.S. Marshals in Antarctica to provide a law enforcement presence.
Some U.S. laws directly apply to Antarctica. For example, the Antarctic Conservation Act, Public Law 95-541, et seq., provides civil and criminal penalties for the following activities, unless authorized by regulation or statute:
* the taking of native Antarctic mammals or birds
* the introduction into Antarctica of non-indigenous plants and animals
* entry into specially protected or scientific areas
* the discharge or disposal of pollutants into Antarctica or Antarctic waters
* the importation into the U.S. of certain items from Antarctica
Violation of the Antarctic Conservation Act carries penalties of up to US$10,000 in fines and one year in prison. The Departments of the Treasury, Commerce, Transportation, and the Interior share enforcement responsibilities. The Act requires expeditions from the U.S. to Antarctica to notify, in advance, the Office of Oceans and Polar Affairs of the State Department, which reports such plans to other nations as required by the Antarctic Treaty. Further information is provided by the Office of Polar Programs of the National Science Foundation.
New Zealand
In 2006, the New Zealand police reported that jurisdictional issues prevented them issuing warrants for potential American witnesses who were reluctant to testify during the Christchurch Coroner's investigation into the death by poisoning of Australian astrophysicist Rodney Marks at the South Pole base in May 2000. Marks died while wintering over at the United States' Amundsen–Scott South Pole Station located at the geographic South Pole. Prior to autopsy, the death was attributed to natural causes by the National Science Foundation and the contractor administering the base. However, an autopsy in New Zealand revealed that Marks died from methanol poisoning. The New Zealand Police launched an investigation. In 2006, frustrated by lack of progress, the Christchurch Coroner said that it was unlikely that Marks ingested the methanol knowingly, although there is no certainty that he died as the direct result of the act of another person. During media interviews, the police detective in charge of the investigation criticized the National Science Foundation and contractor Raytheon for failing to cooperate with the investigation. South Africa Under the South African Citizens in Antarctica Act, 1962, South African law applies to all South African citizens in Antarctica, and they are subject to the jurisdiction of the magistrate's court in Cape Town. The Antarctic Treaties Act, 1996 incorporates the Antarctic Treaty and related agreements into South African law. In regard to violations of these treaties, South Africa also asserts jurisdiction over South African residents and members of expeditions organised in South Africa. See also
* Antarctic and Southern Ocean Coalition (ASOC)
* Antarctic Protected Areas
* Antarctic Treaty issue
* Arctic Council
* Arctic sanctuary
* Crime in Antarctica
* Endurance – lost ship of Ernest Shackleton, found in 2022 and protected by the treaty
* International Seabed Authority
* Montreal Protocol
* Moon treaty
* Multilateral treaty
* National Antarctic Program
* Category: Outposts of Antarctica
* Research stations in Antarctica
* Solar radiation management
* Svalbard Treaty
References
External links
* [http://www.ats.aq/ Antarctic Treaty Secretariat]
* [https://documents.ats.aq/keydocs/vol_1/vol1_2_AT_Antarctic_Treaty_e.pdf Full Text of the Antarctic Treaty]
* [http://www.ats.aq/documents/recatt/att465_e.pdf Original facsimile of Antarctic Treaty]
* [http://www.aad.gov.au/ Australian Antarctic Territory]
* [http://60south.com/about/about.htm Why 60 South?]
* [https://www.nsf.gov/dir/index.jsp?org=OPP National Science Foundation – Office of Polar Programs]
* [http://www.ats.aq/devAS/ats_meetings.aspx?lange List of all Antarctic Treaty Consultative Meetings]
* [http://www.signonsandiego.com/uniontrib/20050825/news_lz7e25koreas.html An Antarctic Solution for the Koreas] San Diego Union-Tribune, 25 August 2005 (Both South Korea and North Korea are members of the Antarctic Treaty)
* [http://www.ats.aq/devAS/info_measures_listitem.aspx?lange&id289 Emblem of the Antarctic Treaty]
Category:Antarctica agreements
Category:1959 in Antarctica
Category:1959 in Washington, D.C.
Category:December 1959
Category:1961 in Antarctica
Category:1961 in the environment
Category:Arms control treaties
Category:Cold War treaties
Category:Territorial claims in Antarctica
Category:Treaties concluded in 1959
Category:Treaties entered into force in 1961
Category:Treaties establishing nuclear-weapon-free zones
Category:Treaties of Argentina
Category:Treaties of Australia
Category:Treaties of Austria
Category:Treaties of Belarus
Category:Treaties of Belgium
Category:Treaties of the military dictatorship in Brazil
Category:Treaties of the People's Republic of Bulgaria
Category:Treaties of Canada
Category:Treaties of Chile
Category:Treaties of the People's Republic of China
Category:Treaties of Colombia
Category:Treaties of Cuba
Category:Treaties of Denmark
Category:Treaties of the Czech Republic
Category:Treaties of Czechoslovakia
Category:Treaties of Ecuador
Category:Treaties of Estonia
Category:Treaties of Finland
Category:Treaties of France
Category:Treaties of West Germany
Category:Treaties of East Germany
Category:Treaties of Greece
Category:Treaties of Guatemala
Category:Treaties of the Hungarian People's Republic
Category:Treaties of Italy
Category:Treaties of India
Category:Treaties of Japan
Category:Treaties of Malaysia
Category:Treaties of Monaco
Category:Treaties of the Netherlands
Category:Treaties of New Zealand
Category:Treaties of North Korea
Category:Treaties of Norway
Category:Treaties of Pakistan
Category:Treaties of Papua New Guinea
Category:Treaties of Peru
Category:Treaties of the Polish People's Republic
Category:Treaties of Portugal
Category:Treaties of the Socialist Republic of Romania
Category:Treaties of the Soviet Union
Category:Treaties of Slovakia
Category:Treaties of South Africa
Category:Treaties of South Korea
Category:Treaties of Spain
Category:Treaties of Sweden
Category:Treaties of Switzerland
Category:Treaties of Turkey
Category:Treaties of Ukraine
Category:Treaties of the United Kingdom
Category:Treaties of the United States
Category:Treaties of Uruguay
Category:Treaties of Venezuela
Category:History of the Ross Dependency
Category:December 1959 in the United States | https://en.wikipedia.org/wiki/Antarctic_Treaty_System | 2025-04-05T18:25:37.225265 |
1293 | Alfred Lawson | | birth_place = London, England
| death_date =
| death_place = San Antonio, Texas, US
| resting_place | other_names
| known_for = Baseball, aviation, philosophy
| occupation | nationality Born in the United Kingdom, emigrated to Canada, then the United States by 1872
}}
Alfred William Lawson (March 24, 1869 – November 29, 1954) was an English-born professional baseball player, aviator, and utopian philosopher. He played baseball, managed and promoted leagues from 1887 through 1916, and pioneered the U.S. aircraft industry. He also published two early aviation trade journals.
Lawson is frequently cited as the inventor of the airliner and received several of the first air mail contracts, which he ultimately did not fulfill. He founded the Lawson Aircraft Company in Green Bay, Wisconsin, to build military training aircraft and later the Lawson Airplane Company in South Milwaukee, Wisconsin, to build airliners.
The crash of his ambitious Lawson L-4 "Midnight Liner" during its trial flight takeoff on May 8, 1921, ended his best chance for commercial aviation success.
In 1904, he wrote a utopian novel, Born Again, in which he developed the philosophy which later became Lawsonomy.Baseball career (1888–1907)
)
* Pittsburgh Alleghenys ()
}}
Lawson made one start for the Boston Beaneaters and two for the Pittsburgh Alleghenys during the 1890 season. His minor league playing career lasted through 1895. Lawson later managed in the minors from 1905 to 1907.
Union Professional League
In 1908, Lawson started a new professional baseball league called the Union Professional League. The league took the field in April but folded one month later because of financial difficulties.
Aviation career (1908–1928)
An early aviation advocate, in October 1908, Lawson started the magazine Fly to stimulate public interest and educate readers on the new aviation science fundamentals. It sold for 10 cents a copy from newsstands across the country. In 1910, moving to New York City, he renamed the magazine Aircraft and published it until 1914. The magazine chronicled the technical developments of the early aviation pioneers.
Lawson was the first advocate for commercial air travel, coining the term "airline." He also advocated for a strong American flying force, lobbying Congress in 1913 to expand its appropriations for Army aircraft.
In early 1913, Lawson learned to fly the Sloan-Deperdussin and the Moisant-Bleriot monoplanes, becoming an accomplished pilot. Later that year, he bought a Thomas flying boat and became the first air commuter to regularly fly from his country house in Seidler's Beach, New Jersey, to the foot of 75th Street in New York City (about 35 miles).
In 1917, utilizing the knowledge gained from ten years of advocating aviation, he built his first airplane, the Lawson Military Tractor 1 (MT-1) trainer, and founded the Lawson Aircraft Corporation. The company's plant was in Green Bay, Wisconsin. There, Lawson secured a contract and built the Lawson MT-2. He also designed the steel fuselage Lawson Armored Battler, which never got beyond the drafting board, given doubts within the Army aviation community and the signing of the armistice.
After the war, in 1919, Lawson started a project to build America's first airline. He secured financial backing, and in five months, he had built and demonstrated in flight his biplane airliner, the 18-passenger Lawson L-2. He demonstrated its capabilities in a 2000-mile multi-city tour from Milwaukee to Chicago-Toledo-Cleveland-Buffalo-Syracuse-New York City-Washington, D.C.-Collinsville-Dayton-Chicago and back to Milwaukee, creating a buzz of positive press.
The publicity allowed Lawson to secure an additional $1 million to build the 26-passenger Midnight Liner. The aircraft crashed on takeoff on its maiden flight.
In late 1920, he secured government contracts for three airmail routes and to deliver ten warplanes. However, because of the fall 1920 recession, he could not secure the necessary $100,000 in cash reserves and had to decline the contracts.
In 1926, he started his last airliner, the 56-seat, two-tier Lawson super airliner.
In this phase of his life, he was considered one of the leading thinkers in the budding American commercial aviation community; however, his inability to secure financial backing for his ideas led him to turn to economics, philosophy, and organization.
Lawsonomy (1929–1954)
In the 1920s, Lawson promoted health practices, including vegetarianism, and claimed to have found the secret of living to 200. He also developed his own highly unusual theories of physics, according to which such concepts as "penetrability", "suction and pressure" and "zig-zag-and-swirl" were discoveries on par with Einstein's theory of relativity. according to which banks are the cause of all economic woes, the oppressors of both capital and labor. Lawson believed that the government should replace banks as the provider of loans to business and workers. He predicted the worldwide adoption of Lawsonian principles once "everybody understands this subject".
His claims about his greatness became increasingly hyperbolic. The Lawsonomy trilogy, which Lawson considered his intellectual masterpiece, is replete with such self-referential statements as "About every two thousand years a new teacher with advanced intellectual equipment appears upon earth to lead the people a step or two nearer the one God of everybody". and University of Lawsonomy in Des Moines, on the site of Des Moines University, to spread his teachings and offer the degree of "Knowledgian", but after various IRS and other investigations it was closed and finally sold in 1954, the year of Lawson's death. His financial arrangements remain mysterious to this day, and in later years, he seems to have owned little property, moving from city to city as a guest of his far-flung acolytes. In 1952, he testified before a United States Senate investigative committee on allegations that his organization had bought war surplus machines and then sold them for a profit despite claiming non-profit status. His attempt to explain Lawsonomy to the senators ended in mutual frustration and bafflement.
A farm near Racine, Wisconsin, is the only remaining university facility, although a tiny handful of churches may yet survive in places such as Wichita, Kansas. The large sign, formerly reading "University of Lawsonomy", was a familiar landmark for motorists in the region for many years and was visible from Interstate 94 about north of the Illinois state line, on the east side of the highway. A storm in the spring of 2009 destroyed the sign, although the supporting posts are still visible. On the northbound side of Interstate 94, a sign on the roof of the building nearest the freeway said "Study Natural Law" until being shingled over in October 2014.
In 2018, the Town of Mount Pleasant paid $933,000 to purchase the property on the northbound side of Interstate 94 for the Foxconn project. All remaining buildings were demolished and removed. Lawsonomy maintains a small following to this day.<ref name"felshman mission"/>See also* List of topics characterized as pseudoscienceReferencesFurther reading
* Henry, Lyell D. ''Zig-Zag-and Swirl: Alfred W. Lawson's Quest for Greatness. Iowa City: University of Iowa Press, 1991.
* Kossy, Donna. Kooks: A Guide to the Outer Limits of Human Belief. 2nd ed. Los Angeles: Feral House, 2001.
* Kuntz, Jerry. Baseball Fiends and Flying Machines: The Many Lives and Outrageous Times of George and Alfred Lawson. Jefferson, North Carolina: McFarland Publishing, 2009.
* Lawson, Alfred. [http://www.lawsonomy.org/Lawsonomy11.html Lawsonomy, vols. 1-3]''. Detroit: Humanity Benefactor Foundation, 1935–1939.
*
External links
*
*
*
*
* [http://www.wisconsinaviationhalloffame.org/blog/?tag=alfred-lawson Lawson Demo Flight Departed 93 Years Ago] at Wisconsin Aviation Hall of Fame
* [http://www.onmilwaukee.com/sports/articles/lawson.html What in the heck is the University of Lawsonomy?] – article about Lawson in a Milwaukee-area magazine
* [https://news.google.com/newspapers?nid1499&dat19810205&idMmcaAAAAIBAJ&sjidxSsEAAAAIBAJ&pg=4434,3295769 End of flight] – newspaper article about 1921 loss of first Lawson Airliner
* "ASME Milwaukee – History & Heritage"
*
* [https://archiveswest.orbiscascade.org/ark:/80444/xv808840/opfstyle.aspx?tk&q=alfred+lawson Alfred W. Lawson papers] at the [http://www.uwyo.edu/ahc/ American Heritage Center]
Category:1869 births
Category:1954 deaths
Lawsonomy
Category:Boston Beaneaters players
Category:Pittsburgh Alleghenys (NL) players
Category:Major League Baseball pitchers
Category:19th-century baseball players
Category:Bloomington Blues players
Category:Wilmington Blue Hens players
Category:Harrisburg Ponies players
Category:Oakland Colonels players
Category:Pendleton Ho Hos players
Category:Spokane Bunchgrassers players
Category:Atlanta Firecrackers players
Category:Troy Trojans (minor league) players
Category:Sandusky Sandies players
Category:Albany Senators players
Category:Pawtucket Maroons players
Category:Norfolk Clams players
Category:Norfolk Crows players
Category:Baseball players from London
Category:Minor league baseball managers
Category:Major League Baseball players from England
Category:English baseball players
Category:Fitchburg (minor league baseball) players
Category:Cobleskill Giants players
Category:English emigrants to the United States
Category:Oil City Cubs players
Category:Lowell Lowells players
Category:Founders of new religious movements | https://en.wikipedia.org/wiki/Alfred_Lawson | 2025-04-05T18:25:37.239702 |
1298 | Ames, Iowa | | subdivision_name1 = Iowa
| subdivision_name2 = Story
| leader_title = Mayor
| leader_name = John Haila
| established_title = Incorporated
| established_date = 1864
| unit_pref = Imperial
| area_total_sq_mi = 27.92
| area_footnotes
| area_total_km2 = 72.32
| area_land_sq_mi = 27.58
| area_land_km2 = 71.43
| area_water_sq_mi = 0.34
| area_water_km2 = 0.89
| population_as_of = 2020
| population_total = 66427
| population_density_km2 = 929.96
| population_density_sq_mi = 2408.61
| population_rank = 9th in Iowa
| population_urban 60,438
| population_metro = 89542 (estimate based on Story County)
| timezone = CST
| utc_offset = −6
| timezone_DST = CDT
| utc_offset_DST = −5
| coordinates
| elevation_m = 287
| elevation_ft = 942
| postal_code_type = ZIP code(s)™
| postal_code = 50010, 50011-50013 (UNIQUE ZIP Codes™-for Iowa State University), 50014
| blank1_name = GNIS feature ID
| blank1_info = 0454167
| website =
| blank_name = FIPS code
| blank_info = 19-01855
}}
Ames () is a city in Story County, Iowa, United States, located approximately north of Des Moines in central Iowa. It is the home of Iowa State University (ISU). According to the 2020 census, Ames had a population of 66,427, making it the state's ninth-most populous city. Iowa State University was home to 30,177 students as of fall 2023, which make up approximately one half of the city's population.
A United States Department of Energy national laboratory, Ames Laboratory, is located on the ISU campus. Ames also hosts United States Department of Agriculture (USDA) sites: the largest federal animal disease center in the United States, the USDA Agricultural Research Service's National Animal Disease Center (NADC), as well as one of two national USDA sites for the Animal and Plant Health Inspection Service (APHIS), which comprises the National Veterinary Services Laboratory and the Center for Veterinary Biologics. Ames also hosts the headquarters of the Iowa Department of Transportation. History The city was founded in 1864 as a station stop on the Cedar Rapids and Missouri Railroad and was named after 19th century U.S. Congressman Oakes Ames of Massachusetts, who was influential in the building of the transcontinental railroad. Ames was founded by local resident Cynthia Olive Duff (née Kellogg) and railroad magnate John Insley Blair, near a location that was deemed favorable for a railroad crossing of the Skunk River and Ioway Creek. William West (1821–1919) became the first mayor of Ames in 1870. With his wife Harriet, from 1869 to 1892, he ran Ames's first hotel, known as West House, on Douglas Avenue on the site of the present [2004] Octagon Center for the Arts. West was a highly respected pioneer businessman who also served on the Ames School Board in the 1880s when Central School was built on the site of the present [2004] Ames City Hall on Clark Avenue and Sixth Street. The Wests raised several daughters and sons. William West spent the last of his life living with his son in northwest Iowa.Geography
Ames is located along the western edge of Story County, roughly north of the state capital, Des Moines, near the intersection of Interstate 35 and U.S. Route 30. A smaller highway, U.S. Route 69, passes through the town from north to south. Also passing through Ames is the cross country line of the Union Pacific Railroad and two small streams (the South Skunk River and Ioway Creek).
According to the United States Census Bureau, the city has a total area of , of which is land and is water.CampustownCampustown is the neighborhood directly south of Iowa State University Central Campus bordered by Lincoln Way on the north. Campustown is a high-density mixed-use neighborhood that is home to many student apartments, nightlife venues, restaurants, and numerous other establishments, most of which are unique to Ames. <!--FYI this template makes the next section drop below pictures-->ClimateAmes has a humid continental climate (Köppen climate classification Dfa). On average, the warmest month is July and the coldest is January. The highest recorded temperature was on July 24, 1901, and the lowest was January 25, 1894.
}}
Demographics
. There were 23,876 housing units at an average density of . The racial makeup of the city was 84.5% White, 3.4% African American, 0.2% Native American, 8.8% Asian, 1.1% from other races, and 2.0% from two or more races. Hispanic or Latino of any race were 3.4% of the population.
There were 22,759 households, of which 19.1% had children under the age of 18 living with them, 35.6% were married couples living together, 5.4% had a female householder with no husband present, 2.7% had a male householder with no wife present, and 56.2% were non-families. 30.5% of all households were made up of individuals, and 6.2% had someone living alone who was 65 years of age or older. The average household size was 2.25 and the average family size was 2.82.
The median age in the city was 23.8 years. 13.4% of residents were under the age of 18; 40.5% were between the ages of 18 and 24; 22.9% were from 25 to 44; 15% were from 45 to 64; and 8.1% were 65 years of age or older. The gender makeup of the city was 53.0% male and 47.0% female.
2000 census
As of the census of 2000, there were 50,731 people, 18,085 households, and 8,970 families residing in the city. The population density was . There were 18,757 housing units at an average density of . The racial makeup of the city was 87.34% White, 7.70% Asian, 2.65% African American, 0.04% Native American, 0.76% Pacific Islander and other races, and 1.36% from two or more races. Hispanic or Latino of any race were 1.98% of the population.
There were 18,085 households, out of which 22.3% had children under the age of 18 living with them, 42.0% were married couples living together, 5.3% had a female householder with no husband present, and 50.4% were non-families. 28.5% of all households were made up of individuals, and 5.9% had someone living alone who was 65 years of age or older. The average household size was 2.30 and the average family size was 2.85.
Age spread: 14.6% under the age of 18, 40.0% from 18 to 24, 23.7% from 25 to 44, 13.9% from 45 to 64, and 7.7% who were 65 years of age or older. The median age was 24 years. For every 100 females, there were 109.3 males. For every 100 females age 18 and over, there were 109.9 males.
The median income for a household in the city was $36,042, and the median income for a family was $56,439. Males had a median income of $37,877 versus $28,198 for females. The per capita income for the city was $18,881. About 7.6% of families and 20.4% of the population were below the poverty line, including 9.2% of those under age 18 and 4.1% of those age 65 or over.
Metropolitan area
thumb|left|250px|Location of the Ames-Boone CSA and its components:
The U.S. Census Bureau designates the Ames MSA as encompassing all of Story County. While Ames is the largest city in Story County, the county seat is in the nearby city of Nevada, east of Ames.
Ames metropolitan statistical area combined with the Boone, Iowa micropolitan statistical area (Boone County, Iowa) make up the larger Ames-Boone combined statistical area. Ames is the larger principal city of the Combined Statistical Area that includes all of Story County, Iowa and Boone County, Iowa. which had a combined population of 106,205 at the 2000 census.
In 2015, Ames was ranked in the top 15 "Cities That Have Done the Best Since the Recession" by Bloomberg Businessweek.
The Bureau of Labor Statistics ranked Ames and Boulder, Colorado as having the lowest unemployment rate (2.5%) of any metropolitan area in the United States in 2016. By June 2018, unemployment in Ames had fallen even further, to 1.5%, though wage increases for workers were not keeping pace with rising rents. Top employers As of 2022, the top employers in the city are:
{| class="wikitable"
|-
! #
! Employer
! # of Employees
!Percentage
of Total City
Employment
|-
|1
| Iowa State University
|18,212
|33.33%
|-
|3
| Mary Greeley Medical Center
|1,407
|2.57%
|-
|2
| City of Ames
|1,382
|2.53%
|-
|4
| McFarland Clinic, P. C.
|1,200
|2.20%
|-
|5
| Danfoss
|1,052
|1.93%
|-
|6
| Iowa Department of Transportation
|975
|1.78%
|-
|7
|USDA
|750
|1.37%
|-
|8
| Ames Community School District
|700
|1.28%
|-
|9
| Hach Chemical
|580
|1.06%
|-
|10
| Workiva
|550
|1.01%
|}
Arts and culture
*Ames History Museum - founded in 1980, the museum also operates a historic schoolhouse.
*Brunnier Art Museum (Scheman Building)
*Ames Public Library - located in a Carnegie library, it was founded in 1904. it has 1,386,273 items in circulations, including 799,349 books and 586,924 multimedia items.
*The Octagon Center for the Arts - the Center includes galleries, art classes, art studios, and retail shop. They sponsor the local street fair, The Octagon Arts Festival, and hold an annual National Juried Exhibition Clay, Fiber, Paper Glass Metal, Wood.
Sports
Iowa Sports Foundation
The Iowa State Cyclones play a variety of sports in the Ames area. The Iowa State Cyclones football team plays at Jack Trice Stadium in Ames. The Cyclones' Men's and Women's Basketball teams and Volleyball teams play at Hilton Coliseum across the street from Jack Trice Stadium. The Iowa State Cyclones are a charter member of the Big 12 Conference in all sports and compete in NCAA Division I-A.
The Ames Figure Skating Club provides recreational to professional level skating opportunities. The club sponsors the Learn to Skate Program in which coaches provide on and off ice lessons or workshops. The club hosts the figure skating portion of the Iowa Games competition every summer. In the fall, the club hosts Cyclone Country Championships.
The Ames ISU ice arena also hosts the Iowa State Cyclones hockey team. The arena hosts the Ames Little Cyclones hockey program for high school students and children in elementary or middle school.
The city is also home to a youth soccer club, Ames Soccer Club which shares facilities with baseball and softball teams at the Hunziker Youth Sports Complex.
Education
Much of the city is served by the Ames Community School District.
A portion of northern Ames is zoned to the Gilbert Community School District.
Public high school in Ames
* Ames High School: Grades 9–12
Public elementary/middle schools in Ames
*David Edwards Elementary: K-5
*Abbie Sawyer Elementary School: Grades K-5
*Kate Mitchell Elementary School: Grades K-5
*Warren H. Meeker Elementary School: Grades K-5
*Gertrude Fellows Elementary School: Grades K-5
*Ames Middle School: Grades 6–8
Gilbert CSD students are zoned to Gilbert High School.
Private schools in Ames
*Ames Christian School
*Saint Cecilia School (preK – 5th grade)
Iowa State University
Iowa State University of Science and Technology, more commonly known as Iowa State University (ISU), is a public land-grant and space-grant research university located in Ames. Iowa State University is the birthplace of the Atanasoff–Berry Computer, the world's first electronic digital computer. Iowa State has produced a number of astronauts, scientists, Nobel laureates, and Pulitzer Prize winners. Until 1945 it was known as the Iowa State College of Agriculture and Mechanic Arts. The university is a member of the American Association of Universities and the Big 12 Conference.
ISU is the nation's first designated land-grant university. In 1856, the Iowa General Assembly enacted legislation to establish the State Agricultural College and Model Farm. Story County was chosen as the location on June 21, 1859, from proposals by Johnson, Kossuth, Marshall, Polk, and Story counties. When Iowa accepted the provisions of the Morrill Act of 1862, Iowa State became the first institution in nation designated as a land-grant college. The institution was coeducational from the first preparatory class admitted in 1868. The formal admitting of students began the following year, and the first graduating class of 1872 consisted of 24 men and 2 women.
Channel 16 serves as Ames' public access TV channel. "The purpose of Ames Public Access TV (Channel 16) is to provide residents the opportunity to broadcast locally produced programs on cable television. APATV provides cablecasting of non-commercial, public access programming independently produced by professionals or non-professionals in either a VHS or DVD format. This service is provided on a first-come-first-served, non-discriminatory, non monopolistic basis. Other services include video messaging to serve as a community calendar". Infrastructure Transportation
The town is served by U.S. Highways 30 and 69 and Interstate 35. Ames is the only town in Iowa with a population of greater than 50,000 that does not have a state highway serving it. , Ames currently has three roundabouts constructed on University Avenue/530th Avenue. The first is at the intersection of Airport Road (Oakwood Rd.) and University Avenue, the second at the intersection of Cottonwood Road and 530th Avenue and the third at Collaboration Place and 530th Avenue.
Ames was serviced by the Fort Dodge, Des Moines and Southern Railroad via a branch from Kelley to Iowa State and to downtown Ames. The tracks were removed in the 1960s. The Chicago and North Western Transportation Company twin mainline runs east and west bisecting the town and running just south of the downtown business district. The C&NW used to operate a branch to Des Moines. This line was removed in the 1980s when the Spine Line through the nearby city of Nevada was purchased from the Rock Island Railroad after its bankruptcy. The Union Pacific, successor to the C&NW, still runs 60–70 trains a day through Ames on twin mainlines, which leads to some traffic delays. There is also a branch to Eagle Grove that leaves Ames to the north. The Union Pacific maintains a small yard called Ames Yard east of Ames between Ames and Nevada. Ames has been testing automatic train horns at several of its crossings. These directional horns which are focused down the streets are activated when the crossing signals turn on and are shut off after the train crosses the crossing. This system cancels out the need for the trains to blow their horns. Train noise had been a problem in the residential areas to the west and northwest of downtown.
Ames Municipal Airport is located southeast of the city. The current (and only) fixed-base operator is Central Iowa Air Service. The airport has two runways – 01/19, which is , and 13/31, which is .
The City of Ames offers a transit system throughout town, called CyRide, that is funded jointly by Iowa State University, the ISU Government of the Student Body, and the City of Ames. Rider fares are free for children under five, while students pay a set cost as part of their tuition. In addition to local transit, Ames is served by intercity buses from Jefferson Lines, which stop at the Ames Intermodal Facility.
In 2009, the Ames metropolitan statistical area (MSA) ranked as the third highest in the United States for percentage of commuters who walked to work (10.4 percent).
The City of Ames unveiled a potential bike plan at an open house on November 15, 2023, as part of the city's Walk Bike Roll Bicycle and Pedestrian project. The project has been in development since summer 2022. Particular recommendations from the project include improvements being made to Clark Avenue, Lincoln Highway, Grand Avenue and Duff Street in Ames.
Ames is home to the headquarters of the Iowa Department of Transportation.
Health care
Ames is served by Mary Greeley Medical Center, a 220-bed regional referral hospital which is adjacent to McFarland Clinic PC, central Iowa's largest physician-owned multi-specialty clinic, and also Iowa Heart Center.
Parks and recreation
On September 10, 2019, the City of Ames proposed a $29,000,000 bond for building a fitness center called the Healthy Life Center. It failed to pass. Iowa State University owns the land it was to be built on. Ames has multiple parks, with the biggest being Brookside park, the North River Valley park and the Ada Hayden Heritage park, which contains a lake, a series of wetlands and trails. The Story County Conservation center is located to the north east of Ames, along the Skunk River. In popular culture *The character of Kate Austen in the television series Lost (2004–2010) is from Ames.
*Ames is prominently featured in Jeffrey Zaslow's 2009 book The Girls from Ames.
*Ames is featured in the 2012 Supernatural episode "Heartache".
*Ames is mentioned in the music video for Bo Burnham's 2013 song "Repeat Stuff", which shows satirical subliminal messages quickly flashing up on the screen, one of which states that "Michael Clarke Duncan is alive and living in Ames, Iowa".
Notable people <!--consensus reached to standardize this heading per WikiProject Cities/US Guideline-->
<!-- NOTICE * * * NOTICE * * * NOTICE * * * * * * * * * * * * * * *NOTICE * * * NOTICE * * * NOTICE
Only people who already have a Wikipedia article may appear here as Notable people. This establishes notability.
The biographical article should say how they are associated with THIS CITY examples = born, raised, residing etc.
An external reliable source of their association with THIS CITY should be cited in their Article and MUST be cited HERE.
All others will be deleted without further explanation.
Alphabetical by last name please. Use a short one line description of Notability.
If the person you think is Notable and does not have a Wikipedia Article for themselves create one.
Guidelines for the Notability of a person can be found by entering WP:PEOPLE in the wiki search.
Guidelines on what is needed and how to write the Article can be found by entering WP:MOSBIO in the wiki search.
END OF NOTICE * * * * * * * * * * * * * * * END OF NOTICE * * * * * * * * * * * * * * *END OF NOTICE -->
Acting
* Evan Helmuth, actor (1977–2017) (Fever Pitch, The Devil Inside)
* Nick Nolte, actor, lived in Ames, 1945-1950 Artists and photographers
* John E. Buck, sculptor
* Robert Crumb, cartoonist and musician, the Crumb family moved to Ames in August 1950, for two years
* Margaret Lloyd, opera singer
* Laurel Nakadate, American video artist, filmmaker and photographer
* Velma Wallace Rayness (1896–1977), author, painter and artist
* Brian Smith, Pulitzer Prize-winning photographer, born July 16, 1959
Aviation
* Neta Snook Southern, pioneer aviator, taught Amelia Earhart to fly
Musicians
* Buster B. Jones, fingerpicker guitarist
* John Darnielle, musician from indie rock band The Mountain Goats; former Ames resident
* The Envy Corps, indie rock band
* Leslie Hall, electronic rap musician/Gem Sweater collector, born in Ames in 1981
* Peter Schickele, musician, born in Ames in 1935
* Richie Hayward, drummer and founding member of the band Little Feat; former Ames resident and graduate of Ames High School
Journalists
* Robert Bartley, editorial page editor of The Wall Street Journal and a Presidential Medal of Freedom recipient; raised in Ames and ISU graduate
* Wally Bruner, ABC News journalist and television host
* Michael Gartner, former president of NBC News; retired to own and publish the Ames Tribune
Politicians
* Ruth Bascom, Mayor of Eugene, Oregon
* Edward Mezvinsky, former U.S. Congressman; father-in-law of Chelsea Clinton; raised in Ames
* Bee Nguyen, former Georgia (U.S. state) state representative
* Bob Walkup, Mayor of Tucson, Arizona
* Lee Teng-hui, President of the Republic of China, ISU graduate
* Henry A. Wallace, 11th United States Secretary of Agriculture, 10th United States Secretary of Commerce, and 33rd Vice President of the United States, ISU graduate; lived in Ames from 1892 - 1896
Sports
* Harrison Barnes, NBA player, 2015 NBA champion, 2016 U.S. Olympic gold medalist, Ames HS graduate
* Sebastián Botero, soccer player and coach
* Joe Burrow, NFL quarterback for the Cincinnati Bengals, Heisman Trophy winner. Born in Ames
* Doug McDermott, basketball player, Ames HS graduate
* Kip Corrington, NFL player
* Dick Gibbs, NBA player, Ames HS graduate
* Terry Hoage, NFL player
* Fred Hoiberg, retired NBA basketball player; raised in Ames, ISU graduate, former ISU basketball coach, former coach of the Chicago Bulls and current Nebraska men's basketball coach.
* Herb Sies, pro football player and coach
* Billy Sunday, evangelist and Major League Baseball player; born in Ames in 1863
* Fred Tisue, Olympian water polo player
Scientists
* Laurel Blair Salton Clark, astronaut, died on STS-107
* Charles W. "Chuck" Durham, civil engineer, philanthropist, civic leader, former CEO and chairman emeritus of HDR, Inc.; raised in Ames
* Lyle Goodhue, scientist, lived and studied in Ames 1925–1934
* Frank Spedding, chemist, creator of the Ames Process during the Manhattan Project
* Dan Shechtman, awarded 2011 Nobel Prize in Chemistry for "the discovery of quasicrystals"; Professor of Materials Science at Iowa State University (2004–present) and Associate at the Department of Energy's Ames Laboratory
Writers and poets
* Ann Cotten, poet, born in Ames, grew up in Vienna
* Brian Evenson, author
* Jane Espenson, writer and producer for television, including Buffy the Vampire Slayer and Star Trek: The Next Generation, grew up in Ames
* Michelle Hoover, author, born in Ames
* Meg Johnson, poet and dancer
* Fern Kupfer, author
* Joseph Geha, author
* Ted Kooser, U.S. Poet Laureate; raised in Ames and ISU graduate
* John Madson, freelance naturalist of tallgrass prairie ecosystems
* Sara Paretsky, author of the V.I. Warshawski mysteries; born in Ames in 1947
* Jane Smiley, Pulitzer Prize-winning novelist; former instructor at ISU (1981–1996); used ISU as the basis for her novel Moo
* Neal Stephenson, author, grew up in Ames
* Hugh Young, coauthor of University Physics textbook
* Lincoln Peirce, cartoonist/writer of the Big Nate comics and books
Other
* Neva Morris, at her death (2010) second-oldest person in the world and oldest American aged 114 years; lived in Ames her entire life
* Nate Staniforth, magician
*Todd Snyder (fashion designer)
*Brian Thompson, businessman (1974–2024)
Politics
From 1979 through 2011, Ames was the location of the Ames Straw Poll, which was held every August prior to a presidential election year in which the Republican presidential nomination was undecided (meaning there was no Republican president running for re-election—as in 2011, 2007, 1999, 1995, 1987, and 1979). The poll would gauge support for the various Republican candidates amongst attendees of a fundraising dinner benefiting the Iowa Republican Party. The straw poll was frequently seen by national media and party insiders as a first test of organizational strength in Iowa. In 2015, the straw poll was to be moved to nearby Boone before the Iowa Republican Party eventually decided to cancel it altogether.
Ames is part of Iowa House of Representatives District 50, currently represented by Ross Wilburn. It is part of Iowa Senate District 25, currently represented by Herman Quirmbach.
See also
* Ames process
* North Grand Mall
References
External links
*[http://www.cityofames.org/ Official Ames City Website]
*[https://web.archive.org/web/20060210213426/http://www.mainstreetculturaldistrict.com/ The Main Street Cultural District]
Category:Cities in Iowa
Category:Cities in Story County, Iowa
Category:Populated places established in 1864
Category:1864 establishments in Iowa | https://en.wikipedia.org/wiki/Ames,_Iowa | 2025-04-05T18:25:37.284327 |
1300 | Abalone | Abalone ( or ; via Spanish , from <!----> Rumsen aulón<!---->) is a common name for any small to very large marine gastropod mollusc in the family Haliotidae, which once contained six genera but now contains only one genus, Haliotis. Other common names are ear shells, sea ears, and, now rarely, muttonfish or muttonshells in parts of Australia, ormer in the United Kingdom, perlemoen in South Africa, and pāua in New Zealand. The number of abalone species recognized worldwide ranges between 30 and 130 with over 230 species-level taxa described. The most comprehensive treatment of the family considers 56 species valid, with 18 additional subspecies.
The shells of abalone have a low, open spiral structure, and are characterized by several open respiratory pores in a row near the shell's outer edge. The thick inner layer of the shell is composed of nacre, which in many species is highly iridescent, giving rise to a range of strong, changeable colors which make the shells attractive to humans as ornaments, jewelry, and as a source of colorful mother-of-pearl.
The flesh of abalone is widely considered to be a delicacy, and is consumed raw or cooked by a variety of cuisines.
Description
surface inside a red abalone shell from Northern California. The US coin (quarter) is in diameter]]
Most abalone vary in size from (Haliotis pulcherrima) to . The largest species, Haliotis rufescens, reaches .
The shell of abalone is convex, rounded to oval in shape, and may be highly arched or very flattened. The shell of the majority of species has a small, flat spire and two to three whorls. The last whorl, known as the body whorl, is auriform, meaning that the shell resembles an ear, giving rise to the common name "ear shell". Haliotis asinina has a somewhat different shape, as it is more elongated and distended. The shell of Haliotis cracherodii cracherodii is also unusual as it has an ovate form, is imperforate, shows an exserted spire, and has prickly ribs.
A mantle cleft in the shell impresses a groove in the shell, in which are the row of holes characteristic of the genus. These holes are respiratory apertures for venting water from the gills and for releasing sperm and eggs into the water column.
The exterior of the shell is striated and dull. The color of the shell is very variable from species to species, which may reflect the animal's diet.
These snails cling solidly with their broad, muscular foot to rocky surfaces at sublittoral depths, although some species such as Haliotis cracherodii used to be common in the intertidal zone. Abalone reach maturity at a relatively small size. Their fecundity is high and increases with their size, laying from 10,000 to 11 million eggs at a time. The spermatozoa are filiform and pointed at one end, and the anterior end is a rounded head.
Distribution
, Portugal]]
The haliotid family has a worldwide distribution, along the coastal waters of every continent, except the Pacific coast of South America, the Atlantic coast of North America, the Arctic, and Antarctica. The majority of abalone species are found in cold waters, such as off the coasts of New Zealand, South Africa, Australia, Western North America, and Japan.
Structure and properties of the shell
The shell of the abalone is exceptionally strong and is composed of a tightly packed calcium carbonate matrix. Layered among the matrix is an endogenous protein further strengthening the shell. Due to the unique structure of the shell, a force applied directly to the shell matrix will more likely cause the shedding of layers as opposed to cracking or shattering. Material scientists are currently studying this structure for insight into stronger ablative protective tools such as body armor.
The dust created by grinding and cutting abalone shell is dangerous; appropriate safeguards must be taken to protect people from inhaling these particles.
Diseases and pests
Abalone are subject to various infectious diseases. The Victorian Department of Primary Industries said in 2007 that ganglioneuritis killed up to 90% of stock in affected regions. Abalone possess very little clotting factor, meaning even a mild to moderate skin-piercing injury can result in death from fluid loss. Members of the Spionidae of the polychaetes are known as pests of abalone.Human useAbalone have been harvested as a source of food and esthetics since prehistory. Abalone shells and associated materials, like their claw-like pearls and nacre, have been used as jewelry and for buttons, buckles, and inlay. These shells have been found in archaeological sites around the world, ranging from 100,000-year-old deposits at Blombos Cave in South Africa to historic Chinese abalone middens on California's Northern Channel Islands. For at least 12,000 years, abalone were harvested to such an extent around the Channel Islands that shells in the area decreased in size four thousand years ago.Farming
, (Oceanographic Marine Laboratory, Lucap, Alaminos, Pangasinan, Philippines, 2011)]]
Farming of abalone began in the late 1950s and early 1960s in Japan and China. Since the mid-1990s, there have been many increasingly successful endeavors to commercially farm abalone for the purpose of consumption. Overfishing and poaching have reduced wild populations to such an extent that farmed abalone now supplies most of the abalone meat consumed. The principal abalone farming regions are China, Taiwan, Japan, and Korea. Abalone is also farmed in Australia, Canada, Chile, France, Iceland, Ireland, Mexico, Namibia, New Zealand, South Africa, Spain, Thailand, and the United States.
After trials in 2012, a commercial "sea ranch" was set up in Flinders Bay, Western Australia to raise abalone. The ranch is based on an artificial reef made up of 5,000 separate concrete abalone habitat units, which can host 400 abalone each. The reef is seeded with young abalone from an onshore hatchery.
The abalone feed on seaweed that grows naturally on the habitats; the ecosystem enrichment of the bay also results in growing numbers of dhufish, pink snapper, wrasse, and Samson fish among other species.Consumption
Abalone have long been a valuable food source for humans in every area of the world where a species is abundant. The meat of this mollusc is considered a delicacy in certain parts of Latin America (particularly Chile), France, New Zealand, East Asia and Southeast Asia. In the Greater China region and among Overseas Chinese communities, abalone is commonly known as bao yu, and sometimes forms part of a Chinese banquet. In the same way as shark fin soup or bird's nest soup, abalone is considered a luxury item, and is traditionally reserved for celebrations.
As abalone became more popular and less common, the prices adjusted accordingly. In the 1920s, a restaurant-served portion of abalone, about 4 ounces, would cost (in inflation adjusted dollars) about US$7; by 2004, the price had risen to US$75. In the United States, prior to this time, abalone was predominantly eaten, gathered, and prepared by Chinese immigrants. Before that, abalone were collected to be eaten, and used for other purposes by Native American tribes. By 1900, laws were passed in California to outlaw the taking of abalone above the intertidal zone. This forced the Chinese out of the market and the Japanese perfected diving, with or without gear, to enter the market. Abalone started to become popular in the US after the Panama–Pacific International Exposition in 1915, which exhibited 365 varieties of fish with cooking demonstrations, and a 1,300-seat dining hall.
In Japan, live and raw abalone are used in awabi sushi, or served steamed, salted, boiled, chopped, or simmered in soy sauce. Salted, fermented abalone entrails are the main component of tottsuru, a local dish from Honshū. Tottsuru is mainly enjoyed with sake.
In South Korea, abalone is called Jeonbok (/juhn-bok/) and used in various recipes. Jeonbok porridge and pan-fried abalone steak with butter are popular but also commonly used in soups or ramyeon.
In California, abalone meat can be found on pizza, sautéed with caramelized mango, or in steak form dusted with cracker meal and flour.
Sport harvesting
Australia
Tasmania supplies about 25% of the yearly world abalone harvest. Around 12,500 Tasmanians recreationally fish for blacklip and greenlip abalone. For blacklip abalone, the size limit varies between for the southern end of the state and for the northern end of the state. Greenlip abalone have a minimum size of , except for an area around Perkins Bay in the north of the state where the minimum size is . With a recreational abalone licence, the bag limit is 10 per day, with a total possession limit of 20. Scuba diving for abalone is allowed, and has a rich history in Australia. (Scuba diving for abalone in the states of New South Wales and Western Australia is illegal; a free-diving catch limit of two is allowed).
Victoria has had an active abalone fishery since the late 1950s. The state is sectioned into three fishing zones, Eastern, Central and Western, with each fisher required a zone-allocated licence. Harvesting is performed by divers using surface-supplied air "hookah" systems operating from runabout-style, outboard-powered boats. While the diver seeks out colonies of abalone amongst the reef beds, the deckhand operates the boat, known as working "live" and stays above where the diver is working. Bags of abalone pried from the rocks are brought to the surface by the diver or by way of "shot line", where the deckhand drops a weighted rope for the catch bag to be connected then retrieved. Divers measure each abalone before removing from the reef and the deckhand remeasures each abalone and removes excess weed growth from the shell. Since 2002, the Victorian industry has seen a significant decline in catches, with the total allowable catch reduced from 1440 to 787 tonnes for the 2011/12 fishing year, due to dwindling stocks and most notably the abalone virus ganglioneuritis, which is fast-spreading and lethal to abalone stocks.
United States
thumb|right|Two highly endangered white abalone: Prohibitions on commercial and recreational harvest of this species have been
in place since 1996.
Sport harvesting of red abalone is permitted with a California fishing license and an abalone stamp card. In 2008, the abalone card also came with a set of 24 tags. This was reduced to 18 abalone per year in 2014, and as of 2017 the limit has been reduced to 12, only nine of which may be taken south of Mendocino County. Legal-size abalone must be tagged immediately. Abalone may only be taken using breath-hold techniques or shorepicking; scuba diving for abalone is strictly prohibited. Taking of abalone is not permitted south of the mouth of San Francisco Bay. A size minimum of measured across the shell is in place. A person may be in possession of only three abalone at any given time.
As of 2017, abalone season is May to October, excluding July. Transportation of abalone may only legally occur while the abalone is still attached in the shell. Sale of sport-obtained abalone is illegal, including the shell. Only red abalone may be taken, as black, white, pink, flat, green, and pinto abalone are protected by law. Afterwards, they extended the ban for another 5 years until April 2026.
An abalone diver is normally equipped with a thick wetsuit, including a hood, bootees, and gloves, and usually also a mask, snorkel, weight belt, abalone iron, and abalone gauge. Alternatively, the rock picker can feel underneath rocks at low tides for abalone. Abalone are mostly taken in depths from a few inches up to ; less common are freedivers who can work deeper than . Abalone are normally found on rocks near food sources such as kelp. An abalone iron is used to pry the abalone from the rock before it has time to fully clamp down. Divers dive from boats, kayaks, tube floats, or directly off the shore.
The mollusc Concholepas concholepas is often sold in the United States under the name "Chilean abalone", though it is not an abalone, but a muricid.
New Zealand
In New Zealand, abalone is called pāua (, from the Māori language). Haliotis iris (or blackfoot pāua) is the ubiquitous New Zealand pāua, the highly polished nacre of which is extremely popular as souvenirs with its striking blue, green, and purple iridescence. Haliotis australis and Haliotis virginea are also found in New Zealand waters, but are less popular than H. iris. Haliotis pirimoana is a small species endemic to Manawatāwhi / the Three Kings Islands that superficially resembles H. virginea.
Like all New Zealand shellfish, recreational harvesting of pāua does not require a permit provided catch limits, size restrictions, and seasonal and local restrictions set by the Ministry for Primary Industries (MPI) are followed. The legal recreational daily limit is 10 per diver, with a minimum shell length of for H. iris and for H. australis. In addition, no person may be in possession, even on land, of more than 20 pāua or more than of pāua meat at any one time. Pāua can only be caught by free-diving; it is illegal to catch them using scuba gear.
An extensive global black market exists in collecting and exporting abalone meat. This can be a particularly awkward problem where the right to harvest pāua can be granted legally under Māori customary rights. When such permits to harvest are abused, it is frequently difficult to police. The limit is strictly enforced by roving Ministry for Primary Industries fishery officers with the backing of the New Zealand Police. Poaching is a major industry in New Zealand with many thousands being taken illegally, often undersized. Convictions have resulted in seizure of diving gear, boats, and motor vehicles and fines and in rare cases, imprisonment.
South Africa
There are five species endemic to South Africa, namely H. parva, H. spadicea, H. queketti and H. speciosa.
The largest abalone in South Africa, Haliotis midae, occurs along roughly two-thirds of the country's coastline. Abalone-diving has been a recreational activity for many years, but stocks are currently being threatened by illegal commercial harvesting. In South Africa, all persons harvesting this shellfish need permits that are issued annually, and no abalone may be harvested using scuba gear.
For the last few years, however, no permits have been issued for collecting abalone, but commercial harvesting still continues as does illegal collection by syndicates.
In 2007, because of widespread poaching of abalone, the South African government listed abalone as an endangered species according to the CITES section III appendix, which requests member governments to monitor the trade in this species. This listing was removed from CITES in June 2010 by the South African government and South African abalone is no longer subject to CITES trade controls. Export permits are still required, however.
The abalone meat from South Africa is prohibited for sale in the country to help reduce poaching; however, much of the illegally harvested meat is sold in Asian countries. As of early 2008, the wholesale price for abalone meat was approximately US$40.00 per kilogram. There is an active trade in the shells, which sell for more than US$1,400 per tonne.
Channel Islands, Brittany and Normandy
Ormers (Haliotis tuberculata) are considered a delicacy in the British Channel Islands as well as in adjacent areas of France, and are pursued with great alacrity by the locals. This, and a recent lethal bacterial disease, has led to a dramatic depletion in numbers since the latter half of the 19th century, and "ormering" is now strictly regulated to preserve stocks. The gathering of ormers is now restricted to a number of 'ormering tides', from 1 January to 30 April, which occur on the full or new moon and two days following. No ormers may be taken from the beach that are under in shell length. Gatherers are not allowed to wear wetsuits or even put their heads underwater. Any breach of these laws is a criminal offence and can lead to a fine of up to £5,000 or six months in prison. The demand for ormers is such that they led to the world's first underwater arrest, when Mr. Kempthorne-Leigh of Guernsey was arrested by a police officer in full diving gear when illegally diving for ormers.
<gallery class="center">
File:AbaloneMeat.jpg|The raw meat of abalone
File:Seeohr-Sashimi.jpg|Abalone sashimi
File:Chineseabalonecuisine.jpg|Braised abalone
File:Abalone & Asparagus, Stir-Fried with Black Bean Sauce (207804042).jpg|Abalone with asparagus
File:Cantoneseabalone.jpg|Abalone bao yu
File:Korean grilled abalone-Jeonbok gui-01.jpg|Grilled abalone
File:Korean cuisine-Jeju Island-Obunjagi ttukbaegi-01.jpg|A Korean abalone stew
File:Korean cuisine-Jeonbok hoe-01.jpg|Abalone Hoe
File:HK Food Chinese Seafood Dinner 鮑魚仔 Steamed Abalone with Mandarin orange peels.JPG|Abalone with mandarin orange peels.
File:Abalone (dish) - in Macau.jpg|Abalone (dish) - in Macau
</gallery>
Decorative items
carving with rectangular abalone shell accents]]
The highly iridescent inner nacre layer of the shell of abalone has traditionally been used as a decorative item, in jewelry, See article Najeonchilgi regarding Korean handicraft. Indigenous use Abalone has been an important staple in a number of Indigenous cultures around the world, specifically in Africa and on the Northwest American coast. The meat is a traditional food, and the shell is used to make ornaments; historically, the shells were also used as currency in some communities.
Threat of extinction
Abalone are critically threatened due to overfishing and the acidification of oceans as lower pH erodes the calcium carbonate in their shells. In the 21st century, white, pink, and green abalone are on the United States federal endangered species list. Possible restoration sites have been proposed for the San Clemente Island and Santa Barbara Island areas. Reintroduction of farming abalone to the wild has been proposed, with these abalone having special tags to help track the population.Species
The number of species that are recognized within the genus Haliotis has fluctuated over time, and depends on the source that is consulted. The number of recognized species range from 30 The majority of abalone have not been rated for conservation status. Those that have been reviewed tend to show that the abalone in general is an animal that is declining in numbers, and will need protection throughout the globe.
<gallery class="center">
File:Ass’s ear abalone (Haliotis asinina) S01.jpg|A dorsal view of a live ass's ear abalone, Haliotis asinina
File:Pinkabalone 300.jpg|The pink abalone, Haliotis corrugata
File:Haliotis cracherodii.JPG|The black abalone, Haliotis cracherodii
File:Blacklip abalone.jpg|Dorsal (left) and ventral (right) views of the blacklip abalone, Haliotis rubra
File:Whiteabalone 300.jpg|The white abalone, Haliotis sorenseni
File:Haliotis varia f. dohrniana 001.jpg|A shell of Haliotis varia form dohrniana
</gallery>
Synonyms
See also
* Delicacy
* Abalone shriveling syndrome-associated virus
Citations
References
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
Further reading
*
*
*
External links
*
* [https://web.archive.org/web/20061005124250/http://www.biosbcc.net/ocean/marinesci/06future/abspdiv.htm Abalone: Species Diversity]
* [http://www.vetigastropoda.com/ABMAP/text/index.html ABMAP: The Abalone Mapping Project]
* [https://web.archive.org/web/20160924102441/http://www.underwateraudio.com/blog/facts-about-the-abalone/ Abalone biology]
* [http://www.conchology.be/en/availableshells/searchresultsgallery.php?family=HALIOTIDAE Conchology]
* [https://web.archive.org/web/20060630065302/http://www.gastropods.com/Taxon_pages/Group_Abalone.html Hardy's Internet Guide to Marine Gastropods : Shell Catalog]
* [http://www.pauamana.com book on crafting with Abalone Shell]
* [https://web.archive.org/web/20130423151728/http://www.fish.wa.gov.au/Documents/recreational_fishing/fact_sheets/fact_sheet_abalone.pdf Fisheries Western Australia – Abalone Fact Sheet]
* [https://archive.today/20060315181535/http://web.uct.ac.za/depts/zoology/abnet/species.html Imagemap of worldwide abalone distribution]
* [https://web.archive.org/web/20190412044614/http://www.omanholiday.co.uk/Abalone-in-Dhofar-by-Tony-Walsh-for-Emirates-Open-Skies-Magazine.pdf Oman’s Abalone Harvest ]
* Pro abalone diver, Mallacoota, Victoria (1967)
* Tathra NSW(1961), Abalone (1963)
* [https://fathom4a.blogspot.com.au/2016/05/fathom-four-pages-38-to-48-ablalone.html Fathom magazine "The Abalone Divers" Pages 43,44,45 (1972)]
* [https://www.gemexi.com/gemstones/abalone Abalone Healing Properties]
Category:Commercial molluscs
Category:Extant Late Cretaceous first appearances
Category:Organic gemstones
Category:Mollusc common names
Category:South Australian cuisine
de:Seeohren <!-- Do not remove. Connection through Wikidata is not possible as Haliotis is already referencing to :de:Seeohren. -->
ja:アワビ#人間との関わり | https://en.wikipedia.org/wiki/Abalone | 2025-04-05T18:25:37.367314 |
1301 | Abbess | }}
with a crosier, , National Museum in Warsaw]]
]]
An abbess (Latin: abbatissa'') is the female superior of a community of nuns in an abbey.
Description
In the Catholic Church (both the Latin Church and Eastern Catholic), Eastern Orthodox, Coptic and Anglican abbeys, the mode of election, position, rights, and authority of an abbess correspond generally with those of an abbot. She must be at least 40 years old and have been a nun for 10 years. The age requirement in the Catholic Church has evolved over time, ranging from 30 to 60. The requirement of 10 years as a nun is only eight in Catholicism. In the rare case of there not being a nun with the qualifications, the requirements may be lowered to 30 years of age and five of those in an "upright manner", as determined by the superior. A woman who is of illegitimate birth, is not a virgin, has undergone non-salutory public penance, is a widow, or is blind or deaf, is typically disqualified for the position, saving by permission of the Holy See. The office is elective, the choice being by the secret votes of the nuns belonging to the community. Like an abbot, after being confirmed in her office by the Holy See, an abbess is solemnly admitted to her office by a formal blessing, conferred by the bishop in whose territory the monastery is located, or by an abbot or another bishop with appropriate permission. Unlike the abbot, the abbess receives only the ring, the crosier, and a copy of the rule of the order. She does not receive a mitre as part of the ceremony. The abbess also traditionally adds a pectoral cross to the outside of her habit as a symbol of office, though she continues to wear a modified form of her religious habit or dress, as she is unordained—females cannot be ordained—and so does not vest or use choir dress in the liturgy. An abbess serves for life, except in Italy and some adjacent islands.
Roles and responsibilities
, a noble abbess with her crosier]]
Abbesses are, like abbots, major superiors according to canon law, the equivalents of abbots or bishops (the ordained male members of the church hierarchy who have, by right of their own office, executive jurisdiction over a building, diocesan territory, or a communal or non-communal group of persons—juridical entities under church law). They receive the vows of the nuns of the abbey; they may admit candidates to their order's novitiate; they may send them to study; and they may send them to do pastoral or missionary, or to work or assist—to the extent allowed by canon and civil law—in the administration and ministry of a parish or diocese (these activities could be inside or outside the community's territory). They have full authority in its administration.
However, there are significant limitations.
* They may not administer the sacraments, whose celebration is reserved to bishops, priests, deacons (clerics), namely, those in Holy Orders.
* They may make provision for an ordained cleric to help train and to admit some of their members, if needed, as altar servers, extraordinary ministers of Holy Communion, or lectors—all ministries which are now open to the unordained.
* They may not serve as a witness to a marriage except by special rescript.
* They may not administer Penance (Reconciliation), Anointing of the Sick (Extreme Unction), or function as an ordained celebrant or concelebrant of the Mass (by virtue of their office and their training and institution, they may act, if the need arises, as altar servers, lectors, ushers, porters, or extraordinary ministers of Holy Communion, and if need be, the Host).
* They may preside over the Liturgy of the Hours which they are obliged to say with their community, speak on Scripture to their community, and give certain types of blessings not reserved to the clergy. On the other hand, they may not ordinarily preach a sermon or homily, nor read the Gospel during Mass.
* As they do not receive episcopal ordination in the Catholic, Orthodox and Oriental Churches, they do not possess the ability to ordain others, nor do they exercise the authority they do possess under canon law over any territories outside of their monastery and its territory (though non-cloistered, non-contemplative female religious members who are based in a convent or monastery but who participate in external affairs may assist as needed by the diocesan bishop and local secular clergy and laity, in certain pastoral ministries and administrative and non-administrative functions not requiring ordained ministry or status as a male cleric in those churches or programs).
There are exigent circumstances, where due to Apostolical privilege, certain Abbesses have been granted rights and responsibilities above the normal, such as the Abbess of the Cistercian Monastery of the Abbey of Santa María la Real de Las Huelgas near Burgos, Spain. Also granted exceptional rights was the Abbess of the Cistercian order in Conversano Italy. She was granted the ability to appoint her own vicar-general, select and approve the confessors, along with the practice of receiving the public homage of her clergy. This practice continued until some of the duties were modified due to an appeal by the clergy to Rome. Finally in 1750, the public homage was abolished.
During the Middle Ages (7th–10th centuries) in the Catholic Church, greater restrictions on abbesses' spiritual independence gained pace. Instruments of church authority, from papal bulls down to local sanctions, were increasingly used to restrict their freedom to dispense blessings, administer sacraments, including the veiling of nuns, and publicly read the gospels or preach. Such spiritual—and even temporal—authority had in earlier church history, largely been unremarkable. As Thomas Oestereich, contributor to the Catholic Encyclopedia (1913), makes clear, abbesses' past spiritual authority was increasingly seen as the "usurpation" of corresponding priestly power, and a solely male privilege. He gives an example of the attitude toward such practice, from the 9th century, which persists in church administrative control into the modern era:
all of which practice the bishops are urged to forbid absolutely in their respective dioceses.}}
Similarly, in 1210, Innocent III (died 1216) expressed his view of the Cistercian Abbesses of Burgos and Palencia in Spain, who preached and heard confessions of their own religious, characterizing these acts as "unheard of, most indecorous, and highly preposterous."
History
Historically, in some Celtic monasteries, abbesses presided over joint-houses of monks and nuns, the most famous example being Saint Brigid of Kildare's leadership in the founding of the monastery at Kildare in Ireland. This custom accompanied Celtic monastic missions to France, Spain, and even to Rome itself. In 1115, Robert, the founder of Fontevraud Abbey near Chinon and Saumur, France, committed the government of the whole order, men as well as women, to a female superior.
In Lutheran churches, the title of abbess () has in some cases survived (for example, in the ) to designate the heads of abbeys which since the Protestant Reformation have continued as monasteries or convents (). These positions continued, merely changing from Catholic to Lutheran. The first to make this change was the Abbey of Quedlinburg, whose last Catholic Abbess died in 1514. These are collegiate foundations, which provide a home and an income for unmarried ladies, generally of noble birth, called canonesses (), or more usually, or . The office of abbess is of considerable social dignity, and in the past, was sometimes filled by princesses of the reigning houses. Until the dissolution of Holy Roman Empire and mediatisation of smaller imperial fiefs by Napoleon, the evangelical Abbess of Quedlinburg was also per officio the head of that state. The last such ruling abbess was Sofia Albertina, Princess of Sweden. The abess Hildegard of Fraunmünster Abbey sat in the Imperial Diet among other princes of the Holy Roman Empire. The oldest women's abbey in Germany is St. Marienthal Abbey of Cistercian nuns, near Ostritz, established during the early 13th century.
In the Hradčany of Prague is a Catholic institute whose mistress is titled an Abbess. It was founded in 1755 by the Empress Maria Theresa, and traditionally was responsible for the coronation of the Queen of Bohemia. The Abbess is required to be an Austrian Archduchess.
it was estimated the Catholic Church had around 200 presiding abbesses.See also
* List of abbots and abbesses of Kildare
* Katharina von Zimmern (1478–1547), last abbess of the Fraumünster Abbey
Citations
General and cited references
*
*
*
*
*
*
Category:Catholic ecclesiastical titles
Category:Christian religious occupations
Category:Ecclesiastical titles
Category:Religious leadership roles | https://en.wikipedia.org/wiki/Abbess | 2025-04-05T18:25:37.376479 |
1303 | Abdominal surgery | The term abdominal surgery broadly covers surgical procedures that involve opening the abdomen (laparotomy). Surgery of each abdominal organ is dealt with separately in connection with the description of that organ (see stomach, kidney, liver, etc.) Diseases affecting the abdominal cavity are dealt with generally under their own names.
Types
The most common abdominal surgeries are described below.
Appendectomy: surgical opening of the abdominal cavity and removal of the appendix. Typically performed as definitive treatment for appendicitis, although sometimes the appendix is prophylactically removed incidental to another abdominal procedure.
Caesarean section (also known as C-section): a surgical procedure in which one or more incisions are made through a mother's abdomen (laparotomy) and uterus (hysterotomy) to deliver one or more babies, or, rarely, to remove a dead fetus.
Inguinal hernia surgery: the repair of an inguinal hernia.
Exploratory laparotomy: the opening of the abdominal cavity for direct examination of its contents; for example, to locate a source of bleeding or trauma. It may or may not be followed by repair or removal of the primary problem.
Laparoscopy: a minimally invasive approach to abdominal surgery where rigid tubes are inserted through small incisions into the abdominal cavity. The tubes allow introduction of a small camera, surgical instruments, and gases into the cavity for direct or indirect visualization and treatment of the abdomen. The abdomen is inflated with carbon dioxide gas to facilitate visualization and, often, a small video camera is used to show the procedure on a monitor in the operating room. The surgeon manipulates instruments within the abdominal cavity to perform procedures such as cholecystectomy (gallbladder removal), the most common laparoscopic procedure. The laparoscopic method speeds recovery time and reduces blood loss and infection as compared to the traditional "open" method.
Complications
Complications of abdominal surgery include, but are not limited to:
Adhesions (also called scar tissue): complications of postoperative adhesion formation are frequent, they have a large negative effect on patients’ health, and increase workload in clinical practice
Bleeding
Infection
Paralytic ileus: short-term paralysis of the bowel
Perioperative mortality, any death occurring within 30 days after surgery
Shock
Sterile technique, aseptic post-operative care, antibiotics, use of the WHO Surgical Safety Checklist, and vigilant post-operative monitoring greatly reduce the risk of these complications. Planned surgery performed under sterile conditions is much less risky than that performed under emergency or unsterile conditions. The contents of the bowel are unsterile, and thus leakage of bowel contents, as from trauma, substantially increases the risk of infection.
Globally, there are few studies comparing perioperative mortality following abdominal surgery across different health systems. One major prospective study of 10,745 adult patients undergoing emergency laparotomy from 357 centres in 58 high-, middle-, and low-income countries found that mortality is three times higher in low- compared with high-HDI countries even when adjusted for prognostic factors. In this study the overall global mortality rate was 1.6 percent at 24 hours (high 1.1 percent, middle 1.9 percent, low 3.4 percent), increasing to 5.4 percent by 30 days (high 4.5 percent, middle 6.0 percent, low 8.6 percent). Of the 578 patients who died, 404 (69.9 percent) did so between 24 hours and 30 days following surgery (high 74.2 percent, middle 68.8 percent, low 60.5 percent). Patient safety factors were suggested to play an important role, with use of the WHO Surgical Safety Checklist associated with reduced mortality at 30 days.
Taking a similar approach, a unique global study of 1,409 children undergoing emergency laparotomy from 253 centres in 43 countries showed that adjusted mortality in children following surgery may be as high as 7 times greater in low-HDI and middle-HDI countries compared with high-HDI countries, translating to 40 excess deaths per 1,000 procedures performed in these settings. Internationally, the most common operations performed were appendectomy, small bowel resection, pyloromyotomy and correction of intussusception. After adjustment for patient and hospital risk factors, child mortality at 30 days was significantly higher in low-HDI (adjusted OR 7.14 (95% CI 2.52 to 20.23)) and middle-HDI (4.42 (1.44 to 13.56)) countries compared with high-HDI countries.
Absorption of drugs administered orally was shown to be significantly affected following abdominal surgery.
There is low-certainty evidence that there is no difference between using scalpel and electrosurgery in infection rates during major abdominal surgeries.
See also
Abdominoplasty
ASA physical status classification system or perioperative physical fitness
Diabetes
General surgery
Laparotomy
Low-fiber/low-residue diet
Perioperative mortality
References
Category:Surgical specialties
Category:General surgery | https://en.wikipedia.org/wiki/Abdominal_surgery | 2025-04-05T18:25:37.383979 |
1304 | Abduction | Abduction may refer to:
Media
Film and television
"Abduction" (The Outer Limits), a 2001 television episode
"Abduction", a 2007 episode of Death Note
"Abductions", a 2002 episode of Totally Spies!
"The Abduction" (Alias), a 2002 episode of an American television series
"The Abduction" (Dr. Quinn, Medicine Woman), a 1994 episode of an American television series
Abduction (1975 film), directed by Joseph Zito
Abduction (1997 film), directed by Takao Okawara
Abduction (2011 film), directed by John Singleton
Abduction (2019 film), directed by Ernie Barbarash
Abduction: The Megumi Yokota Story, a 2005 American documentary film
The Abduction, a 1996 TV movie starring Victoria Principal and Robert Hays
Literature
Abduction (novel), a 2000 novel by Robin Cook
Abduction!, a 2004 novel by Peg Kehret
The Abduction, a 1987 novel (Norwegian title Bortførelsen) by Mette Newth
The Abduction, a 1998 novel by J. Robert King
Music
"Abduction", a 2005 song by Iron Maiden vocalist Bruce Dickinson, from the album Tyranny of Souls
Abduction, a music label run by members of Sun City Girls
Of a person or people
Alien abduction, phenomenon of people reporting what they believe to be the real experience of being kidnapped by extraterrestrial beings
Bride kidnapping, a practice in which a man abducts the woman he wishes to marry
Child abduction, unauthorized removal of a minor from the custody of their guardian(s)
Express kidnapping, abduction where a small immediate ransom is demanded
International child abduction, form of human trafficking
Kidnapping, unlawful confinement of a person against their will
Raptio, large-scale abduction of women
Tiger kidnapping, taking a hostage to force a loved one or associate of the victim to do something
Sciences
Abduction (anatomy), a type of movement that draws a structure or limb away from the median plane of the body
Abductive reasoning, a method of reasoning in logic
See also
Abducted (disambiguation)
Abductor (disambiguation) | https://en.wikipedia.org/wiki/Abduction | 2025-04-05T18:25:37.387676 |
1305 | Abensberg | | image_plan = Abensberg in KEH.svg
| state = Bayern
| region = Niederbayern
| district = Kelheim
| elevation = 370
| area = 60.27
| postal_code = 93326
| area_code = 09443
| licence = KEH
| Gemeindeschlüssel = 09273111
| divisions = 7 Ortsteile
| website =
| mayor Dr. Bernhard Resch
|leader_term = 2023–29
|party =
}}
Abensberg () is a town in the Lower Bavarian district of Kelheim, in Bavaria, Germany, lying around southwest of Regensburg, east of Ingolstadt, northwest of Landshut and north of Munich. It is situated on the river Abens, a tributary of the Danube.
Geography
The town lies on the Abens river, a tributary of the Danube, around eight kilometres from the river's source. The area around Abensberg is characterized by the narrow valley of the Danube, where the Weltenburg Abbey stands, the valley of the Altmühl in the north, a left tributary of the Danube, and the famous Hallertau hops-planting region in the south. The town is divided into the municipalities of Abensberg, Arnhofen, Holzharlanden, Hörlbach, Offenstetten, Pullach and Sandharland.
Divisions
Since the administrative reforms in Bavaria in the 1970s, the town also encompasses the following Ortsteile:
* In the town: Abensberg (main settlement), Aunkofen (civil parish), Badhaus (village)
* To the east: Gaden (village), See (village), Offenstetten (civil parish)
* To the north east: Arnhofen (civil parish), Baiern (village), Pullach (civil parish), Kleedorf (village)
* To the north: Sandharlanden (civil parish), Holzharlanden (civil parish), Buchhof (small hamlet)
* To the west: Schwaighausen (village), Schillhof (hamlet), Gilla (small hamlet)
* To the south: Aumühle (small hamlet), Allersdorf (hamlet)
* To the south east: Lehen (small hamlet), Mitterhörlbach (hamlet), Upper Hörlbach (village), Lower Hörlbach (hamlet)
History
There had been settlement on this part of the Abens river since long before the High Middle Ages, dating back to Neolithic times. Of particular interest and national importance are the Neolithic flint mines at Arnhofen, where, around 7,000 years ago, Stone Age people made flint, which was fashioned into drills, blades and arrowheads, and was regarded as the steel of the Stone Age. Traces of over 20,000 individuals were found on this site. The modern history of Abensberg, which is often incorrectly compared with that of the third century Roman castra (military outpost) of Abusina, begins with Gebhard, who was the first to mention Abensberg as a town, in the middle of the 12th century. The earliest written reference to the town, under the name of Habensperch, came from this time, in around 1138. Gebhard was from the Babonen clan.
In 1256, the castrum of Abensprech was first mentioned, and on 12 June 1348, Margrave Ludwig of Brandenburg, and his brother, Duke Stephen of Bavaria, raised Abensberg to the status of a city, giving it the right to operate lower courts, enclose itself with a wall and hold markets. The wall was built by Count Ulrich III of Abensberg. Some of the thirty-two round towers and eight turrets are still preserved to this day.
In the Middle Ages, the people of Abensberg enjoyed a level of autonomy above their lord. They elected a city council, although only a small number of rich families were eligible for election.
In around 1390, the Carmelite Monastery of Our Lady of Abensberg was founded by Count John II and his wife, Agnes. Although Abensberg was an autonomous city, it remained dependent on the powerful Dukes of Bavaria. The last Lord of Abensberg, Niclas, Graf von Abensberg, supposedly named after his godfather, Nicholas of Kues, a Catholic cardinal, was murdered in 1485 by Christopher, a Duke of Bavaria-Munich. The year before, Niclas had unchivalrously taken Christopher captive as he bathed before a tournament in Munich. Although Christopher renounced his claim for revenge, he lay in wait for Niclas in Freising. When the latter arrived, he was killed by Seitz von Frauenberg. He is buried in the former convent of Abensberg.
Abensberg then lost its independence and became a part of the Duchy of Bavaria, and from then on was administered by a ducal official, the so-called caretaker. The castle of Abensberg was destroyed during the Thirty Years' War, although the city had bought a guarantee of protection from the Swedish general, Carl Gustaf Wrangel. During the War of the Spanish Succession emperor Leopold I, who had occupied Bavaria, granted the fief of Abensberg to count Ernst von Abensperg und Traun (1608–1668) from an Austrian noble family named Traun that now received the name of the former counts of Abensberg (who were believed to be distant relatives). After the occupation ended, he was however dispossessed.
Johannes Aventinus (1477–1534) is the city's most famous son, the founder of the study of history in Bavaria. Aventinus, whose name was real name is Johann or Johannes Turmair (Aventinus being the Latin name of his birthplace) wrote the Annals of Bavaria, a valuable record of the early history of Germany and the first major written work on the subject. He is commemorated in the Walhalla temple, a monument near Regensburg to the distinguished figures of German history. Until 1800, Abensberg was a municipality belonging to the Straubing district of the Electorate of Bavaria. Abensberg also contained a magistrates' court. In the Battle of Abensberg on 19–20 April 1809, Napoleon gained a significant victory over the Austrians under Archduke Ludwig of Austria and General Johann von Hiller.Coat of arms
The arms of the city are divided into two halves. On the left are the blue and white rhombuses of Bavaria, while the right half is split into two silver and black triangles. Two diagonally-crossed silver swords with golden handles rest on top.
The town has had a coat of arms since 1338, that of the Counts of Abensberg. With the death of the last Count, Nicholas of Abensberg, in 1485, the estates fell to the Duchy of Bavaria-Munich, meaning that henceforth only the Bavarian coat of arms was ever used.
On 31 December 1809, a decree of King Maximilian of Bavaria granted the city a new coat of arms, as a recognition of their (mainly humanitarian and logistic) services in the Battle of Abensberg the same year. The diagonally divided field in silver and black came from the old crest of the Counts of Abensberg, while the white and blue diamonds came from that of the House of Wittelsbach, the rulers of Bavaria. The swords recall the Battle of Abensberg.
The district of Offenstetten previously possessed its own coat of arms.
Twinning
* Parga, Greece since 1986
* Lonigo, Italy since 1999
* Saint-Gilles, Gard, France since 2016
Economy and Infrastructure
The area around Abensberg, the so-called sand belt between Siegburg, Neustadt an der Donau, Abensberg and Langquaid, is used for the intensive farming of asparagus, due to the optimal soil condition and climate. 212 hectares of land can produce ninety-four asparagus plants. Abensberg asparagus enjoys a reputation among connoisseurs as a particular delicacy. In addition to asparagus, the production of hops plays a major role locally, the region having its own label, and there are still three independent breweries in the area. The town of Abensberg marks the start of the Deutsche Hopfenstraße (German Hops Road), a nickname given to the Bundesstraße 301, a German federal highway which runs through the heartland of Germany's hops-growing industry, ending in Freising.
Transport
The Abensberg railway station is located on the Regensburg–Ingolstadt railway from Regensburg to Ingolstadt. The city can be reached via the A-93 Holledau-Regensburg road (exit Abensberg). Three Bundesstraße (German federal highways) cross south of Abensberg: B 16, B 299 and B 301.
Public facilities
Schools
Abensberg has two Grundschulen (primary school) and Mittelschule (open admission secondary school), and the Johann-Turmair-Realschule (secondary modern school). There is also a College of Agriculture and Home Economics. Since 2007, the Kelheim Berufsschule has had a campus in Abensberg, and outside the state sector is the St. Francis Vocational Training Centre, run by a Catholic youth organisation. In addition, there are two special schools, one near Abensberg, the other in the civil parish of Offenstetten.
Culture and sightseeing
Theatre
In 2008, a former goods shed by the main railway station of Abensberg was converted into a theatre by local volunteers. The "Theater am Bahnhof" (Theatre at the Railway Station) is mostly used by the Theatergruppe Lampenfieber and was opened on 19 October 2008.
Museums
Abensberg has a long tradition of museums. In the nineteenth century, Nicholas Stark und Peter Paul Dollinger began a collection based on local history. This collection and the collection of the Heimatverein (local history society) were united in 1963 into the Aventinus Museum, in the cloister of the former Carmelite monastery. On 7 July 2006, the new Town Museum of Abensberg was opened in the former duke's castle in the town.
Kuchlbauer Brewery
Two blocks west of the Old Town is the Kuchlbauer Brewery and beer garden featuring the Kuchlbauer Tower, a colorful and unconventional observation tower designed by Viennese architect Friedensreich Hundertwasser. The brewery and tower are open to the public.
Image gallery
<gallery class="center">
File:Abensberg Stadtansicht.jpg|View of the Old Town
File:Abensberg Klosterkirche.jpg|Carmelite Monastery
File:Abensberg Stadtplatz.jpg|Town Centre with Rathaus (town hall)
File:Abensberg RegensburgerTor.jpg|Regensburg Gate
File:SchlossAbensberg LandkreisKelheim Niederbayern.JPG|Site of the former castle
File:Herzogskasten Abensberg.JPG|Herzogskasten (Duke's storage house)
File:Abensberg Kuchlbauerturm von Hundertwasser.JPG|Kuchlbauer Tower
</gallery>
Missing memorial
Up until the 1950s, Abensberg and the surrounding villages contained a number of graves of victims of a Death March in the spring of 1945 from the Hersbruck sub-camp of the Dachau concentration camp, who were either murdered by the SS or died of exhaustion. They were originally buried where they died, but were later moved on the orders of the US military government to the cemeteries of their previous homes. At the cemetery in what is now the district of Pullach stood a memorial stone which was mentioned as recently as 1967, but which is no longer at the site. The suffering of ten unknown victims of the camp was recorded on the stone.Regular events
*The Abensberger events calendar begins in February with the Faschingsgillamoos funfair, which reaches its high point on Mad Thursday.
*There then follows the Frühjahrsmarkt (Spring market) two weeks before Easter, when all the shops in the town are permitted to open on Sunday (which is normally prohibited in Germany).
*
*The Bürgerfest is celebrated on the first weekend of July, when the palace gardens with their ancient walls are transformed into a medieval camp.
*The Schlossgartenfest (Palace Garden Festival) takes place every year at the beginning of August. It is organised since 1977 by the Junge Union, the youth branch of Germany's two main conservative political parties, the CDU and CSU, and attracts all age groups from Abensberg and surrounding areas.
*On the second Saturday in August, people can wander through the Night Market in the balmy Summer evening.
*The Gillamoos, the oldest and largest funfair in the Hallertau opens on the Thursday before the first Sunday in September and runs until the Monday thereafter. It is the highlight of the year in Abensberg and is a celebration of the people of Abensberg and the surrounding area.
*The Herbstmarkt (autumn market), another Sunday shopping day, is on the first weekend in October.
*Since 1997, a series of cultural, art, music and entertainment events have taken place in November at various locations in the town, under the title, Novembernebel (November fog)
*On Saint Nicholas Day (6 December), the Niklasmarkt (Nicholas Market) commemorates the Niklasspende, a medieval foundation for the poor. This heralds the beginning of Advent and the Christmas period.
Sport
Speedway and football
The Wack Hofmeister Stadium, formerly the Altes Stadion Abensberg (the Old Stadium) is a motorcycle speedway and association football stadium located slightly east of the centre of Abensberg in Germany. It hosts the speedway team MSC Abensberg and the football team TSV Abensberg 1862.
Notable residents
Sons and daughters of the town
*Johannes Aventinus (1477–1534): Bavarian historian
*Stephan Agricola (1491–1547): Lutheran reformer
*Joseph von Hazzi (1768–1845): Bavarian Privy Councillor
*Josef Hofmeister (born 1934): Speedway rider
*Uwe Brandl (born 1959): Mayor of Abensberg
*Paul Smaczny: Music and film producer
*Christian Lohr: Musician and producer
*Stephan Ebn (born 1978): drummer and music producer
*Richard Resch: Tenor, classical and opera singer
People who have worked in the town
*Wiguläus von Kreittmayr (1705–1790): by marriage Lord of Offenstetten and Hatzkofen
*Friedensreich Hundertwasser (1928–2000): artist and architect
*Radu Ivan (born 1969): International Judo champion
*Ole Bischof (born 1979): Olympic Judo champion
See also
* Battle of Abensberg occurred April 20, 1809.
* Battle of Landshut occurred April 21, 1809.
* Battle of Eckmühl occurred 21–22 April 1809.
* Eckmühl
* Landshut
References
External links
*
* [http://www.abensberger-impressionen.de/ Abensberger Impressionen - Old Images of Abensberg]
Category:Kelheim (district) | https://en.wikipedia.org/wiki/Abensberg | 2025-04-05T18:25:37.396013 |
1306 | Arminianism | ]]
Arminianism is a movement of Protestantism initiated in the early 17th century, based on the theological ideas of the Dutch Reformed theologian Jacobus Arminius and his historic supporters known as Remonstrants. Dutch Arminianism was originally articulated in the Remonstrance'' (1610), a theological statement submitted to the States General of the Netherlands. This expressed an attempt to moderate the doctrines of Calvinism related to its interpretation of predestination.
Classical Arminianism, to which Arminius is the main contributor, and Wesleyan Arminianism, to which John Wesley is the main contributor, are the two main schools of thought. Central Arminian beliefs are that God's prevenient grace, which prepares regeneration, is universal and that His grace, allowing regeneration and ongoing sanctification, is resistible.
Many Christian denominations have been influenced by Arminian views, notably the Baptists in the 17th century, the Methodists in the 18th century, and the Pentecostals in the 20th century.
History
Precursor movements and theological influences
. (1892). Sébastien Castellion.|200x200px]]
Arminius' beliefs, i.e. Arminianism, did not begin with him. Before the Reformation, groups like the Waldensians similarly affirmed individual freedom over any predetermined predestination. Anabaptist theologian Balthasar Hubmaier (1480–1528) also promoted much the same view as Arminius nearly a century before him. The soteriological doctrines of Arminianism and Anabaptism are roughly equivalent. In particular, Mennonites have been historically Arminian whether they distinctly espoused the Arminian viewpoint or not, and rejected Calvinist soteriology. Anabaptist theology seems to have influenced Jacobus Arminius. At least, he was "sympathetic to the Anabaptist point of view, and Anabaptists were commonly in attendance on his preaching." Similarly, Arminius mentions Danish Lutheran theologian Niels Hemmingsen (1513–1600) as holding the basic view of soteriology he held and he may have been influenced by Hemmingsen. Another key figure, Sebastian Castellio (1515–1563), who opposed Calvin's views on predestination and religious intolerance, is known to have influenced both the Mennonites and certain theologians within Arminius’s circle. Early critics of Arminians even cited Castellio as a primary inspiration behind the Arminian movement.Emergence of Arminianism
(1721). Disputes Between Remonstrants and Counter-Remonstrants in 1618.]]
Jacobus Arminius (1560-1609) was a Dutch pastor and theologian. He was taught by Theodore Beza, Calvin's hand-picked successor, but after examination of the scriptures, he rejected his teacher's theology that it is God who unconditionally elects some for salvation. Instead Arminius proposed that the election of God was of believers, thereby making it conditional on faith. Arminius's views were challenged by the Dutch Calvinists, especially Franciscus Gomarus.
In his Declaration of Sentiments (1608) Arminius presented his theology to magistrates of the States General of the Netherlands in The Hague. After his death, Arminius's followers continued to advance his theological vision, crafting the Five articles of Remonstrance (1610), in which they express their points of divergence from the stricter Calvinism of the Belgic Confession. This is how Arminius's followers were called Remonstrants, and following a Counter Remonstrance in 1611, Gomarus' followers were called Counter-Remonstrants.
After some political maneuvering, the Dutch Calvinists were able to convince Prince Maurice of Nassau to deal with the situation. Maurice systematically removed Arminian magistrates from office and called a national synod at Dordrecht. This Synod of Dort was open primarily to Dutch Calvinists (102 people), while the Arminians were excluded (13 people banned from voting), with Calvinist representatives from other countries (28 people), and in 1618 published a condemnation of Arminius and his followers as heretics. The Canons of Dort responded, among other topics, to Arminian doctrines, anticipating their later articulation as the Five points of Calvinism.
Arminians across Holland were removed from office, imprisoned, banished, and sworn to silence. Twelve years later, Holland officially granted Arminianism protection as a religion, although animosity between Arminians and Calvinists continued. Most of the early Remonstrants followed a classical version of Arminianism. However, some of them such as Philipp van Limborch, moved in the direction of semi-Pelagianism and rationalism.
Arminianism in the Church of England
(1641). John Goodwin.|left]]In England, the so-labelled Arminian doctrines were held, in substance, before and in parallel with those of Arminius. The Thirty-nine Articles of Religion (finalised in 1571), were sufficiently ambiguous that they were compatible with either Arminian or Calvinistic interpretations. Arminianism in the Church of England was fundamentally an expression of negation of Calvinism, and only some theologians held to classical Arminianism, but for the rest they were either semi-Pelagian or Pelagian. In this specific context, contemporary historians prefer to use the term "proto-Arminians" rather than "Arminians" to designate the leanings of those divines who generally didn't follow classical Arminianism. English Arminianism was represented by Arminian Puritans such as John Goodwin or High Anglican Arminians such as Jeremy Taylor and Henry Hammond. Anglican Arminians of the 17th century such as William Laud fought Calvinist Puritans. They actually saw Arminianism in terms of a state church, an idea that was alien to the views of Arminius. This position became particularly evident under the reign (1625–1649) of Charles I of England. Following the English Civil War (1642–1651) Charles II of England, who tolerated the Presbyterians, re-instituted Arminian thought in the Church of England. It was dominant there after the Restoration (1660) for some fifty years.BaptistsThe Baptist movement emerged in 17th-century in England. The first Baptists—called "General Baptists" because of their confession of a "general" or unlimited atonement—were Arminians. The Baptist movement originated with Thomas Helwys, who left his mentor John Smyth (who had moved into shared belief and other distinctives of the Dutch Waterlander Mennonites of Amsterdam) and returned to London to start the first English Baptist Church in 1611. Later General Baptists such as John Griffith, Samuel Loveday, and Thomas Grantham defended a Reformed Arminian theology that reflected the Arminianism of Arminius. The General Baptists encapsulated their Arminian views in numerous confessions, the most influential of which was the Standard Confession of 1660. In the 1640s the Particular Baptists were formed, diverging from Arminian doctrine and embracing the strong Calvinism of the Presbyterians and Independents. Their robust Calvinism was publicized in such confessions as the London Baptist Confession of 1644 and the Second London Confession of 1689. The London Confession of 1689 was later used by Calvinistic Baptists in America (called the Philadelphia Baptist Confession), whereas the Standard Confession of 1660 was used by the American heirs of the English General Baptists, who soon came to be known as Free Will Baptists.Methodists
. (c. 1819). Camp meeting of the Methodists in N. America]]
In the Methodist-Calvinist controversy of the early 1770s involving Anglican ministers John Wesley and George Whitefield, Wesley responded to accusations of semi-Pelagianism by embracing an Arminian identity. Wesley had limited familiarity with the beliefs of Arminius and largely formulated his views without direct reliance on Arminius' teachings. Wesley was notably influenced by 17th-century English Arminianism and by some Remonstrant spokesmen. However, he is recognized as a faithful representative of Arminius' beliefs. Wesley defended his soteriology through the publication of a periodical titled The Arminian (1778) and in articles such as Predestination Calmly Considered. To support his stance, he strongly maintained belief in total depravity while clarifying other doctrines notably prevenient grace. At the same time, Wesley attacked the determinism that he claimed characterized Calvinist doctrines of predestination. He typically preached the notion of Christian perfection (fully mature, not "sinlessness"). His system of thought has become known as Wesleyan Arminianism, the foundations of which were laid by him and his fellow preacher John William Fletcher. Methodism also navigated its own theological intricacies concerning salvation and human agency. In the 1830s, during the Second Great Awakening, traces of Pelagian influence surfaced in the American Holiness Movement. Consequently, critics of Wesleyan theology have occasionally unfairly perceived or labeled its broader thought. However, its core is recognized to be Arminianism.
Pentecostals
Pentecostalism has its background in the activity of Charles Parham (1873–1929). Its origin as a movement was in the Azusa Street Revival in Los Angeles in 1906. This revival was led by William J. Seymour (1870–1922). Due to the Methodist and Holiness background of many early Pentecostal preachers, the Pentecostal churches usually possessed practices that arose from the Wesleyan Arminianism. During the 20th century, as Pentecostal churches began to settle and incorporate more standard forms, they started to formulate theology that was fully Arminian. Today, Pentecostal denominations such as the Assemblies of God hold to Arminian views such as resistible grace, conditional election, and conditional security of the believer.
Current landscape
Protestant denominations
(founder of the Free Baptist denomination).]]
Advocates of Arminianism find a home in many Protestant denominations, and sometimes other beliefs such as Calvinism exist within the same denomination. The Lutheran theological tradition bears certain similarities to Arminianism and there may be some Lutheran churches that are open to it. Newer Evangelical Anglican denominations also show a level of openness to Arminian theology. Anabaptist denominations, such as the Mennonites, Hutterites, Amish and Schwarzenau Brethren, adhere to Anabaptist theology, which espouses a soteriology that is similar to Arminianism "in some respects". Arminianism is found within the General Baptists, including the subset of General Baptists known as Free Will Baptists. The majority of Southern Baptists embrace a traditionalist form of Arminianism which includes a belief in eternal security, though many see Calvinism as growing in acceptance. Certain proponents of Arminianism may be found within the Restoration movement in the Christian Churches and Churches of Christ. Additionally, it is found in the Seventh-day Adventist Church. Arminianism (specifically Wesleyan–Arminian theology) is taught in the Methodist churches, inclusive of those denominations aligned with the holiness movement such as the Evangelical Methodist Church, Church of the Nazarene, the Free Methodist Church, the Wesleyan Church, and the Salvation Army. It is also found in a part of the Charismatics, including the Pentecostals.
Scholarly support
Arminian theology has found support among theologians, Bible scholars, and apologists spanning various historical periods and theological circles. Noteworthy historical figures include Jacobus Arminius, Simon Episcopius, Hugo Grotius, John Goodwin, Thomas Grantham, John Wesley, Richard Watson, Thomas Osmond Summers, John Miley, William Burt Pope and Henry Orton Wiley.
In contemporary Baptist traditions, advocates of Arminian theology include Roger E. Olson, F. Leroy Forlines, Robert Picirilli and J. Matthew Pinson. Within the Methodist tradition, prominent supporters encompass Thomas Oden, Ben Witherington III, David Pawson, B. J. Oropeza, Thomas H. McCall and Fred Sanders. The Holiness movement boasts theologians like Carl O. Bangs and J. Kenneth Grider. Furthermore, scholars such as Keith D. Stanglin, Craig S. Keener and Grant R. Osborne also support Arminian perspectives.TheologyTheological legacy. ]]The Pelagian-Augustinian framework can serve as a key paradigm for understanding Arminianism's theological and historical legacy. Before Augustine (354–430), the synergistic view of salvation was almost universally endorsed. Pelagius (c. 354–418), however, argued that humans could perfectly obey God by their own will. The Pelagian view is therefore referred to as "humanistic monergism". This view was condemned at the Council of Carthage (418) and Ephesus (431). In response, Augustine proposed a view in which God is the ultimate cause of all human actions, a stance that aligns with soft determinism. The Augustinian view is therefore referred to as "divine monergism".|ps. "[D]ivine monergism is the view of Augustine and the Augustinians."}} However, Augustinian soteriology implied double predestination, which was condemned by the Council of Arles (475).
During this period, a moderate form of Pelagianism emerged, later termed Semi-Pelagianism. This view asserted that human will initiates salvation, rather than divine grace. The Semi-Pelagian view is therefore described as "human-initiated synergism".|ps. "[H]uman-initiated synergism is the view of Semi-Pelagianism".}} In 529, the Second Council of Orange addressed Semi-Pelagianism and declared that even the inception of faith is a result of God’s grace. This highlights the role of prevenient grace enabling human belief. This view, often referred to as "Semi-Augustinian," is therefore described as "God-initiated synergism".|ps. "God-initiated synergism is the view of the Semi-Augustinians".}} The Council also rejected predestination to evil. As Arminianism aligns with key aspects of this view, some see it as a return to early Church theological consensus. Moreover, Arminianism can also be seen as a soteriological diversification of Calvinism or, more specifically, as a theological middle ground between Calvinism and semi-Pelagianism.
Arminian theology generally divides into two main variations: Classical Arminianism, based on the teachings of Jacobus Arminius, and Wesleyan Arminianism, a closely related variation shaped primarily by John Wesley.Classical Arminianism Definition and terminology
(1620). Jacobus Arminius.]]
Classical Arminianism is a protestant theological view, that asserts God's prevenient grace for regeneration is universal and that the grace allowing regeneration and ongoing sanctification is resistible. This theological system was presented by Jacobus Arminius and maintained by some of the Remonstrants, such as Simon Episcopius and Hugo Grotius.
Arminian theology incorporates the language and framework of covenant theology. Its core teachings are summarized in the Five Articles of Remonstrance, reflecting Arminius’s views, with some sections directly from his Declaration of Sentiments. Some theologians have referred to this system as "classical Arminianism". Others prefer "Reformation Arminianism" or "Reformed Arminianism", as Arminius upheld the principles of Reformation such as Sola fide and Sola gratia.
God's providence and human free will
Arminianism accepts classical theism, which states that God is omnipresent, omnipotent, and omniscient. In that view, God's power, knowledge, and presence have no external limitations, that is, outside of his divine nature and character.
Besides, Arminianism's view of God's sovereignty is based on postulates stemming from God's character. On the first hand, divine election must be defined so that God is not, in any case, and even in a secondary way, the author of evil. It would not correspond to the character of God, especially as fully revealed in Jesus Christ. On the other hand, man's responsibility for evil must be preserved. Those two postulates require a specific way by which God chooses to manifest his sovereignty when interacting with his creatures.
On one hand, it requires God to operate according to a limited mode of providence. This means that God deliberately exercises sovereignty without determining every event. On the other hand, it requires God's election to be a "predestination by foreknowledge". Therefore, God's foreknowledge is exhaustive and complete, aligning his certainty with human freedom of action. Philosophical view on free will Arminianism is aligned with classical free-will theism, adopting an incompatibilist position. It asserts that the free will essential for moral responsibility is inherently incompatible with determinism. In Arminian theology, human beings possess libertarian free will, making them the ultimate source of their choices and granting them the ability to choose otherwise. This philosophical framework upholds the concept of divine providence, allowing God's influence and supervision over creation. However, it permits the idea of God's absolute control over human actions, as long as such control does not involve human responsibility.Spiritual view on free willArminianism holds that without the assistance of divine grace, human free will cannot choose the spiritual good. Humans are, therefore, in a state of total depravity, possessing a corrupted spiritual nature. Arminius likely believed that every person is born in this depraved condition because Adam, as humanity’s representative, sinned against God—a view later shared by several prominent Arminians. Like Augustine, Luther, and Calvin, Arminius agreed that human free will is spiritually "captive" and "enslaved". However, through the action of prevenient grace, human free will can be "freed", meaning it can be restored with the ability to choose the spiritual good, particularly the capacity to accept God's call to salvation.
Extent and nature of the atonement
(1631). Hugo de Groot (1583–1645).]]
Atonement is intended universally: Jesus's death was for all people; Jesus draws all people to himself, with the opportunity for salvation through faith.
Jesus's death satisfies God's justice: The penalty for the sins of the elect is paid in full through the crucifixion of Jesus. Thus, Jesus’s death atones for all sins but requires faith to be effected. Arminius states that "Justification, when used for the act of a Judge, is either purely the imputation of righteousness through mercy [...] or that man is justified before God [...] according to the rigor of justice without any forgiveness." Justification, therefore, is seen through mercy by the imputation of righteousness. While not rigidly defined, this view suggests that the righteousness of Christ is attributed to believers, emphasizing that union with Christ (conditioned on faith) transfers his righteousness to them.
Christ's atonement has a substitutionary effect, which is limited only to the elect. Arminius held that God's justice was satisfied by penal substitution. Hugo Grotius taught that it was satisfied governmentally. Historical and contemporary Arminians have held one of these views.Conversion of manIn Arminianism, God initiates the process of salvation by extending his grace, commonly referred to as prevenient grace, to all people. This grace works within each individual, drawing them toward the Gospel and enabling sincere faith, leading to regeneration. It functions through a dynamic influence-and-response relationship, allowing individuals to accept or reject it freely. Thus, conversion is described as a "God-initiated synergism."
Election of man
Election is conditional: Arminius defined election as "the decree of God by which, of Himself, from eternity, He decreed to justify in Christ, believers, and to accept them unto eternal life." God alone determines who will be saved, and he decides that all who believe Jesus through faith will be justified. Arminius states, "God regards no one in Christ unless they are engrafted in him by faith."
God predestines the elect to a glorious future: Predestination is not the predetermination of who will believe but rather the predetermination of the believer's future inheritance. The elect are therefore predestined to sonship through adoption, glorification, and eternal life.Preservation of manRelated to eschatological considerations, Jacobus Arminius and the first Remonstrants, including Simon Episcopius believed in everlasting fire where the wicked are thrown by God at judgment day.
Preservation is conditional: All believers have full assurance of salvation with the condition that they remain in Christ. Salvation is conditioned on faith; therefore, perseverance is also conditioned. Arminius believed the Scriptures taught that believers are graciously empowered by Christ and the Holy Spirit "to fight against Satan, sin, the world and their own flesh, and to gain the victory over these enemies." Furthermore, Christ and the Spirit are ever present to aid and assist believers through various temptations. But this security was not unconditional but conditional—"provided they [believers] stand prepared for the battle, implore his help, and be not wanting to themselves, Christ preserves them from falling."
Possibility of apostasy
''.|237x237px]]
Arminius believed in the possibility of apostasy. However, over the period of time he wrote on this question, he sometimes expressed himself more cautiously out of consideration for the faith of his readers.|pp55-56|ps. "Arminius used an ingenious device to teach [the possibility of Apostasy], so as not to seem to oppose Calvinism's eternal security doctrine head on and recklessly He admitted that believers cannot lose saving grace; but then he would add, quickly, that Christians can freely cease to believe, and that then they will lose saving grace. So, in a sense, believers cannot backslide; but Christians can cease to believe, and then, as unbelievers (but only as unbelievers), they lose their salvation"}} In 1599, he stated that the question required more scriptural examination. In his "Declaration of Sentiments" (1607), Arminius said, "I never taught that a true believer can, either totally or finally fall away from the faith, and perish; yet I will not conceal, that there are passages of scripture which seem to me to wear this aspect."
However, Arminius elsewhere expressed certainty about the possibility of falling away: In c. 1602, he noted that a person integrated into the church might resist God's work and that a believer's security rested solely on their choice not to abandon their faith. He argued that God's covenant did not eliminate the possibility of falling away but provided a gift of fear to keep individuals from defecting as long as it thrived in their hearts. He then taught that had David died in sin, he would have been lost. In 1602, Arminius also wrote: "A believing member of Christ may become slothful, give place to sin, and gradually die altogether, ceasing to be a member".
For Arminius, a certain class of sin would cause a believer to fall, especially sin motivated by malice. In 1605, Arminius wrote: “But it is possible for a believer to fall into a mortal sin, as is seen in David. Therefore, he can fall at that moment in which if he were to die, he would be condemned". Scholars observe that Arminius clearly identifies two paths to apostasy 1. "rejection", or 2. "malicious sinning". He suggested that strictly speaking, believers could not directly lose their faith but could cease to believe and thus fall away.|pp55-56|ps. "Arminius used an ingenious device to teach [the possibility of Apostasy], so as not to seem to oppose Calvinism's eternal security doctrine head on and recklessly He admitted that believers cannot lose saving grace; but then he would add, quickly, that Christians can freely cease to believe, and that then they will lose saving grace. So, in a sense, believers cannot backslide; but Christians can cease to believe, and then, as unbelievers (but only as unbelievers), they lose their salvation"}}
After the death of Arminius in 1609, his followers wrote a Remonstrance (1610) based quite literally on his Declaration of Sentiments (1607), which expressed prudence on the possibility of apostasy. In particular, its fifth article expressed the necessity of further study on the possibility of apostasy. Sometime between 1610 and the official proceeding of the Synod of Dort (1618), the Remonstrants became fully persuaded in their minds that the Scriptures taught that a true believer was capable of falling away from faith and perishing eternally as an unbeliever. They formalized their views in "The Opinion of the Remonstrants" (1618), which was their official stand during the Synod of Dort. They later expressed this same view in the Remonstrant Confession (1621).Forgivability of apostasyArminius maintained that if the apostasy came from "malicious" sin, it was forgivable. If it came from "rejection," it was not. Following Arminius, the Remonstrants believed that, though possible, apostasy was not in general irremediable. However, other classical Arminians, including the Free Will Baptists, have taught that apostasy is irremediable.Wesleyan Arminianism Distinctive aspect
(n.d.). John Wesley.|244x244px]]
John Wesley thoroughly agreed with the vast majority of what Arminius himself taught. Wesleyan Arminianism is a merger of classical Arminianism and Wesleyan perfectionism.Nature of the atonementWesley’s view of atonement is either understood as a hybrid of penal substitution and the governmental theory, or it is viewed solely as penal substitution. Historically, Wesleyan Arminians adopted either the penal or governmental theory of atonement.
Justification and sanctification
In Wesleyan theology, justification is understood as the forgiveness of sins rather than being made inherently righteous. Righteousness is achieved through sanctification, which involves the pursuit of holiness in one's life. Wesley taught that imputed righteousness, which refers to the righteousness credited to a believer through faith, must transform into imparted righteousness, where this righteousness becomes evident in the believer’s life.Christian perfectionWesley taught that through the Holy Spirit, Christians could achieve a state of practical perfection, or "entire sanctification", characterized by a lack of voluntary sin. This state involves embodying the love of God and neighbor. It does not mean freedom from all mistakes or temptations, as perfected Christians still need to seek forgiveness and strive for holiness. Ultimately, perfection in this context is about love, not absolute perfection.
Preservation and apostasy of man
Wesley believed genuine Christians could apostatize. He emphasized that sin alone does not lead to this loss; instead, prolonged unconfessed sin and deliberate apostasy can result in a permanent fall from grace. However, he believed that such apostasy was not irremediable.Corporate election variation
The majority Arminian view is that election is individual and based on God's foreknowledge of faith. In the corporate election view, God chose the believing church collectively for salvation rather than selecting individuals. Jesus is seen as the only person elected, and individuals join the elect through faith "in Christ". This view is supported by Old Testament and Jewish concepts, where identity is rooted more in group membership than individuality.
Arminianism and other views
Divergence with Pelagianism
Pelagianism is a doctrine denying original sin and total depravity. No system of Arminianism founded on Arminius or Wesley denies original sin or total depravity; both Arminius and Wesley strongly affirmed that man's basic condition is one in which he cannot be righteous, understand God, or seek God. Arminius referred to Pelagianism as "the grand falsehood" and stated that he "must confess that I detest, from my heart, the consequences [of that theology]." This association is considered as libelous when attributed to Arminius' or Wesley's doctrine, and Arminians reject all accusations of Pelagianism.Divergence with Semi-PelagianismSemi-Pelagianism holds that faith begins with human will, while its continuation and fulfillment depend on God's grace, giving it the label "human-initiated synergism".|pxxvii|ps. "[H]uman-initiated synergism is the view of Semi-Pelagianism".}} In contrast, both Classical and Wesleyan Arminianism affirm that prevenient grace from God initiates the process of salvation, a view sometimes referred to as "Semi-Augustinian", or "God-initiated synergism".|ps. "God-initiated synergism is the view of the Semi-Augustinians".}} Following the Reformation, Reformed theologians often categorized both "human-initiated synergism" and "God-initiated synergism" as "Semi-Pelagianism", often leading to mistaken belief that Arminianism aligned with Semi-Pelagianism.Divergence with CalvinismCalvinism and Arminianism, while sharing historical roots and many theological doctrines, diverge notably on the concepts of divine predestination and election. While some perceive these differences as fundamental, others regard them as relatively minor distinctions within the broader spectrum of Christian theology.
Similarities
* Human spiritual condition: Arminians agree with Calvinists on the doctrine of total depravity, but differ in their understanding of how God remedies this human condition.Differences* Nature of election: Arminians believe election to final salvation is conditional on faith, while Calvinists hold that unconditional election is based on God's predeterminism making Him the ultimate cause of everything, including human faith.
* Nature of grace: Arminians believe that, through prevenient grace, God universally restores the individual spiritual ability to choose and that subsequent justifying grace is resistible. Calvinists however, assert that God's effectual call is given only to the elect and that subsequent grace is irresistible.
* Extent of the atonement: Arminians, along with four-point Calvinists, advocate for a universal atonement, contrary to the Calvinist doctrine that atonement is limited to the elect. Both sides, excluding hyper-Calvinists, believe the Gospel invitation is universal and should be presented to everyone without distinction.
* Perseverance in faith: Arminians believe preservation to final salvation is conditional on faith and can be lost through apostasy. They contend for a present security in Christ, relying on His protection from all external forces. Calvinists, on the other hand, hold to the perseverance of the saints, asserting that the elect will persevere in faith until the end of their lives. However, a believer cannot know with certainty if they are elect until they reach the end. This leads to different interpretations on the assurance of final salvation within Calvinist circles.Divergence with open theismThe doctrine of open theism states that God is omnipresent, omnipotent, and omniscient, but differs on the nature of the future. Open theists claim that the future is not completely determined (or "settled") because people have not made their free decisions yet. God therefore knows the future partially in possibilities (human free actions) rather than solely certainties (divinely determined events). Some Arminians, reject open theism, viewing it as a distortion of traditional Arminianism. They believe it shifts away from classical Arminianism toward process theology. Others view it as a valid alternative perspective within Christianity, despite not aligning it with Arminian doctrine.See also
* Apostasy in Christianity
* Decisional regeneration
* Free will in theology
* Grace in Christianity
* Justification
* Order of salvation
* Salvation in Christianity
* Sovereignty of God in Christianity
* Substitutionary atonement
** Satisfaction theory
** Penal theory
** Governmental theory
* Synergism
Notes and references
Citations
Sources
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* |date2014 |publisherB&H |isbn978-1-4336-8214-8 |chapterCh 12. The Work of God: Salvation}}
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* .
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
External links
* [https://evangelicalarminians.org/ The Society of Evangelical Arminians]
Category:17th-century Reformed Christianity
Category:Reformed Christianity in the Dutch Republic
Category:Christian terminology
Category:Christian theological movements
Category:Jacobus Arminius
Category:Methodism
Category:Philosophy and thought in the Dutch Republic
Category:Protestant theology
Category:Seventh-day Adventist theology | https://en.wikipedia.org/wiki/Arminianism | 2025-04-05T18:25:37.482393 |
1307 | The Alan Parsons Project | | years_active = 1975–1990
| label =
| past_member_of =
| website =
| current_members | past_members
* Alan Parsons
* Eric Woolfson
}}
The Alan Parsons Project was a British rock band formed in London in 1975. Its core membership consisted of producer, audio engineer, musician and composer Alan Parsons, and singer, songwriter and pianist Eric Woolfson. They shared writing credits on almost all of their songs, with Parsons producing or co-producing all of the recordings, while being accompanied by various session musicians, some relatively consistent.
The Alan Parsons Project released eleven studio albums over a 15-year career, the most successful ones being I Robot (1977), The Turn of a Friendly Card (1980) and Eye in the Sky (1982). Many of their albums are conceptual in nature and focus on science fiction, supernatural, literary and sociological themes. Among the group's most popular songs are "I Wouldn't Want to Be Like You", "Games People Play", "Time", "Sirius", "Eye in the Sky", and "Don't Answer Me".
Career
1974–1976: Formation and debut
Alan Parsons met Eric Woolfson in the canteen of Abbey Road Studios in the summer of 1974. Parsons was assistant engineer on the Beatles' albums Abbey Road (1969) and Let It Be (1970), engineered Pink Floyd's The Dark Side of the Moon (1973), and produced several acts for EMI Records. Woolfson, a songwriter and composer, was working as a session pianist while composing material for a concept album based on the work of Edgar Allan Poe.
Woolfson's idea was to manage Alan and help his already successful production career. It was the start of a longstanding friendly business relationship. He managed Parsons's career as a producer and engineer through a string of successes, including Pilot, Steve Harley, Cockney Rebel, John Miles, Al Stewart, Ambrosia, and the Hollies.
Recalling his earlier Edgar Allan Poe material, Woolfson saw a way to combine his and Parsons's talents. Parsons produced and engineered songs written and composed by the two, and the first Alan Parsons Project was begun. The Project's first album, Tales of Mystery and Imagination (1976), released by 20th Century Fox Records and including major contributions by all members of Pilot and Ambrosia, was a success, reaching the Top 40 in the US Billboard 200 chart. The singles "I Wouldn't Want to Be Like You", "Games People Play", "Damned If I Do", "Time" (the first single to feature Woolfson's lead vocal) and "Eye in the Sky" had a notable impact on the Billboard Hot 100. "Don't Answer Me" became the Project's last successful single in the United States; it reached the top 15 on the American charts in 1984.
After those successes, the Project began to fade from view. There were fewer hit singles, and declining album sales. 1987's Gaudi was the Project's final release, though it had planned to record an album called Freudiana (1990) next.
The musical Freudiana
Even though the studio version of Freudiana was produced by Parsons (and featured the regular Project session musicians, making it an 'unofficial' Project album), it was primarily Woolfson's idea to turn it into a musical. While Parsons pursued his own solo career and took many session players of the Project on the road for the first time in a successful worldwide tour, Woolfson went on to produce musical plays influenced by the Project's music. Freudiana, Gaudi, and Gambler were three musicals that included some Project songs like "Eye in the Sky", "Time", "Inside Looking Out", and "Limelight". The live music from Gambler was only distributed at the performance site in Mönchengladbach, Germany.
The Sicilian Defence
In 1979, Parsons, Woolfson, and their record label Arista, had been stalled in contract renegotiations when the two submitted an all-instrumental album tentatively titled The Sicilian Defence, named after an aggressive opening move in chess. Arista's refusal to release the album had two known effects: the negotiations led to a renewed contract, and the album was not released at that time.
In interviews he gave before his death in 2009, Woolfson said he planned to release one track from the "Sicilian" album, which in 2008 appeared as a bonus track on a CD re-issue of the Eve album. Sometime later, after he had relocated the original tapes, Parsons reluctantly agreed to release the album and announced that it would finally be released on an upcoming Project box set called The Complete Albums Collection in 2014 for the first time as a bonus disc. Parsons's and Woolfson's solo careers
Parsons released titles under his name: Try Anything Once (1993), On Air (1996), The Time Machine (1999), A Valid Path (2004), The Secret (2019) and From the New World (2022). Meanwhile, Woolfson made concept albums titled Freudiana (1990), about Sigmund Freud's work on psychology, and Poe: More Tales of Mystery and Imagination (2003), continuing from the Alan Parsons Project's first album about Poe literature.
Tales of Mystery and Imagination (1976) was re-mixed in 1987 for release on CD, and included narration by Orson Welles recorded in 1975, but delivered too late to be included on the original album. For the 2007 deluxe edition release, parts of this tape were used for the 1976 Griffith Park Planetarium launch of the original album, the 1987 remix, and various radio spots. All were included as bonus material.
Sound
The band's sound is described as progressive rock, art rock, progressive pop, "Sirius" is their best-known and most-frequently heard of all Parsons/Woolfson songs. It was used as entrance music by various American sports teams, notably by the Chicago Bulls during their 1990s NBA dynasty. It was also used as the entrance theme for Ricky Steamboat in pro wrestling of the mid-1980s. In addition, "Sirius" is played in a variety of TV shows and movies including the BBC series Record Breakers, the episode "Vanishing Act" of The Adventures of Jimmy Neutron: Boy Genius and the 2009 film Cloudy with a Chance of Meatballs.
Vocal duties were shared by guests to complement each song. In later years, Woolfson sang lead on many of the group's hits, including "Time", "Eye in the Sky", and "Don't Answer Me". The record company pressured Parsons to use Woolfson more, but Parsons preferred to use polished proficient singers; Woolfson admitted he was not in that category. In addition to Woolfson, vocalists Chris Rainbow, Lenny Zakatek, John Miles, David Paton, and Colin Blunstone are regulars.
The opening theme song for the Chicago Bulls has been the song "Sirius" since 1984. Members
;Official members
* Alan Parsons – production, engineering, programming, composition, vocals, keyboards, guitars (1975–1990)
* Eric Woolfson – composition, lyrics, piano, keyboards, vocals, executive production (1975–1990; died 2009)
;Notable contributors
* Andrew Powell – composition, keyboards, orchestral arrangements (1975–1996)
* Philharmonia Orchestra
* Ian Bairnson – guitars (1975–1990; died 2023)
* David Pack – guitars (1976, 1993), vocals, keyboards (1993)
* Richard Cottle – keyboards, saxophone (1984–1990)
* David Paton – bass (1975–1986), vocals (1975–1986, 1990), acoustic guitar (1990)
* Stuart Tosh – drums, percussion (1975–1977)
* Stuart Elliott – drums, percussion (1977–1990)
* Mel Collins – saxophone (1982–1984)
* Geoff Barradale – vocals (1987)
* Phil Kenzie – saxophone (1978)
* Andy Kanavan – percussion (1993)
* Dennis Clarke – saxophone (1980)
* Colin Blunstone – vocals (1978–1984)
* Gary Brooker – vocals (1985; died 2022)
* Arthur Brown – vocals (1975)
* Lesley Duncan – vocals (1979; died 2010)
* Graham Dye – vocals (1985, 1998)
* Dean Ford – vocals (1978; died 2018)
* Dave Terry ("Elmer Gantry") – vocals (1980, 1982)
* Jack Harris – vocals (1976–1978)
* The Hollies – vocals
* John Miles – vocals, guitar (1976, 1978, 1985, 1987, 1990; died 2021)
* Chris Rainbow – vocals (1979–1990; died 2015)
* Eric Stewart – vocals (1990, 1993)
* Peter Straker – vocals (1977)
* Clare Torry – vocals (1979)
* Dave Townsend – vocals (1977, 1979)
* Lenny Zakatek – vocals (1977–1987)
* The English Chorale – choir (1976, 1977, 1982, 1987)
* P. J. Olsson – vocals (2004–)
Discography
* Tales of Mystery and Imagination (1976)
* I Robot (1977)
* Pyramid (1978)
* Eve (1979)
* The Turn of a Friendly Card (1980)
* Eye in the Sky (1982)
* Ammonia Avenue (1984)
* Vulture Culture (1985)
* Stereotomy (1985)
* Gaudi (1987)
* The Sicilian Defence (2014)
References
External links
* www.The-Alan-Parsons-Project.com
* [http://www.poe-cd.com/ The official Eric Woolfson website]
*
*
* [https://open.spotify.com/artist/2m62cc253Xvd9qYQ8d2X3d The Alan Parsons Project albums to be listened] as stream at Spotify.com
Category:British male musical duos
Category:British progressive rock groups
Category:British soft rock music groups
Category:Arista Records artists
Category:Charisma Records artists
Category:British rock music duos
Category:Progressive pop groups
Category:Soft rock duos | https://en.wikipedia.org/wiki/The_Alan_Parsons_Project | 2025-04-05T18:25:37.495564 |
1309 | Almost all | In mathematics, the term "almost all" means "all but a negligible quantity". More precisely, if <math>X</math> is a set, "almost all elements of <math>X</math>" means "all elements of <math>X</math> but those in a negligible subset of <math>X</math>". The meaning of "negligible" depends on the mathematical context; for instance, it can mean finite, countable, or null.
In contrast, "almost no" means "a negligible quantity"; that is, "almost no elements of <math>X</math>" means "a negligible quantity of elements of <math>X</math>".
Meanings in different areas of mathematics
Prevalent meaning
Throughout mathematics, "almost all" is sometimes used to mean "all (elements of an infinite set) except for finitely many". This use occurs in philosophy as well. Similarly, "almost all" can mean "all (elements of an uncountable set) except for countably many".
Examples:
* Almost all positive integers are greater than 10<sup>12</sup>.
* Almost all prime numbers are odd (2 is the only exception).
* Almost all polyhedra are irregular (as there are only nine exceptions: the five platonic solids and the four Kepler–Poinsot polyhedra).
* If <var>P</var> is a nonzero polynomial, then <var>P(x)</var> ≠ 0 for almost all <var>x</var> (if not all x).
Meaning in measure theory
as a function that has zero derivative almost everywhere]]
When speaking about the reals, sometimes "almost all" can mean "all reals except for a null set". Similarly, if <var>S</var> is some set of reals, "almost all numbers in <var>S</var>" can mean "all numbers in <var>S</var> except for those in a null set". The real line can be thought of as a one-dimensional Euclidean space. In the more general case of an <var>n</var>-dimensional space (where <var>n</var> is a positive integer), these definitions can be generalised to "all points except for those in a null set" or "all points in <var>S</var> except for those in a null set" (this time, <var>S</var> is a set of points in the space). Even more generally, "almost all" is sometimes used in the sense of "almost everywhere" in measure theory, or in the closely related sense of "almost surely" in probability theory.
Examples:
* In a measure space, such as the real line, countable sets are null. The set of rational numbers is countable, so almost all real numbers are irrational.
* Georg Cantor's first set theory article proved that the set of algebraic numbers is countable as well, so almost all reals are transcendental.
* Almost all reals are normal.
* The Cantor set is also null. Thus, almost all reals are not in it even though it is uncountable.
* The derivative of the Cantor function is 0 for almost all numbers in the unit interval. It follows from the previous example because the Cantor function is locally constant, and thus has derivative 0 outside the Cantor set.
Meaning in number theory
In number theory, "almost all positive integers" can mean "the positive integers in a set whose natural density is 1". That is, if <var>A</var> is a set of positive integers, and if the proportion of positive integers in A below <var>n</var> (out of all positive integers below <var>n</var>) tends to 1 as <var>n</var> tends to infinity, then almost all positive integers are in <var>A</var>.
More generally, let <var>S</var> be an infinite set of positive integers, such as the set of even positive numbers or the set of primes, if <var>A</var> is a subset of <var>S</var>, and if the proportion of elements of <var>S</var> below <var>n</var> that are in <var>A</var> (out of all elements of <var>S</var> below <var>n</var>) tends to 1 as <var>n</var> tends to infinity, then it can be said that almost all elements of <var>S</var> are in <var>A</var>.
Examples:
* The natural density of cofinite sets of positive integers is 1, so each of them contains almost all positive integers.
* Almost all positive integers are composite.}}
* Almost all even positive numbers can be expressed as the sum of two primes.
* Almost all primes are isolated. Moreover, for every positive integer , almost all primes have prime gaps of more than both to their left and to their right; that is, there is no other prime between and .
Meaning in graph theory
In graph theory, if <var>A</var> is a set of (finite labelled) graphs, it can be said to contain almost all graphs, if the proportion of graphs with <var>n</var> vertices that are in <var>A</var> tends to 1 as <var>n</var> tends to infinity. However, it is sometimes easier to work with probabilities, so the definition is reformulated as follows. The proportion of graphs with <var>n</var> vertices that are in <var>A</var> equals the probability that a random graph with <var>n</var> vertices (chosen with the uniform distribution) is in <var>A</var>, and choosing a graph in this way has the same outcome as generating a graph by flipping a coin for each pair of vertices to decide whether to connect them. Therefore, equivalently to the preceding definition, the set <var>A</var> contains almost all graphs if the probability that a coin-flip–generated graph with <var>n</var> vertices is in <var>A</var> tends to 1 as <var>n</var> tends to infinity. Sometimes, the latter definition is modified so that the graph is chosen randomly in some other way, where not all graphs with <var>n</var> vertices have the same probability, and those modified definitions are not always equivalent to the main one.
The use of the term "almost all" in graph theory is not standard; the term "asymptotically almost surely" is more commonly used for this concept.
Example:
* Almost all graphs are asymmetric.
* Almost all graphs have diameter 2.
Meaning in topology
In topology and especially dynamical systems theory (including applications in economics), "almost all" of a topological space's points can mean "all of the space's points except for those in a meagre set". Some use a more limited definition, where a subset contains almost all of the space's points only if it contains some open dense set.
Example:
* Given an irreducible algebraic variety, the properties that hold for almost all points in the variety are exactly the generic properties. This is due to the fact that in an irreducible algebraic variety equipped with the Zariski topology, all nonempty open sets are dense.Meaning in algebraIn abstract algebra and mathematical logic, if <var>U</var> is an ultrafilter on a set <var>X,</var> "almost all elements of <var>X</var>" sometimes means "the elements of some element of <var>U</var>". For any partition of <var>X</var> into two disjoint sets, one of them will necessarily contain almost all elements of <var>X.</var> It is possible to think of the elements of a filter on <var>X</var> as containing almost all elements of <var>X</var>, even if it isn't an ultrafilter.Proofs
See also
* Almost
* Almost everywhere
* Almost surely
References
Primary sources
Secondary sources
Category:Mathematical terminology | https://en.wikipedia.org/wiki/Almost_all | 2025-04-05T18:25:37.518318 |
1313 | Aromatic compound | Aromatic compounds or arenes are organic compounds "with a chemistry typified by benzene" and "cyclically conjugated."
The word "aromatic" originates from the past grouping of molecules based on odor, before their general chemical properties were understood. The current definition of aromatic compounds does not have any relation to their odor. Aromatic compounds are now defined as cyclic compounds satisfying Hückel's Rule.
Aromatic compounds have the following general properties:
* Typically unreactive
* Often non polar and hydrophobic
* High carbon-hydrogen ratio
* Burn with a strong sooty yellow flame, due to high C:H ratio
* Undergo electrophilic substitution reactions and nucleophilic aromatic substitutions
Arenes are typically split into two categories - benzoids, that contain a benzene derivative and follow the benzene ring model, and non-benzoids that contain other aromatic cyclic derivatives. Aromatic compounds are commonly used in organic synthesis and are involved in many reaction types, following both additions and removals, as well as saturation and dearomatization.
Heteroarenes
Heteroarenes are aromatic compounds, where at least one methine or vinylene (-Cor -CHCH-) group is replaced by a heteroatom: oxygen, nitrogen, or sulfur. Examples of non-benzene compounds with aromatic properties are furan, a heterocyclic compound with a five-membered ring that includes a single oxygen atom, and pyridine, a heterocyclic compound with a six-membered ring containing one nitrogen atom. Hydrocarbons without an aromatic ring are called aliphatic. Approximately half of compounds known in 2000 are described as aromatic to some extent.
]]
Its bonding nature was first recognized independently by Joseph Loschmidt and August Kekulé in the 19th century. The proper use of the symbol is debated: some publications use it to any cyclic π system, while others use it only for those π systems that obey Hückel's rule. Some argue that, in order to stay in line with Robinson's originally intended proposal, the use of the circle symbol should be limited to monocyclic 6 π-electron systems. In this way the circle symbol for a six-center six-electron bond can be compared to the Y symbol for a three-center two-electron bond. When reacting to form more complex benzene derivatives, the substituents on a benzene ring can be described as either activated or deactivated, which are electron donating and electron withdrawing respectively. Given that both the methyl and hydroxyl group are ortho-para directors, the ortho and para isomers are typically favoured. Another example of a non-benzylic monocyclic arene is the cyclopropenyl (cyclopropenium cation), which satisfies Hückel's rule with an n equal to 0. Note, only the cationic form of this cyclic propenyl is aromatic, given that neutrality in this compound would violate either the octet rule or Hückel's rule. Polycyclic aromatic hydrocarbons
is a large polycyclic aromatic hydrocarbon.]]
Polycyclic aromatic hydrocarbons, also known as polynuclear aromatic compounds (PAHs) are aromatic hydrocarbons that consist of fused aromatic rings and do not contain heteroatoms or carry substituents. Naphthalene is the simplest example of a PAH. PAHs occur in oil, coal, and tar deposits, and are produced as byproducts of fuel burning (whether fossil fuel or biomass). As pollutants, they are of concern because some compounds have been identified as carcinogenic, mutagenic, and teratogenic. PAHs are also found in cooked foods. In graphene the PAH motif is extended to large 2D sheets.
Reactions
Aromatic ring systems participate in many organic reactions.
Substitution
In aromatic substitution, one substituent on the arene ring, usually hydrogen, is replaced by another reagent.
An example of electrophilic aromatic substitution is the nitration of salicylic acid, where a nitro group is added para to the hydroxide substituent:
:
Nucleophilic aromatic substitution involves displacement of a leaving group, such as a halide, on an aromatic ring. Aromatic rings usually nucleophilic, but in the presence of electron-withdrawing groups aromatic compounds undergo nucleophilic substitution. Mechanistically, this reaction differs from a common S<sub>N</sub>2 reaction, because it occurs at a trigonal carbon atom (sp<sup>2</sup> hybridization).
Hydrogenation
Hydrogenation of arenes create saturated rings. The compound 1-naphthol is completely reduced to a mixture of decalin-ol isomers.
:
The compound resorcinol, hydrogenated with Raney nickel in presence of aqueous sodium hydroxide forms an enolate which is alkylated with methyl iodide to 2-methyl-1,3-cyclohexandione:
:
Dearomatization
In dearomatization reactions the aromaticity of the reactant is lost. In this regard, the dearomatization is related to hydrogenation. A classic approach is Birch reduction. The methodology is used in synthesis. See also
* Aromatic substituents: Aryl, Aryloxy and Arenediyl
* Asphaltene
* Hydrodealkylation
* Simple aromatic rings
* Rhodium-platinum oxide, a catalyst used to hydrogenate aromatic compounds.
References
External links
*
}} | https://en.wikipedia.org/wiki/Aromatic_compound | 2025-04-05T18:25:37.535324 |
1315 | Abbey | thumb|right|The cloister of Sénanque Abbey, Provence
alt=|thumb|Church of the former Bath Abbey, Somerset
thumb|right|An interior of the Bridgettine's Nådendal Abbey, a medieval Catholic monastery in Naantali, Finland
An abbey is a type of monastery used by members of a religious order under the governance of an abbot or abbess. Abbeys provide a complex of buildings and land for religious activities, work, and housing of Christian monks and nuns.
The concept of the abbey has developed over many centuries from the early monastic ways of religious men and women where they would live isolated from the lay community about them. Religious life in an abbey may be monastic. An abbey may be the home of an enclosed religious order or may be open to visitors. The layout of the church and associated buildings of an abbey often follows a set plan determined by the founding religious order.
Abbeys are often self-sufficient while using any abundance of produce or skill to provide care to the poor and needy, refuge to the persecuted, or education to the young. Some abbeys offer accommodation to people who are seeking spiritual retreat. There are many famous abbeys across the Mediterranean Basin and Europe.
thumb|Abbey of St Catherine, Mount Sinai
Monastic origins of the abbey
Ascetics and anchorites
The earliest known Christian monasteries were groups of huts built near the residence of a famous ascetic or other holy person. Disciples wished to be close to their holy man or woman in order to study their doctrine or imitate their way of life.
In the earliest times of Christian monasticism, ascetics would live in social isolation but near a village church. They would subsist whilst donating any excess produce to the poor. However, increasing religious fervor about the ascetic's ways and or persecution of them would drive them further away from their community and further into solitude. For instance, the cells and huts of anchorites (religious recluses) have been found in the deserts of Egypt.
In 312 AD, Anthony the Great retired to the Thebaid region of Egypt to escape the persecution of the Emperor Maximian. Anthony was the best known of the anchorites of his time due to his degree of austerity, sanctity and his powers of exorcism. The deeper he withdrew into the wilderness, the more numerous his disciples became. They refused to be separated from him and built their cells close to him. This became a first true monastic community. According to August Neander, Anthony inadvertently became the founder of a new mode of living in common, Coenobitism.
Laurae and Coenobia
At Tabennae on the Nile, in Upper Egypt, Saint Pachomius laid the foundations for the coenobitical life by arranging everything in an organized manner. He built several monasteries, each with about 1,600 separate cells laid out in lines. These cells formed an encampment where the monks slept and performed some of their manual tasks. There were nearby large halls such as the church, refectory, kitchen, infirmary, and guest house for the monk's common needs. An enclosure protecting all these buildings gave the settlement the appearance of a walled village. This layout, known as the laurae (lanes), became popular throughout Israel.
As well as the "laurae", communities known as "caenobia" developed. These were monasteries where monks lived a common life together. The monks were not permitted to retire to the cells of a laurae before they had undergone a lengthy period of training. In time, this form of common life superseded that of the older laurae. These included Canterbury, Chester, Durham, Ely, Gloucester, Norwich, Peterborough, Rochester, Winchester, and Worcester. Shrewsbury Abbey in Shropshire was founded as a Benedictine monastery by the Normans in 1083.
Westminster Abbey
thumb|right|200px|Cloisters, Westminster AbbeyWestminster Abbey was founded in the tenth century by Saint Dunstan who established a community of Benedictine monks.
The cloister and buildings lie directly to the south of the church. Parallel to the nave, on the south side of the cloister, was a refectory, with a lavatory at the door. On the eastern side, there was a dormitory, raised on a vaulted substructure and communicating with the south transept and a chapter house (meeting room). A small cloister lay to the south-east of the large cloister. Beyond that was an infirmary with a table hall and a refectory for those who were able to leave their chambers. At the west entrance to the Abbey, there was a house and a small courtyard for the abbot.
St Mary's Abbey, York
In 1055, St Mary's Abbey, York was built in England's north by the Order of Saint Benedict. It followed the common plan. The entrance to the abbey was through a strong gate on the northern side. Close to the entrance was a chapel. This was for visitors arriving at the Abbey to make their devotions. Near the gate was the hospitium (guest hall). The buildings are completely ruined, but the walls of the nave and the cloisters are still visible on the grounds of the Yorkshire Museum.
The Abbey was surrounded by fortified walls on three sides. The River Ouse bordered the fourth side. The stone walls remain as an excellent example of English abbey walls.
Reforms at the Abbey of Cluny
thumb|right|250px|Abbey of Cluny in lights
The Abbey of Cluny was founded by William I, Duke of Aquitaine in 910 AD at Cluny, Saône-et-Loire, France. The Abbey was built in the Romanesque style. The Abbey was noted for its strict observance of the Rule of Saint Benedict. However, reforms resulted in many departures from this precedent. The Cluniac Reforms brought focus to the traditions of monastic life, encouraging art and the caring of the poor. The reforms quickly spread by the founding of new abbey complexes and by adoption of the reforms by existing abbeys. By the twelfth century, the Abbey of Cluny was the head of an order consisting of 314 monasteries.
The church at the Abbey was commenced in 1089 AD by Hugh of Cluny, the sixth abbot. It was finished and consecrated by Pope Innocent II around 1132 AD. The church was regarded as one of the wonders of the Middle Ages. At in length, it was the largest church in Christendom until the completion of St Peter's Basilica at Rome. The church consisted of five naves, a narthex (ante-church) which was added in 1220 AD, and several towers. Together with the conventual buildings, it covered an area of twenty-five acres.
In the Dechristianization of France during the French Revolution in 1790 AD, the Abbey church was bought by the town and almost entirely destroyed. It long maintained its rigid austerity, though in later years the abbey grew wealthier, and its members indulged in more frequent luxuries.
Just after 1140 AD, the Premonstratensians were brought to England. Their first settlement was at Newhouse Abbey, Lincolnshire, near the Humber tidal estuary. There were as many as thirty-five Premonstratensian abbeys in England. The head abbey in England was at Welbeck Abbey but the best preserved are Easby Abbey in Yorkshire, and Bayham Old Abbey in Kent.
The layout of Easby Abbey is irregular due to its position on the edge of a steep river bank. The cloister is duly placed on the south side of the church, and the chief buildings occupy their usual positions around it. However, the cloister garth (quadrangle), as at Chichester, is not rectangular, and thus, all the surrounding buildings are positioned in an awkward fashion. The church follows the plan adopted by the Austin canons in their northern abbeys, and has only one aisle to the north of the nave, while the choir is long, narrow and without an aisle. Each transept has an aisle to the east, forming three chapels.
The church at Bayham Old Abbey had no aisles in the nave or the choir. The latter terminated in a three-sided apse. The church is remarkable for its extreme narrowness in proportion to its length. While the building is long, it is not more than wide. Premonstratensian canons did not care to have congregations nor possessions. Therefore, they built their churches in the shape of a long room.
Cistercian abbeys
thumb|right|Cistercian Abbey of Sénanque
thumb|right|Cistercian Abbey of Sénanque
thumb|right| Jumièges Abbey, Normandy
The Cistercians, a Benedictine reform group, were established at Cîteaux in 1098 AD by Robert of Molesme, Abbot of Molesme, for the purpose of restoring, as far as possible, the literal observance of the Rule of Saint Benedict. La Ferté, Pontigny, Clairvaux, and Morimond were the first four abbeys to follow Cîteaux's example and others followed. The monks of Cîteaux created the well known vineyards of Clos-Vougeot and Romanée in Burgundy.
The Cistercian principle of rigid self-abnegation carried over to the design of the order's churches and buildings. The defining architectural characteristic of the Cistercian abbeys was extreme simplicity and plainness. Only a single, central tower was permitted, and that was usually very low. Unnecessary pinnacles and turrets were prohibited. The triforium was omitted. The windows were usually plain and undivided, and it was forbidden to decorate them with stained glass. All needless ornament was proscribed. The crosses were made of wood and the candlesticks of iron.
The same principle governed the choice of site for Cistercian abbeys in that a most dismal site might be improved by the building of an abbey. The Cistercian monasteries were founded in deep, well-watered valleys, always standing at a stream's edge. The building might extend over the water as is the case at Fountains Abbey. These valleys, now rich and productive, had a very different appearance when the brethren first chose them as their place of retreat. Wide swamps, deep morasses, tangled thickets, and wild, impassable forests were their prevailing features. Clara Vallis of St Bernard, now the "bright valley" was originally, the "Valley of Wormwood". It was an infamous den of robbers.
Copts
The plan of a Coptic Orthodox monastery, from Lenoir, shows a church of three aisles, with cellular apses, and two ranges of cells on either side of an oblong gallery.
See also
Fossanuova Abbey
Clairvaux Abbey
Cîteaux Abbey
Kirkstall Abbey
Loc-Dieu
Rievaulx Abbey
Strata Florida
Abbatial church of Notre-Dame de Mouzon
Gothic cathedrals and churches
List of abbeys and priories
Priory
References
Sources
Attribution
External links
Monastery and abbey index on sacred-destinations.com
Abbeys of Provence, France
Abbey Pages on historyfish.net - info on abbeys and monastic life, images from Photochrom collection | https://en.wikipedia.org/wiki/Abbey | 2025-04-05T18:25:37.585096 |
1316 | Annales school | The Annales school () is a group of historians associated with a style of historiography developed by French historians in the 20th century to stress long-term social history. It is named after its scholarly journal Annales. Histoire, Sciences Sociales, which remains the main source of scholarship, along with many books and monographs. The school has been influential in setting the agenda for historiography in France and numerous other countries, especially regarding the use of social scientific methods by historians, emphasizing social and economic rather than political or diplomatic themes.
The school deals primarily with late medieval and early modern Europe (before the French Revolution), with little interest in later topics. It has dominated French social history and heavily influenced historiography in Europe and Latin America. Prominent leaders include co-founders Lucien Febvre (1878–1956), Henri Hauser (1866–1946) and Marc Bloch (1886–1944). The second generation was led by Fernand Braudel (1902–1985) and included Georges Duby (1919–1996), Pierre Goubert (1915–2012), Robert Mandrou (1921–1984), Pierre Chaunu (1923–2009), Jacques Le Goff (1924–2014), and Ernest Labrousse (1895–1988). Institutionally it is based on the Annales journal, the SEVPEN publishing house, the (FMSH), and especially the 6th Section of the École pratique des hautes études, all based in Paris. A third generation was led by Emmanuel Le Roy Ladurie (1929–2023) and includes Jacques Revel, and Philippe Ariès (1914–1984), who joined the group in 1978. The third generation stressed history from the point of view of mentalities, or . The fourth generation of Annales historians, led by Roger Chartier (born 1945), clearly distanced itself from the approach, replaced by the cultural and linguistic turn, which emphasizes the social history of cultural practices.
The main scholarly outlet has been the journal ("Annals of Economic and Social History"), founded in 1929 by Lucien Febvre and Marc Bloch, which broke radically with traditional historiography by insisting on the importance of taking all levels of society into consideration and emphasized the collective nature of mentalities. Its contributors viewed events as less fundamental than the mental frameworks that shaped decisions and practices. However, informal successor as head of the school was Le Roy Ladurie. Multiple responses were attempted by the school. Scholars moved in multiple directions, covering in disconnected fashion the social, economic, and cultural history of different eras and different parts of the globe. By the time of the crisis the school was building a vast publishing and research network reaching across France, Europe, and the rest of the world. Influence spread out from Paris, but few new ideas came in. Much emphasis was given to quantitative data, seen as the key to unlocking all of social history. However, the Annales ignored the developments in quantitative studies underway in the U.S. and Britain, which reshaped economic, political, and demographic research. An attempt to require an Annales-written textbook for French schools was rejected by the government. By 1980 postmodern sensibilities undercut confidence in overarching metanarratives. As Jacques Revel notes, the success of the Annales school, especially its use of social structures as explanatory forces, contained the seeds of its own downfall, for there is "no longer any implicit consensus on which to base the unity of the social, identified with the real". The Annales school kept its infrastructure, but lost its .
The journal
The journal began in Strasbourg as ; it moved to Paris and kept the same name from 1929 to 1939. It was successively renamed (1939–1942, 1945), (1942–1944), (1946–1994), and (1994– ).
In 1962, Braudel and Gaston Berger used Ford Foundation money and government funds to create a new independent foundation, the (FMSH), which Braudel directed from 1970 until his death. In 1970, the 6th Section and the Annales relocated to the FMSH building. FMSH set up elaborate international networks to spread the Annales gospel across Europe and the world. In 2013, it began publication of an English language edition, with all the articles translated.
The scope of topics covered by the journal is vast and experimental—there is a search for total history and new approaches. The emphasis is on social history, and very long-term trends, often using quantification and paying special attention to geography and to the intellectual world view of common people, or "mentality" (). Little attention is paid to political, diplomatic, or military history, or to biographies of famous men. Instead the Annales focused attention on the synthesizing of historical patterns identified from social, economic, and cultural history, statistics, medical reports, family studies, and even psychoanalysis.
Origins
The Annales was founded and edited by Marc Bloch and Lucien Febvre in 1929, while they were teaching at the University of Strasbourg and later in Paris. These authors, the former a medieval historian and the latter an early modernist, quickly became associated with the distinctive Annales approach, which combined geography, history, and the sociological approaches of the (many members of which were their colleagues at Strasbourg) to produce an approach which rejected the predominant emphasis on politics, diplomacy and war of many 19th and early 20th-century historians as spearheaded by historians whom Febvre called Les Sorbonnistes. Instead, they pioneered an approach to a study of long-term historical structures () over events and political transformations. Geography, material culture, and what later Annalistes called , or the psychology of the epoch, are also characteristic areas of study. The goal of the Annales was to undo the work of the Sorbonnistes, to turn French historians away from the narrowly political and diplomatic toward the new vistas in social and economic history.
Co-founder Marc Bloch (1886–1944) was a quintessential modernist who studied at the elite École Normale Supérieure, and in Germany, serving as a professor at the University of Strasbourg until he was called to the Sorbonne in Paris in 1936 as professor of economic history. Bloch's interests were highly interdisciplinary, influenced by the geography of Paul Vidal de la Blache (1845–1918) and the sociology of Émile Durkheim (1858–1917). His own ideas, especially those expressed in his masterworks, French Rural History (, 1931) and Feudal Society, were incorporated by the second-generation Annalistes, led by Fernand Braudel.
Precepts
Georges Duby, a leader of the school, wrote that the history he taught:
relegated the sensational to the sidelines and was reluctant to give a simple accounting of events, but strove on the contrary to pose and solve problems and, neglecting surface disturbances, to observe the long and medium-term evolution of economy, society and civilisation.
The Annalistes, especially Lucien Febvre, advocated a , or , a complete study of a historic problem.
Postwar
Bloch was shot by the Gestapo during the German occupation of France in World War II for his active membership of the French Resistance, and Febvre carried on the Annales approach in the 1940s and 1950s. It was during this time that he mentored Braudel, who would become one of the best-known exponents of this school. Braudel's work came to define a "second" era of Annales historiography and was influential throughout the 1960s and 1970s, especially for his work on the Mediterranean region in the era of Philip II of Spain.
Braudel developed the idea, often associated with Annalistes, of different modes of historical time: (the quasi motionless history) of historical geography, the history of social, political and economic structures (), and the history of men and events, in the context of their structures.
While authors such as Emmanuel Le Roy Ladurie, Marc Ferro and Jacques Le Goff continue to carry the Annales banner, today the Annales approach has been less distinctive as more and more historians do work in cultural history, political history and economic history.
Bloch's (1924) looked at the long-standing folk belief that the king could cure scrofula by his thaumaturgic touch. The kings of France and England indeed regularly practiced the ritual. Bloch was not concerned with the effectiveness of the royal touch—he acted instead like an anthropologist in asking why people believed it and how it shaped relations between king and commoner. The book was highly influential in introducing comparative studies (in this case France and England), as well as long durations ("longue durée") studies spanning several centuries, even up to a thousand years, downplaying short-term events. Bloch's revolutionary charting of mentalities, or , resonated with scholars who were reading Freud and Proust. In the 1960s, Robert Mandrou and Georges Duby harmonized the concept of history with Fernand Braudel's structures of historical time and linked mentalities with changing social conditions. A flood of studies based on these approaches appeared during the 1970s and 1980s. By the 1990s, however, history had become interdisciplinary to the point of fragmentation, but still lacked a solid theoretical basis. While not explicitly rejecting history, younger historians increasingly turned to other approaches.
Braudel
Fernand Braudel became the leader of the second generation after 1945. He obtained funding from the Rockefeller Foundation in New York and founded the 6th Section of the Ecole Pratique des Hautes Etudes, which was devoted to the study of history and the social sciences. It became an independent degree-granting institution in 1975 under the name École des Hautes Études en Sciences Sociales (EHESS). Braudel's followers admired his use of the approach to stress slow, and often imperceptible effects of space, climate and technology on the actions of human beings in the past. The Annales historians, after living through two world wars and incredible political upheavals in France, were deeply uncomfortable with the notion that multiple ruptures and discontinuities created history. They preferred to stress inertia and the longue durée. Special attention was paid to geography, climate, and demography as long-term factors. They believed the continuities of the deepest structures were central to history, beside which upheavals in institutions or the superstructure of social life were of little significance, for history lies beyond the reach of conscious actors, especially the will of revolutionaries. They rejected the Marxist idea that history should be used as a tool to foment and foster revolutions. In turn the Marxists called them conservatives.
Braudel's first book, (1949) (The Mediterranean and the Mediterranean World in the Age of Philip II) was his most influential. This vast panoramic view used ideas from other social sciences, employed effectively the technique of the longue durée, and downplayed the importance of specific events and individuals. It stressed geography but not . It was widely admired, but most historians did not try to replicate it and instead focused on their specialized monographs. The book dramatically raised the worldwide profile of the Annales School.
In 1951, historian Bernard Bailyn published a critique of , which he framed as dichotomizing politics and society.
Regionalism
Before Annales, French history supposedly happened in Paris. Febvre broke decisively with this paradigm in 1912, with his sweeping doctoral thesis on . The geography and social structure of this region overwhelmed and shaped the king's policies.
The Annales historians did not try to replicate Braudel's vast geographical scope in . Instead they focused on regions in France over long stretches of time. The most important was the study of The Peasants of Languedoc by Braudel's star pupil and successor Emmanuel Le Roy Ladurie. The regionalist tradition flourished especially in the 1960s and 1970s in the work of Pierre Goubert in 1960 on Beauvais and René Baehrel on Basse-Provence. Annales historians in the 1970s and 1980s turned to urban regions, including Pierre Deyon (Amiens), Maurice Garden (Lyon), Jean-Pierre Bardet (Rouen), Georges Freche (Toulouse), Gregory Hanlon (Agen and Layrac), and Jean-Claude Perrot (Caen). By the 1970s the shift was underway from the earlier economic history to cultural history and the history of mentalities.
Impact outside France
The Annales school systematically reached out to create an impact on other countries. Its success varied widely. The Annales approach was especially well received in Italy and Poland. Franciszek Bujak (1875–1953) and Jan Rutkowski (1886–1949), the founders of modern economic history in Poland and of the journal (1931– ), were attracted to the innovations of the Annales school. Rutkowski was in contact with Bloch and others, and published in the Annales. After the Communists took control in the 1940s Polish scholars were safer working on the Middle Ages and the early modern era rather than contemporary history. After the "Polish October" of 1956 the Sixth Section in Paris welcomed Polish historians and exchanges between the circle of the Annales and Polish scholars continued until the early 1980s. The reciprocal influence between the French school and Polish historiography was particularly evident in studies on the Middle Ages and the early modern era studied by Braudel.
In South America the Annales approach became popular. From the 1950s Federico Brito Figueroa was the founder of a new Venezuelan historiography based largely on the ideas of the Annales School. Brito Figueroa carried his conception of the field to all levels of university study, emphasizing a systematic and scientific approach to history and placing it squarely in the social sciences. Spanish historiography was influenced by the "Annales School" starting in 1950 with Jaume Vicens Vives (1910–1960). In Mexico, exiled Republican intellectuals extended the Annales approach, particularly from the Center for Historical Studies of El Colegio de México, the leading graduate studies institution of Latin America.
British historians, apart from a few Marxists, were generally hostile. Academic historians decidedly sided with Geoffrey Elton's The Practice of History against Edward Hallett Carr's What Is History? One of the few British historians who were sympathetic towards the work of the Annales school was Hugh Trevor-Roper. Among American academics, founding figure in American history of technology Lynn White Jr. dedicated his seminal and controversial book Medieval Technology and Social Change to Annales founder Marc Bloch. Both the American and the Annales historians picked up important family reconstitution techniques from French demographer Louis Henry.
The Wageningen school centered on Bernard Slicher van Bath was viewed internationally as a Dutch counterpart of the Annales school, although Slicher van Bath himself vehemently rejected the idea of a quantitative "school" of historiography.
The Annales school has been cited as a key influence in the development of World Systems Theory by sociologist Immanuel Wallerstein.
Current
The current leader is Roger Chartier, who is Directeur d'Études at the École des Hautes Études en Sciences Sociales in Paris, Professeur in the Collège de France, and Annenberg Visiting professor of history at the University of Pennsylvania. He frequently lectures and teaches in the United States, Spain, Mexico, Brazil and Argentina. His work in Early Modern European History focuses on the history of education, the history of the book and the history of reading. Recently, he has been concerned with the relationship between written culture as a whole and literature (particularly theatrical plays) for France, England and Spain. His work in this specific field (based on the criss-crossing between literary criticism, bibliography, and sociocultural history) is connected to broader historiographical and methodological interests which deal with the relation between history and other disciplines: philosophy, sociology, anthropology.
Chartier's typical undergraduate course focuses upon the making, remaking, dissemination, and reading of texts in early modern Europe and America. Under the heading of "practices", his class considers how readers read and marked up their books, forms of note-taking, and the interrelation between reading and writing from copying and translating to composing new texts. Under the heading of "materials", his class examines the relations between different kinds of writing surfaces (including stone, wax, parchment, paper, walls, textiles, the body, and the heart), writing implements (including styluses, pens, pencils, needles, and brushes), and material forms (including scrolls, erasable tables, codices, broadsides and printed forms and books). Under the heading of "places", his class explores where texts were made, read, and listened to, including monasteries, schools and universities, offices of the state, the shops of merchants and booksellers, printing houses, theaters, libraries, studies, and closets. The texts for his course include the Bible, translations of Ovid, Hamlet, Don Quixote, Montaigne's essays, Pepys's diary, Richardson's Pamela, and Franklin's autobiography.
See also
École des hautes études en sciences sociales
Historiography
Rural history
Nouvelle histoire
Structuralism
Social history
David Nirenberg § Anti-Judaism
References
Further reading
About the School
Aurell i Cardona, Jaume. "Autobiographical Texts as Historiographical Sources: Rereading Fernand Braudel and Annie Kriegel", Biography, Volume 29, Number 3, Summer 2006, pp. 425–445 in Project Muse
Bintliff, John L. (ed.), The Annales School and archaeology, Leicester : Leicester University Press (1991),
Burguière, André. L'École des Annales: Une histoire intellectuelle. Paris: Odile Jacob. 2006. Pp. 366. (English edition) Annales School: An Intellectual History. Ithaca NY: Cornell University Press. 2009. Pp. 309
Burke, Peter. The French Historical Revolution: The Annales School 1929–89, (1990), the major study in English excerpt and text search
Carrard, Philippe. "Figuring France: The Numbers and Tropes of Fernand Braudel", Diacritics, Vol. 18, No. 3 (Autumn, 1988), pp. 2–19 in JSTOR
Carrard, Philippe. Poetics of the New History: French Historical Discourse from Braudel to Chartier, (1992)
Clark, Stuart, ed. The Annales School: Critical Assessments (4 vol, 1999)
Crifò, Giuliano. "Scuola delle Annales e storia del diritto: la situazione italiana", Mélanges de l'École française de Rome, antiquité, vol. No. 93, (1981), pp. 483-494 in Persée
Dewald, Jonathan. Lost Worlds: The Emergence of French Social History, 1815–1970 (2006) 250pp excerpt and text search
Dosse, Francois. New History in France: The Triumph of the Annales, (1994, first French edition, 1987) excerpt and text search
Fink, Carole. Marc Bloch: A Life in History, (1989) excerpt and text search
Forster, Robert. "Achievements of the Annales School", The Journal of Economic History, Vol. 38, No. 1, (Mar., 1978), pp. 58–76 in JSTOR
Friedman, Susan W. Marc Bloch, Sociology and Geography: Encountering Changing Disciplines (1996) excerpt and text search
Harris, Olivia. "Braudel: Historical Time and the Horror of Discontinuity", History Workshop Journal, Issue 57, Spring 2004, pp. 161–174 in Project Muse
Herubel, Jean-Pierre V. M. "Historiography's Horizon and Imperative: Febvrian Annales Legacy and Library History as Cultural History", Libraries & Culture, 39#3 (2004), pp. 293–312 in Project Muse
Hexter, J. H. "Fernand Braudel and the Monde Braudellien", Journal of Modern History, 1972, vol. 44, pp. 480–539 in JSTOR
Hufton, Olwen. "Fernand Braudel", Past and Present, No. 112. (Aug., 1986), pp. 208–213. in JSTOR
Hunt, Lynn. "French History in the Last Twenty Years: the Rise and Fall of the Annales Paradigm". Journal of Contemporary History 1986 21(2): 209–224. Fulltext: in Jstor
Huppert, George. "Lucien Febvre and Marc Bloch: The Creation of the Annales". The French Review 55#4 (1982), pp. 510–513 in JSTOR
Iggers, G.G. Historiography in the Twentieth Century: From Scientific Objectivity to the Postmodern Challenge (1997), ch.5
Leroux, Robert, Histoire et sociologie en France: de l'histoire-science à la sociologie durkheimienne, Paris, Presses universitaires de France, 1998.
Long, Pamela O. "The Annales and the History of Technology", Technology and Culture, 46#1 (2005), pp. 177–186 in Project Muse
Megill, Allan. "Coherence and Incoherence in Historical Studies: From the Annales School to the New Cultural History", New Literary History, 35#2 (2004), pp. 207–231 in Project Muse
Rubin, Miri. The Work of Jacques Le Goff and the Challenges of Medieval History (1997) 272 pages excerpts and text search
Moon, David. "Fernand Braudel and the Annales School" online edition
Poirrier, Philippe. Aborder l'histoire, Paris, Seuil, 2000.
Roberts, Michael. "The Annales school and historical writing". in Peter Lambert and Phillipp Schofield, eds. Making History: An Introduction to the History and Practices of a Discipline. (2004), pp 78–92 online edition
Schilling, Derek. "Everyday Life and the Challenge to History in Postwar France: Braudel, Lefebvre, Certeau", Diacritics, Volume 33, Number 1, Spring 2003, pp. 23–40 in Project Muse
Steiner, Frederick. "Material Life: Human Ecology and the Annales School", Landscape Architecture Volume 76, Number 1, pp. 69–75.
Stirling, Katherine. "Rereading Marc Bloch: the Life and Works of a Visionary Modernist". History Compass 2007 5#2: 525–538. in History Compass
Stoianovich, Traian. French Historical Method: The Annales Paradigm, (1976)
Trevor-Roper, H. R. "Fernand Braudel, the Annales, and the Mediterranean", The Journal of Modern History, 44#4 (1972), pp. 468–479 in JSTOR
Major books and essays from the school
Ariès, Philippe et al. eds, A History of Private Life (5 vols. 1987–94)
Bloch, Marc. Les Rois Thaumaturges (1924), translated as The Royal Touch: Monarchy and Miracles in France and England (1990)
Bloch, Marc. Feudal Society: Vol 1: The Growth and Ties of Dependence (1989); Feudal Society: Vol 2: Social Classes and Political Organisation(1989) excerpt and text search
Bloch, Marc. French Rural History: An Essay on Its Basic Characteristics (1972)
Braudel, Fernand. La Méditerranée et le Monde Méditerranéen à l'Epoque de Philippe II (1949) (translated as The Mediterranean and the Mediterranean World in the Age of Philip II excerpt and text search vol. 1)
Braudel, Fernand. Civilisation Matérielle, Economie et Capitalisme XVe–XVIIIe Siècle (3 vol. 1979) (translated as Capitalism and Material Life; excerpt and text search vol. 1; excerpt and text search vol 3)
Burguière, André, and Jacques Revel. Histoire de la France (1989), textbook
Chartier, Roger. Inscription and Erasure: Literature and Written Culture from the Eleventh to the Eighteenth Century (2007) excerpt and text search
Earle, P., ed. Essays in European Economic History, 1500–1800, (1974), translated articles from Annales
Ferro, Marc, ed. Social Historians in Contemporary France: Essays from "Annales", (1972)
Goubert, Pierre. The French Peasantry in the Seventeenth Century (1986) excerpt and text search
Goubert, Pierre. The Ancien Régime, 1600–1750 (1974)
Le Roy Ladurie, Emmanuel. Montaillou: Cathars and Catholics in a French Village, 1294–1324 (1978) excerpt and text search
Le Roy Ladurie, Emmanuel. The Peasants of Languedoc (1966; English translation 1974) search
Hunt, Lynn, and Jacques Revel (eds). Histories: French Constructions of the Past. The New Press. 1994. (A collection of 64 essays with many pieces from the Annales).
Historiography from the school
Bloch, Marc. Méthodologie Historique (1988); originally conceived in 1906 but not published until 1988; revised in 1996
Bloch, Marc. Apologie pour l'histoire ou Métier d'historien (1949), translated as The Historian's Craft (1953) excerpt of 1992 introduction by Peter Burke (historian), and text search
Braudel, Fernand. Ecrits sur l'histoire (1969), reprinted essays; translated as On History, (1980) excerpt and text search
includes Braudel, Fernand. "Histoire et Science Sociale: La Longue Durée" (1958) Annales E.S.C., 13:4 October–December 1958, 725–753
Braudel, Fernand. "Personal Testimony". Journal of Modern History 1972 44(4): 448–467. in JSTOR
Burke, Peter, ed. A New Kind of History From the Writings of Lucien Febvre, (1973)
Duby, Georges. History Continues, (1991, translated 1994)
Febvre, Lucien. A New Kind of History: From the Writings of Lucien Febvre ed. by Peter Burke (1973) translated articles from Annales
Le Roy Ladurie, Emmanuel. The Mind and Method of the Historian (1981)
Le Roy Ladurie, Emmanuel. The Territory of the Historian (1979)
Le Goff, Jacques and Paul Archambault. "An Interview with Jacques Le Goff". Historical Reflections 1995 21(1): 155–185.
Le Goff, Jacques, History and Memory (1996) excerpt and text search
Revel, Jacques, and Lynn Hunt, eds. Histories: French Constructions of the Past, (1995). 654pp
Revel, Jacques, ed. Political Uses of the Past: The Recent Mediterranean Experiences (2002) excerpt and text search
Vovelle, M. Ideologies and Mentalities (1990)
External links
Free access to all issues of the Annales from 1929 to 2002.
Recent issues of Annales: Histoire, Sciences Sociales (2003–present).
Professor David Moon, "Fernand Braudel and the Annales School" (lecture 2005)
Biography of Fernand Braudel.
Detailed bibliographies of major historians.
Histoire et mesure (1986-200 ), articles on quantitative history. Full text of articles.
Category:20th century
Category:Historical schools
Category:Historiography of France
Category:Historiography
Category:Interdisciplinary historical research | https://en.wikipedia.org/wiki/Annales_school | 2025-04-05T18:25:37.625606 |
1317 | Antimatter | photograph of the first observed positron, 2 August 1932.]]
In modern physics, antimatter is defined as matter composed of the antiparticles (or "partners") of the corresponding particles in "ordinary" matter, and can be thought of as matter with reversed charge, parity, and time, known as CPT reversal. Antimatter occurs in natural processes like cosmic ray collisions and some types of radioactive decay, but only a tiny fraction of these have successfully been bound together in experiments to form antiatoms. Minuscule numbers of antiparticles can be generated at particle accelerators, but total artificial production has been only a few nanograms. No macroscopic amount of antimatter has ever been assembled due to the extreme cost and difficulty of production and handling. Nonetheless, antimatter is an essential component of widely available applications related to beta decay, such as positron emission tomography, radiation therapy, and industrial imaging.
In theory, a particle and its antiparticle (for example, a proton and an antiproton) have the same mass, but opposite electric charge, and other differences in quantum numbers.
A collision between any particle and its anti-particle partner leads to their mutual annihilation, giving rise to various proportions of intense photons (gamma rays), neutrinos, and sometimes less-massive particleantiparticle pairs. The majority of the total energy of annihilation emerges in the form of ionizing radiation. If surrounding matter is present, the energy content of this radiation will be absorbed and converted into other forms of energy, such as heat or light. The amount of energy released is usually proportional to the total mass of the collided matter and antimatter, in accordance with the notable mass–energy equivalence equation, mc<sup>2</sup>}}}}.
Antiparticles bind with each other to form antimatter, just as ordinary particles bind to form normal matter. For example, a positron (the antiparticle of the electron) and an antiproton (the antiparticle of the proton) can form an antihydrogen atom. The nuclei of antihelium have been artificially produced, albeit with difficulty, and are the most complex anti-nuclei so far observed. Physical principles indicate that complex antimatter atomic nuclei are possible, as well as anti-atoms corresponding to the known chemical elements.
There is strong evidence that the observable universe is composed almost entirely of ordinary matter, as opposed to an equal mixture of matter and antimatter. This asymmetry of matter and antimatter in the visible universe is one of the great unsolved problems in physics. The process by which this inequality between matter and antimatter particles is hypothesised to have occurred is called baryogenesis.Definitions
Antimatter particles carry the same charge as matter particles, but of opposite sign. That is, an antiproton is negatively charged and an antielectron (positron) is positively charged. Neutrons do not carry a net charge, but their constituent quarks do. Protons and neutrons have a baryon number of +1, while antiprotons and antineutrons have a baryon number of –1. Similarly, electrons have a lepton number of +1, while that of positrons is –1. When a particle and its corresponding antiparticle collide, they are both converted into energy.
The French term for "made of or pertaining to antimatter", , led to the initialism "C.T." and the science fiction term , as used in such novels as Seetee Ship.
Conceptual history
The idea of negative matter appears in past theories of matter that have now been abandoned. Using the once popular vortex theory of gravity, the possibility of matter with negative gravity was discussed by William Hicks in the 1880s. Between the 1880s and the 1890s, Karl Pearson proposed the existence of "squirts" and sinks of the flow of aether. The squirts represented normal matter and the sinks represented negative matter. Pearson's theory required a fourth dimension for the aether to flow from and into.
The term antimatter was first used by Arthur Schuster in two rather whimsical letters to Nature in 1898, in which he coined the term. He hypothesized antiatoms, as well as whole antimatter solar systems, and discussed the possibility of matter and antimatter annihilating each other. Schuster's ideas were not a serious theoretical proposal, merely speculation, and like the previous ideas, differed from the modern concept of antimatter in that it possessed negative gravity.
The modern theory of antimatter began in 1928, with a paper by Paul Dirac. Dirac realised that his relativistic version of the Schrödinger wave equation for electrons predicted the possibility of antielectrons. Although Dirac had laid the groundwork for the existence of these “antielectrons” he initially failed to pick up on the implications contained within his own equation. He freely gave the credit for that insight to J. Robert Oppenheimer, whose seminal paper “On the Theory of Electrons and Protons” (Feb 14th 1930) drew on Dirac's equation and argued for the existence of a positively charged electron (a positron), which as a counterpart to the electron should have the same mass as the electron itself. This meant that it could not be, as Dirac had in fact suggested, a proton. Dirac further postulated the existence of antimatter in a 1931 paper which referred to the positron as an "anti-electron". These were discovered by Carl D. Anderson in 1932 and named positrons from "positive electron". Although Dirac did not himself use the term antimatter, its use follows on naturally enough from antielectrons, antiprotons, etc. A complete periodic table of antimatter was envisaged by Charles Janet in 1929.
The Feynman–Stueckelberg interpretation states that antimatter and antiparticles behave exactly identical to regular particles, but traveling backward in time. This concept is nowadays used in modern particle physics, in Feynman diagrams.
Notation
One way to denote an antiparticle is by adding a bar over the particle's symbol. For example, the proton and antiproton are denoted as and , respectively. The same rule applies if one were to address a particle by its constituent components. A proton is made up of quarks, so an antiproton must therefore be formed from antiquarks. Another convention is to distinguish particles by positive and negative electric charge. Thus, the electron and positron are denoted simply as and respectively. To prevent confusion, however, the two conventions are never mixed.
Properties
There is no difference in the gravitational behavior of matter and antimatter. In other words, antimatter falls down when dropped, not up. This was confirmed with the thin, very cold gas of thousands of antihydrogen atoms that were confined in a vertical shaft surrounded by superconducting electromagnetic coils. These can create a magnetic bottle to keep the antimatter from coming into contact with matter and annihilating. The researchers then gradually weakened the magnetic fields and detected the antiatoms using two sensors as they escaped and annihilated. Most of the anti-atoms came out of the bottom opening, and only one-quarter out of the top.
There are compelling theoretical reasons to believe that, aside from the fact that antiparticles have different signs on all charges (such as electric and baryon charges), matter and antimatter have exactly the same properties. This means a particle and its corresponding antiparticle must have identical masses and decay lifetimes (if unstable). It also implies that, for example, a star made up of antimatter (an "antistar") will shine just like an ordinary star. This idea was tested experimentally in 2016 by the ALPHA experiment, which measured the transition between the two lowest energy states of antihydrogen. The results, which are identical to that of hydrogen, confirmed the validity of quantum mechanics for antimatter.
Origin and asymmetry
Most things observable from the Earth seem to be made of matter rather than antimatter. If antimatter-dominated regions of space existed, the gamma rays produced in annihilation reactions along the boundary between matter and antimatter regions would be detectable.
Antiparticles are created everywhere in the universe where high-energy particle collisions take place. High-energy cosmic rays striking Earth's atmosphere (or any other matter in the Solar System) produce minute quantities of antiparticles in the resulting particle jets, which are immediately annihilated by contact with nearby matter. They may similarly be produced in regions like the center of the Milky Way and other galaxies, where very energetic celestial events occur (principally the interaction of relativistic jets with the interstellar medium). The presence of the resulting antimatter is detectable by the two gamma rays produced every time positrons annihilate with nearby matter. The frequency and wavelength of the gamma rays indicate that each carries 511 keV of energy (that is, the rest mass of an electron multiplied by c<sup>2</sup>).
Observations by the European Space Agency's INTEGRAL satellite may explain the origin of a giant antimatter cloud surrounding the Galactic Center. The observations show that the cloud is asymmetrical and matches the pattern of X-ray binaries (binary star systems containing black holes or neutron stars), mostly on one side of the Galactic Center. While the mechanism is not fully understood, it is likely to involve the production of electron–positron pairs, as ordinary matter gains kinetic energy while falling into a stellar remnant.
Antimatter may exist in relatively large amounts in far-away galaxies due to cosmic inflation in the primordial time of the universe. Antimatter galaxies, if they exist, are expected to have the same chemistry and absorption and emission spectra as normal-matter galaxies, and their astronomical objects would be observationally identical, making them difficult to distinguish. NASA is trying to determine if such galaxies exist by looking for X-ray and gamma ray signatures of annihilation events in colliding superclusters.
In October 2017, scientists working on the BASE experiment at CERN reported a measurement of the antiproton magnetic moment to a precision of 1.5 parts per billion. It is consistent with the most precise measurement of the proton magnetic moment (also made by BASE in 2014), which supports the hypothesis of CPT symmetry. This measurement represents the first time that a property of antimatter is known more precisely than the equivalent property in matter.
Antimatter quantum interferometry has been first demonstrated in 2018 in the Positron Laboratory (L-NESS) of Rafael Ferragut<!--Q53261781--> in Como (Italy), by a group led by Marco Giammarchi.
Natural production
Positrons are produced naturally in β<sup>+</sup> decays of naturally occurring radioactive isotopes (for example, potassium-40) and in interactions of gamma quanta (emitted by radioactive nuclei) with matter. Antineutrinos are another kind of antiparticle created by natural radioactivity (β<sup>−</sup> decay). Many different kinds of antiparticles are also produced by (and contained in) cosmic rays. In January 2011, research by the American Astronomical Society discovered antimatter (positrons) originating above thunderstorm clouds; positrons are produced in terrestrial gamma ray flashes created by electrons accelerated by strong electric fields in the clouds. Antiprotons have also been found to exist in the Van Allen Belts around the Earth by the PAMELA module.
Antiparticles are also produced in any environment with a sufficiently high temperature (mean particle energy greater than the pair production threshold). It is hypothesized that during the period of baryogenesis, when the universe was extremely hot and dense, matter and antimatter were continually produced and annihilated. The presence of remaining matter, and absence of detectable remaining antimatter, is called baryon asymmetry. The exact mechanism that produced this asymmetry during baryogenesis remains an unsolved problem. One of the necessary conditions for this asymmetry is the violation of CP symmetry, which has been experimentally observed in the weak interaction.
Recent observations indicate black holes and neutron stars produce vast amounts of positron-electron plasma via the jets.Observation in cosmic rays
Satellite experiments have found evidence of positrons and a few antiprotons in primary cosmic rays, amounting to less than 1% of the particles in primary cosmic rays. This antimatter cannot all have been created in the Big Bang, but is instead attributed to have been produced by cyclic processes at high energies. For instance, electron-positron pairs may be formed in pulsars, as a magnetized neutron star rotation cycle shears electron-positron pairs from the star surface. Therein the antimatter forms a wind that crashes upon the ejecta of the progenitor supernovae. This weathering takes place as "the cold, magnetized relativistic wind launched by the star hits the non-relativistically expanding ejecta, a shock wave system forms in the impact: the outer one propagates in the ejecta, while a reverse shock propagates back towards the star." The former ejection of matter in the outer shock wave and the latter production of antimatter in the reverse shock wave are steps in a space weather cycle.
Preliminary results from the presently operating Alpha Magnetic Spectrometer (AMS-02) on board the International Space Station show that positrons in the cosmic rays arrive with no directionality, and with energies that range from 10 GeV to 250 GeV. In September, 2014, new results with almost twice as much data were presented in a talk at CERN and published in Physical Review Letters. A new measurement of positron fraction up to 500 GeV was reported, showing that positron fraction peaks at a maximum of about 16% of total electron+positron events, around an energy of 275 ± 32 GeV. At higher energies, up to 500 GeV, the ratio of positrons to electrons begins to fall again. The absolute flux of positrons also begins to fall before 500 GeV, but peaks at energies far higher than electron energies, which peak about 10 GeV. These results on interpretation have been suggested to be due to positron production in annihilation events of massive dark matter particles.
Cosmic ray antiprotons also have a much higher energy than their normal-matter counterparts (protons). They arrive at Earth with a characteristic energy maximum of 2 GeV, indicating their production in a fundamentally different process from cosmic ray protons, which on average have only one-sixth of the energy.
There is an ongoing search for larger antimatter nuclei, such as antihelium nuclei (that is, anti-alpha particles), in cosmic rays. The detection of natural antihelium could imply the existence of large antimatter structures such as an antistar. A prototype of the AMS-02 designated AMS-01, was flown into space aboard the on STS-91 in June 1998. By not detecting any antihelium at all, the AMS-01 established an upper limit of 1.1×10<sup>−6</sup> for the antihelium to helium flux ratio. AMS-02 revealed in December 2016 that it had discovered a few signals consistent with antihelium nuclei amidst several billion helium nuclei. The result remains to be verified, and , the team is trying to rule out contamination.Artificial productionPositrons
Positrons were reported in November 2008 to have been generated by Lawrence Livermore National Laboratory in large numbers. A laser drove electrons through a gold target's nuclei, which caused the incoming electrons to emit energy quanta that decayed into both matter and antimatter. Positrons were detected at a higher rate and in greater density than ever previously detected in a laboratory. Previous experiments made smaller quantities of positrons using lasers and paper-thin targets; newer simulations showed that short bursts of ultra-intense lasers and millimeter-thick gold are a far more effective source.
In 2023, the production of the first electron-positron beam-plasma was reported by a collaboration led by researchers at University of Oxford working with the High-Radiation to Materials (HRMT) facility at CERN. The beam demonstrated the highest positron yield achieved so far in a laboratory setting. The experiment employed the 440 GeV proton beam, with <math>3\times 10^{11}</math> protons, from the Super Proton Synchrotron, and irradiated a particle converter composed of carbon and tantalum. This yielded a total <math>1.5\times 10^{13}</math> electron-positron pairs via a particle shower process. The produced pair beams have a volume that fills multiple Debye spheres and are thus able to sustain collective plasma oscillations. An antiproton consists of two up antiquarks and one down antiquark (). The properties of the antiproton that have been measured all match the corresponding properties of the proton, with the exception of the antiproton having opposite electric charge and magnetic moment from the proton. Shortly afterwards, in 1956, the antineutron was discovered in proton–proton collisions at the Bevatron (Lawrence Berkeley National Laboratory) by Bruce Cork and colleagues.
In addition to antibaryons, anti-nuclei consisting of multiple bound antiprotons and antineutrons have been created. These are typically produced at energies far too high to form antimatter atoms (with bound positrons in place of electrons). In 1965, a group of researchers led by Antonino Zichichi reported production of nuclei of antideuterium at the Proton Synchrotron at CERN. At roughly the same time, observations of antideuterium nuclei were reported by a group of American physicists at the Alternating Gradient Synchrotron at Brookhaven National Laboratory.Antihydrogen atoms
<!-- Should antihelium be folded into this section? I haven't checked to see whether they'd created antihelium nuclei or true antihelium atoms with bound positrons. -->
In 1995, CERN announced that it had successfully brought into existence nine hot antihydrogen atoms by implementing the SLAC/Fermilab concept during the PS210 experiment. The experiment was performed using the Low Energy Antiproton Ring (LEAR), and was led by Walter Oelert and Mario Macri. Fermilab soon confirmed the CERN findings by producing approximately 100 antihydrogen atoms at their facilities. The antihydrogen atoms created during PS210 and subsequent experiments (at both CERN and Fermilab) were extremely energetic and were not well suited to study. To resolve this hurdle, and to gain a better understanding of antihydrogen, two collaborations were formed in the late 1990s, namely, ATHENA and ATRAP.
In 1999, CERN activated the Antiproton Decelerator, a device capable of decelerating antiprotons from to – still too "hot" to produce study-effective antihydrogen, but a huge leap forward. In late 2002 the ATHENA project announced that they had created the world's first "cold" antihydrogen. The ATRAP project released similar results very shortly thereafter. The antiprotons used in these experiments were cooled by decelerating them with the Antiproton Decelerator, passing them through a thin sheet of foil, and finally capturing them in a Penning–Malmberg trap. The overall cooling process is workable, but highly inefficient; approximately 25 million antiprotons leave the Antiproton Decelerator and roughly 25,000 make it to the Penning–Malmberg trap, which is about or 0.1% of the original amount.
The antiprotons are still hot when initially trapped. To cool them further, they are mixed into an electron plasma. The electrons in this plasma cool via cyclotron radiation, and then sympathetically cool the antiprotons via Coulomb collisions. Eventually, the electrons are removed by the application of short-duration electric fields, leaving the antiprotons with energies less than . While the antiprotons are being cooled in the first trap, a small cloud of positrons is captured from radioactive sodium in a Surko-style positron accumulator. This cloud is then recaptured in a second trap near the antiprotons. Manipulations of the trap electrodes then tip the antiprotons into the positron plasma, where some combine with antiprotons to form antihydrogen. This neutral antihydrogen is unaffected by the electric and magnetic fields used to trap the charged positrons and antiprotons, and within a few microseconds the antihydrogen hits the trap walls, where it annihilates. Some hundreds of millions of antihydrogen atoms have been made in this fashion.
In 2005, ATHENA disbanded and some of the former members (along with others) formed the ALPHA Collaboration, which is also based at CERN. The ultimate goal of this endeavour is to test CPT symmetry through comparison of the atomic spectra of hydrogen and antihydrogen (see hydrogen spectral series).
Most of the sought-after high-precision tests of the properties of antihydrogen could only be performed if the antihydrogen were trapped, that is, held in place for a relatively long time. While antihydrogen atoms are electrically neutral, the spins of their component particles produce a magnetic moment. These magnetic moments can interact with an inhomogeneous magnetic field; some of the antihydrogen atoms can be attracted to a magnetic minimum. Such a minimum can be created by a combination of mirror and multipole fields. Antihydrogen can be trapped in such a magnetic minimum (minimum-B) trap; in November 2010, the ALPHA collaboration announced that they had so trapped 38 antihydrogen atoms for about a sixth of a second. This was the first time that neutral antimatter had been trapped.
On 26 April 2011, ALPHA announced that they had trapped 309 antihydrogen atoms, some for as long as 1,000 seconds (about 17 minutes). This was longer than neutral antimatter had ever been trapped before. ALPHA has used these trapped atoms to initiate research into the spectral properties of antihydrogen.
In 2016, a new antiproton decelerator and cooler called ELENA (Extra Low ENergy Antiproton decelerator) was built. It takes the antiprotons from the antiproton decelerator and cools them to 90 keV, which is "cold" enough to study. This machine works by using high energy and accelerating the particles within the chamber. More than one hundred antiprotons can be captured per second, a huge improvement, but it would still take several thousand years to make a nanogram of antimatter.
The biggest limiting factor in the large-scale production of antimatter is the availability of antiprotons. Recent data released by CERN states that, when fully operational, their facilities are capable of producing ten million antiprotons per minute. Assuming a 100% conversion of antiprotons to antihydrogen, it would take 100 billion years to produce 1 gram or 1 mole of antihydrogen (approximately atoms of anti-hydrogen). However, CERN only produces 1% of the anti-matter Fermilab does, and neither are designed to produce anti-matter. According to Gerald Jackson, using technology already in use today we are capable of producing and capturing 20 grams of anti-matter particles per year at a yearly cost of 670 million dollars per facility.AntiheliumAntihelium-3 nuclei () were first observed in the 1970s in proton–nucleus collision experiments at the Institute for High Energy Physics by Y. Prockoshkin's group (Protvino near Moscow, USSR) and later created in nucleus–nucleus collision experiments. Nucleus–nucleus collisions produce antinuclei through the coalescence of antiprotons and antineutrons created in these reactions. In 2011, the STAR detector reported the observation of artificially created antihelium-4 nuclei (anti-alpha particles) () from such collisions.
The Alpha Magnetic Spectrometer on the International Space Station has, as of 2021, recorded eight events that seem to indicate the detection of antihelium-3.Preservation<!--Antimatter trap!-->
Antimatter cannot be stored in a container made of ordinary matter because antimatter reacts with any matter it touches, annihilating itself and an equal amount of the container. Antimatter in the form of charged particles can be contained by a combination of electric and magnetic fields, in a device called a Penning trap. This device cannot, however, contain antimatter that consists of uncharged particles, for which atomic traps are used. In particular, such a trap may use the dipole moment (electric or magnetic) of the trapped particles. At high vacuum, the matter or antimatter particles can be trapped and cooled with slightly off-resonant laser radiation using a magneto-optical trap or magnetic trap. Small particles can also be suspended with optical tweezers, using a highly focused laser beam.
In 2011, CERN scientists were able to preserve antihydrogen for approximately 17 minutes. The record for storing antiparticles is currently held by the TRAP experiment at CERN: antiprotons were kept in a Penning trap for 405 days. A proposal was made in 2018 to develop containment technology advanced enough to contain a billion anti-protons in a portable device to be driven to another lab for further experimentation.CostScientists claim that antimatter is the costliest material to make. (equivalent to $25 billion per gram); in 1999, NASA gave a figure of $62.5 trillion per gram of antihydrogen. This is because production is difficult (only very few antiprotons are produced in reactions in particle accelerators) and because there is higher demand for other uses of particle accelerators. According to CERN, it has cost a few hundred million Swiss francs to produce about 1 billionth of a gram (the amount used so far for particle/antiparticle collisions). In comparison, to produce the first atomic weapon, the cost of the Manhattan Project was estimated at $23 billion with inflation during 2007.
Several studies funded by NASA Innovative Advanced Concepts are exploring whether it might be possible to use magnetic scoops to collect the antimatter that occurs naturally in the Van Allen belt of the Earth, and ultimately the belts of gas giants like Jupiter, ideally at a lower cost per gram.
Uses
Medical
Matter–antimatter reactions have practical applications in medical imaging, such as positron emission tomography (PET). In positive beta decay, a nuclide loses surplus positive charge by emitting a positron (in the same event, a proton becomes a neutron, and a neutrino is also emitted). Nuclides with surplus positive charge are easily made in a cyclotron and are widely generated for medical use. Antiprotons have also been shown within laboratory experiments to have the potential to treat certain cancers, in a similar method currently used for ion (proton) therapy.
Fuel<!-- This section is linked from Deuterium -->
Isolated and stored antimatter could be used as a fuel for interplanetary or interstellar travel as part of an antimatter-catalyzed nuclear pulse propulsion or another antimatter rocket. Since the energy density of antimatter is higher than that of conventional fuels, an antimatter-fueled spacecraft would have a higher thrust-to-weight ratio than a conventional spacecraft.
If matter–antimatter collisions resulted only in photon emission, the entire rest mass of the particles would be converted to kinetic energy. The energy per unit mass () is about 10 orders of magnitude greater than chemical energies, and about 3 orders of magnitude greater than the nuclear potential energy that can be liberated, today, using nuclear fission (about per fission reaction or ), and about 2 orders of magnitude greater than the best possible results expected from fusion (about for the proton–proton chain). The reaction of of antimatter with of matter would produce (180 petajoules) of energy (by the mass–energy equivalence formula, ), or the rough equivalent of 43 megatons of TNT – slightly less than the yield of the 27,000 kg Tsar Bomba, the largest thermonuclear weapon ever detonated.
Not all of that energy can be utilized by any realistic propulsion technology because of the nature of the annihilation products. While electron–positron reactions result in gamma ray photons, these are difficult to direct and use for thrust. In reactions between protons and antiprotons, their energy is converted largely into relativistic neutral and charged pions. The neutral pions decay almost immediately (with a lifetime of 85 attoseconds) into high-energy photons, but the charged pions decay more slowly (with a lifetime of 26 nanoseconds) and can be deflected magnetically to produce thrust.
Charged pions ultimately decay into a combination of neutrinos (carrying about 22% of the energy of the charged pions) and unstable charged muons (carrying about 78% of the charged pion energy), with the muons then decaying into a combination of electrons, positrons and neutrinos (cf. muon decay; the neutrinos from this decay carry about 2/3 of the energy of the muons, meaning that from the original charged pions, the total fraction of their energy converted to neutrinos by one route or another would be about ).<!--
For more regular (earthly) applications (for example, regular transport, use in portable generators, and the powering of cities) artificially created antimatter is not a suitable energy carrier, despite its high energy density, because the process of creating antimatter is extremely inefficient. According to CERN, only one part in ten billion () of the energy invested in the production of antimatter particles can be subsequently retrieved.
Antimatter production is currently very limited, but has been growing at a nearly geometric rate since the observation of the first antiproton in 1955 by Segrè and Chamberlain. The current antimatter production rate is between 1 and 10 nanograms per year, and this is expected to increase to between 3 and 30 nanograms per year by 2015 or 2020 with new superconducting linear accelerator facilities at CERN and Fermilab.
Some researchers claim that with current technology, it is possible to obtain antimatter for US$25 million per gram by optimizing the collision and collection parameters (given current electricity generation costs).
Many experts, however, dispute these claims as being far too optimistic by many orders of magnitude. They point out that, in 2004, the annual production of antiprotons at CERN was several picograms at a cost of $20 million. This means that to produce 1 gram of antimatter, CERN would need to spend 100 quadrillion () dollars and run the antimatter factory for 100 billion years.
Antimatter production costs, in mass production, are almost linearly tied to electricity costs, so economical pure-antimatter thrust applications are unlikely to come online unless a very cheap power source is found.
Storage is another problem, as antiprotons are negatively charged and repel each other, so that they cannot be concentrated in a small volume (cf. space charge). Plasma oscillations in the charged cloud of antiprotons can cause instabilities that drive antiprotons out of the storage trap. For these reasons, to date, only a few million antiprotons have been stored simultaneously in a magnetic trap, which corresponds to much less than a femtogram. Antihydrogen atoms or molecules are of neutral charge, they are not as ionically unstable as antiprotons. The drawback is that cold antihydrogen is far more complex to produce than mere antiprotons.
One researcher from the CERN laboratories, which produces antimatter regularly, said:
--->
Weapons
Antimatter has been considered as a trigger mechanism for nuclear weapons. A major obstacle is the difficulty of producing antimatter in large enough quantities, and there is no evidence that it will ever be feasible. Nonetheless, the U.S. Air Force funded studies of the physics of antimatter in the Cold War, and began considering its possible use in weapons, not just as a trigger, but as the explosive itself.
See also
*
* Antihypernuclei – Antimatter hypernucleus
*
*
*
*
References
Further reading
*
*
* FAQ from CERN with information about antimatter aimed at the general reader, posted in response to antimatter's fictional portrayal in Angels & Demons.
External links
*
* [http://www.vega.org.uk/video/programme/14 Freeview Video 'Antimatter' by the Vega Science Trust and the BBC/OU]
* [https://web.archive.org/web/20000620014355/http://livefromcern.web.cern.ch/livefromcern/antimatter/webcast/AM-webcast06.html CERN Webcasts (RealPlayer required)]
* [https://web.archive.org/web/20051028075601/http://www.positron.edu.au/faq.html What is Antimatter?] (from the Frequently Asked Questions at the Center for Antimatter–Matter Studies)
* [https://web.archive.org/web/20140503090147/http://www2.slac.stanford.edu/tip/special/cp.htm What is direct CP-violation?]
* [http://www.exploratorium.edu/origins/cern/tools/animation.html Animated illustration of antihydrogen production at CERN] from the Exploratorium.
* [https://www.nytimes.com/2024/08/30/science/astrophysics-dune-neutrinos.html "Mining for Neutrinos"], costly experiment to study neutrinos & anti-neutrinos. New York Times science article, updated Sept. 2, 2024
Category:Quantum field theory
Category:Fictional power sources
Category:Articles containing video clips | https://en.wikipedia.org/wiki/Antimatter | 2025-04-05T18:25:37.665316 |
1322 | Casa Batlló | (House of Bones)
| status | image Casa Batllo Overview Barcelona Spain cut.jpg
| image_alt = Casa Batlló
| image_size | caption
| relief | altitude
| building_type | architectural_style
| structural_system | material stone, metal, wood, ceramic
| cost | ren_cost
| client | owner
| current_tenants | landlord
| location = Barcelona, Spain
| address | coordinates
| groundbreaking_date | start_date
| completion_date | opened_date
| inauguration_date | renovation_date
| closing_date | height
| diameter | circumference
| architectural | tip
| antenna_spire | roof
| top_floor | observatory
| other_dimensions | floor_count
| floor_area | seating_type
| seating_capacity | elevator_count
| grounds_area | architect
| architecture_firm | structural_engineer
| services_engineer | civil_engineer
| other_designers | quantity_surveyor
| main_contractor | awards
| designations | ren_architect Antoni Gaudí
| ren_firm | ren_str_engineer
| ren_serv_engineer | ren_civ_engineer
| ren_oth_designers = Domènec Sugrañes i Gras, Josep Canaleta, Joan Rubió
| ren_qty_surveyor | ren_awards
| rooms | parking
| website =
| references | embedded
(i), (ii), (iv)
| ID = 320-006
| year = 1984
| extension = 2005
}}
}}
() is a building in the center of Barcelona, Spain. It was designed by Antoni Gaudí, and is considered one of his masterpieces. A remodel of a previously built house, it was redesigned in 1904 by Gaudí (but the actual construction works hadn’t begun at this point) and has been refurbished several times since. Gaudí's assistants Domènec Sugrañes i Gras, Josep Canaleta and Joan Rubió also contributed to the renovation project.
The local name for the building is (House of Bones), as it has a visceral, skeletal organic quality. It is located on the in the Eixample district, and forms part of a row of houses known as the (or , the "Block of Discord"), which consists of four buildings by noted architects of Barcelona.
Like everything Gaudí designed, is only identifiable as in the broadest sense. The ground floor, in particular, has unusual tracery, irregular oval windows and flowing sculpted stone work. There are few straight lines, and much of the façade is decorated with a colorful mosaic made of broken ceramic tiles (). The roof is arched and was likened to the back of a dragon or dinosaur. A common theory about the building is that the rounded feature to the left of centre, terminating at the top in a turret and cross, represents the lance of Saint George (patron saint of Catalonia, Gaudí's home), which has been plunged into the back of the dragon.
In 2005, became an UNESCO World Heritage Site.HistoryInitial construction (1877)The building that is now was built in 1877, commissioned by Lluís Sala Sánchez. It was a classical building without remarkable characteristics within the eclecticism traditional by the end of the 19th century. The building had a basement, a ground floor, four other floors and a garden in the back.
Batlló family
The house was bought by Josep Batlló in 1903. The design of the house made the home undesirable to buyers but the Batlló family decided to buy the place due to its centralized location. It is located in the middle of , which in the early 20th century was known as a very prestigious and fashionable area. It was an area where the prestigious family could draw attention to themselves.
Renovation (1904-1906)
In 1904, Josep Batlló hired Gaudí to design his home; at first his plans were to tear down the building and construct a completely new house. Gaudí convinced Josep that a renovation was sufficient and was also able to submit the planning application the same year. The building was completed and refurbished in 1906. He completely changed the main apartment which became the residence for the Batlló family. He expanded the central well in order to supply light to the whole building and also added new floors. In the same year the Barcelona City Council selected the house as a candidate for that year's best building award. The award was given to another architect that year despite Gaudí's design.
Refurbishments
Josep Batlló died in 1934 and the house was kept in order by the wife until her death in 1940. After the death of the two parents, the house was kept and managed by the children until 1954. In 1954, an insurance company named Seguros Iberia acquired Casa Batlló and set up offices there. In 1970, the first refurbishment occurred mainly in several of the interior rooms of the house. In 1983, the exterior balconies were restored to their original colour and a year later the exterior façade was illuminated in the ceremony of La Mercè.
Multiple uses
In 1993, the current owners of Casa Batlló bought the home and continued refurbishments throughout the whole building. Two years later, in 1995, Casa Batlló began to hire out its facilities for different events. More than 2,500 square meters of rooms within the building were rented out for many different functions. Due to the building's location and the beauty of the facilities being rented, the rooms of Casa Batlló were in very high demand and hosted many important events for the city.
Design
]]
Overview
The local name for the building is Casa dels ossos (House of Bones), as it has a visceral, skeletal organic quality. The building looks very remarkable — like everything Gaudí designed, only identifiable as Modernisme or Art Nouveau in the broadest sense. The ground floor, in particular, is rather astonishing with tracery, irregular oval windows and flowing sculpted stone work.
It seems that the goal of the designer was to avoid straight lines completely. Much of the façade is decorated with a mosaic made of broken ceramic tiles (trencadís) that starts in shades of golden orange moving into greenish blues. The roof is arched and was likened to the back of a dragon or dinosaur. A common theory about the building is that the rounded feature to the left of centre, terminating at the top in a turret and cross, represents the lance of Saint George (patron saint of Catalonia, Gaudí's home), which has been plunged into the back of the dragon.
Loft
]]
The loft is considered to be one of the most unusual spaces. It was formerly a service area for the tenants of the different apartments in the building which contained laundry rooms and storage areas. It is known for its simplicity of shapes and its Mediterranean influence through the use of white on the walls. It contains a series of sixty catenary arches that creates a space which represents the ribcage of an animal. Some people believe that the “ribcage” design of the arches is a ribcage for the dragon's spine that is represented in the roof.
The Atrium (light well)
The Atrium or the light well is in the central part of the house and delivers air and lighting to all corners of the house. Gaudí had an obsession with light and how it reflected off certain surfaces. The wall of the atrium has different tones of blue as well as a diamond textile pattern all around the walls. The blue tiles allow an equal distribution of light to all the floors. The well has windows with wooden splits to allow them to be open and closed for ventilation. Gaudí wanted to make the bottom of the well feel like the bottom of the sea. The skylight allows light to come in and reflect off the ceramic tiles into the windows to naturally illuminate the house. The blue tiles are more intensely colored at the top and get opaquer towards the bottom. The diamond textiles match the rest of the house's use of different, functional shapes. Noble floor and museum
The noble floor is larger than seven-hundred square meters. It is the main floor of the building. The noble floor is accessed through a private entrance hall that uses skylights resembling tortoise shells and vaulted walls in curving shapes. On the noble floor there is a spacious landing with direct views of the blue tiling of the building well. On the Passeig de Gracia side is Batlló's study, a dining room, and a secluded spot for courting couples, decorated with a mushroom-shaped fireplace. The elaborate and animal-like décor continues throughout the whole noble floor.
In 2002, as part of the celebration of the International Year of Gaudí, the house opened its doors to the public and people were allowed to visit the noble floor. Casa Batlló met with great unanticipated success, and visitors became eager to see the rest of the house. Two years later, in celebration of the one hundredth anniversary of the beginning of work on Casa Batlló, the fifth floor was restored and the house extended its visit to the loft and the well. In 2005, Casa Batlló became a UNESCO World Heritage Site.RoofThe roof terrace is one of the most popular features of the entire house due to its famous dragon back design. Gaudí represents an animal's spine by using tiles of different colors on one side. The roof is decorated with four chimney stacks designed to prevent backdraughts.
Exterior façade
The façade has three distinct sections which are harmoniously integrated. The lower ground floor with the main floor and two first-floor galleries are contained in a structure of Montjuïc sandstone with undulating lines. The central part, which reaches the last floor, is a multicolored section with protruding balconies. The top of the building is a crown, like a huge gable, which is at the same level as the roof and helps to conceal the room where there used to be water tanks. This room is currently empty. The top displays a trim with ceramic pieces that has attracted multiple interpretations.
Roof tile
The roof's arched profile recalls the spine of a dragon with ceramic tiles for scales, and a small triangular window towards the right of the structure simulates the eye. Legend has it that it was once possible to see the Sagrada Família through this window, which was being built simultaneously. As of 2022, the partial view of the Sagrada Família is available from this vantage point, with its spires visible over newer buildings. The tiles were given a metallic sheen to simulate the varying scales of the monster, with the color grading from green on the right side, where the head begins, to deep blue and violet in the center, to red and pink on the left side of the building.
Tower and bulb
One of the highlights of the façade is a tower topped with a cross of four arms oriented to the cardinal directions. It is a bulbous, root-like structure that evokes plant life. There is a second bulb-shaped structure similarly reminiscent of a thalamus flower, which is represented by a cross with arms that are actually buds announcing the next flowering. The tower is decorated with monograms of Jesus (JHS), Maria (M with the ducal crown) and Joseph (JHP), made of ceramic pieces that stand out golden on the green background that covers the façade. These symbols show the deep religiosity of Gaudí, who was inspired by the contemporaneous construction of his basilica to choose the theme of the holy family.
The bulb was broken when it was delivered, perhaps during transportation. Although the manufacturer committed to re-do the broken parts, Gaudí liked the aesthetic of the broken masonry and asked that the pieces be stuck to the main structure with lime mortar and held in with a brass ring.Central sectionThe central part of the façade evokes the surface of a lake with water lilies, reminiscent of Monet's Nymphéas, with gentle ripples and reflections caused by the glass and ceramic mosaic. It is a great undulating surface covered with plaster fragments of colored glass discs combined with 330 rounds of polychrome pottery. The discs were designed by Gaudí and Jujol between tests during their stay in Majorca, while working on the restoration of the Cathedral of Palma.
Balcony
Finally, above the central part of the façade is a smaller balcony, also iron, with a different exterior aesthetic, closer to a local type of lily. Two iron arms were installed here to support a pulley to raise and lower furniture.Main floorThe façade of the main floor, made entirely in sandstone, and is supported by two columns. The design is complemented by joinery windows set with multicolored stained glass. In front of the large windows, as if they were pillars that support the complex stone structure, there are six fine columns that seem to simulate the bones of a limb, with an apparent central articulation; in fact, this is a floral decoration. The rounded shapes of the gaps and the lip-like edges carved into the stone surrounding them create a semblance of a fully open mouth, for which the Casa Batlló has been nicknamed the "house of yawns". The structure repeats on the first floor and in the design of two windows at the ends forming galleries, but on the large central window there are two balconies as described above.Gallery
<gallery>
File:CasaBatlló NobleFloor saloon stainedglass.jpg|Stained glass noblefloor of Casa Batlló
File:CasaBatlló NobleFloor saloon side.jpg|Noblefloor of Casa Batlló
File:CasaBatllo rooftop chimneys dragon.jpg|Chimneys of Casa Batlló
File:CasaBatllo rooftop chimneys.jpg|Rooftop of Casa Batlló
File:CasaBatllo inner courtyard bottom.jpg|Inner lightwell of Casa Batlló
File:CasaBatllo inner courtyard.jpg|Blue lightwell of Casa Batlló
File:CasaBatllo attic arcs.jpg|Catenary arcs of Casa Batlló
File:CasaBatllo back dragon roof.jpg|Dragon roof of Casa Batlló
File:CasaBatllo dragon stairs.jpg|Dragon stairs of Casa Batlló
File:CasaBatllo NobleFloor saloon.jpg|Saloon noble floor of Casa Batlló
File:Facade of Casa Batlló - 2013.07 - panoramio.jpg|Façade of Casa Batlló
File:Close up Casa Batlo.JPG|Façade close-up
File:Casa batllo chimney.jpg|Close-up of a chimney
File:Casa Batlló Fireplace.jpg|Casa Batlló fireplace
File:Casa Batlló Light Well.jpg|Casa Batlló central light well
File:Casa Batlló - Barcelona.jpg|Casa Batlló - Night View
File:Casa Batlló (Antoni Gaudi) (atrium), 43, Passeig de Gràcia, Eixample, Barcelona, Catalonia, Spain.jpg|Atrium of Casa Batlló
File:Casa Batlló (Antoni Gaudi) (interior, ceiling close up), 43, Passeig de Gràcia, Eixample, Barcelona, Catalonia, Spain.jpg|Ceiling close-up
File:Casa Batlló (Antoni Gaudi) (interior, stained-glass window close up), 43, Passeig de Gràcia, Eixample, Barcelona, Catalonia, Spain.jpg|Stained-glass window close-up
File:Casa Batlló chair.JPG|Chair in oak, designed 1906
File:Gaudi-prie-dieu.jpg|Prie Dieu, or prayer desk, designed 1906
File:Casa Batlló - Night View with Flowers.jpg|Casa Batlló - Night View with Flowers
File:Casa Batlló - Night View Corner.jpg|Casa Batlló - Night View Corner
File:Casa Batlló light show.png|Casa Batlló night view with blue lights
</gallery>
See also
* List of Gaudí buildings
* List of Modernista buildings in Barcelona
* Confidant from the Batlló House
References
Bibliography
*
*
*
*
*
External links
*
* [https://artsandculture.google.com/story/EwXxN9VZZdgIAA Works of Antoni Gaudí] UNESCO Collection on Google Arts and Culture
* [https://www.simboliccasabatllo.com/en Casa Batlló Store]
* [https://www.casabatllo.es/en/virtual-tour/ Official Virtual Tour]
* [https://www.barcelona-tourist-guide.com/en/albums-en/gaudi-casa-batllo/index.html Casa Batlló pictures at barcelona-tourist-guide.com]
* [https://web.archive.org/web/20050901163040/http://www.op.net/~jmeltzer/Gaudi/batllo.html Casa Batlló description]
* [http://www.gaudidesigner.com/uk/casa-batllo.html Casa Batllo at Gaudidesigner.com]
(Spanish)
Category:1877 establishments in Spain
Category:Antoni Gaudí buildings
Category:Art Nouveau houses
Category:Buildings and structures with azulejos in Catalonia
Category:Eixample
Category:Houses completed in 1877
Category:Houses in Catalonia
Category:Modernisme architecture in Barcelona
Category:Passeig de Gràcia
Category:Tourist attractions in Barcelona
Category:Visionary environments
Category:World Heritage Sites in Catalonia | https://en.wikipedia.org/wiki/Casa_Batlló | 2025-04-05T18:25:37.678064 |
1324 | Park Güell | | coords_ref | area
| established = 1914
| operator | visitation_num
| status | open
| embedded =
(i), (ii), (iv)
| ID = 320-001
| year = 1984
| extension = 2005
}}
}}
Park Güell ( ; ) is a privatized complex of parks, gardens and architectural elements in the Gràcia district of Barcelona, Catalonia, Spain. The site is located in the La Salut neighborhood on the southern side of a hill known as the Turó del Carmel, part of the Collserola mountain range. The separate Parc del Carmel is located on the northern side of the hill.
In the midst of Barcelona's late 19th- and early 20th-century urban expansion, Eusebi Güell, a Catalan industrialist and art patron, sought to commission a new park. Güell commissioned the design of the park to the renowned architect, Antoni Gaudí, widely regarded as a central figure of the aesthetic movement of Catalan modernism.
Park Güell was built between 1900 and 1914 and was officially opened to the public in 1926. In 1984, UNESCO declared the park a World Heritage Site, recognizing it as part of the "Works of Antoni Gaudí" architectural series.Description
In addition to reflecting the distinct aesthetic sensibilities, artistic influences, and visual language present throughout Gaudí's career, Park Güell captures a particular moment in his artistic evolution. The park is associated with his naturalist phase, which occurred in the first decade of the 20th century. During this period, Gaudí's study of nature and organic shapes began to influence him creatively. Reflecting this shift, Gaudí introduced a series of new structural solutions rooted in geometric analysis.
Gaudí expanded upon these geometric forms to create his characteristically imaginative, ornamental style. Rooted in the Baroque, his works are characterized by a structural richness of forms and volumes, free of the rational rigidity of classical conventions. In designing Park Güell, Gaudí put these structural innovations into practice, such as the inclusion of park benches that curve and undulate. Gaudi further elaborated on this characteristic style in the creation of the enormous Sagrada Família (Basilica and Expiatory Church of the Holy Family).
Güell and Gaudí originally conceived the space not as a public park, but as a private community of luxurious homes equipped with all the latest modern amenities to fulfill the needs of its residents both artistically and physically. They envisioned a community strongly influenced by symbolism and Park Güell's common spaces (stairways, plazas, terraces, gardens) are designed to express physically the political and religious ideals of both patron and architect. For example, there are noticeable concepts originating from political Catalanism, most notably in the entrance stairway where the Catalan countries are represented, and Catholicism, as Monumento al Calvario, originally designed to be a chapel. In addition to Gaudí's reinterpretation of classical architectural elements such as columns, colonnades, and porticos, Park Güell also contains numerous references to Greek mythology. Some have suggested that Güell and Gaudí's conception of the park was inspired by the Temple of Apollo of Delphi.
The meaning of these symbols continues to be the subject of speculation. To some, Park Güell represents a spatial nexus of complex iconography that Gaudí intentionally applied to the project. Interpretations range from expressions of political vindication to religious exaltation, laden with mythologic, historical, and philosophical references. Others claim that Park Güell displays masonic influences in spite of the fact that both Güell and Gaudí embraced traditional Catholicism.
Origins as a housing development
]]
The park was originally part of a commercially unsuccessful housing development by Count Eusebi Güell. It was inspired by the English garden city movement, hence the use of the English word Park (Catalan: Parc Güell, Spanish: Parque Güell) in the original name. The site chosen was a rocky hill with little vegetation and few trees, called Muntanya Pelada (English: Bare Mountain). Already present on the property was a large country house called Larrard House or Muntaner de Dalt House. The site was adjacent to an upper-class neighborhood called La Salut (The Health). Güell intended to take advantage of the site's fresh air (away from smoky factories) and vistas. The original development planned to divide the site into sixty triangular lots for luxury houses. To provide publicity for the new development, Güell would move into Larrard House in 1906. Ultimately, only two houses were built, neither of which were designed by Gaudí.
One of these houses was built as a display home, but upon completion was put up for sale in 1904. However, because no buyers came forward, Güell suggested that Gaudí purchase the home with his own savings. Gaudí agreed and moved in with his family and his father in 1906. This house, in which Gaudí lived from 1906 until his death in 1926, was built in 1904 by Francesc Berenguer, himself a modernist architect and associate of Gaudí's. It contains original works by Gaudí and several of his collaborators. Since 1963, it has been open to the public as the Gaudí House Museum (Catalan: Casa Museu Gaudí). In 1969, it was declared to be a historical artistic monument of national interest.
Municipal garden
salamander, popularly known as El Drac (English: the dragon), facing the main entrance following its restoration due to a vandalism incident in February 2007]]
Parc Güell has since been converted into a municipal garden. It is accessible by metro, although the closet metro stations (Vallcarca and Lesseps) are located some distance from the site at the base of Turó de Carmel. It can also be reached by city buses or commercial tourist buses. In October 2013 an entrance fee was introduced for the Monumental Zone (main entrance, terrace, viaducts, and areas featuring mosaics), though citizens of Barcelona may enter free of charge. Limited tickets are available, though these often sell out in advance. La Torre Rosa, Gaudí's home converted into a museum featuring furniture that he designed, can be visited for another entrance fee. However, there is a reduced rate for those wishing to see both Gaudí's house and the Sagrada Família Church.
The entrance is flanked by two gatehouses, both of which were designed by Gaudí. These two buildings make up the Porter's Lodge pavilion. One of these buildings contains a small room with a telephone booth. The other, while once being the porter's house, is now a permanent exhibition of the Barcelona City History Museum (Catalan: ''Museu d'Història de Barcelona).''
The focal point of the park is the main terrace, enclosed by a long bench in the form of a sea serpent. The curves of the serpent bench from a number of enclaves, designed to foster social interaction. The design of the benches was the work not of Gaudí, but of his often overlooked collaborator Josep Maria Jujol.
Another prominent feature found throughout the park are the series of elevated pathways, originally intended to service the houses, designed by Gaudí to jut out from the steep hillside or rest on Viaducts. These structures often serve as the roofs for lower footpaths in arcades formed underneath. To further minimize the intrusion of these roads, Gaudí had them constructed using a local stone, rendering them as an extension of landscape. Echoing natural forms, the columns and branching vaults supporting the roadways were carved to resemble tree trunks. Similar to his previous work on the Church of Colònia Güell, Gaudí used curved vaulting and the alignment of sloping columns to form inverted catenary arch shapes, which function as ideal compression structures.
At the park's high point there is a stone hill composed of steps leading up to a platform on which stands three large crosses. This is Calvary, officially named "El Turó de les Tres Creus". Two of the crosses point north–south and east–west, while the third and tallest cross points skyward. From this vantage it is possible to view the main city in panorama, including the Sagrada Família, Agbar Tower, and Montjuïc area in the distance.
Park Güell supports a wide variety of wildlife, notably several of Barcelona's non-native parrots in addition to sightings of the short-toed eagle. The park also supports a population of hummingbird hawk moths.
Gallery of images
<gallery>
File:View from Park Güell Terrace.jpg| View from the main terrace of the park.
File:Goelenterance06390139.JPG|Entrance to the Park.
File:Goeldoric06390141.JPG|Doric columns support the roof of the lower court which forms the central terrace, with serpentine seating round its edge.
File:Goelbench06390140.JPG|The unique shape of the serpentine bench enables the people sitting on it to converse privately, although the square is large. The bench is tiled and to dry up quickly after it rains, and to stop people from sitting in the wet part of the bench, small bumps were installed by Gaudí.
File:Goelbirdnests06390137.JPG|Bird nests built by Gaudí in the terrace walls. The walls imitate the trees planted on them.
File:GuellTerraceSeperate.jpg|An uninterrupted view of the terrace walls.
File:Goelwalways06390156.JPG|Roadway in the Park - resembles the pine trees of the park. To fit in, the road and walkway structures between the terraces were built with stones quarried within the park. Bird nests have been installed in the walkways.
File:Parc Güell viaduct.jpg|One of the three viaducts located within the park. Originally created by Antoni Gaudí to allow carriages to easily facilitate the transportation of visitors from the park's entrance to the "Turó de Tres Creus" which can be found on the top of the mountain, these viaducts continue to allow guests to travel throughout the park.
File:Parc Guell 10.jpg|Colonnaded footpath under the roadway viaduct, with external columns sloping to take the diagonal thrust from the vault supporting the road.
File:Colonnadeparkguell.jpg|Colonnaded pathway where the road projects out from the hillside, with the vaulting forming a retaining wall which curves over to support the road, and transmits the load onto sloping columns.
File:Park_Guell_Tile.jpg| Another of Gaudí's Tiled Mosaics on the ceiling.
<!-- Image with unknown copyright status removed: File:Barcelona 29-04-2006 11-29-38.JPG|One of Gaudí's unique tiles in Park Güell. -->
File:Barcelona 29-04-2006 11-29-38.JPG|One of Gaudí's unique tiles in Park Güell
File:Ceiling mosaic, Park Güell, Barcelona.jpg|Ceiling Mosaic in the Hypostyle Room, Park Güell, Barcelona
File:Park Güell - Pabellón de entrada.jpg|The Porter's Lodge pavilion at the park's entrance. The roof is made up of trencadís tiles.
File:Escalinata de entrada del Park Güell.jpg|Third fountain at the entrance with the dragon
File:Casa Martí Trias i Domènech.jpg|Casa Martí Trias i Domènech
File:Panoramic view of the entrance to the Park Güell. Barcelona, Catalonia, Spain.jpg|Panoramic view of the entrance to the Park Güell. Barcelona, Catalonia, Spain
File:A musician playing among columns of Sala Hipóstila, Park Güell ( UNESCO World Heritage Site), hill of El Carmel, Gràcia (district), Barcelona, Catalonia, Spain.jpg|A musician playing among columns of Sala Hipóstila, Park Güell (UNESCO World Heritage Site), hill of El Carmel, Gràcia (district), Barcelona, Catalonia, Spain
</gallery>
See also
* List of Gaudí buildings
* List of Modernisme buildings in Barcelona
* Urban planning of Barcelona
* Parks and gardens of Barcelona
References
External links
* [https://artsandculture.google.com/story/EwXxN9VZZdgIAA Works of Antoni Gaudí] UNESCO Collection on Google Arts and Culture
* [https://parkguell.barcelona/en?q=en Park Güell Official Website]
Category:Antoni Gaudí buildings
Category:Buildings and structures completed in 1914
Category:Buildings and structures in Barcelona
Category:Culture in Barcelona
Category:Modernisme architecture in Barcelona
Category:Gràcia
Guell
Category:Visionary environments
Category:Buildings and structures with azulejos in Catalonia
Category:Tourist attractions in Barcelona
Category:World Heritage Sites in Catalonia | https://en.wikipedia.org/wiki/Park_Güell | 2025-04-05T18:25:37.685063 |
1325 | Casa Milà | (i), (ii), (iv)
| ID = 320-003
| year = 1984
| extension = 2005
}}
}}
Casa Milà (, ), popularly known as La Pedrera (, ; "the stone quarry") in reference to its unconventional rough-hewn appearance, is a Modernista building in Barcelona, Catalonia, Spain. It was the last private residence designed by architect Antoni Gaudí and was built between 1906 and 1912.
The building was commissioned in 1906 by and his wife . At the time, it was controversial because of its undulating stone facade, twisting wrought iron balconies, and design by Josep Maria Jujol. Several structural innovations include a self-supporting stone façade, and a free-plan floor, underground garage and the spectacular terrace on the roof.
In 1984, it was declared a World Heritage Site by UNESCO. Since 2013 it has been the headquarters of the Fundació Catalunya La Pedrera, which manages visits to the building, exhibitions and other cultural and educational activities at Casa Milà.
Building history
Architect
Antoni Gaudí i Cornet was born on June 25, 1852, in Catalonia, Spain. As a child, Gaudí's health was poor, suffering from rheumatism. Because of this, he was afforded lengthy periods of time resting at his summer house in Riudoms. Here he spent a large portion of his time outdoors, allowing him to deeply study nature. This would become one of the major influences in his architecture to come.
Gaudí was a very practical man and a craftsman at his core. In his work he followed impulses and turned creative plans into reality. His openness to embrace new styles combined with a vivid imagination helped mold new styles of architecture and consequently helped push the limits of construction. Today he is regarded as a pioneer of the modern architecture style.
In 1870, Gaudí moved to Barcelona to study architecture. He was an inconsistent student who showed flashes of brilliance. It took him eight years to graduate due to a mix of health complications, military service as well as other activities.
After completion of his education he became a prolific architect as well as designing gardens, sculptures and all other decorative arts. Gaudí's most famous works consisted of several buildings: Parque Güell; Palacio Güell; Casa Mila; Casa Vicens. He also is attributed for his work on the Crypt of La Sagrada Familia and the Nativity facade. Gaudí's work at the time was both admired and criticized for his bold, innovative solutions.
Gaudí was injured on June 7, 1926, when he was run over by a tram. He later died in the hospital due to his injuries on June 10, 1926, at the age of 73. A few years after his death, his fame became renowned by critics and the general public alike.
Building owners
Casa Milà was built for Roser Segimón and her husband Pere Milà. Roser Segimón was the wealthy widow of Josep Guardiola, an Indiano or Americano, or former colonist returned from the Americas, who had made his fortune with a coffee plantation in Guatemala. Her second husband, Pere Milà, was a developer known for his flamboyant lifestyle.Construction processIn 1905, Milà and Segimón married and on June 9, Roser Segimón bought a house with garden which occupied an area of 1,835 square meters, located on Paseo de Gracia, 92. In September, they commissioned Gaudí for building them a new house with the idea of living in the main floor and renting out the rest of the apartments. On February 2, 1906, the project was presented to the Barcelona City Council and the works began, demolishing the pre-existing building instead of reforming it, as in the case of the Casa Batlló.
The building was completed in December 1910 and the owner asked Gaudí to make a certificate to inhabit the main floor, which the City Council authorized in October 1911, and the couple moved in. On October 31, 1912, Gaudí issued the certificate stating that, in accordance with his plans and his direction, the work had been completed and the whole house was ready to be rented. The unique structure of the building and the relationship between the building's architect and Pere Milà became the object of ridicule for the people of Barcelona and many humorous publications of the time.
Catholic symbols
Gaudí, a Catholic and a devotee of the Virgin Mary, planned for the Casa Milà to be a spiritual symbol. Overt religious elements include an excerpt from the Rosary on the cornice and planned statues of Mary, specifically Our Lady of the Rosary, and two archangels, St. Michael and St. Gabriel.
However, the Casa Milà was not built entirely to Gaudí's specifications. The local government ordered the demolition of elements that exceeded the height standard for the city, and fined the Milàs for many infractions of building codes. After Semana Trágica, an outbreak of anticlericalism in the city, Milà prudently decided to forgo the religious statues. Roser Segimon continued to live on the main floor until her death in 1964.
The new owners divided the first floor facing into five apartments instead of the original two. In 1953, they commissioned to convert 13 rubbish-filled attic laundry rooms to street-facing apartments, leaving a communal hallway on the side facing the courtyards. Some of these two or three room apartments had a loft and were designed and furnished in a typical early 1950s style using brick, ceramic and wood. Items of furniture, such as the , were reminiscent of Eero Saarinen's work.
The insurance company Northern took over the main floor in 1966. By then, Casa Milà had housed a bingo hall, an academy and the offices of Cementos Molins and Inoxcrom among others.
Restoration
Gaudí's work was designated a historic and artistic monument on July 24, 1969. Casa Milà was in poor condition in the early 1980s. It had been painted a dreary brown and many of its interior color schemes had been abandoned or allowed to deteriorate, but it has been restored since including restoring many of the original colors.
In 1984, the building became part of a World Heritage Site encompassing some of Gaudí's works. The Barcelonan city council tried to rent the main floor as an office for the 1992 Olympic bid. Finally, the day before Christmas 1986, Caixa Catalunya bought La Pedrera for 900 million pesetas. On February 19, 1987, urgently needed work began on the restoration and cleaning of the façade. The work was done by the architects Joseph Emilio Hernández-Cros and Rafael Vila. Constructive and decorative items Facade
The facade is composed of large blocks of limestone from the Garraf Massif on the first floor and from the Villefranche quarry for the higher levels. The blocks were cut to follow the plot of the projection of the model, then raised to their location and adjusted to align in a continuous curve to the pieces around them.
The windows of La Pedrera are an integral part of the overall facade design. Gaudí made sure that the windows were of varying sizes, designed to optimize the amount of natural light that could enter the building.
Viewed from the outside the building has three parts: the main body of the six-storey blocks with winding stone floors, two floors set a block back with a different curve, similar to waves, a smoother texture and whiter color, and with small holes that look like embrasures, and finally the body of the roof.
Gaudí's original facade had some of its lower-level ironwork removed. In 1928, the tailor Mosella opened the first store in La Pedrera, and he eliminated the bars. This did not concern anyone, because in the middle of twentieth century, wrought ironwork had little importance. The ironwork was lost until a few years later, when Americans donated one of them to the MoMa, where it is on display.
With restoration initiatives launched in 1987, the facade was rejoined to some pieces of stone that had fallen. In order to respect the fidelity of the original, material was obtained from the Villefranche quarry, even though by then it was no longer operating. Loft
Like in Casa Batlló, Gaudí shows the application of the catenary arch as a support structure for the roof, a form which he had already used shortly after graduating in the wood frameworks of Mataró's cooperative known as "L'Obrera Mataronense." In this case, Gaudí used the Catalan technique of timbrel, imported from Italy in the fourteenth century.
The attic, where the laundry rooms were located, was a clear room under a Catalan vault roof supported by 270 parabolic vaults of different heights and spaced by about 80 cm. The roof resembles both the ribs of a huge animal and a palm, giving the roof-deck a very unconventional shape similar to a landscape of hills and valleys. The shape and location of the courtyards makes the arches higher when the space is narrowed and lower when the space expands.
The builder Bayó explained its construction: "First the face of a wide wall was filled with mortar and plastered. Then Canaleta indicated the opening of each arch and Bayó put a nail at each starting point of the arch at the top of the wall. From these nails was dangled a chain so that the lowest point coincided with the deflection of the arch. Then the profile displayed on the wall by the chain was drawn and on this profile the carpenter marked and placed the corresponding centering, and the timbrel vault was started with three rows of plane bricks. Gaudí wanted to add a longitudinal axis of bricks connecting all vaults at their keystones".
Roof and chimneys
scarers)]]
The work of Gaudí on the rooftop of La Pedrera brought his experience at Palau Güell together with solutions that were clearly more innovative – this time creating shapes and volumes with more body, more prominence, and less polychromasia.
On the rooftop there are six skylights/staircase exits (four of which were covered with broken pottery and some that ended in a double cross typical of Gaudí), twenty-eight chimneys in several groupings, two half-hidden vents whose function is to renew the air in the building, and four domes that discharged to the facade. The staircases also house the water tanks; some of which are snail-shaped.
The stepped roof of La Pedrera, called "the garden of warriors" by the poet Pere Gimferrer because the chimneys appear to be protecting the skylights, has undergone a radical restoration, removing chimneys added in interventions after Gaudí, television antennas, and other elements that degraded the space. The restoration brought back the splendor to the chimneys and the skylights that were covered with fragments of marble and broken Valencia tiles. One of the chimneys was topped with glass pieces – it was said that Gaudí did that the day after the inauguration of the building, taking advantage of the empty bottles from the party. It was restored with the bases of champagne bottles from the early twentieth century. The repair work has enabled the restoration of the original impact of the overhangs made of stone from Ulldecona with fragments of tiles. This whole set is more colorful than the facade, although here the creamy tones are dominant. Furniture
Gaudí, as he had done in Casa Batlló, designed furniture specifically for the main floor. This was part of the concept artwork itself integral to modernism in which the architect assumed responsibility for global issues such as the structure and the facade, as well as every detail of the decor, designing furniture and accessories such as lamps, planters, floors or ceilings.
This was another point of friction with Segimon, who complained that there was no straight wall to place her Steinway piano. Gaudí's response was blunt: "So play the violin."
Criticism and controversy
The building's unconventional style made it the subject of much criticism. It was given the nickname "La Pedrera", meaning "the quarry". The winner in 1910 was Samanillo Perez, for his building which now houses the headquarters of the [https://web.archive.org/web/20170807152135/http://guiadenoticias.net/2017/04/21/gustavo-mirabal-le-da-valor-a-la-hipica-espanola/] [https://web.archive.org/web/20170807152135/http://guiadenoticias.net/2017/04/21/gustavo-mirabal-le-da-valor-a-la-hipica-espanola/ Circulo Ecuestre].
Design disagreements
Gaudí's relations with Segimon deteriorated during the construction and decoration of the house. There were many disagreements between them, one example being the monumental bronze virgin del Rosario, which Gaudí wanted as the statue on the front of the building in homage to the name of the owner, that the artist Carles Mani i Roig was to sculpt. The statue was not made although the words "Ave gratia M plena Dominus tecum" were written at the top of the facade. Continuing disagreements led Gaudí to take Milà to court over his fees. The lawsuit was won by Gaudí in 1916, and he gave the 105,000 pesetas he won in the case to charity, stating that "the principles mattered more than money." Milà was having to pay the mortgage.<ref Name=huertas/>
After Gaudí's death in 1926, Segimon got rid of most of the furniture that Gaudí had designed and covered over parts of Gaudí's designs with new decorations in the style of Louis XVI. La Pedrera was acquired in 1986 by and when restoration was done four years later, some of the original decorations re-emerged.<ref Name=permanyer/>
When the Civil War broke out in July 1936, the Milàs were on vacation. Part of the building was collectivized by the Unified Socialist Party of Catalonia; the Milàs fled the area with some artwork.<ref Namehuertas/> In media and literature
* A scene in The Passenger (Italian: Professione: reporter), a film directed by Michelangelo Antonioni and starring Jack Nicholson and Maria Schneider, was filmed on the roof of the building.
* A scene filmed on the roof in the 2008 film Vicky Cristina Barcelona, directed by Woody Allen.
* A major part in the story "A murderer is born" in the novel Seiobo There Below by László Krasznahorkai happens here
* Mentioned in the book by Eoin Colfer Artemis Fowl and the Lost Colony
* Mentioned in the book by Trudi Alexy ''The Mezuzah in the Madonna's Foot''
* Mentioned in the 'Ballrooms and Biscotti' episode (season 4, episode 1) of Gilmore Girls
* Several scenes in the film, Gaudi Afternoon
* A scale model exhibited at the Catalunya en Miniatura park.
* Featured in the music video for Deep Forest's song 'Sweet Lullaby'
* The home of Edmond Kirsch in Dan Brown's novel Origin, the 5th book featuring Robert Langdon.
Gallery
<gallery>
File:Milà plano sótano.jpg|Design in 1906
File:Barcelona Part Deux - 65 (3466899772).jpg|Ironwork on the main gate
File:LaPedreraParabola.jpg|Catenary arches under the terrace of Casa Milà
File:Casa mila atrium.jpg|Casa Milà atrium at dusk, after restoration
File:Casa Mila Rooftop.jpg|Casa Milà rooftop in Spring
File:Catenary arch - Roof of Casa Milà - Barcelona 2014 (2).jpg|Arch on the roof
File:Casa Milà 01.jpg|Ventilation towers
File:Casa Milà (Barcelona) - 9.jpg|Glass towers on the roof
File:La Pedrera Staircase (5837381385).jpg|Staircase
File:Barcelona Part Deux - 63 (3466899120).jpg|Paintings on the ceiling
File:CaMilá25062006(005).JPG|Detail of an original balcony
File:Casa Milà (Antoni Gaudi) (atrium), 92, Passeig de Gràcia. Eixample, Barcelona, Catalonia, Spain-2.jpg|Atrium
File:Casa Milà (Antoni Gaudi) (atrium), 92, Passeig de Gràcia. Eixample, Barcelona, Catalonia, Spain.jpg|Atrium
File:Casa Milà (Antoni Gaudi) (atrium, reflections), 92, Passeig de Gràcia. Eixample, Barcelona, Catalonia, Spain.jpg|Atrium reflections
File:Casa Milà (Antoni Gaudi) (exterior details), 92, Passeig de Gràcia. Eixample, Barcelona, Catalonia, Spain.jpg|Exterior details
</gallery>
See also
* List of Gaudí buildings
* List of Modernisme buildings in Barcelona
References
<!--added under references heading by script-assisted edit-->
* Rainer Zervst. Gaudí, 1852–1926, Antoni Gaudí i Cornet – A Life Devoted to Architecture. Cologne: Benedikt Taschen Verlag GmbH & Co. KG., 1988. p176.
External links
* [https://www.lapedrera.com/en La Pedrera Official Website]
* [https://artsandculture.google.com/story/EwXxN9VZZdgIAA Works of Antoni Gaudí] UNESCO Collection on Google Arts and Culture
* [https://www.lapedrera.com/visita-virtual/ Virtual tour]
* [https://web.archive.org/web/20100202055504/http://barcelona.panorama.cat/pr/bcn/pedrera.html Immersive photographies of Casa Milà]
* [http://www.greatbuildings.com/buildings/Casa_Mila.html Link pictures]
* [https://web.archive.org/web/20140604142142/http://www.gaudidesigner.com/uk/casa-mila.html La Casa Milà, furniture and decorative arts]
Category:Visionary environments
Category:Buildings and structures in Barcelona
Category:Passeig de Gràcia
Category:World Heritage Sites in Catalonia
Category:Antoni Gaudí buildings
Category:Tourist attractions in Barcelona
Category:Apartment buildings in Spain
Category:Residential buildings completed in 1910
Category:Eixample
Category:Modernisme architecture in Barcelona
Category:Art Nouveau apartment buildings | https://en.wikipedia.org/wiki/Casa_Milà | 2025-04-05T18:25:37.699725 |
1327 | Antiparticle | s (left) and antiparticles (right). From top to bottom; electron/positron, proton/antiproton, neutron/antineutron.]]
In particle physics, every type of particle of "ordinary" matter (as opposed to antimatter) is associated with an antiparticle with the same mass but with opposite physical charges (such as electric charge). For example, the antiparticle of the electron is the positron (also known as an antielectron). While the electron has a negative electric charge, the positron has a positive electric charge, and is produced naturally in certain types of radioactive decay. The opposite is also true: the antiparticle of the positron is the electron.
Some particles, such as the photon, are their own antiparticle. Otherwise, for each pair of antiparticle partners, one is designated as the normal particle (the one that occurs in matter usually interacted with in daily life). The other (usually given the prefix "anti-") is designated the antiparticle.
Particle–antiparticle pairs can annihilate each other, producing photons; since the charges of the particle and antiparticle are opposite, total charge is conserved. For example, the positrons produced in natural radioactive decay quickly annihilate themselves with electrons, producing pairs of gamma rays, a process exploited in positron emission tomography.
The laws of nature are very nearly symmetrical with respect to particles and antiparticles. For example, an antiproton and a positron can form an antihydrogen atom, which is believed to have the same properties as a hydrogen atom. This leads to the question of why the formation of matter after the Big Bang resulted in a universe consisting almost entirely of matter, rather than being a half-and-half mixture of matter and antimatter. The discovery of charge parity violation helped to shed light on this problem by showing that this symmetry, originally thought to be perfect, was only approximate. The question about how the formation of matter after the Big Bang resulted in a universe consisting almost entirely of matter remains an unanswered one, and explanations so far are not truly satisfactory, overall.
Because charge is conserved, it is not possible to create an antiparticle without either destroying another particle of the same charge (as is for instance the case when antiparticles are produced naturally via beta decay or the collision of cosmic rays with Earth's atmosphere), or by the simultaneous creation of both a particle and its antiparticle (pair production), which can occur in particle accelerators such as the Large Hadron Collider at CERN.
Particles and their antiparticles have equal and opposite charges, so that an uncharged particle also gives rise to an uncharged antiparticle. In many cases, the antiparticle and the particle coincide: pairs of photons, Z<sup>0</sup> bosons, mesons, and hypothetical gravitons and some hypothetical WIMPs all self-annihilate. However, electrically neutral particles need not be identical to their antiparticles: for example, the neutron and antineutron are distinct.
History
Experiment
In 1932, soon after the prediction of positrons by Paul Dirac, Carl D. Anderson found that cosmic-ray collisions produced these particles in a cloud chamber – a particle detector in which moving electrons (or positrons) leave behind trails as they move through the gas. The electric charge-to-mass ratio of a particle can be measured by observing the radius of curling of its cloud-chamber track in a magnetic field. Positrons, because of the direction that their paths curled, were at first mistaken for electrons travelling in the opposite direction. Positron paths in a cloud-chamber trace the same helical path as an electron but rotate in the opposite direction with respect to the magnetic field direction due to their having the same magnitude of charge-to-mass ratio but with opposite charge and, therefore, opposite signed charge-to-mass ratios.
The antiproton and antineutron were found by Emilio Segrè and Owen Chamberlain in 1955 at the University of California, Berkeley. Since then, the antiparticles of many other subatomic particles have been created in particle accelerator experiments. In recent years, complete atoms of antimatter have been assembled out of antiprotons and positrons, collected in electromagnetic traps.
Dirac hole theory
Solutions of the Dirac equation contain negative energy quantum states. As a result, an electron could always radiate energy and fall into a negative energy state. Even worse, it could keep radiating infinite amounts of energy because there were infinitely many negative energy states available. To prevent this unphysical situation from happening, Dirac proposed that a "sea" of negative-energy electrons fills the universe, already occupying all of the lower-energy states so that, due to the Pauli exclusion principle, no other electron could fall into them. Sometimes, however, one of these negative-energy particles could be lifted out of this Dirac sea to become a positive-energy particle. But, when lifted out, it would leave behind a hole in the sea that would act exactly like a positive-energy electron with a reversed charge. These holes were interpreted as "negative-energy electrons" by Paul Dirac and mistakenly identified with protons in his 1930 paper A Theory of Electrons and Protons However, these "negative-energy electrons" turned out to be positrons, and not protons.
This picture implied an infinite negative charge for the universea problem of which Dirac was aware. Dirac tried to argue that we would perceive this as the normal state of zero charge. Another difficulty was the difference in masses of the electron and the proton. Dirac tried to argue that this was due to the electromagnetic interactions with the sea, until Hermann Weyl proved that hole theory was completely symmetric between negative and positive charges. Dirac also predicted a reaction + → + , where an electron and a proton annihilate to give two photons. Robert Oppenheimer and Igor Tamm, however, proved that this would cause ordinary matter to disappear too fast. A year later, in 1931, Dirac modified his theory and postulated the positron, a new particle of the same mass as the electron. The discovery of this particle the next year removed the last two objections to his theory.
Within Dirac's theory, the problem of infinite charge of the universe remains. Some bosons also have antiparticles, but since bosons do not obey the Pauli exclusion principle (only fermions do), hole theory does not work for them. A unified interpretation of antiparticles is now available in quantum field theory, which solves both these problems by describing antimatter as negative energy states of the same underlying matter field, i.e. particles moving backwards in time. Elementary antiparticles {| class"wikitable"
|+Antiquarks
!Generation
!Name
!Symbol
!Spin
!Charge (e)
!Mass (MeV/c<sup>2</sup>)
!Observed
|-
| rowspan="2" |1
|up antiquark
|
|
|−
|
|Yes
|-
|down antiquark
|
|
| +
|
|Yes
|-
| rowspan="2" |2
|charm antiquark
|
|
|−
|
|Yes
|-
|strange antiquark
|
|
| +
|
|Yes
|-
| rowspan="2" |3
|top antiquark
|
|
|−
|
|Yes
|-
|bottom antiquark
|
|
| +
|
|Yes
|}
{| class="wikitable"
|+Antileptons
!Generation
!Name
!Symbol
!Spin
!Charge (e)
!Mass (MeV/c<sup>2</sup>)
!Interaction mediated
!Observed
|-
|anti W boson
|
|1
| +1
|
|weak interaction
|Yes
|}
Composite antiparticles
{| class="wikitable"
|+
!Class
!Subclass
!Name
!Symbol
!Spin
!Charge
(e)
!Mass (MeV/c<sup>2</sup>)
!Mass (kg)
!Observed
|-
| rowspan="2" |Antihadron
| rowspan="2" |Antibaryon
|Antiproton
|
|
|−1
|938.27208943(29)
|1.67262192595(52)×10<sup>−27</sup>
|Yes
|-
|Antineutron
|
|
|0
|939.56542194(48)
|?
|Yes
|}
Particle–antiparticle annihilation
pair that influences the propagation of a kaon, causing a neutral kaon to mix with the antikaon. This is an example of renormalization in quantum field theory – the field theory being necessary because of the change in particle number.]]
If a particle and antiparticle are in the appropriate quantum states, then they can annihilate each other and produce other particles. Reactions such as + → (the two-photon annihilation of an electron-positron pair) are an example. The single-photon annihilation of an electron-positron pair, + → , cannot occur in free space because it is impossible to conserve energy and momentum together in this process. However, in the Coulomb field of a nucleus the translational invariance is broken and single-photon annihilation may occur. The reverse reaction (in free space, without an atomic nucleus) is also impossible for this reason. In quantum field theory, this process is allowed only as an intermediate quantum state for times short enough that the violation of energy conservation can be accommodated by the uncertainty principle. This opens the way for virtual pair production or annihilation in which a one particle quantum state may fluctuate into a two particle state and back. These processes are important in the vacuum state and renormalization of a quantum field theory. It also opens the way for neutral particle mixing through processes such as the one pictured here, which is a complicated example of mass renormalization.
Properties
Quantum states of a particle and an antiparticle are interchanged by the combined application of charge conjugation <math> C </math>, parity <math> P </math> and time reversal <math> T </math>.
<math> C </math> and <math> P </math> are linear, unitary operators, <math> T </math> is antilinear and antiunitary,
<math> \langle \Psi | T\,\Phi\rangle = \langle \Phi | T^{-1}\,\Psi\rangle </math>.
If <math>|p,\sigma ,n \rangle </math> denotes the quantum state of a particle <math> n </math> with momentum <math> p </math> and spin <math> J </math> whose component in the z-direction is <math> \sigma </math>, then one has
::<math>CPT \ |p,\sigma,n \rangle\ =\ (-1)^{J-\sigma}\ |p,-\sigma,n^c \rangle ,</math>
where <math> n^c </math> denotes the charge conjugate state, that is, the antiparticle. In particular a massive particle and its antiparticle transform under the same irreducible representation of the Poincaré group which means the antiparticle has the same mass and the same spin.
If <math>C</math>, <math>P</math> and <math>T</math>
can be defined separately on the particles and antiparticles, then
::<math>T\ |p,\sigma,n\rangle \ \propto \ |-p,-\sigma,n\rangle ,</math>
::<math>CP\ |p,\sigma,n\rangle \ \propto \ |-p,\sigma,n^c\rangle ,</math>
::<math>C\ |p,\sigma,n\rangle \ \propto \ |p,\sigma,n^c\rangle ,</math>
where the proportionality sign indicates that there might be a phase on the right hand side.
As <math> CPT </math> anticommutes with the charges, <math> CPT\,Q - Q\, CPT </math>, particle and antiparticle have opposite electric charges q and -q. Quantum field theory
:This section draws upon the ideas, language and notation of canonical quantization of a quantum field theory.
One may try to quantize an electron field without mixing the annihilation and creation operators by writing
::<math>\psi (x)=\sum_{k}u_k (x)a_k e^{-iE(k)t},\,</math>
where we use the symbol k to denote the quantum numbers p and σ of the previous section and the sign of the energy, E(k), and a<sub>k</sub> denotes the corresponding annihilation operators. Of course, since we are dealing with fermions, we have to have the operators satisfy canonical anti-commutation relations. However, if one now writes down the Hamiltonian
::<math>H=\sum_{k} E(k) a^\dagger_k a_k,\,</math>
then one sees immediately that the expectation value of H need not be positive. This is because E(k) can have any sign whatsoever, and the combination of creation and annihilation operators has expectation value 1 or 0.
So one has to introduce the charge conjugate antiparticle field, with its own creation and annihilation operators satisfying the relations
::<math>b_{k\prime} a^\dagger_k\ \mathrm{and}\ b^\dagger_{k\prime}a_k,\,</math>
where k has the same p, and opposite σ and sign of the energy. Then one can rewrite the field in the form
::<math>\psi(x)=\sum_{k_+} u_k (x)a_k e^{-iE(k)t}+\sum_{k_-} u_k (x)b^\dagger _k e^{-iE(k)t},\,</math>
where the first sum is over positive energy states and the second over those of negative energy. The energy becomes
::<math>H=\sum_{k_+} E_k a^\dagger _k a_k + \sum_{k_-} |E(k)|b^\dagger_k b_k + E_0,\,</math>
where E<sub>0</sub> is an infinite negative constant. The vacuum state is defined as the state with no particle or antiparticle, i.e., <math>a_k |0\rangle0</math> and <math>b_k |0\rangle0</math>. Then the energy of the vacuum is exactly E<sub>0</sub>. Since all energies are measured relative to the vacuum, H is positive definite. Analysis of the properties of a<sub>k</sub> and b<sub>k</sub> shows that one is the annihilation operator for particles and the other for antiparticles. This is the case of a fermion.
This approach is due to Vladimir Fock, Wendell Furry and Robert Oppenheimer. If one quantizes a real scalar field, then one finds that there is only one kind of annihilation operator; therefore, real scalar fields describe neutral bosons. Since complex scalar fields admit two different kinds of annihilation operators, which are related by conjugation, such fields describe charged bosons.
Feynman–Stückelberg interpretation <!--'Feynman–Stueckelberg interpretation', 'Feynman-Stueckelberg interpretation', 'Stueckelberg–Feynman interpretation', 'Stueckelberg-Feynman interpretation', 'Feynman–Stückelberg interpretation', 'Feynman-Stückelberg interpretation', 'Stückelberg–Feynman interpretation', and 'Stückelberg-Feynman interpretation' redirect here-->
By considering the propagation of the negative energy modes of the electron field backward in time, Ernst Stückelberg reached a pictorial understanding of the fact that the particle and antiparticle have equal mass m and spin J but opposite charges q. This allowed him to rewrite perturbation theory precisely in the form of diagrams. Richard Feynman later gave an independent systematic derivation of these diagrams from a particle formalism, and they are now called Feynman diagrams. Each line of a diagram represents a particle propagating either backward or forward in time. In Feynman diagrams, anti-particles are shown traveling backwards in time relative to normal matter, and vice versa. This technique is the most widespread method of computing amplitudes in quantum field theory today.
Since this picture was first developed by Stückelberg, and acquired its modern form in Feynman's work, it is called the Feynman–Stückelberg interpretation<!--boldface per WP:R#PLA--> of antiparticles to honor both scientists.
See also
* List of particles
* Antimatter
* Gravitational interaction of antimatter
* Parity, charge conjugation, and time reversal symmetry
* CP violations
* Quantum field theory
* Baryogenesis, baryon asymmetry, and Leptogenesis
* One-electron universe
* Paul Dirac
Notes
References
*
*
External links
*
* [https://home.cern/science/physics/antimatter Antimatter] at CERN
Category:Subatomic particles
Category:Quantum field theory
Antimatter
Category:Particle physics | https://en.wikipedia.org/wiki/Antiparticle | 2025-04-05T18:25:37.719181 |
1331 | Arabian Prince | | birth_place = Compton, California, U.S.
| instruments =
| genre =
| occupations =
| years_active = 1984–present
| label =
| past_member_of = N.W.A
| website =
}}
Kim Renard Nazel (born June 17, 1965), better known by his stage names Arabian Prince or Professor X, is an American rapper and record producer. He was a founding member of N.W.A and contributed to a few tracks from N.W.A. and the Posse (1987) and their debut studio album Straight Outta Compton (1989), the latter of which was released shortly after he left the group.Early lifeNazel was born in Compton, California, to the son of Joseph "Skippy" Nazel Jr., an African American author and radio talk show host. His musical background came from his mother, a piano teacher and classical musician.
Music career
Nazel took the stage name of DJ Prince and started selling mixtapes at school. While working at a Petshop at a Lennox California Mall, its owner, Sam Nassif, asked him to DJ a party at a community dance hall. He kept performing there for several weekends and the success persuaded Nassif to invest even more in the place, renaming it "The Cave",(And Later "The Basement") where Nazel would continue to host for over three years and even after his N.W.A days. Nassif also funded DJ Prince's first record, "Strange Life".
He changed his stage name when he was 15 years old at the Skateland USA, the same skating venue credited for launching N.W.A a few years later, due to a fan's suggestion. He said about his name:
External links
*[https://web.archive.org/web/20150808034808/http://westcoastpioneers.com/artists/arabian-prince.html Interview with Arabian Prince & Biography on westcoastpioneers]
*[http://larecord.com/issues/2008/08/19/arabian-prince-women-and-partying-and-freaks/ August 2008 Interview] with L.A. Record
*[https://web.archive.org/web/20120610182324/http://www.redbullmusicacademy.com/lectures/arabian-prince--brother-arab Arabian Prince RBMA lecture]
*[http://blogs.phoenixnewtimes.com/uponsun/2010/03/_arabian_prince_also_known.php Arabian Prince: What Happened After N.W.A. and the Posse?] at Phoenix New Times''
*[https://www.namm.org/library/oral-history/dj-arabian-prince DJ Arabian Prince Interview] at NAMM Oral History Library (2020)
Category:1965 births
Category:Living people
Category:African-American male rappers
Category:20th-century American male rappers
Category:Musicians from Compton, California
Category:N.W.A members
Category:Ruthless Records artists
Category:20th-century American rappers
Category:21st-century American rappers
Category:American hip-hop singers
Category:African-American male singer-songwriters
Category:American male singer-songwriters
Category:American electro musicians
Category:Gangsta rappers
Category:Rappers from Los Angeles
Category:20th-century African-American male singers
Category:West Coast hip-hop musicians
Category:20th-century American male singers
Category:20th-century American singers
Category:21st-century African-American male singers
Category:21st-century American male singers
Category:Singer-songwriters from California
Category:American special effects people | https://en.wikipedia.org/wiki/Arabian_Prince | 2025-04-05T18:25:37.756924 |
1332 | August 7 | Events
Pre-1600
* 461 – Roman Emperor Majorian is beheaded near the river Iria in north-west Italy following his arrest and deposition by the magister militum Ricimer.
* 626 – The Avar and Slav armies leave the siege of Constantinople.
* 768 – Pope Stephen III is elected to office, and quickly seeks Frankish protection against the Lombard threat, since the Byzantine Empire is no longer able to help.
* 936 – Coronation of King Otto I of Germany.
*1461 – The Ming dynasty Chinese military general Cao Qin stages a coup against the Tianshun Emperor.
*1479 – Battle of Guinegate: French troops of King Louis XI were defeated by the Burgundians led by Archduke Maximilian of Habsburg.1601–1900*1679 – The brigantine Le Griffon becomes the first ship to sail the upper Great Lakes of North America.
*1714 – The Battle of Gangut: The first important victory of the Russian Navy.
*1743 – The Treaty of Åbo ended the 1741–1743 Russo-Swedish War.
*1782 – George Washington orders the creation of the Badge of Military Merit to honor soldiers wounded in battle. It is later renamed to the more poetic Purple Heart.
*1786 – The first federal Indian Reservation is created by the United States.
*1789 – The United States Department of War is established.
*1791 – American troops destroy the Miami town of Kenapacomaqua near the site of present-day Logansport, Indiana in the Northwest Indian War.
*1794 – U.S. President George Washington invokes the Militia Acts of 1792 to suppress the Whiskey Rebellion in western Pennsylvania.
*1819 – Simón Bolívar triumphs over Spain in the Battle of Boyacá.
*1858 – The first Australian rules football match is played between Melbourne Grammar and Scotch College.
*1890 – Anna Månsdotter, found guilty of the 1889 Yngsjö murder, became the last woman to be executed in Sweden.
1901–present
*1909 – Alice Huyler Ramsey and three friends become the first women to complete a transcontinental auto trip, taking 59 days to travel from New York, New York to San Francisco, California.
*1927 – The Peace Bridge opens between Fort Erie, Ontario and Buffalo, New York.
*1930 – The last confirmed lynching of black people in the Northern United States occurs in Marion, Indiana; two men, Thomas Shipp and Abram Smith, are killed.
*1933 – The Kingdom of Iraq slaughters over 3,000 Assyrians in the village of Simele. This date is recognized as Martyrs Day or National Day of Mourning by the Assyrian community in memory of the Simele massacre.
*1942 – World War II: The Battle of Guadalcanal begins as the United States Marines initiate the first American offensive of the war with landings on Guadalcanal and Tulagi in the Solomon Islands.
*1944 – IBM dedicates the first program-controlled calculator, the Automatic Sequence Controlled Calculator (known best as the Harvard Mark I).
*1946 – The government of the Soviet Union presented a note to its Turkish counterparts which refuted the latter's sovereignty over the Turkish Straits, thus beginning the Turkish Straits crisis.
*1947 – Thor Heyerdahl's balsa wood raft, the Kon-Tiki, smashes into the reef at Raroia in the Tuamotu Islands after a 101-day, journey across the Pacific Ocean in an attempt to prove that pre-historic peoples could have traveled from South America.
* 1947 – The Bombay Municipal Corporation formally takes over the Bombay Electric Supply and Transport (BEST).
*1959 – Explorer program: Explorer 6 launches from the Atlantic Missile Range in Cape Canaveral, Florida.
*1960 – Ivory Coast becomes independent from France.
*1962 – Canadian-born American pharmacologist Frances Oldham Kelsey is awarded the U.S. President's Award for Distinguished Federal Civilian Service for her refusal to authorize thalidomide.
*1964 – Vietnam War: The U.S. Congress passes the Gulf of Tonkin Resolution giving U.S. President Lyndon B. Johnson broad war powers to deal with North Vietnamese attacks on American forces.
*1969 – Richard Nixon appoints Luis R. Bruce, a Mohawk-Oglala Sioux and co-founder of the National Congress of American Indians, as the new commissioner of the Bureau of Indian Affairs.
*1974 – Philippe Petit performs a high wire act between the twin towers of the World Trade Center in the air.
*1976 – Viking program: Viking 2 enters orbit around Mars.
*1978 – U.S. President Jimmy Carter declares a federal emergency at Love Canal due to toxic waste that had been disposed of negligently.
*1981 – The Washington Star ceases all operations after 128 years of publication.
*1985 – Takao Doi, Mamoru Mohri and Chiaki Mukai are chosen to be Japan's first astronauts.
*1987 – Cold War: Lynne Cox becomes the first person to swim from the United States to the Soviet Union, crossing the Bering Strait from Little Diomede Island in Alaska to Big Diomede in the Soviet Union.
*1989 – U.S. Congressman Mickey Leland (D-TX) and 15 others die in a plane crash in Ethiopia.
*1990 – First American soldiers arrive in Saudi Arabia as part of the Gulf War.
*1993 – Ada Deer, a Menominee activist, is sworn in as the head of the Bureau of Indian Affairs.
*1997 – Space Shuttle Program: The Space Shuttle Discovery launches on STS-85 from the Kennedy Space Center in Cape Canaveral, Florida.
* 1997 – Fine Air Flight 101 crashes after takeoff from Miami International Airport, killing five people.
*1998 – Bombings at United States embassies in Dar es Salaam, Tanzania and Nairobi, Kenya kill approximately 212 people.
*1999 – The Chechnya-based Islamic International Brigade invades neighboring Dagestan.
*2007 – At AT&T Park, Barry Bonds hits his 756th career home run to surpass Hank Aaron's 33-year-old record.
*2008 – The start of the Russo-Georgian War over the territory of South Ossetia.
*2020 – Air India Express Flight 1344 overshoots the runway at Calicut International Airport in the Malappuram district of Kerala, India, and crashes, killing 21 of the 190 people on board.
Births
Pre-1600
* 317 – Constantius II, Roman emperor (d. 361)
*1282 – Elizabeth of Rhuddlan (d. 1316)
*1533 – Alonso de Ercilla, Spanish soldier and poet (d. 1595)
*1560 – Elizabeth Báthory, Hungarian aristocrat and purported serial killer (d. 1614)
*1571 – Thomas Lupo, English viol player and composer (d. 1627)
*1574 – Robert Dudley, English explorer and cartographer (d. 1649)
*1598 – Georg Stiernhielm, Swedish poet and linguist (d. 1672)
1601–1900
*1613 – William Frederick, Prince of Nassau-Dietz, Dutch stadtholder (d. 1664)
*1702 – Muhammad Shah, Mughal emperor of India (d. 1748)
*1726 – James Bowdoin, American banker and politician, 2nd Governor of Massachusetts (d. 1790)
*1742 – Nathanael Greene, American general (d. 1786)
*1751 – Wilhelmina of Prussia, Princess of Orange (d. 1820)
* 1779 – Carl Ritter, German geographer and academic (d. 1859)
*1826 – August Ahlqvist, Finnish professor, poet, scholar of the Finno-Ugric languages, author, and literary critic (d. 1889)
*1844 – Auguste Michel-Lévy, French geologist and author (d. 1911)
*1862 – Henri Le Sidaner, French painter (d. 1939)
* 1862 – Victoria of Baden (d. 1931)
*1867 – Emil Nolde, Danish-German painter and illustrator (d. 1956)
*1868 – Ladislaus Bortkiewicz, Russian-German economist and statistician (d. 1931)
* 1868 – Huntley Wright, English actor (d. 1941)
*1869 – Mary Frances Winston, American mathematician (d. 1959)
*1876 – Mata Hari, Dutch dancer and spy (d. 1917)
*1879 – Johannes Kotze, South African cricketer (d. 1931)
*1884 – Billie Burke, American actress and singer (d. 1970)
* 1884 – Nikolai Triik, Estonian painter and illustrator (d. 1940)
*1887 – Anna Elisabet Weirauch, German author and playwright (d. 1970)
*1890 – Elizabeth Gurley Flynn, American author and activist (d. 1964)
1901–present
*1901 – Ann Harding, American actress and singer (d. 1981)
*1903 – Louis Leakey, Kenyan-English palaeontologist and archaeologist (d. 1972)
*1904 – Ralph Bunche, American political scientist, academic, and diplomat, Nobel Prize laureate (d. 1971)
*1907 – Albert Kotin, Belarusian-American soldier and painter (d. 1980)
*1911 – István Bibó, Hungarian lawyer and politician (d. 1979)
* 1911 – Nicholas Ray, American director and screenwriter (d. 1979)
*1916 – Kermit Love, American actor, puppeteer, and costume designer (d. 2008)
*1918 – C. Buddingh', Dutch poet and translator (d. 1985)
* 1918 – Gordon Zahn, American sociologist and author (d. 2007)
*1921 – Manitas de Plata, French guitarist (d. 2014)
* 1921 – Karel Husa, Czech-American composer and conductor (d. 2016)
*1925 – Felice Bryant, American songwriter (d. 2003)
*1926 – Stan Freberg, American puppeteer, voice actor, and singer (d. 2015)
*1927 – Edwin Edwards, American soldier, lawyer, and politician, 50th Governor of Louisiana (d. 2021)
*1928 – Betsy Byars, American author and academic (d. 2020)
* 1928 – Owen Luder, English architect, designed Tricorn Centre and Trinity Square (d. 2021)
* 1928 – James Randi, Canadian-American stage magician and author (d. 2020)
*1929 – Don Larsen, American baseball player (d. 2020)
*1930 – Togrul Narimanbekov, Azerbaijani-French painter and academic (d. 2013)
* 1930 – Veljo Tormis, Estonian composer and educator (d. 2017)
*1932 – Abebe Bikila, Ethiopian runner (d. 1973)
* 1932 – Edward Hardwicke, English actor (d. 2011)
* 1932 – Rien Poortvliet, Dutch painter and illustrator (d. 1995)
* 1932 – Maurice Rabb, Jr., American ophthalmologist and academic (d. 2005)
*1933 – Eddie Firmani, South African footballer and manager
* 1933 – Elinor Ostrom, American economist and academic, Nobel Prize laureate (d. 2012)
* 1933 – Jerry Pournelle, American journalist and author (d. 2017)
* 1933 – Alberto Romulo, Filipino politician and diplomat
*1934 – Sándor Simó, Hungarian director, producer, and screenwriter (d. 2001)
*1935 – Lee Corso, American college football coach and broadcaster
* 1935 – Rahsaan Roland Kirk, American saxophonist and composer (d. 1977)
*1937 – Zoltán Berczik, Hungarian table tennis player and coach (d. 2011)
* 1937 – Don Wilson, English cricketer and coach (d. 2012)
*1938 – Giorgetto Giugiaro, Italian automotive designer
*1940 – Jean-Luc Dehaene, French-Belgian lawyer and politician, 63rd Prime Minister of Belgium (d. 2014)
* 1940 – Uwe Nettelbeck, German record producer, journalist and film critic (d. 2007)
*1941 – Matthew Evans, Baron Evans of Temple Guiting, English publisher and politician (d. 2016)
*1942 – Garrison Keillor, American humorist, novelist, short story writer, and radio host
* 1942 – Carlos Monzón, Argentinian boxer and actor (d. 1995)
* 1942 – Caetano Veloso, Brazilian singer-songwriter, writer and producer
* 1942 – Richard Sykes, English biochemist and academic
* 1942 – B. J. Thomas, American singer (d. 2021)
*1943 – Mohammed Badie, Egyptian religious leader
* 1943 – Lana Cantrell, Australian singer-songwriter and lawyer
* 1943 – Alain Corneau, French director and screenwriter (d. 2010)
*1944 – John Glover, American actor
* 1944 – Robert Mueller, American soldier and lawyer, 6th Director of the Federal Bureau of Investigation
*1945 – Kenny Ireland, Scottish actor and director (d. 2014)
* 1945 – Alan Page, American football player and jurist
*1947 – Franciscus Henri, Dutch-Australian singer-songwriter
* 1947 – Sofia Rotaru, Ukrainian singer-songwriter, producer, and actress
*1948 – Marty Appel, American businessman and author
* 1948 – Greg Chappell, Australian cricketer and coach
*1949 – Walid Jumblatt, Lebanese journalist and politician
* 1949 – Matthew Parris, South African-English journalist and politician
*1950 – Rodney Crowell, American singer-songwriter and guitarist
* 1950 – Alan Keyes, American politician and diplomat, 16th Assistant Secretary of State for International Organization Affairs
* 1950 – S. Thandayuthapani, Sri Lankan educator and politician
*1952 – Caroline Aaron, American actress and producer
* 1952 – Eamonn Darcy, Irish golfer
* 1952 – Kees Kist, Dutch footballer
* 1952 – Alexei Sayle, English comedian, actor, and author
*1953 – Anne Fadiman, American journalist and author
*1954 – Valery Gazzaev, Russian footballer, manager and politician
* 1954 – Jonathan Pollard, Israeli spy<!-- renounced U.S. citizenship -->
* 1954 – Alan Reid, Scottish politician
*1955 – Wayne Knight, American actor, comedian and voice actor
* 1955 – Greg Nickels, American lawyer and politician, 51st Mayor of Seattle
* 1955 – Vladimir Sorokin, Russian author and playwright
*1957 – Daire Brehan, Irish journalist, lawyer, and actress (d. 2012)
* 1957 – Alexander Dityatin, Russian gymnast and colonel
*1958 – Russell Baze, Canadian-American jockey
* 1958 – Bruce Dickinson, English singer-songwriter and guitarist
* 1958 – Alberto Salazar, Cuban-American runner and coach
*1959 – Koenraad Elst, Belgian orientalist and author
* 1959 – Ali Shah, Zimbabwean cricketer and coach
*1960 – David Duchovny, American actor, director, producer, and screenwriter
*1961 – Brian Conley, English actor and singer
* 1961 – Yelena Davydova, Russian gymnast
* 1961 – Walter Swinburn, English jockey and trainer (d. 2016)
* 1961 – Carlos Vives, Colombian singer, songwriter, and actor
*1962 – Alison Brown, American banjo player, songwriter, and producer
*1963 – Paul Dunn, Australian rugby league player
* 1963 – Nick Gillespie, American journalist and author
* 1963 – Marcus Roberts, American pianist and educator
*1964 – John Birmingham, English-Australian journalist and author
* 1964 – Ian Dench, English guitarist and songwriter
* 1964 – Peter Niven, Scottish jockey
*1965 – Raul Malo, American singer-songwriter, guitarist, and producer
* 1965 – Elizabeth Manley, Canadian figure skater
*1966 – David Cairns, Scottish laicised priest and politician, Minister of State for Scotland (d. 2011)
* 1966 – Shobna Gulati, British actress
* 1966 – Kristin Hersh, American singer-songwriter and guitarist
* 1966 – Jimmy Wales, American-British entrepreneur, co-founder of Wikipedia
*1967 – Jason Grimsley, American baseball player
*1968 – Francesca Gregorini, Italian-American director and screenwriter
* 1968 – Trevor Hendy, Australian surfer and coach
* 1968 – Sophie Lee, Australian actress and author
*1969 – Markus Bundi, Swiss writer
* 1969 – Paul Lambert, Scottish footballer and manager
* 1969 – Dana G. Peleg, Israeli writer and LGBT activist
*1970 – Eric Namesnik, American swimmer (d. 2006)
*1971 – Dominic Cork, England cricketer and sportscaster
* 1971 – Rachel York, American actress and singer
*1972 – Gerry Peñalosa, Filipino boxer and promoter
*1973 – Mikhail Gorsheniov, Russian singer-songwriter (d. 2013)
* 1973 – Danny Graves, Vietnamese-American baseball player
* 1973 – Kevin Muscat, English-Australian footballer, coach, and manager
*1974 – Chico Benymon, American actor
* 1974 – Michael Shannon, American actor
*1975 – Koray Candemir, Turkish singer-songwriter
* 1975 – Gerard Denton, Australian cricketer
* 1975 – Megan Gale, Australian model and actress
* 1975 – Ray Hill, American football player (d. 2015)
* 1975 – Rebecca Kleefisch, American journalist and politician, 44th Lieutenant Governor of Wisconsin
* 1975 – Édgar Rentería, Colombian baseball player
* 1975 – Charlize Theron, South African actress
*1976 – Dimitrios Eleftheropoulos, Greek footballer and manager
* 1976 – Shane Lechler, American football player
*1977 – Charlotte Ronson, English fashion designer
* 1977 – Samantha Ronson, English singer-songwriter and DJ
* 1977 – Justin Brooker, Rugby League Player
*1978 – Alexandre Aja, French director, producer, and screenwriter
* 1978 – Jamey Jasta, American singer-songwriter
* 1978 – Mark McCammon, English-Barbadian footballer
* 1978 – Cirroc Lofton, American actor
*1979 – Eric Johnson, American actor, director, and screenwriter
* 1979 – Miguel Llera, Spanish footballer
* 1979 – Birgit Zotz, Austrian anthropologist and author
*1980 – Carsten Busch, German footballer
* 1980 – Aurélie Claudel, French model and actress
* 1980 – Tácio Caetano Cruz Queiroz, Brazilian footballer
* 1980 – Seiichiro Maki, Japanese footballer
*1981 – David Testo, American soccer player
* 1981 – Randy Wayne, American actor and producer
*1982 – Ángeles Balbiani, Argentine actress and singer
* 1982 – Abbie Cornish, Australian actress
* 1982 – Juan Martín Hernández, Argentine rugby player
* 1982 – Marquise Hill, American football player (d. 2007)
* 1982 – Vassilis Spanoulis, Greek basketball player
* 1982 – Martin Vučić, Macedonian singer and drummer
*1983 – Christian Chávez, Mexican singer-songwriter and actor
* 1983 – Murat Dalkılıç, Turkish singer-songwriter
* 1983 – Danny, Portuguese footballer
* 1983 – Andriy Hrivko, Ukrainian cyclist
* 1983 – Mark Pettini, English cricketer and journalist
*1984 – Stratos Perperoglou, Greek basketball player
* 1984 – Tooba Siddiqui, Pakistani model and actress
* 1984 – Yun Hyon-seok, South Korean poet and author (d. 2003)
*1986 – Paul Biedermann, German swimmer
* 1986 – Valter Birsa, Slovenian footballer
* 1986 – Altaír Jarabo, Mexican model and actress
* 1986 – Juan de la Rosa, Mexican boxer
*1987 – Sidney Crosby, Canadian ice hockey player
* 1987 – Mustapha Dumbuya, Sierra Leonean footballer
* 1987 – Ryan Lavarnway, American baseball player
* 1987 – Rouven Sattelmaier, German footballer
*1988 – Jonathan Bernier, Canadian ice hockey player
* 1988 – Mohamed Coulibaly, Senegalese footballer
* 1988 – Anisa Mohammed, West Indian cricketer
* 1988 – Melody Oliveria, American blogger
* 1988 – Erik Pieters, Dutch footballer
* 1988 – Beanie Wells, American football player
*1989 – DeMar DeRozan, American basketball player
*1990 – Jake Allen, Canadian ice hockey player
* 1990 – Josh Franceschi, English singer-songwriter
*1991 – Luis Salom, Spanish motorcycle racer (d. 2016)
* 1991 – Mitchell te Vrede, Dutch footballer
*1992 – Adam Yates, English cyclist
* 1992 – Simon Yates, English cyclist
* 1992 – Wout Weghorst, Dutch footballer
*1993 – Francesca Eastwood, American actress and television personality
* 1993 – Martti Nõmme, Estonian ski jumper
* 1993 – Karol Zalewski, Polish sprinter
*1996 – Dani Ceballos, Spanish footballer
*1997 – Matty Cash, Polish footballer
* 1997 – Kyler Murray, American football player
*1998 – Vladimir Barbu, Italian diver
* 1998 – María Belén Bazo, Peruvian windsurfer
* 1998 – Jalen Hurts, American football player
* 1999 – Sydney McLaughlin-Levrone, American hurdler and sprinter
* 2000 – Lauren Hemp, English footballer
<!--Place multiple names from the same year in alphabetical order.
Do not add people without Wikipedia articles to this list.
Do not trust "this year in history" websites for accurate date information. Do not link multiple occurrences of the same year, just link the first occurrence.-->
Deaths
Pre-1600
* 461 – Majorian, Roman emperor (b. 420)
*707 – Li Chongjun, Chinese prince
*1028 – Alfonso V, king of León (b. 994)
*1106 – Henry IV, Holy Roman Emperor (b. 1050)
*1234 – Hugh Foliot, bishop of Hereford (b. c. 1155)
*1272 – Richard Middleton, English Lord Chancellor
*1296 – Heinrich II von Rotteneck, prince-bishop of Regensburg
*1385 – Joan of Kent, mother of Richard II (b. 1328)
*1485 – Alexander Stewart, duke of Albany (b. 1454)
*1547 – Cajetan, Italian priest and saint (b. 1480)
1601–1900
*1613 – Thomas Fleming, English judge and politician, Lord Chief Justice of England (b. 1544)
*1616 – Vincenzo Scamozzi, Italian architect, designed Teatro Olimpico (b. 1548)
*1632 – Robert de Vere, 19th Earl of Oxford, English soldier (b. 1575)
*1635 – Friedrich Spee, German poet and academic (b. 1591)
*1639 – Martin van den Hove, Dutch astronomer and mathematician (b. 1605)
*1661 – Jin Shengtan, Chinese journalist and critic (b. 1608)
*1787 – Francis Blackburne, English Anglican churchman and activist (b. 1705)
*1817 – Pierre Samuel du Pont de Nemours, French economist and politician (b. 1739)
*1834 – Joseph Marie Jacquard, French weaver and inventor, invented the Jacquard loom (b. 1752)
*1848 – Jöns Jacob Berzelius, Swedish chemist and academic (b. 1779)
*1855 – Mariano Arista, Mexican general and politician, 19th President of Mexico (b. 1802)
*1864 – Li Xiucheng, Chinese field marshal (b. 1823)
*1893 – Alfredo Catalani, Italian composer and academic (b. 1854)
*1899 – Jacob Maris, Dutch painter and educator (b. 1837)
*1900 – Wilhelm Liebknecht, German lawyer and politician (b. 1826)
1901–present
*1912 – François-Alphonse Forel, Swiss limnologist and academic (b. 1841)
*1917 – Edwin Harris Dunning, South African-English commander and pilot (b. 1891)
*1938 – Konstantin Stanislavski, Russian actor and director (b. 1863)
*1941 – Rabindranath Tagore, Indian author, poet, and playwright, Nobel Prize laureate (b. 1861)
*1948 – Charles Bryant, English-American actor and director (b. 1879)
*1953 – Abner Powell, American baseball player and manager (b. 1860)
*1957 – Oliver Hardy, American actor, singer, and director (b. 1892)
*1958 – Elizabeth Foreman Lewis, American author and educator (b. 1892)
*1960 – Luis Ángel Firpo, Argentine boxer (b. 1894)
*1963 – Ramon Vila Capdevila, last of the Spanish Maquis, holding out after the end of the Spanish Civil War (b. 1908)
*1968 – Giovanni Bracco, Italian race car driver (b. 1908)
*1969 – Jean Bastien, French professional footballer (b. 1915)
* 1969 – Joseph Kosma, Hungarian-French composer (b. 1905)
*1970 – Harold Haley, American lawyer and judge (b. 1904)
* 1970 – Jonathan P. Jackson, American bodyguard and kidnapper (b. 1953)
*1972 – Joi Lansing, American model, actress, and singer (b. 1929)
*1973 – Jack Gregory, Australian cricketer (b. 1895)
*1974 – Rosario Castellanos, Mexican poet and author (b. 1925)
* 1974 – Sylvio Mantha, Canadian ice hockey player and coach (b. 1902)
*1978 – Eddie Calvert, English trumpeter (b. 1922)
*1981 – Gunnar Uusi, Estonian chess player (b. 1931)
*1985 – Grayson Hall, American actress (b. 1922)
*1987 – Camille Chamoun, Lebanese lawyer and politician, 7th President of Lebanon (b. 1900)
*1989 – Mickey Leland, American lawyer and politician (b. 1944)
*1994 – Larry Martyn, English actor (b. 1934)
*1995 – Brigid Brophy, English author and critic (b. 1929)
*2001 – Algirdas Lauritėnas, Lithuanian basketball player (b. 1932)
*2003 – K. D. Arulpragasam, Sri Lankan zoologist and academic (b. 1931)
* 2003 – Mickey McDermott, American baseball player and coach (b. 1929)
*2004 – Red Adair, American firefighter (b. 1915)
* 2004 – Colin Bibby, English ornithologist and academic (b. 1948)
*2005 – Peter Jennings, Canadian-American journalist and author (b. 1938)
*2005 – Ester Šimerová-Martinčeková, Slovak painter (b. 1909)
*2006 – Mary Anderson Bain, American lawyer and politician (b. 1911)
*2007 – Ernesto Alonso, Mexican actor, director, and producer (b. 1917)
* 2007 – Angus Tait, New Zealand businessman, founded Tait Communications (b. 1919)
*2008 – Bernie Brillstein, American talent agent and producer (b. 1931)
* 2008 – Andrea Pininfarina, Italian engineer and businessman (b. 1957)
*2009 – Louis E. Saavedra, American educator and politician, 48th Mayor of Albuquerque (b. 1933)
* 2009 – Mike Seeger, American singer-songwriter (b. 1933)
*2010 – John Nelder, English mathematician and statistician (b. 1924)
*2011 – Mark Hatfield, American soldier, academic, and politician, 29th Governor of Oregon (b. 1922)
* 2011 – Nancy Wake, New Zealand-English captain and spy (b. 1912)
*2012 – Murtuz Alasgarov, Azerbaijani academic and politician, Speaker of the National Assembly of Azerbaijan (b. 1928)
* 2012 – Judith Crist, American critic and academic (b. 1922)
* 2012 – Vladimir Kobzev, Russian footballer and coach (b. 1959)
* 2012 – Anna Piaggi, Italian journalist and author (b. 1931)
* 2012 – Mayer Zald, American sociologist and academic (b. 1931)
* 2012 – Dušan Zbavitel, Czech indologist and author (b. 1925)
*2013 – Samuel G. Armistead, American linguist, historian, and academic (b. 1927)
* 2013 – Almir Kayumov, Russian footballer (b. 1964)
* 2013 – Anthony Pawson, English-Canadian biologist, chemist, and academic (b. 1952)
* 2013 – Margaret Pellegrini, American actress and dancer (b. 1923)
* 2013 – Meeli Truu, Estonian architect (b. 1946)
* 2013 – Alexander Yagubkin, Russian boxer (b. 1961)
*2014 – Víctor Fayad, Argentine lawyer and politician (b. 1955)
* 2014 – Perry Moss, American football player and coach (b. 1926)
* 2014 – Henry Stone, American record producer (b. 1921)
*2015 – Manuel Contreras, Chilean general (b. 1929)
* 2015 – Frances Oldham Kelsey, Canadian pharmacologist and physician (b. 1914)
* 2015 – Louise Suggs, American golfer, co-founded LPGA (b. 1923)
*2016 – Bryan Clauson, American racing driver (b. 1989)
*2017 – Don Baylor, American baseball player (b. 1949)
* 2017 – David Maslanka, American composer (b. 1943)
*2018 – M. Karunanidhi, Indian politician, former Tamil Nadu Chief Minister and prominent leader of Tamils (b. 1924)
* 2018 – Stan Mikita, Slovak hockey player (b. 1940)
*2019 – David Berman, American musician, singer, poet and cartoonist (b. 1967)
*2020 – Lê Khả Phiêu, Vietnamese politician (b. 1931)
*2021 – Markie Post, American actress (b. 1950)
* 2021 – Trevor Moore, American comedian (b. 1980)
*2022 – David McCullough, American historian and author (b. 1933)
*2023 – William Friedkin, American film director (b. 1935)
*2024 – Jon McBride, American astronaut (b. 1943)
<!--Place multiple names from the same year in alphabetical order. Do not add people without Wikipedia articles to this list. Do not trust "this year in history" websites for accurate date information. Do not link multiple occurrences of the same year, just link the first occurrence.-->
Holidays and observances
* Assyrian Martyrs Day (Assyrian community)
* Battle of Boyacá Day (Colombia)
* Christian feast day:
** Albert of Trapani
** Cajetan of Thienna
** Carpophorus and companions
** Dometius of Persia
** Donatus of Arezzo
** Donatus of Besançon
** Donatus of Muenstereifel
** John Mason Neale (Episcopal Church (USA))
** Nantovinus
** Pope Sixtus II
** August 7 (Eastern Orthodox liturgics)
** Filseta (Ethiopian and Eritrean Orthodox Tewahedo Church)
* Emancipation Day (Saint Kitts and Nevis)
* Republic Day (Ivory Coast)
* Youth Day (Kiribati)
* National Purple Heart Day (United States)ReferencesExternal links
*
*
*
Category:Days of August | https://en.wikipedia.org/wiki/August_7 | 2025-04-05T18:25:37.799188 |
1333 | August 8 | Events
Pre-1600
*685 BC – Spring and Autumn period: Battle of Qianshi: Upon the death of the previous Duke of Qi, Gongsun Wuzhi, Duke Zhuang of Lu sends an army into the Duchy of Qi to install the exiled Qi prince Gongzi Jiu as the new Duke of Qi – but is defeated at Qianshi by Jiu's brother and rival claimant, the newly inaugurated Duke Huan of Qi.
* 870 – Treaty of Meerssen: King Louis the German and his half-brother Charles the Bald partition the Middle Frankish Kingdom into two larger east and west divisions.
*1220 – Sweden is defeated by Estonian tribes in the Battle of Lihula.
*1264 – Mudéjar revolt: Muslim rebel forces took the Alcázar of Jerez de la Frontera after defeating the Castilian garrison.
*1503 – King James IV of Scotland marries Margaret Tudor, daughter of King Henry VII of England at Holyrood Abbey in Edinburgh, Scotland.
*1509 – Krishnadeva Raya is crowned Emperor of Vijayanagara at Chittoor.
*1576 – The cornerstone for Tycho Brahe's Uraniborg observatory is laid on the island of Hven.
*1585 – John Davis enters Cumberland Sound in search of the Northwest Passage.
*1588 – Anglo-Spanish War: Battle of Gravelines: The naval engagement ends, ending the Spanish Armada's attempt to invade England.
1601–1900
*1647 – The Irish Confederate Wars and Wars of the Three Kingdoms: Battle of Dungan's Hill: English Parliamentary forces defeat Irish forces.
*1648 – Mehmed IV (1648–1687) succeeds Ibrahim I (1640–1648) as Ottoman sultan.
*1709 – Bartolomeu de Gusmão demonstrates the lifting power of hot air in an audience before the king of Portugal in Lisbon, Portugal.
*1786 – Mont Blanc on the French-Italian border is climbed for the first time by Jacques Balmat and Dr. Michel-Gabriel Paccard.
*1794 – Joseph Whidbey leads an expedition to search for the Northwest Passage near Juneau, Alaska.
*1831 – Four hundred Shawnee people agree to relinquish their lands in Ohio in exchange for land west of the Mississippi River in the Treaty of Wapakoneta.
*1844 – The Quorum of the Twelve Apostles, headed by Brigham Young, is reaffirmed as the leading body of the Church of Jesus Christ of Latter-day Saints (LDS Church).
*1863 – American Civil War: Following his defeat in the Battle of Gettysburg, General Robert E. Lee sends a letter of resignation to Confederate President Jefferson Davis (which is refused upon receipt).
* 1863 – Tennessee Military Governor Andrew Johnson frees his personal slaves in Greeneville, Tennessee despite them being exempt from the Emancipation Proclamation, now commemorated as Emancipation Day in the state.
*1870 – The Republic of Ploiești, a failed Radical-Liberal rising against Domnitor Carol of Romania.
*1876 – Thomas Edison receives a patent for his mimeograph.
*1897 – Italian anarchist Michele Angiolillo assassinates Spanish Prime Minister Antonio Cánovas del Castillo
1901–present
*1903 – Black Saturday occurs, killing 12 in a stadium collapse in Philadelphia.
*1908 – Wilbur Wright makes his first flight at a racecourse at Le Mans, France. It is the Wright Brothers' first public flight.
*1918 – World War I: The Battle of Amiens begins a string of almost continuous Allied victories with a push through the German front lines (Hundred Days Offensive).
*1919 – The Anglo-Afghan Treaty of 1919 is signed. It establishes peaceful relations between Afghanistan and the UK, and confirms the Durand line as the mutual border. In return, the UK is no longer obligated to subsidize the Afghan government.
*1929 – The German airship Graf Zeppelin begins a round-the-world flight.
*1940 – The "Aufbau Ost" directive is signed by Wilhelm Keitel.
*1942 – Quit India Movement is launched in India against the British rule in response to Mohandas Gandhi's call for swaraj or complete independence.
*1945 – The London Charter is signed by France, the United Kingdom, the Soviet Union and the United States, establishing the laws and procedures for the Nuremberg trials.
*1946 – First flight of the nuclear capable Convair B-36, heaviest mass-produced piston-engined aircraft at the time.
*1956 – Marcinelle mining disaster in Belgium. 262 coal miners, including a substantial number of Italian migrant workers, were killed in one of the largest mining accidents in Belgian history.
*1963 – Great Train Robbery: In England, a gang of 15 train robbers steal £2.6 million in bank notes.
* 1963 – The Zimbabwe African National Union (ZANU), the current ruling party of Zimbabwe, is formed by a split from the Zimbabwe African People's Union.
*1967 – The Association of Southeast Asian Nations (ASEAN) is founded by Indonesia, Malaysia, the Philippines, Singapore and Thailand.
*1969 – At a zebra crossing in London, photographer Iain Macmillan takes the iconic photo that becomes the cover image of the Beatles' album Abbey Road.
*1973 – Kim Dae-jung, a South Korean politician and later president of South Korea, is kidnapped.
*1974 – President Richard Nixon, in a nationwide television address, announces his resignation from the office of the President of the United States effective noon the next day.
*1988 – The 8888 Uprising begins in Rangoon (Yangon), Burma (Myanmar). Led by students, hundreds of thousands join in nationwide protests against the one-party regime. On September 18, the demonstrations end in a military crackdown, killing thousands.
* 1988 – The first night baseball game in the history of Chicago's Wrigley Field (game was rained out in the fourth inning).
*1989 – Space Shuttle program: STS-28 Mission: Space Shuttle Columbia takes off on a secret five-day military mission.
*1990 – Iraq occupies Kuwait and the state is annexed to Iraq. This would lead to the Gulf War shortly afterward.
*1991 – The Warsaw radio mast, then the tallest construction ever built, collapses.
*1993 – The 7.8 Guam earthquake shakes the island with a maximum Mercalli intensity of IX (Violent), causing around $250 million in damage and injuring up to 71 people.
*1998 – Iranian consulate in Mazar-i-Sharif, Afghanistan is raided by Taliban leading to the deaths of ten Iranian diplomats and a journalist.
*2000 – Confederate submarine H.L. Hunley is raised to the surface after 136 years on the ocean floor and 30 years after its discovery by undersea explorer E. Lee Spence.
*2001 – Albanian rebels ambush a convoy of the Army of the Republic of Macedonia near Tetovo, killing 10 soldiers.
*2004 – A tour bus belonging to the Dave Matthews Band dumps approximately 800 pounds of human waste onto a boat full of passengers.
*2007 – An EF2 tornado touches down in Kings County and Richmond County, New York, the most powerful tornado in New York to date and the first in Brooklyn since 1889.
*2007 – Space Shuttle program: STS-118 Mission: Endeavor takes off on a mission to the International Space Station.
*2008 – A EuroCity express train en route from Kraków, Poland to Prague, Czech Republic strikes a part of a motorway bridge that had fallen onto the railroad track near Studénka railway station in the Czech Republic and derails, killing eight people and injuring 64 others.
* 2008 – The 29th modern summer Olympic Games took place in Beijing, China until August 24.
* 2009 – A Eurocopter AS350 Écureuil and Piper PA-32R collide over the Hudson River, killing nine people.
*2010 – China Floods: A mudslide in Zhugqu County, Gansu, China, kills more than 1,400 people.
*2013 – A suicide bombing at a funeral in the Pakistani city of Quetta kills at least 31 people.
*2015 – Eight people are killed in a shooting in Harris County, Texas.
*2016 – Terrorists attack a government hospital in Quetta, Pakistan with a suicide blast and shooting, killing between 70 and 94 people, and injuring around 130 others.
*2019 – An explosion at the State Central Navy Testing Range in Nyonoksa, Russia, kills five people.
*2022 – The Federal Bureau of Investigation (FBI) executes a search warrant at former president Donald Trump's residence in Mar-a-Lago, Palm Beach, Florida.
*2023 – Hawaii wildfires: Seventeen thousand acres of land are burned and at least 101 people are killed, with two others missing, when a series of wildfires break out on the island of Maui in Hawaii.
*2024 – Nobel laureate Muhammad Yunus takes oath as Chief Adviser to form an interim government in Bangladesh.BirthsPre-1600
* 422 – Casper, ruler of the Maya city of Palenque
*1079 – Emperor Horikawa of Japan (d. 1107)
*1170 – Saint Dominic, founder of the Dominicans (d. 1221)
*1306 – Rudolf II, Duke of Bavaria (d. 1353)
*1492 – Matteo Tafuri, Italian alchemist (d. 1582)
*1518 – Conrad Lycosthenes, French-German scholar and author (d. 1561)
*1558 – George Clifford, 3rd Earl of Cumberland, English noble (d. 1605)
1601–1900
*1605 – Cecil Calvert, 2nd Baron Baltimore, English lawyer and politician, Governor of Newfoundland (d. 1675)
*1640 – Amalia Catharina, German poet and composer (d. 1697)
*1646 – Godfrey Kneller, German-English painter (d. 1723)
*1673 – John Ker, Scottish spy (d. 1726)
*1693 – Laurent Belissen, French composer (d. 1762)
*1694 – Francis Hutcheson, Irish philosopher and academic (d. 1746)
*1706 – Johan Augustin Mannerheim, Swedish nobleman and military leader (d. 1778)
*1709 – Hermann Anton Gelinek, German-Italian monk and violinist (d. 1779)
*1720 – Carl Fredrik Pechlin, Swedish general and politician (d. 1796)
*1754 – Hipólito Ruiz López, Spanish botanist (d. 1816)
*1758 – Friedrich Georg Weitsch, German painter (d. 1828)
*1790 – Ferenc Kölcsey, Hungarian poet, critic, and politician (d. 1838)
*1807 – Emilie Flygare-Carlén, Swedish author (d. 1892)
*1814 – Esther Hobart Morris, American suffragette and judge (d. 1902)
*1822 – George Stoneman, Jr., United States Army cavalry officer (d. 1894)
*1839 – Nelson A. Miles, American general (d. 1925)
*1851 – George Turner, Australian politician, 18th Premier of Victoria (d. 1916)
*1856 – Thomas Anstey Guthrie, English journalist and author (d. 1934)
*1857 – Cécile Chaminade, French pianist and composer (d. 1944)
*1863 – Jean Leon Gerome Ferris, American painter (d. 1930)
*1866 – Matthew Henson, American explorer (d. 1955)
*1874 – Albert Stanley, 1st Baron Ashfield, English businessman and politician, President of the Board of Trade (d. 1948)
*1875 – Artur Bernardes, Brazilian lawyer and politician, 12th President of Brazil (d. 1955)
*1876 – Varghese Payyappilly Palakkappilly, Indian-Syrian priest, founded the Sisters of the Destitute (d. 1929)
*1879 – Bob Smith, American physician and surgeon, co-founded Alcoholics Anonymous (d. 1950)
* 1879 – Emiliano Zapata, Mexican general and politician (d. 1919)
*1880 – Earle Page, Australian lawyer, academic, and politician, 11th Prime Minister of Australia (d. 1961)
*1881 – Paul Ludwig Ewald von Kleist, German field marshal (d. 1954)
*1882 – Ladislas Starevich, Russian-French animator, screenwriter, and cinematographer (d. 1965)
*1884 – Sara Teasdale, American poet and educator (d. 1933)
*1889 – Hans Egede Budtz, Danish actor (d. 1968)
* 1889 – Jack Ryder, Australian cricketer (d. 1977)
*1891 – Adolf Busch, German violinist and composer (d. 1952)
*1896 – Marjorie Kinnan Rawlings, American author and academic (d. 1953)
*1898 – Marguerite Bise, French chef (d. 1965)
1901–present
*1901 – Ernest Lawrence, American physicist and academic, Nobel Prize laureate (d. 1958)
*1902 – Paul Dirac, English-American physicist and academic, Nobel Prize laureate (d. 1984)
*1904 – Achille Varzi, Italian racing driver (d. 1948)
*1905 – André Jolivet, French composer (d. 1974)
*1907 – Benny Carter, American saxophonist, trumpet player, and composer (d. 2003)
*1907 – Jimmy Steele (Irish republican), lifelong militant and editor (d. 1970)
*1908 – Arthur Goldberg, American jurist and politician, 6th United States Ambassador to the United Nations (d. 1990)
*1909 – Charles Lyttelton, 10th Viscount Cobham, English cricketer and politician, 9th Governor-General of New Zealand (d. 1977)
* 1909 – Jack Renshaw, Australian politician, 31st Premier of New South Wales (d. 1987)
* 1909 – Bill Voce, England cricketer and coach (d. 1984)
*1910 – Jimmy Murphy, Welsh-English footballer and manager (d. 1989)
* 1910 – Sylvia Sidney, American actress (d. 1999)
*1911 – Rosetta LeNoire, American actress (d. 2002)
*1915 – James Elliott, American runner and coach (d. 1981)
*1919 – Dino De Laurentiis, Italian actor and producer (d. 2010)
* 1919 – John David Wilson, English animator and producer (d. 2013)
*1920 – Leo Chiosso, Italian songwriter and producer (d. 2006)
* 1920 – Jimmy Witherspoon, American jump blues singer (d. 1997)
*1921 – William Asher, American director, producer, and screenwriter (d. 2012)
* 1921 – Webb Pierce, American singer-songwriter and guitarist (d. 1991)
* 1921 – Esther Williams, American swimmer and actress (d. 2013)
*1922 – Rory Calhoun, American actor (d. 1999)
* 1922 – Rudi Gernreich, Austrian-American fashion designer, created the Monokini (d. 1985)
* 1922 – Gertrude Himmelfarb, American historian, author, and academic (d. 2019)
* 1922 – Károly Reich, Hungarian illustrator (d. 1988)
*1925 – Alija Izetbegović, Bosnian lawyer and politician, 1st President of Bosnia and Herzegovina (d. 2003)
* 1925 – Aziz Sattar, Malaysian actor, comedian, singer and director (d. 2014)
*1926 – Richard Anderson, American actor and producer (d. 2017)
*1927 – Johnny Temple, American baseball player and coach (d. 1994)
* 1927 – Maia Wojciechowska, Polish-American author (d. 2002)
*1928 – Don Burrows, Australian saxophonist, clarinet player, and flute player (d. 2020)
*1929 – Larisa Bogoraz, Russian linguist and activist (d. 2004)
* 1929 – Luis García Meza Tejada, Bolivian general and politician, 68th President of Bolivia (d. 2018)
* 1929 – Ronnie Biggs, English criminal (d. 2013)
*1930 – Terry Nation, Welsh-American author and screenwriter (d. 1997)
* 1930 – Jerry Tarkanian, American basketball player and coach (d. 2015)
*1931 – Roger Penrose, English physicist, mathematician, and philosopher, Nobel Prize laureate
*1932 – Mel Tillis, American singer-songwriter and guitarist (d. 2017)
*1933 – Joe Tex, American soul singer-songwriter (d. 1982)
*1934 – Sarat Pujari, Indian actor, director, and screenwriter (d. 2014)
*1935 – Donald P. Bellisario, American director, producer, and screenwriter
* 1935 – John Laws, Papua New Guinean-Australian singer and radio host
*1936 – Frank Howard, American baseball player and manager (d. 2023)
* 1936 – Jan Pieńkowski, Polish-English author and illustrator (d. 2022)
*1937 – Dustin Hoffman, American actor and director
* 1937 – Sheila Varian, American horse breeder (d. 2016)
* 1937 – Cornelis Vreeswijk, Dutch-Swedish singer-songwriter, guitarist, and actor (d. 1987)
*1938 – Jack Baldwin, English chemist and academic (d. 2020)
* 1938 – Jacques Hétu, Canadian composer and educator (d. 2010)
* 1938 – Connie Stevens, American actress and businesswoman
*1939 – Jana Andrsová, Czech actress and ballerina (d. 2023)
* 1939 – Viorica Viscopoleanu, Romanian long jumper
* 1939 – Alexander Watson, American diplomat, United States Ambassador to Peru
*1940 – Dilip Sardesai, Indian cricketer (d. 2007)
* 1940 – Dennis Tito, American engineer and businessman, founded Wilshire Associates
*1942 – James Blanchard, American diplomat and politician, 45th Governor of Michigan
* 1942 – Dennis Canavan, Scottish educator and politician
* 1942 – John Gustafson, English singer-songwriter and bass player (d. 2014)
* 1942 – Vardo Rumessen, Estonian pianist and musicologist (d. 2015)
*1944 – John C. Holmes, American film actor (d. 1988)
* 1944 – Michael Johnson, American singer-songwriter, guitarist, and producer (d. 2017)
* 1944 – John Renbourn, English-Scottish guitarist and songwriter (d. 2015)
* 1944 – Simon Taylor, English journalist and author
*1946 – Joe Bethancourt, American singer-songwriter (d. 2014)
*1947 – Ken Dryden, Canadian ice hockey player, lawyer, and politician
* 1947 – Larry Wilcox, American actor, director, and producer
* 1949 – Keith Carradine, American actor
* 1953 – Don Most, American actor and singer
*1954 – Nick Holtam, English bishop
*1955 – Diddú, Icelandic singer-songwriter
* 1955 – Herbert Prohaska, Austrian footballer and manager
* 1955 – Michael Roe, Irish racing driver
*1956 – Chris Foreman, English singer-songwriter and guitarist
* 1956 – David Grant, English singer
* 1956 – Cecilia Roth, Argentinian actress
*1957 – Dennis Drew, American keyboard player
*1958 – Deborah Norville, American journalist
* 1963 – Jon Turteltaub, American director and producer
* 1963 – Stephen Walkom, Canadian ice hockey player, referee, and manager
*1964 – Anastasia M. Ashman, American blogger and author
* 1964 – Giuseppe Conte, Prime Minister of Italy
* 1964 – Scott Sandelin, American ice hockey player and coach
* 1964 – Paul Taylor, English cricketer
*1965 – Angus Fraser, English cricketer, manager, and journalist
* 1965 – Kate Langbroek, Australian talk show host
*1966 – Chris Eubank, English boxer
* 1966 – John Hudek, American baseball player and coach
*1967 – Marcelo Balboa, American soccer player, coach, and sportscaster
*1967 – Yūki Amami, Japanese theater and film actress
*1968 – Yvie Burnett, Scottish soprano
* 1968 – Aldo Calderón van Dyke, Honduran journalist (d. 2013)
* 1968 – Abey Kuruvilla, Indian cricketer and coach
* 1968 – Huey Morgan, American singer-songwriter and guitarist
*1969 – Monika Tsõganova, Estonian chess player
* 1969 – Faye Wong, Chinese singer-songwriter and actress
*1970 – Trev Alberts, American football player and journalist
* 1970 – Ben G. Davis, English chemist and academic
* 1970 – José Francisco Molina, Spanish footballer and manager
* 1970 – Chester Williams, South African rugby player and coach (d. 2019)
*1971 – Johnny Balentina, Dutch baseball player
*1972 – Joely Collins, Canadian actress and producer
* 1972 – Andrea de Rossi, Italian rugby player and coach
* 1972 – Axel Merckx, Belgian cyclist
* 1972 – Steven Tweed, Scottish footballer and manager
*1973 – Shane Lee, Australian cricketer and guitarist
* 1973 – Gert Olesk, Estonian footballer and manager
* 1973 – Scott Stapp, American singer-songwriter and producer
* 1973 – Ilka Agricola, German mathematician
*1974 – Manjul Bhargava, Canadian-American mathematician and academic
* 1974 – Scott D'Amore, Canadian wrestler and manager
* 1974 – Brian Harvey, English singer-songwriter
* 1974 – Andy Priaulx, Guernseyan racing driver
*1975 – Mick Moss, English singer-songwriter
*1976 – JC Chasez, American singer and dancer
* 1980 – Craig Breslow, American baseball pitcher and executive
* 1980 – Jack Cassel, American baseball player
* 1980 – Denisse Guerrero, Mexican singer-songwriter
* 1980 – Sabine Klaschka, German tennis player
* 1980 – Diego Markwell, Dutch baseball player
* 1980 – Pat Noonan, American soccer player
* 1980 – Michael Urie, American actor, director, and producer
* 1986 – Pierre Garçon, American football player
* 1986 – Chris Pressley, American football player
*1987 – Pierre Boulanger, French actor
* 1987 – Katie Leung, Scottish actress
* 1987 – Tatjana Maria, German tennis player
*1988 – Princess Beatrice, British royal
* 1988 – Danilo Gallinari, Italian basketball player
* 1988 – Rinku Singh, Indian baseball player and wrestler
* 1988 – Laura Slade Wiggins, American actress and singer
*1989 – Ken Baumann, American actor and author
* 1989 – Anthony Rizzo, American baseball player
* 1989 – Hannah Miley, English-Scottish swimmer
* 1989 – Prajakta Mali, Indian actress
*1990 – Vladimír Darida, Czech footballer
* 1990 – Parker Kligerman, American race car driver
* 1990 – Aleksandra Szwed, Polish actress and singer
* 1990 – Kane Williamson, New Zealand cricket captain
*1991 – Yandy Díaz, Cuban baseball player
* 1991 – Nélson Oliveira, Portuguese footballer
* 1991 – Tyrone Peachey, Australian rugby league player
* 1991 – Joël Matip, Cameroonian footballer
*1992 – Josip Drmić, Swiss footballer
* 1992 – Casey Cott, American actor
*1993 – Emilie Mehl, Norwegian politician
*1994 – Cameron Payne, American basketball player
*1995 – S.Coups, South Korean rapper and singer
*1996 – A'ja Wilson, American basketball player
*1997 – Karim Walid, Egyptian footballer
*1998 – Ryan Garcia, American boxer
* 1998 – Shawn Mendes, Canadian singer-songwriter and guitarist
*2000 – Félix Auger-Aliassime, Canadian tennis player
<!--Do not add yourself or people without Wikipedia articles to this list. No red links, please. Do not trust "this year in history" websites for accurate date information. Do not link multiple occurrences of the same year, just link the first occurrence.-->
Deaths
Pre-1600
*117 – Trajan, Roman emperor (b. 53)
* 753 – Hildegar, bishop of Cologne
* 869 – Lothair II, Frankish king (b. 835)
* 998 – Sŏ Hŭi, Korean politician and diplomat (b. 942)
*1002 – Almanzor, chief minister and de facto ruler of Córdoba
*1171 – Henry of Blois, bishop of Winchester (b. 1111)
*1303 – Henry of Castile the Senator, Spanish nobleman (b. 1230)
*1533 – Lucas van Leyden, Dutch artist (b. 1494)
*1555 – Oronce Finé, French mathematician and cartographer (b. 1494)
*1588 – Alonso Sánchez Coello, Spanish painter (b. 1532)
1601–1900
*1604 – Horio Tadauji, Japanese daimyō (b. 1578)
*1616 – Cornelis Ketel, Dutch painter (b. 1548)
*1631 – Konstantinas Sirvydas, Lithuanian priest, lexicographer, and academic (b. 1579)
*1684 – George Booth, 1st Baron Delamer, English politician (b. 1622)
*1724 – Christoph Ludwig Agricola, German painter (b. 1665)
*1747 – Madeleine de Verchères, Canadian raid leader (b. 1678)
*1746 – Francis Hutcheson, Irish philosopher (b. 1694)
*1759 – Carl Heinrich Graun, German tenor and composer (b. 1704)
*1827 – George Canning, English lawyer and politician, Prime Minister of the United Kingdom (b. 1770)
*1828 – Carl Peter Thunberg, Swedish botanist and psychologist (b. 1743)
*1858 – Marie-Claire Heureuse Félicité Bonheur, Haitian Empress (b. 1758)
*1863 – Angus MacAskill, Scottish-Canadian giant (b. 1825)
*1879 – Immanuel Hermann Fichte, German philosopher and academic (b. 1797)
*1887 – Alexander William Doniphan, American colonel, lawyer, and politician (b. 1808)
*1897 – Jacob Burckhardt, Swiss historian and academic (b. 1818)
*1898 – Eugène Boudin, French painter (b. 1824)
1901–present
*1902 – James Tissot, French painter and illustrator (b. 1836)
* 1902 – John Henry Twachtman, American painter and academic (b. 1853)
*1909 – Mary MacKillop, Australian nun and saint, co-founded the Sisters of St Joseph of the Sacred Heart (b. 1842)
*1911 – William P. Frye, American lawyer and politician (b. 1830)
*1920 – Eduard Birnbaum, Polish-born German cantor (b. 1855)
*1921 – Juhani Aho, Finnish journalist and author (b. 1861)
*1928 – Stjepan Radić, Croatian politician (b. 1871)
*1930 – Launceston Elliot, Scottish wrestler and weightlifter (b. 1874)
*1934 – Wilbert Robinson, American baseball player, coach, and manager (b. 1863)
*1937 – Jimmie Guthrie, Scottish motorcycle racer (b. 1897)
*1940 – Johnny Dodds, American clarinet player and saxophonist (b. 1892)
*1944 – Erwin von Witzleben, German field marshal (b. 1881)
* 1944 – Michael Wittmann, German commander (b. 1914)
*1950 – Fergus McMaster, Australian businessman, founded Qantas (b. 1879)
*1959 – Albert Namatjira, Australian painter (b. 1902)
*1965 – Shirley Jackson, American novelist and short story writer (b. 1916)
*1969 – Otmar Freiherr von Verschuer, German biologist and eugenicist (b. 1896)
*1971 – Freddie Spencer Chapman, English lieutenant (b. 1907)
*1973 – Vilhelm Moberg, Swedish historian and author (b. 1898)
*1974 – Elisabeth Abegg, German anti-Nazi resistance fighter (b. 1882)
*1975 – Cannonball Adderley, American saxophonist (b. 1928)
*1979 – Nicholas Monsarrat, English lieutenant and author (b. 1910)
*1980 – Paul Triquet, Canadian general, Victoria Cross recipient (b. 1910)
*1981 – Thomas McElwee, Irish republican, PIRA volunteer and Hunger Striker (b. 1957)
*1982 – Eric Brandon, English racing driver and businessman (b. 1920)
*1984 – Richard Deacon, American actor (b. 1921)
* 1984 – Ellen Raskin, American author and illustrator (b. 1928)
*1985 – Louise Brooks, American actress (b. 1906)
*1987 – Danilo Blanuša, Croatian mathematician and physicist (b. 1903)
*1988 – Félix Leclerc, Canadian singer-songwriter and guitarist (b. 1914)
* 1988 – Alan Napier, English actor (b. 1903)
*1991 – James Irwin, American colonel, pilot, and astronaut (b. 1930)
*1992 – Abu al-Qasim al-Khoei, Iranian religious leader and scholar (b. 1899)
*1996 – Nevill Francis Mott, English physicist and academic, Nobel Prize laureate (b. 1905)
* 1996 – Jüri Randviir, Estonian chess player and journalist (b. 1927)
*1998 – Mahmoud Saremi, Iranian journalist (b. 1968)
*2003 – Dirk Hoogendam, Dutch-German SS officer (b. 1922)
* 2003 – Falaba Issa Traoré, Malian director and playwright (b. 1930)
*2004 – Leon Golub, American painter and academic (b. 1922)
* 2004 – Fay Wray, Canadian-American actress (b. 1907)
*2005 – Barbara Bel Geddes, American actress (b. 1922)
* 2005 – Ahmed Deedat, South African missionary and author (b. 1918)
* 2005 – John H. Johnson, American publisher, founded the Johnson Publishing Company (b. 1918)
* 2005 – Gene Mauch, American baseball player and manager (b. 1925)
* 2005 – Dean Rockwell, American commander, wrestler, and coach (b. 1912)
* 2005 – Monica Sjöö, Swedish-English painter (b. 1938)
*2007 – Ma Lik, Chinese journalist and politician (b. 1952)
* 2007 – Melville Shavelson, American director, producer, and screenwriter (b. 1917)
*2008 – Orville Moody, American golfer (b. 1933)
*2009 – Daniel Jarque, Spanish footballer (b. 1983)
*2010 – Patricia Neal, American actress (b. 1926)
*2012 – Fay Ajzenberg-Selove, German-American physicist and academic (b. 1926)
* 2012 – Ruth Etchells, English poet and academic (b. 1931)
* 2012 – Surya Lesmana, Indonesian footballer and manager (b. 1944)
* 2012 – Kurt Maetzig, German director and screenwriter (b. 1911)
*2013 – Karen Black, American actress (b. 1939)
* 2013 – Johannes Bluyssen, Dutch bishop (b. 1926)
* 2013 – Fernando Castro Pacheco, Mexican painter, engraver, and illustrator (b. 1918)
* 2013 – Igor Kurnosov, Russian chess player (b. 1985)
* 2013 – Regina Resnik, American soprano and actress (b. 1922)
*2014 – Menahem Golan, Israeli director and producer (b. 1929)
* 2014 – Charles Keating, English-American actor (b. 1941)
* 2014 – Leonardo Legaspi, Filipino archbishop (b. 1935)
* 2014 – Peter Sculthorpe, Australian composer and conductor (b. 1929)
* 2014 – Red Wilson, American football and baseball player (b. 1929)
*2015 – Sean Price, American rapper (b. 1972)
* 2015 – Gus Mortson, Canadian ice hockey player and coach (b. 1925)
*2017 – Glen Campbell, American singer-songwriter, guitarist, and actor (b. 1936)
*2018 – Nicholas Bett, Kenyan track and field athlete (b. 1990)
*2020 – Gabriel Ochoa Uribe, Colombian football player and manager (b. 1929)
* 2020 – Alfredo Lim, former Philippine senator and Mayor of Manila (b. 1929)
*2021 – Bill Davis, Canadian politician, 18th premier of Ontario (b. 1929)
*2022 – Olivia Newton-John, English-Australian singer-songwriter and actress (b. 1948)
*2023 – Rodriguez, American singer and songwriter (b. 1942)
*2024 – Issa Hayatou, Cameroonian basketball player and football executive (b. 1946)
*2024 – Mitzi McCall, American actress (b. 1930)
*2024 – Chi-Chi Rodríguez, Puerto Rican professional golfer (b. 1935)
*2024 – Steve Symms, American politician and lobbyist (b. 1938)
<!--Do not add people without Wikipedia articles to this list. Do not trust "this year in history" websites for accurate date information. Do not link multiple occurrences of the same year, just link the first occurrence.-->
Holidays and observances
* Ceasefire Day (end of Iran–Iraq War) (Iraqi Kurdistan)
*Christian Feast Day:
** Altmann of Passau
** Cyriacus
** Dominic de Guzmán, founder of the Dominican Order.
** Four Crowned Martyrs
** Largus
** Mary MacKillop
** Saint Smaragdus (and companions)
** Severus of Vienne
** August 8 (Eastern Orthodox liturgics)
* Father's Day or Bā bā Day (爸爸節), Bā Bā is Mandarin for "father" and "8-8", or August 8. (Mongolia, Taiwan)
* Happiness Happens Day
* International Cat Day
* Namesday of the Queen (Sweden)
* Nane Nane Day (Tanzania)
* Signal Troops Day (Ukraine)
References
External links
*
*
*
Category:Days of August | https://en.wikipedia.org/wiki/August_8 | 2025-04-05T18:25:37.857263 |
1334 | April 16 | Events
Pre-1600
*1457 BC – Battle of Megido – the first battle to have been recorded in what is accepted as relatively reliable detail.
*69 – Defeated by Vitellius' troops at Bedriacum, Roman emperor Otho commits suicide.
*73 – Masada, a Jewish fortress, falls to the Romans after several months of siege, ending the First Jewish–Roman War.
*1346 – Stefan Dušan, "the Mighty", is crowned Emperor of the Serbs at Skopje, his empire occupying much of the Balkans.
*1520 – The Revolt of the Comuneros begins in Spain against the rule of Charles V.
*1582 – Spanish conquistador Hernando de Lerma founds the settlement of Salta, Argentina.
1601–1900
*1746 – The Battle of Culloden is fought between the French-supported Jacobites and the British Hanoverian forces commanded by William Augustus, Duke of Cumberland, in Scotland.
*1780 – Franz Friedrich Wilhelm von Fürstenberg founds the University of Münster.
*1799 – French Revolutionary Wars: The Battle of Mount Tabor: Napoleon drives Ottoman Turks across the River Jordan near Acre.
*1818 – The United States Senate ratifies the Rush–Bagot Treaty, limiting naval armaments on the Great Lakes and Lake Champlain.
* 1838 – The French Army captures Veracruz in the Pastry War.
*1847 – Shooting of a Māori by an English sailor results in the opening of the Wanganui Campaign of the New Zealand Wars.
*1853 – The Great Indian Peninsula Railway opens the first passenger rail in India, from Bori Bunder to Thane.
*1858 – The Wernerian Natural History Society, a former Scottish learned society, is dissolved.
*1862 – American Civil War: Battle at Lee's Mills in Virginia.
* 1862 – American Civil War: The District of Columbia Compensated Emancipation Act, a bill ending slavery in the District of Columbia, becomes law.
*1863 – American Civil War: During the Vicksburg Campaign, gunboats commanded by acting Rear Admiral David Dixon Porter run downriver past Confederate artillery batteries at Vicksburg.
*1878 – The Senate of the Grand Duchy of Finland issues a declaration establishing a city of Kotka on the southern part islands from the old Kymi parish.
*1881 – In Dodge City, Kansas, Bat Masterson fights his last gun battle.
1901–present
*1908 – Natural Bridges National Monument is established in Utah.
*1910 – The oldest existing indoor ice hockey arena still used for the sport in the 21st century, Boston Arena, opens for the first time.
*1912 – Harriet Quimby becomes the first woman to fly an airplane across the English Channel.
*1917 – Russian Revolution: Vladimir Lenin returns to Petrograd, Russia, from exile in Switzerland.
*1919 – Mohandas Gandhi organizes a day of "prayer and fasting" in response to the killing of Indian protesters in the Jallianwala Bagh massacre by the British colonial troops three days earlier.
* 1919 – Polish–Lithuanian War: The Polish Army launches the Vilna offensive to capture Vilnius in modern Lithuania.
*1922 – The Treaty of Rapallo, pursuant to which Germany and the Soviet Union re-establish diplomatic relations, is signed.
*1925 – During the Communist St Nedelya Church assault in Sofia, Bulgaria, 150 are killed and 500 are wounded.
*1941 – World War II: The Italian-German Tarigo convoy is attacked and destroyed by British ships.
* 1941 – World War II: The Nazi-affiliated Ustaše is put in charge of the Independent State of Croatia by the Axis powers after Operation 25 is effected.
*1942 – King George VI awarded the George Cross to the people of Malta in appreciation of their heroism.
*1943 – Albert Hofmann accidentally discovers the hallucinogenic effects of the research drug LSD. He intentionally takes the drug three days later on April 19.
*1944 – World War II: Allied forces start bombing Belgrade, killing about 1,100 people. This bombing fell on the Orthodox Christian Easter.
*1945 – World War II: The Red Army begins the final assault on German forces around Berlin, with nearly one million troops fighting in the Battle of the Seelow Heights.
* 1945 – The United States Army liberates Nazi Sonderlager (high security) prisoner-of-war camp Oflag IV-C (better known as Colditz).
* 1945 – More than 7,000 die when the German transport ship Goya is sunk by a Soviet submarine.
*1947 – An explosion on board a freighter in port causes the city of Texas City, Texas, United States, to catch fire, killing almost 600 people.
* 1947 – Bernard Baruch first applies the term "Cold War" to describe the relationship between the United States and the Soviet Union.
*1948 – The Organization of European Economic Co-operation is formed.
*1972 – Apollo program: The launch of Apollo 16 from Cape Canaveral, Florida.
*2001 – India and Bangladesh begin a five-day border conflict, but are unable to resolve the disputes about their border.
*2003 – The Treaty of Accession is signed in Athens admitting ten new member states to the European Union.
*2007 – Virginia Tech shooting: Seung-Hui Cho guns down 32 people and injures 17 before committing suicide.
*2008 – The U.S. Supreme Court rules in the Baze v. Rees decision that execution by lethal injection does not violate the Eighth Amendment ban against cruel and unusual punishment.
*2012 – The trial for Anders Behring Breivik, the perpetrator of the 2011 Norway attacks, begins in Oslo, Norway.
* 2012 – The Pulitzer Prize winners were announced, it was the first time since 1977 that no book won the Fiction Prize.
*2013 – A 7.8-magnitude earthquake strikes Sistan and Baluchestan province, Iran, killing at least 35 people and injuring 117 others.
* 2013 – The 2013 Baga massacre is started when Boko Haram militants engage government soldiers in Baga.
*2014 – The South Korean ferry MV Sewol capsizes and sinks near Jindo Island, killing 304 passengers and crew and leading to widespread criticism of the South Korean government, media, and shipping authorities.
*2016 – Ecuador's worst earthquake in nearly 40 years kills 676 and injures more than 230,000.
*2018 – The New York Times and the New Yorker win the Pulitzer Prize for Public Service for breaking news of the Harvey Weinstein sexual abuse scandal.
*2024 – The historic Børsen in Copenhagen, Denmark, is severely damaged by a fire.
Births
Pre-1600
*1488 – Jungjong of Joseon (d. 1544)
*1495 – Petrus Apianus, German mathematician and astronomer (d. 1557)
*1516 – Tabinshwehti, Burmese king (d. 1550)
*1569 – John Davies, English poet and lawyer (d. 1626)1601–1900*1635 – Frans van Mieris the Elder, Dutch painter (d. 1681)
*1646 – Jules Hardouin-Mansart, French architect (probable; d. 1708)
*1660 – Hans Sloane, Irish-English physician and academic (d. 1753)
*1661 – Charles Montagu, 1st Earl of Halifax, English poet and politician, First Lord of the Treasury (d. 1715)
*1682 – John Hadley, English mathematician, invented the octant (d. 1744)
*1697 – Johann Gottlieb Görner, German organist and composer (d. 1778)
*1728 – Joseph Black, French-Scottish physician and chemist (d. 1799)
*1730 – Henry Clinton, English general and politician (d. 1795)
*1755 – Louise Élisabeth Vigée Le Brun, French painter (d. 1842)
*1786 – John Franklin, English admiral and politician, fourth Lieutenant Governor of Van Diemen's Land (d. 1847)
*1800 – George Bingham, 3rd Earl of Lucan, English field marshal and politician (d. 1888)
*1808 – Caleb Blood Smith, American journalist, lawyer, and politician, sixth United States Secretary of the Interior (d. 1864)
*1821 – Ford Madox Brown, French-English soldier and painter (d. 1893)
*1823 – Gotthold Eisenstein, German mathematician and academic (d. 1852)
*1826 – Sir James Corry, 1st Baronet, British politician (d. 1891)
*1827 – Octave Crémazie, Canadian poet and bookseller (d. 1879)
*1839 – Antonio Starabba, Marchese di Rudinì, Italian politician, 12th Prime Minister of Italy (d. 1908)
*1834 – Charles Lennox Richardson, English merchant (d. 1862)
*1844 – Anatole France, French journalist, novelist, and poet, Nobel Prize laureate (d. 1924)
*1847 – Hans Auer, Swiss-Austrian architect, designed the Federal Palace of Switzerland (d. 1906)
*1848 – Kandukuri Veeresalingam, Indian author and activist (d. 1919)
*1851 – Ponnambalam Ramanathan, Sri Lankan lawyer and politician, third Solicitor General of Sri Lanka (d. 1930)
*1864 – Rose Talbot Bullard, American medical doctor and professor (d. 1915)
*1865 – Harry Chauvel, Australian general (d. 1945)
*1866 – José de Diego, Puerto Rican journalist, lawyer, and politician (d. 1918)
*1867 – Wilbur Wright, American inventor (d. 1912)
*1871 – John Millington Synge, Irish author, poet, and playwright (d. 1909)
*1874 – Jōtarō Watanabe, Japanese general (d. 1936)
*1878 – R. E. Foster, English cricketer and footballer (d. 1914)
*1882 – Seth Bingham, American organist and composer (d. 1972)
*1884 – Ronald Barnes, 3rd Baron Gorell, English cricketer, journalist, and politician (d. 1963)
*1885 – Leó Weiner, Hungarian composer and educator (d. 1960)
*1886 – Michalis Dorizas, Greek-American football player and javelin thrower (d. 1957)
* 1886 – Ernst Thälmann, German politician (d. 1944)
*1888 – Billy Minter, English footballer and manager (d. 1940)
*1889 – Charlie Chaplin, English actor, director, producer, screenwriter, and composer (d. 1977)
*1890 – Fred Root, English cricketer and umpire (d. 1954)
* 1890 – Gertrude Chandler Warner, American author and educator (d. 1979)
*1891 – Dorothy P. Lathrop, American author and illustrator (d. 1980)
*1892 – Dora Richter, German transgender woman and the first known person to undergo complete male-to-female gender-affirming surgery (d. 1966)
* 1892 – Howard Mumford Jones, American author, critic, and academic (d. 1980)
*1893 – Germaine Guèvremont, Canadian journalist and author (d. 1968)
* 1893 – John Norton, American hurdler (d. 1979)
*1895 – Ove Arup, English-Danish engineer and businessman, founded Arup (d. 1988)
*1896 – Robert Henry Best, American journalist (d. 1952)
* 1896 – Árpád Weisz, Hungarian footballer (d. 1944)
*1899 – Osman Achmatowicz, Polish chemist and academic (d. 1988)
*1900 – Polly Adler, Russian-American madam and author (d. 1962)
1901–present
*1903 – Paul Waner, American baseball player and manager (d. 1965)
*1904 – Fifi D'Orsay, Canadian-American vaudevillian, actress, and singer (d. 1983)
*1905 – Frits Philips, Dutch businessman (d. 2005)
*1907 – Joseph-Armand Bombardier, Canadian inventor and businessman, founded Bombardier Inc. (d. 1964)
* 1907 – August Eigruber, Austrian-German politician (d. 1947)
*1908 – Ellis Marsalis, Sr., American businessman and activist (d. 2004)
* 1908 – Ray Ventura, French jazz bandleader (d. 1979)
*1910 – Berton Roueché, American journalist and author (d. 1994)
*1911 – Guy Burgess, English-Russian spy (d. 1963)
*1914 – John Hodiak, American actor (d. 1955)
* 1915 – Robert Speck, Canadian politician, first Mayor of Mississauga (d. 1972)
*1916 – Behçet Necatigil, Turkish author, poet, and translator (d. 1979)
*1917 – Victoria Eugenia Fernández de Córdoba, 18th Duchess of Medinaceli (d. 2013)
* 1917 – Barry Nelson, American actor (d. 2007)
*1918 – Hsuan Hua, Chinese-American monk and author (d. 1995)
* 1918 – Spike Milligan, Irish actor, comedian, and writer (d. 2002)
*1919 – Merce Cunningham, American dancer and choreographer (d. 2009)
* 1919 – Nilla Pizzi, Italian singer (d. 2011)
* 1919 – Pedro Ramírez Vázquez, Mexican architect (d. 2013)
*1920 – Ananda Dassanayake, Sri Lankan politician (d. 2012)
* 1920 – Prince Georg of Denmark (d. 1986)
*1921 – Wolfgang Leonhard, German historian and author (d. 2014)
* 1921 – Peter Ustinov, English actor, director, producer, and screenwriter (d. 2004)
*1922 – Kingsley Amis, English novelist, poet, and critic (d. 1995)
* 1922 – Lawrence N. Guarino, American colonel (d. 2014)
* 1922 – Leo Tindemans, Belgian politician, 43rd Prime Minister of Belgium (d. 2014)
*1923 – Warren Barker, American composer (d. 2006)
* 1923 – Arch A. Moore Jr., American sergeant, lawyer, and politician, 28th Governor of West Virginia (d. 2015)
*1924 – John Harvey-Jones, English academic and businessman (d. 2008)
* 1924 – Henry Mancini, American composer and conductor (d. 1994)
* 1924 – Madanjeet Singh, Indian diplomat, author, and philanthropist (d. 2013)
*1926 – Pierre Fabre, French pharmacist, founded Laboratoires Pierre Fabre (d. 2013)
*1927 – Edie Adams, American actress and singer (d. 2008)
* 1927 – Pope Benedict XVI (d. 2022)
* 1927 – Rolf Schult, German actor (d. 2013)
*1928 – Night Train Lane, American football player (d. 2002)
*1929 – Roy Hamilton, American singer (d. 1969)
* 1929 – Ralph Slatyer, Australian biologist and ecologist (d. 2012)
* 1929 – Ed Townsend, American singer-songwriter and producer (d. 2003)
*1930 – Doug Beasy, Australian footballer and educator (d. 2013)
* 1930 – Herbie Mann, American flute player and composer (d. 2003)
*1931 – Julian Carroll, American politician, 54th Governor of Kentucky (d. 2023)
*1932 – Maury Meyers, American lawyer and politician (d. 2014)
*1933 – Marcos Alonso Imaz, Spanish footballer (d. 2012)
* 1933 – Joan Bakewell, English journalist and author
* 1933 – Perry Botkin Jr., American composer, arranger and musician (d. 2021)
* 1933 – Vera Krepkina, Russian long jumper (d. 2023)
* 1933 – Ike Pappas, American journalist and actor (d. 2008)
*1934 – Vince Hill, English singer-songwriter (d. 2023)
* 1934 – Robert Stigwood, Australian producer and manager (d. 2016)
* 1934 – Barrie Unsworth, Australian politician, 36th Premier of New South Wales
* 1934 – Vicar, Chilean cartoonist (d. 2012)
*1935 – Marcel Carrière, Canadian director and screenwriter
* 1935 – Sarah Kirsch, German poet and author (d. 2013)
* 1935 – Lennart Risberg, Swedish boxer (d. 2013)
* 1935 – Dominique Venner, French journalist and historian (d. 2013)
* 1935 – Bobby Vinton, American singer
*1936 – Vadim Kuzmin, Russian physicist and academic (d. 2015)
*1937 – Gert Potgieter, South African hurdler and coach
* 1937 – George Steele, American wrestler and actor (d. 2017)
*1938 – Rich Rollins, American baseball player
* 1938 – Gordon Wilson, Scottish lawyer and politician (d. 2017)
*1939 – John Amabile, American football player and coach (d. 2012)
* 1939 – Dusty Springfield, English singer and record producer (d. 1999)
*1940 – Benoît Bouchard, Canadian academic and politician, 18th Canadian Minister of Transport
* 1940 – David Holford, Barbadian cricketer (d. 2022)
* 1940 – Queen Margrethe II of Denmark
* 1940 – Joan Snyder, American painter
* 1940 – Thomas Stonor, 7th Baron Camoys, English banker and politician, Lord Chamberlain of the United Kingdom (d. 2023)
*1941 – Allan Segal, American director and producer (d. 2012)
*1942 – Jim Lonborg, American baseball pitcher
* 1942 – Sir Frank Williams, English businessman, founded the Williams F1 Racing Team (d. 2021)
*1943 – Petro Tyschtschenko, Austrian-German businessman
* 1943 – John Watkins, Australian cricketer
*1945 – Tom Allen, American lawyer and politician
*1946 – Margot Adler, American journalist and author (d. 2014)
* 1946 – Ernst Bakker, Dutch politician (d. 2014)
* 1946 – Johnnie Lewis, Liberian lawyer and politician, 18th Chief Justice of Liberia (d. 2015)
* 1946 – R. Carlos Nakai, American flute player
*1947 – Kareem Abdul-Jabbar, American basketball player and coach
* 1947 – Gerry Rafferty, Scottish singer-songwriter (d. 2011)
*1948 – Reg Alcock, Canadian businessman and politician, 17th Canadian President of the Treasury Board (d. 2011)
*1950 – David Graf, American actor (d. 2001)
* 1950 – Colleen Hewett, Australian singer and actress
*1951 – Ioan Mihai Cochinescu, Romanian author and photographer
*1952 – Michel Blanc, French actor and director (d. 2024)
* 1952 – Esther Roth-Shahamorov, Israeli sprinter and hurdler
*1953 – Peter Garrett, Australian singer-songwriter and politician
*1954 – Ellen Barkin, American actress
* 1954 – John Bowe, Australian racing driver
* 1954 – Mike Zuke, Canadian ice hockey player
*1955 – Henri, Grand Duke of Luxembourg
*1956 – David M. Brown, American captain, pilot, and astronaut (d. 2003)
* 1956 – T Lavitz, American keyboard player, composer, and producer (d. 2010)
* 1956 – Lise-Marie Morerod, Swiss skier
*1957 – Patricia De Martelaere, Belgian philosopher, author, and academic (d. 2009)
*1958 – Tim Flach, English photographer and director
* 1958 – Ulf Wakenius, Swedish guitarist
*1959 – Alison Ramsay, English-Scottish field hockey player and lawyer
*1960 – Wahab Akbar, Filipino politician (d. 2007)
* 1960 – Rafael Benítez, Spanish footballer and manager
* 1960 – Pierre Littbarski, German footballer and manager
*1961 – Jarbom Gamlin, Indian lawyer and politician, seventh Chief Minister of Arunachal Pradesh (d. 2014)
*1962 – Anna Dello Russo, Italian journalist
*1963 – Saleem Malik, Pakistani cricketer
* 1963 – Jimmy Osmond, American singer
*1964 – Esbjörn Svensson, Swedish pianist (d. 2008)
*1965 – Yves-François Blanchet, Canadian politician
* 1965 – Jon Cryer, American actor, director, producer, and screenwriter
* 1965 – Martin Lawrence, American actor, director, producer, and screenwriter
*1966 – Jarle Vespestad, Norwegian drummer
*1968 – Vickie Guerrero, American wrestler and manager
* 1968 – Rüdiger Stenzel, German runner
*1969 – Patrik Järbyn, Swedish skier
* 1969 – Fernando Viña, American baseball player and sportscaster
*1970 – Dero Goi, German singer-songwriter and drummer
* 1970 – Margreth Olin, Norwegian filmmaker
* 1970 – Walt Williams, American basketball player
*1971 – Cameron Blades, Australian rugby player
* 1971 – Selena, American singer-songwriter, actress, and fashion designer (d. 1995)
* 1971 – Seigo Yamamoto, Japanese racing driver
* 1971 – Natasha Zvereva, Belarusian tennis player
*1972 – Conchita Martínez, Spanish-American tennis player
* 1972 – Tracy K. Smith, American poet and educator
*1973 – Akon, Senegalese-American singer, rapper and songwriter
* 1973 – Charlotta Sörenstam, Swedish golfer
* 1973 – Teddy Cobeña, Spanish-Ecuadorian expressionist and representational sculptor
*1976 – Lukas Haas, American actor and musician
* 1976 – Kelli O'Hara, American actress and singer
*1977 – Freddie Ljungberg, Swedish footballer
*1979 – Christijan Albers, Dutch racing driver
* 1979 – Lars Börgeling, German pole vaulter
* 1979 – Daniel Browne, New Zealand rugby player
*1981 – Anestis Agritis, Greek footballer
* 1981 – Maya Dunietz, Israeli singer-songwriter and pianist
* 1981 – Matthieu Proulx, Canadian football player
*1982 – Gina Carano, American mixed martial artist and actress
* 1982 – Boris Diaw, French basketball player
* 1982 – Jonathan Vilma, American football player
*1983 – Marié Digby, American singer-songwriter, guitarist, and actress
* 1983 – Cat Osterman, American softball player
*1984 – Teddy Blass, American composer and producer
* 1984 – Claire Foy, English actress
* 1984 – Tucker Fredricks, American speed skater
* 1984 – Paweł Kieszek, Polish footballer
* 1984 – Kerron Stewart, Jamaican sprinter
*1985 – Luol Deng, Sudanese-English basketball player
* 1985 – Nate Diaz, American mixed martial artist
* 1985 – Brendon Leonard, New Zealand rugby player
* 1985 – Taye Taiwo, Nigerian footballer
*1986 – Shinji Okazaki, Japanese footballer
* 1986 – Peter Regin, Danish ice hockey player
* 1986 – Epke Zonderland, Dutch gymnast
*1987 – Cenk Akyol, Turkish basketball player
* 1987 – Aaron Lennon, English international footballer
*1988 – Kyle Okposo, American ice hockey player
*1990 – Reggie Jackson, American basketball player
* 1990 – Vangelis Mantzaris, Greek basketball player
* 1990 – Tony McQuay, American sprinter
*1991 – Nolan Arenado, American baseball player
* 1991 – Kim Kyung-jung, South Korean footballer
*1993 – Chance the Rapper, American rapper
* 1993 – Mirai Nagasu, Japanese-American figure skater
*1996 – Anya Taylor-Joy, Argentine-British actress
* 1996 – Taylor Townsend, American tennis player
*2002 – Sadie Sink, American actress
<!-- Please do not add yourself, non-notable people, fictional characters, or people without Wikipedia articles to this list. No red links, please. Do not link multiple occurrences of the same year, just link the first occurrence. If there are multiple people in the same birth year, put them in alphabetical order of surname. Do not trust "this year in history" websites for accurate date information. -->
Deaths
Pre-1600
*AD 69 – Otho, Roman emperor (b. AD 32)
* 665 – Fructuosus of Braga, French archbishop and saint
*1090 – Sikelgaita, duchess of Apulia (b. c. 1040)
*1113 – Sviatopolk II of Kiev (b. 1050)
*1118 – Adelaide del Vasto, regent of Sicily, mother of Roger II of Sicily, queen of Baldwin I of Jerusalem
*1198 – Frederick I, Duke of Austria (b. 1175)
*1234 – Richard Marshal, 3rd Earl of Pembroke (b. 1191)
*1375 – John Hastings, 2nd Earl of Pembroke, English nobleman and soldier (b. 1347)
*1496 – Charles II, Duke of Savoy (b. 1489)
*1587 – Anne Seymour, Duchess of Somerset (b. 1497)
1601–1900
*1640 – Countess Charlotte Flandrina of Nassau (b. 1579)
*1645 – Tobias Hume, Scottish soldier, viol player, and composer (b. 1569)
*1687 – George Villiers, 2nd Duke of Buckingham, English poet and politician, Lord Lieutenant of the West Riding of Yorkshire (b. 1628)
*1689 – Aphra Behn, English author and playwright (b. 1640)
*1742 – Stefano Benedetto Pallavicino, Italian poet and translator (b. 1672)
*1756 – Jacques Cassini, French astronomer (b. 1677)
*1783 – Christian Mayer, Czech astronomer and educator (b. 1719)
*1788 – Georges-Louis Leclerc, Comte de Buffon, French mathematician, cosmologist, and author (b. 1707)
*1828 – Francisco Goya, Spanish-French painter and illustrator (b. 1746)
*1846 – Domenico Dragonetti, Italian bassist and composer (b. 1763)
*1850 – Marie Tussaud, French-English sculptor, founded the Madame Tussauds Wax Museum (b. 1761)
*1859 – Alexis de Tocqueville, French historian and philosopher, French Minister of Foreign Affairs (b. 1805)
*1879 – Bernadette Soubirous, French nun and saint (b. 1844)
*1888 – Zygmunt Florenty Wróblewski, Polish physicist and chemist (b. 1845)
*1899 – Emilio Jacinto, Filipino journalist and activist (b. 1875)
1901–present
*1904 – Maximilian Kronberger, German poet and author (b. 1888)
* 1904 – Samuel Smiles, Scottish-English author (b. 1812)
*1914 – George William Hill, American astronomer and mathematician (b. 1838)
*1915 – Nelson W. Aldrich, American businessman and politician (b. 1841)
*1925 – Stefan Nerezov, Bulgarian general (b. 1867)
*1928 – Henry Birks, Canadian businessman, founded Henry Birks and Sons (b. 1840)
* 1928 – Roman Steinberg, Estonian wrestler (b. 1900)
*1930 – José Carlos Mariátegui, Peruvian journalist, philosopher, and activist (b. 1894)
*1935 – Panait Istrati, Romanian journalist and author (b. 1884)
*1937 – Jay Johnson Morrow, American military engineer and politician, third Governor of the Panama Canal Zone (b. 1870)
*1938 – Steve Bloomer, English footballer and manager (b. 1874)
*1940 – Tony D'Arcy, Irish Republican died while on hunger strike (b. 1908)
*1941 – Josiah Stamp, 1st Baron Stamp, English economist and civil servant (b. 1880)
*1942 – Princess Alexandra of Saxe-Coburg and Gotha (b. 1878)
* 1942 – Denis St. George Daly, Irish polo player (b. 1862)
*1946 – Arthur Chevrolet, Swiss-American race car driver and engineer (b. 1884)
*1947 – Rudolf Höss, German SS officer (b. 1900)
*1950 – Eduard Oja, Estonian composer, conductor, and critic (b. 1905)
* 1950 – Anders Peter Nielsen, Danish target shooter (b. 1867)
*1955 – David Kirkwood, Scottish engineer and politician (b. 1872)
*1958 – Rosalind Franklin, English biophysicist and academic (b. 1920)
*1960 – Mihály Fekete, Hungarian actor, screenwriter and film director (b. 1884)
*1961 – Carl Hovland, American psychologist and academic (b. 1912)
*1965 – Francis Balfour, English soldier and colonial administrator (b. 1884)
*1965 – Sydney Chaplin, English actor, comedian, brother of Charlie Chaplin (b. 1885)
*1966 – Eric Lambert, Australian author (b. 1918)
*1968 – Fay Bainter, American actress (b. 1893)
* 1968 – Edna Ferber, American novelist, short story writer, and playwright (b. 1885)
*1969 – Hem Vejakorn, Thai illustrator and painter (b. 1904)
*1970 – Richard Neutra, Austrian-American architect, designed the Los Angeles County Hall of Records (b. 1892)
* 1970 – Péter Veres, Hungarian politician, Hungarian Minister of Defence (b. 1897)
*1972 – Yasunari Kawabata, Japanese novelist and short story writer, Nobel Prize laureate (b. 1899)
* 1972 – Frank O'Connor, Australian public servant (b. 1894)
*1973 – István Kertész, Hungarian conductor and educator (b. 1929)
*1978 – Lucius D. Clay, American officer and military governor in occupied Germany (b. 1898)
*1980 – Morris Stoloff, American composer (b. 1898)
*1985 – Scott Brady, American actor (b. 1924)
*1988 – Khalil al-Wazir, Palestinian commander, founded Fatah (b. 1935)
* 1988 – Youri Egorov, Russian pianist (b. 1954)
*1989 – Jocko Conlan, American baseball player and umpire (b. 1899)
* 1989 – Kaoru Ishikawa Japanese author and educator (b. 1915)
* 1989 – Miles Lawrence, English cricketer (b. 1940)
*1989 – Hakkı Yeten, Turkish footballer, manager and president (b. 1910)
*1991 – David Lean, English director, producer, and screenwriter (b. 1908)
*1992 – Neville Brand, American actor (b. 1920)
* 1992 – Alexandru Nicolschi, Romanian spy and activist (b. 1915)
* 1992 – Andy Russell, American singer and actor (b. 1919)
*1994 – Paul-Émilien Dalpé, Canadian labor unionist (b. 1919)
* 1994 – Ralph Ellison, American novelist and critic (b. 1913)
*1996 – Lucille Bremer, American actress and dancer (b. 1917)
*1997 – Esmeralda Arboleda Cadavid, Colombian politician (b. 1921)
* 1997 – Roland Topor, French actor, director, and painter (b. 1938)
*1998 – Alberto Calderón, Argentinian-American mathematician and academic (b. 1920)
* 1998 – Fred Davis, English snooker player (b. 1913)
* 1998 – Marie-Louise Meilleur, Canadian super-centenarian (b. 1880)
*1999 – Skip Spence, Canadian-American singer-songwriter and guitarist (b. 1946)
*2001 – Robert Osterloh, American actor (b. 1918)
* 2001 – Michael Ritchie, American director, producer, and screenwriter (b. 1938)
* 2001 – Alec Stock, English footballer and manager (b. 1917)
*2002 – Billy Ayre, English footballer and manager (b. 1952)
* 2002 – Ruth Fertel, American businesswoman, founded Ruth's Chris Steak House (b. 1927)
* 2002 – Robert Urich, American actor (b. 1946)
*2003 – Graham Jarvis, Canadian actor (b. 1930)
* 2003 – Graham Stuart Thomas, English horticulturalist and author (b. 1909)
*2005 – Kay Walsh, English actress, singer, and dancer (b. 1911)
*2007 – Frank Bateson, New Zealand astronomer (b. 1909)
* 2007 – Gaétan Duchesne, Canadian ice hockey player (b. 1962)
* 2007 – Maria Lenk, Brazilian swimmer (b. 1915)
* 2007 – Chandrabose Suthaharan, Sri Lankan journalist
*2008 – Edward Norton Lorenz, American mathematician and meteorologist (b. 1917)
*2010 – Rasim Delić, Bosnian general and convicted war criminal (b. 1949)
* 2010 – Daryl Gates, American police officer, created the D.A.R.E. Program (b. 1926)
*2011 – Gerry Alexander, Jamaican cricketer and veterinarian (b. 1928)
* 2011 – Allan Blakeney, Canadian scholar and politician, tenth Premier of Saskatchewan (b. 1925)
* 2011 – Sol Saks, American screenwriter and producer (b. 1910)
*2012 – Sári Barabás, Hungarian soprano (b. 1914)
* 2012 – Marian Biskup, Polish author and academic (b. 1922)
* 2012 – Alan Hacker, English clarinet player and conductor (b. 1938)
* 2012 – George Kunda, Zambian lawyer and politician, 11th Vice-President of Zambia (b. 1956)
* 2012 – Mærsk Mc-Kinney Møller, Danish businessman (b. 1913)
* 2012 – Carlo Petrini, Italian footballer and coach (b. 1948)
*2013 – Charles Bruzon, Gibraltarian politician (b. 1938)
* 2013 – Ali Kafi, Algerian politician (b. 1928)
* 2013 – Siegfried Ludwig, Austrian politician, 18th Governor of Lower Austria (b. 1926)
* 2013 – Pentti Lund, Finnish-Canadian ice hockey player (b. 1925)
* 2013 – George Beverly Shea, Canadian-American singer-songwriter (b. 1909)
* 2013 – Pat Summerall, American football player and sportscaster (b. 1930)
* 2013 – Pedro Ramírez Vázquez, Mexican architect, designed the Tijuana Cultural Center and National Museum of Anthropology (b. 1919)
*2014 – Gyude Bryant, Liberian businessman and politician (b. 1949)
* 2014 – Aulis Rytkönen, Finnish footballer and manager (b. 1929)
* 2014 – Ernst Florian Winter, Austrian-American historian and political scientist (b. 1923)
*2015 – Valery Belousov, Russian ice hockey player and coach (b. 1948)
* 2015 – Stanislav Gross, Czech lawyer and politician, fifth Prime Minister of the Czech Republic (b. 1969)
*2018 – Harry Anderson, American actor and magician (b. 1952)
*2021 – Andrew Peacock, Australian politician (b. 1939)
* 2021 – Helen McCrory, British actress (b. 1968)
* 2021 – Liam Scarlett, British choreographer (b. 1986)
* 2021 – John Dawes, Welsh rugby union player (b. 1940)
* 2024 – Carl Erskine, American baseball player (b. 1926)
* 2024 – Bob Graham, American lawyer, author, and politician, 38th governor of Florida (b. 1936)
<!--Do not add people without Wikipedia articles to this list. Do not trust "this year in history" websites for accurate date information. Do not link multiple occurrences of the same year, just link the first occurrence.-->
Holidays and observances
*Christian feast day:
**Benedict Joseph Labre
**Bernadette Soubirous
**Fructuosus of Braga
**Isabella Gilmore (Church of England)
**Martyrs of Zaragoza
**Molly Brant (Konwatsijayenni) (Anglican Church of Canada, Episcopal Church)
**Turibius of Astorga
**April 16 (Eastern Orthodox liturgics)
*Birthday of José de Diego (Puerto Rico, United States)
*Birthday of Queen Margrethe II (Denmark)
*Emancipation Day (Washington, D.C., United States)
*Memorial Day for the Victims of the Holocaust (Hungary)
*National Healthcare Decisions Day (United States)
*Remembrance of Chemical Attack on Balisan and Sheikh Wasan (Iraqi Kurdistan)
*World Voice Day
References
External links
* [http://news.bbc.co.uk/onthisday/hi/dates/stories/april/16 BBC: On This Day]
*
* [https://www.onthisday.com/events/april/16 Historical Events on April 16]
Category:Days of April | https://en.wikipedia.org/wiki/April_16 | 2025-04-05T18:25:37.937641 |
1335 | Associative property | | statement | symbolic statement
}}
In mathematics, the associative property is a property of some binary operations that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for expressions in logical proofs.
Within an expression containing two or more occurrences in a row of the same associative operator, the order in which the operations are performed does not matter as long as the sequence of the operands is not changed. That is (after rewriting the expression with parentheses and in infix notation if necessary), rearranging the parentheses in such an expression will not change its value. Consider the following equations:
<math display="block">\begin{align}
(2 + 3) + 4 &2 + (3 + 4) 9 \,\\
2 \times (3 \times 4) &(2 \times 3) \times 4 24 .
\end{align}</math>
Even though the parentheses were rearranged on each line, the values of the expressions were not altered. Since this holds true when performing addition and multiplication on any real numbers, it can be said that "addition and multiplication of real numbers are associative operations".
Associativity is not the same as commutativity, which addresses whether the order of two operands affects the result. For example, the order does not matter in the multiplication of real numbers, that is, × × }}, so we say that the multiplication of real numbers is a commutative operation. However, operations such as function composition and matrix multiplication are associative, but not (generally) commutative.
Associative operations are abundant in mathematics; in fact, many algebraic structures (such as semigroups and categories) explicitly require their binary operations to be associative.
However, many important and interesting operations are non-associative; some examples include subtraction, exponentiation, and the vector cross product. In contrast to the theoretical properties of real numbers, the addition of floating point numbers in computer science is not associative, and the choice of how to associate an expression can have a significant effect on rounding error.
Definition
. That is, when the two paths from ××}} to compose to the same function from ××}} to .]]
Formally, a binary operation <math>\ast</math> on a set is called associative if it satisfies the associative law:
:<math>(x \ast y) \ast z = x \ast (y \ast z)</math>, for all <math>x,y,z</math> in .
Here, ∗ is used to replace the symbol of the operation, which may be any symbol, and even the absence of symbol (juxtaposition) as for multiplication.
:<math>(xy)z = x(yz)</math>, for all <math>x,y,z</math> in .
The associative law can also be expressed in functional notation thus: <math>(f \circ (g \circ h))(x) ((f \circ g) \circ h)(x)</math>Generalized associative law
of order four, possibly different products.]]
If a binary operation is associative, repeated application of the operation produces the same result regardless of how valid pairs of parentheses are inserted in the expression. This is called the generalized associative law.
The number of possible bracketings is just the Catalan number, <math>C_n</math>
, for n operations on n+1 values. For instance, a product of 3 operations on 4 elements may be written (ignoring permutations of the arguments), in <math>C_3 = 5</math> possible ways:
*<math>((ab)c)d</math>
*<math>(a(bc))d</math>
*<math>a((bc)d)</math>
*<math>(a(b(cd))</math>
*<math>(ab)(cd)</math>
If the product operation is associative, the generalized associative law says that all these expressions will yield the same result. So unless the expression with omitted parentheses already has a different meaning (see below), the parentheses can be considered unnecessary and "the" product can be written unambiguously as
:<math>abcd</math>
As the number of elements increases, the number of possible ways to insert parentheses grows quickly, but they remain unnecessary for disambiguation.
An example where this does not work is the logical biconditional . It is associative; thus, ↔ ( ↔ )}} is equivalent to ↔ ) ↔ }}, but ↔ ↔ }} most commonly means ↔ ) and ( ↔ )}}, which is not equivalent.
Examples
Some examples of associative operations include the following.
{{unordered list
|1= The concatenation of the three strings <code>"hello"</code>, <code>" "</code>, <code>"world"</code> can be computed by concatenating the first two strings (giving <code>"hello "</code>) and appending the third string (<code>"world"</code>), or by joining the second and third string (giving <code>" world"</code>) and concatenating the first string (<code>"hello"</code>) with the result. The two methods produce the same result; string concatenation is associative (but not commutative).
|2= In arithmetic, addition and multiplication of real numbers are associative; i.e.,
<math display="block">
\left.
\begin{matrix}
(x+y)+zx+(y+z)x+y+z\quad
\\
(x\,y)zx(y\,z)x\,y\,z\qquad\qquad\qquad\quad\ \ \,
\end{matrix}
\right\}
\mbox{for all }x,y,z\in\mathbb{R}.
</math>
Because of associativity, the grouping parentheses can be omitted without ambiguity.
|3The trivial operation ∗ }} (that is, the result is the first argument, no matter what the second argument is) is associative but not commutative. Likewise, the trivial operation ∘ = }} (that is, the result is the second argument, no matter what the first argument is) is associative but not commutative.
|4= Addition and multiplication of complex numbers and quaternions are associative. Addition of octonions is also associative, but multiplication of octonions is non-associative.
|5= The greatest common divisor and least common multiple functions act associatively.
<math display="block">
\left.
\begin{matrix}
\operatorname{gcd}(\operatorname{gcd}(x,y),z)\operatorname{gcd}(x,\operatorname{gcd}(y,z))
\operatorname{gcd}(x,y,z)\ \quad
\\
\operatorname{lcm}(\operatorname{lcm}(x,y),z)\operatorname{lcm}(x,\operatorname{lcm}(y,z))
\operatorname{lcm}(x,y,z)\quad
\end{matrix}
\right\}\mbox{ for all }x,y,z\in\mathbb{Z}.
</math>
|6= Taking the intersection or the union of sets:
<math display="block">
\left.
\begin{matrix}
(A\cap B)\cap CA\cap(B\cap C)A\cap B\cap C\quad
\\
(A\cup B)\cup CA\cup(B\cup C)A\cup B\cup C\quad
\end{matrix}
\right\}\mbox{for all sets }A,B,C.
</math>
|7If is some set and denotes the set of all functions from to , then the operation of function composition on is associative:<math display"block">(f\circ g)\circ hf\circ(g\circ h)f\circ g\circ h\qquad\mbox{for all }f,g,h\in S.</math>
|8= Slightly more generally, given four sets , , and , with : → }}, : → }}, and : → }}, then
<math display"block">(f\circ g)\circ hf\circ(g\circ h)=f\circ g\circ h</math>
as before. In short, composition of maps is always associative.
|9= In category theory, composition of morphisms is associative by definition. Associativity of functors and natural transformations follows from associativity of morphisms.
|10= Consider a set with three elements, , , and . The following operation:
!! !!
|-
!
| || ||
|-
!
| || ||
|-
!
| || ||
}}
is associative. Thus, for example, () () = }}. This operation is not commutative.
|11Because matrices represent linear functions, and matrix multiplication represents function composition, one can immediately conclude that matrix multiplication is associative.
|12For real numbers (and for any totally ordered set), the minimum and maximum operation is associative: <math display"block">\max(a, \max(b, c)) \max(\max(a, b), c) \quad \text{ and } \quad \min(a, \min(b, c)) \min(\min(a, b), c).</math>
}}
Propositional logic
Rule of replacement
In standard truth-functional propositional logic, association, or associativity are two valid rules of replacement. The rules allow one to move parentheses in logical expressions in logical proofs. The rules (using logical connectives notation) are:
<math display="block">(P \lor (Q \lor R)) \Leftrightarrow ((P \lor Q) \lor R)</math>
and
<math display="block">(P \land (Q \land R)) \Leftrightarrow ((P \land Q) \land R),</math>
where "<math>\Leftrightarrow</math>" is a metalogical symbol representing "can be replaced in a proof with".
Truth functional connectives
Associativity is a property of some logical connectives of truth-functional propositional logic. The following logical equivalences demonstrate that associativity is a property of particular connectives. The following (and their converses, since is commutative) are truth-functional tautologies.
;Associativity of disjunction
:<math>((P \lor Q) \lor R) \leftrightarrow (P \lor (Q \lor R))</math>
;Associativity of conjunction
:<math>((P \land Q) \land R) \leftrightarrow (P \land (Q \land R))</math>
;Associativity of equivalence
:<math>((P \leftrightarrow Q) \leftrightarrow R) \leftrightarrow (P \leftrightarrow (Q \leftrightarrow R))</math>
Joint denial is an example of a truth functional connective that is not associative.
Non-associative operation
A binary operation <math>*</math> on a set S that does not satisfy the associative law is called non-associative. Symbolically,
<math display="block">(x*y)*z\ne x*(y*z)\qquad\mbox{for some }x,y,z\in S.</math>
For such an operation the order of evaluation does matter. For example:
; Subtraction
:<math>
(5-3)-2 \, \ne \, 5-(3-2)
</math>
; Division
:<math>
(4/2)/2 \, \ne \, 4/(2/2)
</math>
; Exponentiation
:<math>
2^{(1^2)} \, \ne \, (2^1)^2
</math>
; Vector cross product
:<math>\begin{align}
\mathbf{i} \times (\mathbf{i} \times \mathbf{j}) &\mathbf{i} \times \mathbf{k} -\mathbf{j} \\
(\mathbf{i} \times \mathbf{i}) \times \mathbf{j} &\mathbf{0} \times \mathbf{j} \mathbf{0}
\end{align}</math>
Also although addition is associative for finite sums, it is not associative inside infinite sums (series). For example,
<math display="block">
(1+-1)+(1+-1)+(1+-1)+(1+-1)+(1+-1)+(1+-1)+\dots = 0
</math>
whereas
<math display="block">
1+(-1+1)+(-1+1)+(-1+1)+(-1+1)+(-1+1)+(-1+1)+\dots = 1.
</math>
Some non-associative operations are fundamental in mathematics. They appear often as the multiplication in structures called non-associative algebras, which have also an addition and a scalar multiplication. Examples are the octonions and Lie algebras. In Lie algebras, the multiplication satisfies Jacobi identity instead of the associative law; this allows abstracting the algebraic nature of infinitesimal transformations.
Other examples are quasigroup, quasifield, non-associative ring, and commutative non-associative magmas.
Nonassociativity of floating point calculation
In mathematics, addition and multiplication of real numbers are associative. By contrast, in computer science, addition and multiplication of floating point numbers are not associative, as different rounding errors may be introduced when dissimilar-sized values are joined in a different order.
To illustrate this, consider a floating point representation with a 4-bit significand:
</sup> + 1.000<sub>2</sub>×2<sup>4</sup> 1.00<sub>2</sub>×2<sup>4</sup>}}
</sup> + 1.000<sub>2</sub>×2<sup>4</sup> 1.00<sub>2</sub>×2<sup>4</sup>}}
Even though most computers compute with 24 or 53 bits of significand, this is still an important source of rounding error, and approaches such as the Kahan summation algorithm are ways to minimise the errors. It can be especially problematic in parallel computing. Notation for non-associative operations
In general, parentheses must be used to indicate the order of evaluation if a non-associative operation appears more than once in an expression (unless the notation specifies the order in another way, like <math>\dfrac{2}{3/4}</math>). However, mathematicians agree on a particular order of evaluation for several common non-associative operations. This is simply a notational convention to avoid parentheses.
A left-associative operation is a non-associative operation that is conventionally evaluated from left to right, i.e.,
<math display="block">
\left.
\begin{array}{l}
a*b*c=(a*b)*c
\\
a*b*c*d=((a*b)*c)*d
\\
a*b*c*d*e=(((a*b)*c)*d)*e\quad
\\
\mbox{etc.}
\end{array}
\right\}
\mbox{for all }a,b,c,d,e\in S
</math>
while a right-associative operation is conventionally evaluated from right to left:
<math display="block">
\left.
\begin{array}{l}
x*y*z=x*(y*z)
\\
w*x*y*z=w*(x*(y*z))\quad
\\
v*w*x*y*z=v*(w*(x*(y*z)))\quad\\
\mbox{etc.}
\end{array}
\right\}
\mbox{for all }z,y,x,w,v\in S
</math>
Both left-associative and right-associative operations occur. Left-associative operations include the following:
; Subtraction and division of real numbers
:<math>x-y-z=(x-y)-z</math>
:<math>x/y/z=(x/y)/z</math>
; Function application
:<math>(f \, x \, y) = ((f \, x) \, y)</math>
This notation can be motivated by the currying isomorphism, which enables partial application.
Right-associative operations include the following:
; Exponentiation of real numbers in superscript notation
:<math>x^{y^z}=x^{(y^z)}</math><p>Exponentiation is commonly used with brackets or right-associatively because a repeated left-associative exponentiation operation is of little use. Repeated powers would mostly be rewritten with multiplication:</p>
:<math>(x^y)^zx^{(yz)}</math><p>Formatted correctly, the superscript inherently behaves as a set of parentheses; e.g. in the expression <math>2^{x+3}</math> the addition is performed before the exponentiation despite there being no explicit parentheses <math>2^{(x+3)}</math> wrapped around it. Thus given an expression such as <math>x^{y^z}</math>, the full exponent <math>y^z</math> of the base <math>x</math> is evaluated first. However, in some contexts, especially in handwriting, the difference between <math>{x^y}^z(x^y)^z</math>, <math>x^{yz}x^{(yz)}</math> and <math>x^{y^z}x^{(y^z)}</math> can be hard to see. In such a case, right-associativity is usually implied.</p>
; Function definition
:<math>\mathbb{Z} \rarr \mathbb{Z} \rarr \mathbb{Z} = \mathbb{Z} \rarr (\mathbb{Z} \rarr \mathbb{Z})</math>
:<math>x \mapsto y \mapsto x - y = x \mapsto (y \mapsto x - y)</math><p>Using right-associative notation for these operations can be motivated by the Curry–Howard correspondence and by the currying isomorphism.</p>
Non-associative operations for which no conventional evaluation order is defined include the following.
; Exponentiation of real numbers in infix notation
:<math>(x^\wedge y)^\wedge z\ne x^\wedge(y^\wedge z)</math>
; Knuth's up-arrow operators
:<math> a \uparrow \uparrow (b \uparrow \uparrow c) \ne (a \uparrow \uparrow b) \uparrow \uparrow c</math>
:<math> a \uparrow \uparrow \uparrow (b \uparrow \uparrow \uparrow c) \ne (a \uparrow \uparrow \uparrow b) \uparrow \uparrow \uparrow c</math>
; Taking the cross product of three vectors
:<math>\vec a \times (\vec b \times \vec c) \neq (\vec a \times \vec b ) \times \vec c \qquad \mbox{ for some } \vec a,\vec b,\vec c \in \mathbb{R}^3</math>
; Taking the pairwise average of real numbers
:<math>{(x+y)/2+z\over2}\ne{x+(y+z)/2\over2} \qquad \mbox{for all }x,y,z\in\mathbb{R} \mbox{ with }x\ne z.</math>
; Taking the relative complement of sets
:<math>(A\backslash B)\backslash C \neq A\backslash (B\backslash C)</math>.<p>(Compare material nonimplication in logic.)</p>
History
William Rowan Hamilton seems to have coined the term "associative property" around 1844, a time when he was contemplating the non-associative algebra of the octonions he had learned about from John T. Graves.
See also
* Light's associativity test
* Telescoping series, the use of addition associativity for cancelling terms in an infinite series
* A semigroup is a set with an associative binary operation.
* Commutativity and distributivity are two other frequently discussed properties of binary operations.
* Power associativity, alternativity, flexibility and N-ary associativity are weak forms of associativity.
* Moufang identities also provide a weak form of associativity.
References
Category:Properties of binary operations
Category:Elementary algebra
Category:Functional analysis
Category:Rules of inference | https://en.wikipedia.org/wiki/Associative_property | 2025-04-05T18:25:37.954525 |
1336 | The Apache Software Foundation | | location = Wakefield, Massachusetts, U.S.
| origins | key_people
| area_served | product
| focus = Open-source software
| method = Apache License
| revenue $2.31 million
| revenue_year = 2023
| expenses $2.01 million
| expenses_year = 2023
| endowment | num_volunteers
| num_employees | num_members
| owner | Non-profit_slogan
| homepage =
| dissolved | footnotes
}}
The Apache Software Foundation ( ; ASF) is an American nonprofit corporation (classified as a 501(c)(3) organization in the United States) to support a number of open-source software projects. The ASF was formed from a group of developers of the Apache HTTP Server, and incorporated on March 25, 1999. it includes approximately 1000 members.
The Apache Software Foundation is a decentralized open source community of developers. The software they produce is distributed under the terms of the Apache License, a permissive open-source license for free and open-source software (FOSS). The Apache projects are characterized by a collaborative, consensus-based development process and an open and pragmatic software license, which is to say that it allows developers, who receive the software freely, to redistribute it under non-free terms. Each project is managed by a self-selected team of technical experts who are active contributors to the project. The ASF is a meritocracy, implying that membership of the foundation is granted only to volunteers who have actively contributed to Apache projects.
Among the ASF's objectives are: to provide legal protection to volunteers working on Apache projects, and to prevent the "Apache" brand name from being used by other organizations without permission.
The ASF also holds several ApacheCon conferences each year, highlighting Apache projects and related technology.HistoryThe history of the Apache Software Foundation is linked to the Apache HTTP Server, development beginning in February 1993. A group of eight developers started working on enhancing the NCSA HTTPd daemon. They came to be known as the Apache Group. On March 25, 1999, the Apache Software Foundation was formed. After a series of additional meetings to elect board members and resolve other legal matters regarding incorporation, the effective incorporation date of the Apache Software Foundation was set to June 1, 1999.Projects
Apache divides its software development activities into separate semi-autonomous areas called "top-level projects" (formally known as a "Project Management Committee" in the bylaws), some of which have a number of sub-projects. Unlike some other organizations that host FOSS projects, before a project is hosted at Apache it has to be licensed to the ASF with a grant or contributor agreement. In this way, the ASF gains the necessary intellectual property rights for the development and distribution of all its projects.Board of directors
The Board of Directors of The Apache Software Foundation (ASF) is responsible for management and oversight of the business and affairs of the corporation in accordance with the Bylaws. This includes management of the corporate assets (funds, intellectual property, trademarks, and support equipment), appointment of a President and corporate officers managing the core operations of the ASF, and allocation of corporate resources for the benefit of Apache projects. Technical decision-making authority for every Apache project is assigned to their independent project management committee; the participants in each project provide direction, not the board.
The board is elected annually by the ASF membership.
Since March 6, 2025, the board of directors has been:
* Rich Bowen
* Zili Chen
* Shane Curcuru
* Jim Jagielski
* Justin Mclean
* Jean-Baptiste Onofré
* Greg Stein
* Sander Striker
* Kanchana Welagedara
See also
* List of Apache Software Foundation projects
* Apache Attic
* Apache Incubator
* Log4Shell
* CNCF
* Linux Foundation
Notes
Further reading
* Wikinomics: How Mass Collaboration Changes Everything (2006); Don Tapscott, Anthony D. Williams.
External links
*
* [http://www.apachecon.com ApacheCon website]
*"[https://www.youtube.com/watch?v=qkvqJaX4S50 Trillions and Trillions Served]" – Feature documentary by the Apache Software Foundation detailing its history and impact on the open-source software community (2020)
Category:1999 establishments in Maryland
Category:501(c)(3) organizations
Category:Free and open-source software organizations
Category:Non-profit organizations based in Maryland
Category:Software companies established in 1999 | https://en.wikipedia.org/wiki/The_Apache_Software_Foundation | 2025-04-05T18:25:37.968180 |
1338 | Americans with Disabilities Act of 1990 | | acts amended | title amended 42 U.S.C.: Public Health and Social Welfare
| sections created = § 12101 et seq.
| leghisturl = https://www.congress.gov/bill/101st-congress/senate-bill/933/actions
| introducedin = Senate
| introducedbill =
| introducedby = Tom Harkin (D–IA)
| introduceddate = May 9, 1989
| committees = Senate Labor and Human Resources
| passedbody1 = Senate
| passeddate1 = September 7, 1989
| passedvote1 = [https://www.senate.gov/legislative/LIS/roll_call_votes/vote1011/vote_101_1_00173.htm 76–8]
| passedbody2 = House
| passeddate2 = May 22, 1990
| passedvote2 = unanimous voice vote
| conferencedate = July 12, 1990
| passedbody3 = House
| passeddate3 = July 12, 1990
| passedvote3 = [https://clerk.house.gov/evs/1990/roll228.xml 377–28]
| passedbody4 = Senate
| passeddate4 = July 13, 1990
| passedvote4 = [https://www.senate.gov/legislative/LIS/roll_call_votes/vote1012/vote_101_2_00152.htm 91–6]
| signedpresident = George H. W. Bush
| signeddate = July 26, 1990
| amendments = ADA Amendments Act of 2008
| SCOTUS cases |Bragdon v. Abbott, |Wright v. Universal Maritime Service Corp., |Cleveland v. Policy Management Systems Corp., |Sutton v. United Air Lines, Inc., |Murphy v. United Parcel Service, Inc., |''Albertson's, Inc. v. Kirkingburg, |Olmstead v. L.C., |Board of Trustees of the University of Alabama v. Garrett, |PGA Tour, Inc. v. Martin, |Toyota Motor Manufacturing, Kentucky, Inc. v. Williams, |EEOC v. Waffle House, Inc., |US Airways, Inc. v. Barnett, |Chevron U.S.A. Inc. v. Echazabal, |Barnes v. Gorman, |Clackamas Gastroenterology Associates, P.C. v. Wells, |Raytheon Co. v. Hernandez, |Tennessee v. Lane, |Spector v. Norwegian Cruise Line Ltd., |United States v. Georgia, |Hosanna-Tabor Evangelical Lutheran Church & School v. Equal Employment Opportunity Commission, |City and County of San Francisco v. Sheehan, |Acheson Hotels, LLC v. Laufer, |Stanley v. City of Sanford'', }}
}}
The Americans with Disabilities Act of 1990 or ADA () is a civil rights law that prohibits discrimination based on disability. It affords similar protections against discrimination to Americans with disabilities as the Civil Rights Act of 1964, which made discrimination based on race, religion, sex, national origin, and other characteristics illegal, and later sexual orientation and gender identity. In addition, unlike the Civil Rights Act, the ADA also requires covered employers to provide reasonable accommodations to employees with disabilities, and imposes accessibility requirements on public accommodations.
In 1986, the National Council on Disability had recommended the enactment of an Americans with Disabilities Act and drafted the first version of the bill which was introduced in the House and Senate in 1988. A broad bipartisan coalition of legislators supported the ADA, while the bill was opposed by business interests (who argued the bill imposed costs on business) and conservative evangelicals (who opposed protection for individuals with HIV). The final version of the bill was signed into law on July 26, 1990, by President George H. W. Bush. It was later amended in 2008 and signed by President George W. Bush with changes effective as of January 1, 2009.Disabilities includedConditions classed as disabilities under the ADA include both mental and physical conditions. A condition does not need to be severe or permanent to be a disability. Equal Employment Opportunity Commission regulations provide a list of conditions that should easily be concluded to be disabilities: amputation, attention deficit hyperactivity disorder (ADHD), autism, bipolar disorder, blindness, cancer, cerebral palsy, deafness, diabetes, epilepsy, HIV/AIDS, intellectual disability, major depressive disorder, mobility impairments requiring a wheelchair, multiple sclerosis, muscular dystrophy, obsessive–compulsive disorder (OCD), post-traumatic stress disorder (PTSD), and schizophrenia. Other mental or physical health conditions also may be disabilities, depending on what the individual's symptoms would be in the absence of "mitigating measures" such as medication, therapy, assistive devices, or other means of restoring function, during an "active episode" of the condition (if the condition is episodic). Additionally, sexual orientation is no longer considered a disorder and is also excluded from the definition of "disability". However, in 2022, the United States Court of Appeals for the Fourth Circuit stated that the ADA covers individuals with gender dysphoria, which may aid transgender people in accessing legal protections they otherwise may be unable to.TitlesTitle I—employment <span class"anchor" id"Title I"></span>
: See also US labor law and .
The ADA states that a "covered entity" shall not discriminate against "a qualified individual with a disability". This applies to job application procedures, hiring, advancement and discharge of employees, job training, and other terms, conditions, and privileges of employment. "Covered entities" include employers with 15 or more employees, as well as employment agencies, labor organizations, and joint labor-management committees. There are strict limitations on when a covered entity can ask job applicants or employees disability-related questions or require them to undergo medical examination, and all medical information must be kept confidential.
Prohibited discrimination may include, among other things, firing or refusing to hire someone based on a real or perceived disability, segregation, and harassment based on a disability. Covered entities are also required to provide reasonable accommodations to job applicants and employees with disabilities. A reasonable accommodation is a change in the way things are typically done that the person needs because of a disability, and can include, among other things, special equipment that allows the person to perform the job, scheduling changes, and changes to the way work assignments are chosen or communicated. An employer is not required to provide an accommodation that would involve undue hardship (excessive difficulty or expense), and the individual who receives the accommodation must still perform the essential functions of the job and meet the normal performance requirements. An employee or applicant who currently engages in the illegal use of drugs is not considered qualified when a covered entity takes adverse action based on such use.
Part of Title I was found unconstitutional by the United States Supreme Court as it pertains to states in the case of Board of Trustees of the University of Alabama v. Garrett as violating the sovereign immunity rights of the several states as specified by the Eleventh Amendment to the United States Constitution. The Court determined that state employees cannot sue their employer for violating ADA rules. State employees can, however, file complaints at the Department of Justice or the Equal Employment Opportunity Commission, who can sue on their behalf.
Title II—public entities (and public transportation) <span class"anchor" id"Title II"></span>
.}}
Title II prohibits disability discrimination by all public entities at the local level, e.g., school district, municipal, city, or county, and at state level. Public entities must comply with Title II regulations by the U.S. Department of Justice. These regulations cover access to all programs and services offered by the entity. Access includes physical access described in the ADA Standards for Accessible Design and programmatic access that might be obstructed by discriminatory policies or procedures of the entity.
Title II applies to public transportation provided by public entities through regulations by the U.S. Department of Transportation. It includes the National Railroad Passenger Corporation (Amtrak), along with all other commuter authorities. This section requires the provision of paratransit services by public entities that provide fixed-route services. ADA also sets minimum requirements for space layout in order to facilitate wheelchair securement on public transport.
Title II also applies to all state and local public housing, housing assistance, and housing referrals. The Office of Fair Housing and Equal Opportunity is charged with enforcing this provision.
Title III—public accommodations (and commercial facilities) <span class"anchor" id"Title III"></span>
.}}
, Washington.]]
Under Title III, no individual may be discriminated against on the basis of disability with regards to the full and equal enjoyment of the goods, services, facilities, or accommodations of any place of public accommodation by any person who owns, leases, or operates a place of public accommodation. Public accommodations include most places of lodging (such as inns and hotels), recreation, transportation, education, and dining, along with stores, care providers, and places of public displays.
Under Title III of the ADA, all new construction (construction, modification or alterations) after the effective date of the ADA (approximately July 1992) must be fully compliant with the Americans With Disabilities Act Accessibility Guidelines (ADAAG)Service animals
ADA provides explicit coverage for service animals. Guidelines protect persons with disabilities and indemnify businesses from damages related to granting access to service animals. Businesses are allowed to ask if the animal is a service animal and ask what tasks it is trained to perform, but are not allowed to ask the service animal to perform the task nor ask for an animal ID. They cannot ask what the person's disabilities are. A person with a disability cannot be removed from the premises unless one of two things happen: the animal is out of control and its owner cannot control it (e.g., a dog barking uncontrollably), or the animal is a direct threat to someone's health and safety. Allergies and fear of animals are not considered to be such a threat.
Businesses that prepare or serve food must allow service animals and their owners on the premises even if state or local health laws otherwise prohibit animals. Businesses that prepare or serve food are not required to provide care, food, a relief area for service animals. Extra fees for service animals are forbidden. They cannot be discriminated against, such as by isolation from people at a restaurant.
People with disabilities cannot be treated as "less than" other customers. However, if a business normally charges for damages caused by the person to property, damage caused by a service animal can also require compensation.
Auxiliary aids <span class"anchor" id"Auxiliary aid"></span>
The ADA provides explicit coverage for auxiliary aids.
ADA says that "a public accommodation shall take those steps that may be necessary to ensure that no individual with a disability is excluded, denied services, segregated or otherwise treated differently than other individuals because of the absence of auxiliary aids and services, unless the public accommodation can demonstrate that taking those steps would fundamentally alter the nature of the goods, services, facilities, privileges, advantages, or accommodations being offered or would result in an undue burden, i.e., significant difficulty or expense."
Title IV—telecommunications <span class"anchor" id"Title IV"></span>
Title IV of the ADA amended the Communications Act of 1934 primarily by adding section . This section requires that all telecommunications companies in the U.S. take steps to ensure functionally equivalent services for consumers with disabilities, notably those who are deaf or hard of hearing and those with speech impairments. When Title IV took effect in the early 1990s, it led to the installation of public teletypewriter (TTY) machines and other TDD (telecommunications devices for the deaf). Title IV also led to the creation, in all 50 states and the District of Columbia, of what was then called dual-party relay services and now are known as Telecommunications Relay Services (TRS), such as STS relay. Today, many TRS-mediated calls are made over the Internet by consumers who use broadband connections. Some are Video Relay Service (VRS) calls, while others are text calls. In either variation, communication assistants translate between the signed or typed words of a consumer and the spoken words of others. In 2006, according to the Federal Communications Commission (FCC), VRS calls averaged two million minutes a month.
Title V—miscellaneous provisions <span class"anchor" id"Title V"></span>
.}}
Title V includes technical provisions. It discusses, for example, the fact that nothing in the ADA amends, overrides or cancels anything in Section 504. Additionally, Title V includes an anti-retaliation or coercion provision. The Technical Assistance Manual for the ADA explains this provision:
History
The ADA has roots in Section 504 of the Rehabilitation Act of 1973.
Drafting
The law began in the Virginia House of Delegates in 1985 as the Virginians with Disabilities Act—supported by Warren G. Stambaugh—which was passed by the state Virginia. It is the first iteration of the Americans with Disabilities Act.
In 1986, the National Council on Disability (NCD), an independent federal agency, issued a report, Towards Independence, in which the Council examined incentives and disincentives in federal laws towards increasing the independence and full integration of people with disabilities into U.S. society. Among the disincentives to independence the Council identified was the existence of large remaining gaps in civil rights coverage for people with disabilities in the United States. A principal conclusion of the report was to recommend the adoption of comprehensive civil rights legislation, which became the ADA.
The idea of federal legislation enhancing and extending civil rights legislation to millions of Americans with disabilities gained bipartisan support in late 1988 and early 1989. In early 1989 both Congress and the newly inaugurated Bush White House worked separately, then jointly, to write legislation capable of expanding civil rights without imposing undue harm or costs on those already in compliance with existing rules and laws.
Lobbying
Over the years, key activists and advocates played an important role in lobbying members of the U.S. Congress to develop and pass the ADA, including Justin Whitlock Dart Jr., Patrisha Wright and others.
Wright is known as "the General" for her work in coordinating the campaign to enact the ADA. She is widely considered the main force behind the campaign lobbying for the ADA.Support and oppositionSupportSenator Bob Dole was a supporter and advocate for the bill.Opposition from religious groupsConservative evangelicals opposed the ADA because the legislation protected individuals with HIV, which they associated with homosexuality. The Association of Christian Schools International opposed the ADA in its original form, primarily because the ADA labeled religious institutions "public accommodations" and thus would have required churches to make costly structural changes to ensure access for all. The National Federation of Independent Business, an organization that lobbies for small businesses, called the ADA "a disaster for small business". Pro-business conservative commentators joined in opposition, writing that the Americans with Disabilities Act was "an expensive headache to millions" that would not necessarily improve the lives of people with disabilities.
"Capitol Crawl"
Shortly before the act was passed, disability rights activists with physical disabilities coalesced in front of the Capitol Building, shed their crutches, wheelchairs, powerchairs and other assistive devices, and immediately proceeded to crawl and pull their bodies up all 100 of the Capitol's front steps, without warning. As the activists did so, many of them chanted "ADA now", and "Vote, Now". Some activists who remained at the bottom of the steps held signs and yelled words of encouragement at the "Capitol Crawlers". Jennifer Keelan, a second grader with cerebral palsy, was videotaped as she pulled herself up the steps, using mostly her hands and arms, saying "I'll take all night if I have to." This direct action is reported to have "inconvenienced" several senators and to have pushed them to approve the act. While there are those who do not attribute much overall importance to this action, the "Capitol Crawl" of 1990 is seen by some present-day disability activists in the United States as a central act for encouraging the ADA into law.
Final passage
]]
Senator Tom Harkin (D-IA) authored what became the final bill and was its chief sponsor in the Senate. Harkin delivered part of his introduction speech in sign language, saying it was so his deaf brother could understand.
President George H. W. Bush, on signing the measure on July 26, 1990, said:
ADA Amendments Act, 2008
The ADA defines a covered disability as a physical or mental impairment that substantially limits one or more major life activities, a history of having such an impairment, or being regarded as having such an impairment. The Equal Employment Opportunity Commission (EEOC) was charged with interpreting the 1990 law with regard to discrimination in employment. The EEOC developed regulations limiting an individual's impairment to one that "severely or significantly restricts" a major life activity. The ADAAA directed the EEOC to amend its regulations and replace "severely or significantly" with "substantially limits", a more lenient standard.
On September 25, 2008, President George W. Bush signed the ADA Amendments Act of 2008 (ADAAA) into law. The amendment broadened the definition of "disability", thereby extending the ADA's protections to a greater number of people. The ADAAA also added to the ADA examples of "major life activities" including, but not limited to, "caring for oneself, performing manual tasks, seeing, hearing, eating, sleeping, walking, standing, lifting, bending, speaking, breathing, learning, reading, concentrating, thinking, communicating, and working" as well as the operation of several specified "major bodily functions". Thus the ADAAA led to broader coverage of impaired employees.Web Content Accessibility Guidelines, 2019In October 2019, the Supreme Court declined to resolve a circuit split as to whether websites are covered by the ADA. The Court turned down an appeal from Domino's Pizza and let stand a U.S. 9th Circuit Court of Appeals ruling which held that the Americans with Disabilities Act protects access not just to brick-and-mortar public accommodations, but also to the websites and apps of those businesses.ImpactThe ADA led to significant improvements in terms of access to public services, accessibility in the built environment, and societal understanding of disability.
Accessibility
Employment
Between 1991 (after the enactment of the ADA) and 1995, the employment rate of men with disabilities dropped by 7.8% regardless of age, educational level, or type of disability, with the most affected being young, less-educated and intellectually disabled men. While no causal link between the ADA and that trend has been definitively identified, some researchers have characterized the ADA as ineffectual and argued that it caused this decline by raising the cost of doing business for employers, who quietly avoid hiring people with disabilities for fear of lawsuit. To these employers, hiring people with disabilities became too expensive as they had to spend extra on assistive technology.
In 2001, for men of all working ages and women under 40, Current Population Survey data showed a sharp drop in the employment of disabled workers, leading at least two economists to attribute the cause to the Act. By contrast, a study in 2003 found that while the Act may have led to short term reactions by employers, in the long term, there were either positive or neutral consequences for wages and employment. In 2005, the rate of employment among disabled people increased to 45% of the population of disabled people.
Societal attitudes
"Professional plaintiffs"Since enforcement of the act began in July 1992, it has quickly become a major component of employment law. The ADA allows private plaintiffs to receive only injunctive relief (a court order requiring the public accommodation to remedy violations of the accessibility regulations) and attorneys' fees, and does not provide monetary rewards to private plaintiffs who sue non-compliant businesses. Unless a state law, such as the California Unruh Civil Rights Act, provides for monetary damages to private plaintiffs, persons with disabilities do not obtain direct financial benefits from suing businesses that violate the ADA.
The attorneys' fees provision of Title III does provide incentive for lawyers to specialize and engage in serial ADA litigation, but a disabled plaintiff does not obtain a financial reward from attorneys' fees unless they act as their own attorney, or as mentioned above, a disabled plaintiff resides in a state that provides for minimum compensation and court fees in lawsuits. Moreover, there may be a benefit to these private attorneys general who identify and compel the correction of illegal conditions: they may increase the number of public accommodations accessible to persons with disabilities. "Civil rights law depends heavily on private enforcement. Moreover, the inclusion of penalties and damages is the driving force that facilitates voluntary compliance with the ADA." Courts have noted:
speaking about the ADA on the 30th anniversary in 2020]]
However, in states that have enacted laws that allow private individuals to win monetary awards from non-compliant businesses (as of 2008, these include California, Florida, Hawaii, and Illinois), "professional plaintiffs" are typically found. At least one of these plaintiffs in California has been barred by courts from filing lawsuits unless he receives prior court permission. Such lawsuits represent a major potential expansion of the ADA in that they (known as "bricks vs. clicks"), seek to expand the ADA's authority to cyberspace, where entities may not have actual physical facilities that are required to comply.
Green v. State of California
Green v. State of California, No. S137770 (Cal. August 23, 2007) was a case in which the California Supreme Court was faced with deciding whether an employee suing the state is required to prove they are able to perform "essential" job duties, regardless of whether or not there was "reasonable accommodation", or if the employer must prove the person suing was unable to do so. The court ruled the burden was on the employee, not the employer, and reversed a disputed decision by the lower courts. Plaintiff attorney David Greenberg brought forth considerations of the concept that, even in the state of California, employers do not have to employ a worker who is unable to perform "essential job functions" with "reasonable accommodation". Forcing employers to do so "would defy logic and establish a poor public policy in employment matters."
National Federation of the Blind v. Target Corporation
National Federation of the Blind v. Target Corp. was a case where a major retailer, Target Corp., was sued because their web designers failed to design its website to enable persons with low or no vision to use it.
Board of Trustees of the University of Alabama v. Garrett
Board of Trustees of the University of Alabama v. Garrett was a United States Supreme Court case about Congress's enforcement powers under the Fourteenth Amendment to the Constitution. It decided that Title I of the Americans with Disabilities Act was unconstitutional insofar as it allowed private citizens to sue states for money damages.
Barden v. The City of Sacramento
Barden v. The City of Sacramento, filed in March 1999, claimed that the City of Sacramento failed to comply with the ADA when, while making public street improvements, it did not bring its sidewalks into compliance with the ADA. Certain issues were resolved in federal court. One issue, whether sidewalks were covered by the ADA, was appealed to the 9th Circuit Court of Appeals, which ruled that sidewalks were a "program" under the ADA and must be made accessible to persons with disabilities. The ruling was later appealed to the U.S. Supreme Court, which refused to hear the case, letting stand the ruling of the 9th Circuit.Bates v. United Parcel Service, IncBates v. United Parcel Service, Inc (UPS; begun in 1999) was the first equal opportunity employment class action brought on behalf of Deaf and Hard of Hearing workers throughout the country concerning workplace discrimination. It established legal precedent for these employees to be fully covered under the ADA. Key findings included:
# UPS failed to address communication barriers and to ensure equal conditions and opportunities for deaf employees;
# Deaf employees were routinely excluded from workplace information, denied opportunities for promotion, and exposed to unsafe conditions due to lack of accommodations by UPS;
# UPS also lacked a system to alert these employees as to emergencies, such as fires or chemical spills, to ensure that they would safely evacuate their facility; and
# UPS had no policy to ensure that deaf applicants and employees actually received effective communication in the workplace.
The outcome was that UPS agreed to pay a $5.8 million award and agreed to a comprehensive accommodations program that was implemented in their facilities throughout the country.
Spector v. Norwegian Cruise Line Ltd.
Spector v. Norwegian Cruise Line Ltd. was a case that was decided by the United States Supreme Court in 2005. The defendant argued that as a vessel flying the flag of a foreign nation it was exempt from the requirements of the ADA. This argument was accepted by a federal court in Florida and, subsequently, the Fifth Circuit Court of Appeals. However, the U.S. Supreme Court reversed the ruling of the lower courts on the basis that Norwegian Cruise Lines was a business headquartered in the United States whose clients were predominantly Americans and, more importantly, operated out of port facilities throughout the United States.
Olmstead v. L.C.
Olmstead v. L.C. was a case before the United States Supreme Court in 1999. The two plaintiffs, Lois Curtis and E.W., were institutionalized in Georgia for diagnosed "mental retardation" and schizophrenia. Clinical assessments by the state determined that the plaintiffs could be appropriately treated in a community setting rather than the state institution. The plaintiffs sued the state of Georgia and the institution for being inappropriately treated and housed in the institutional setting rather than being treated in one of the state's community-based treatment facilities.
The Supreme Court decided under Title II of the ADA that mental illness is a form of disability and therefore covered under the ADA, and that unjustified institutional isolation of a person with a disability is a form of discrimination because it "...perpetuates unwarranted assumptions that persons so isolated are incapable or unworthy of participating in community life." The court added, "Confinement in an institution severely diminishes the everyday life activities of individuals, including family relations, social contacts, work options, economic independence, educational advancement, and cultural enrichment."
Therefore, under Title II no person with a disability can be unjustly excluded from participation in or be denied the benefits of services, programs or activities of any public entity. The settlement required the stadium to add 329 wheelchair seats throughout the stadium by 2010, and an additional 135 accessible seats in clubhouses to go along with the existing 88 wheelchair seats. This case was significant because it set a precedent for the uniform distribution of accessible seating and gave the DOJ the opportunity to clarify previously unclear rules. The agreement now is a blueprint for all stadiums and other public facilities regarding accessibility.
Paralyzed Veterans of America v. Ellerbe Becket Architects and Engineers
One of the first major ADA lawsuits, Paralyzed Veterans of America v. Ellerbe Becket Architects and Engineers (PVA 1996) was focused on the wheelchair accessibility of a stadium project that was still in the design phase, MCI Center (now known as Capital One Arena) in Washington, D.C. Previous to this case, which was filed only five years after the ADA was passed, the DOJ was unable or unwilling to provide clarification on the distribution requirements for accessible wheelchair locations in large assembly spaces. While Section 4.33.3 of ADAAG makes reference to lines of sight, no specific reference is made to seeing over standing patrons. The MCI Center, designed by Ellerbe Becket Architects & Engineers, was designed with too few wheelchair and companion seats, and the ones that were included did not provide sight lines that would enable the wheelchair user to view the playing area while the spectators in front of them were standing. This case and another related case established precedent on seat distribution and sight lines issues for ADA enforcement that continues to present day.Toyota Motor Manufacturing, Kentucky, Inc. v. Williams
Toyota Motor Manufacturing, Kentucky, Inc. v. Williams, was a case in which the US Supreme Court interpreted the meaning of the phrase "substantially impairs" as used in the Americans with Disabilities Act. It reversed a Sixth Circuit Court of Appeals decision to grant partial summary judgment in favor of the respondent, Ella Williams, that classified her inability to perform manual job-related tasks as a disability. The Court held that the "major life activity" definition for evaluating the performance of manual tasks focuses the inquiry on whether Williams was unable to perform a range of tasks central to most people in carrying out the activities of daily living, not whether Williams was unable to perform her specific job tasks. Therefore, the determination of whether an impairment rises to the level of a disability is not limited to activities in the workplace solely, but rather to manual tasks in life in general. When the Supreme Court applied this standard, it found that the Court of Appeals had incorrectly determined the presence of a disability because it relied solely on her inability to perform specific manual work tasks, which was insufficient in proving the presence of a disability. The Court of Appeals should have taken into account the evidence presented that Williams retained the ability to do personal tasks and household chores, such activities being the nature of tasks most people do in their daily lives, and placed too much emphasis on her job disability. Since the evidence showed that Williams was performing normal daily tasks, it ruled that the Court of Appeals erred when it found that Williams was disabled. This ruling has since been legislatively overturned by the ADA Amendments Act of 2008 (ADAAA). In fact, Congress explicitly cited Toyota v. Williams in the text of the ADAAA itself as one of its driving influences for passing the ADAAA.US Airways, Inc. v. Barnett
US Airways, Inc. v. Barnett was decided by the US Supreme Court in 2002. This case held that even requests for accommodation that might seem reasonable on their face, e.g., a transfer to a different position, can be rendered unreasonable because it would require a violation of the company's seniority system. While the court held that, in general, a violation of a seniority system renders an otherwise reasonable accommodation unreasonable, a plaintiff can present evidence that, despite the seniority system, the accommodation is reasonable in the specific case at hand, e.g., the plaintiff could offer evidence that the seniority system is so often disregarded that another exception would not make a difference.
Importantly, the court held that the defendant need not provide proof that this particular application of the seniority system should prevail, and that, once the defendant showed that the accommodation violated the seniority system, it fell to Barnett to show it was nevertheless reasonable.
In this case, Barnett was a US Airways employee who injured his back, rendering him physically unable to perform his cargo-handling job. Invoking seniority, he transferred to a less-demanding mailroom job, but this position later became open to seniority-based bidding and was bid on by more senior employees. Barnett requested the accommodation of being allowed to stay on in the less-demanding mailroom job. US Airways denied his request, and he lost his job.
The Supreme Court decision invalidated both the approach of the district court, which found that the mere presence and importance of the seniority system was enough to warrant a summary judgment in favor of US Airways, as well as the circuit court's approach that interpreted 'reasonable accommodation' as 'effective accommodation.'
Access Now v. Southwest Airlines
Access Now, Inc. v. Southwest Airlines Co. was a 2002 case where the District Court decided that the website of Southwest Airlines was not in violation of the Americans with Disabilities Act, because the ADA is concerned with things with a physical existence and thus cannot be applied to cyberspace. Judge Patricia A. Seitz found that the "virtual ticket counter" of the website was a virtual construct, and hence not a "public place of accommodation". As such, "To expand the ADA to cover 'virtual' spaces would be to create new rights without well-defined standards."
Ouellette v. Viacom International Inc.
Ouellette v. Viacom International Inc. (2011) held that a mere online presence does not subject a website to the ADA guidelines. Thus Myspace and YouTube were not liable for a dyslexic man's inability to navigate the site regardless of how impressive the "online theater" is.
Authors Guild v. HathiTrust
Authors Guild v. HathiTrust was a case in which the District Court decided that the HathiTrust digital library was a transformative, fair use of copyrighted works, making a large number of written text available to those with print disability.Zamora-Quezada v. HealthTexas Medical GroupZamora-Quezada v. HealthTexas Medical Group (begun in 1998) was the first time this act was used against HMOs when a novel lawsuit was filed by Texas attorney Robert Provan against five HMOs for their practice of revoking the contracts of doctors treating disabled patients. In 1999, these HMOs sought to dismiss Provan's lawsuit, but a federal court ruled against them, and the case was settled out of court. Many decisions relating to Provan's unique lawsuit against these HMOs have been cited in other court cases since.Campbell v. General Dynamics Government Systems Corp.
Campbell v. General Dynamics Government Systems Corp. (2005) concerned the enforceability of a mandatory arbitration agreement contained in a dispute resolution policy linked to an e-mailed company-wide announcement, insofar as it applies to employment discrimination claims brought under the Americans with Disabilities Act.
Tennessee v. Lane
Tennessee v. Lane, 541 U.S. 509 (2004), was a case in the Supreme Court of the United States involving Congress's enforcement powers under section 5 of the Fourteenth Amendment. George Lane was unable to walk after a 1997 car accident in which he was accused of driving on the wrong side of the road. A woman was killed in the crash, and Lane faced misdemeanor charges of reckless driving. The suit was brought about because he was denied access to appear in criminal court because the courthouse had no elevator, even though the court was willing to carry him up the stairs and then willing to move the hearing to the first floor. He refused, citing he wanted to be treated as any other citizen, and was subsequently charged with failure to appear, after appearing at a previous hearing where he dragged himself up the stairs. The court ruled that Congress did have enough evidence that disabled people were being denied those fundamental rights that are protected by the Due Process clause of the Fourteenth Amendment and had the enforcement powers under section 5 of the Fourteenth Amendment. It further ruled that "reasonable accommodations" mandated by the ADA were not unduly burdensome and disproportionate to the harm.Gender dysphoriaIn 2022, the United States Court of Appeals for the Fourth Circuit stated that the ADA covers individuals with gender dysphoria, which may aid transgender people in accessing legal protections they otherwise may be unable to.<ref name"auto"/>
See also
References
Further reading
*
* Bush, George H. W., Remarks of President George Bush at the Signing of the Americans with Disabilities Act. Available online at [https://web.archive.org/web/20060419075839/http://www.eeoc.gov/ada/bushspeech.html Equal Employment Opportunity Commission].
* Davis, Lennard J. Enabling Acts. The Hidden Story of How the Americans with Disabilities Act Gave the Largest US Minority Its Rights. Boston, MA: Beacon Press, 2015.
*
* Fielder, J. F. Mental Disabilities and the Americans with Disabilities Act. Westport, CT: Quorum Books, 2004.
* Hamilton Krieger, Linda, ed., Backlash Against the ADA: Reinterpreting Disability Rights Ann Arbor: University of Michigan Press, 2003.
* Johnson, Mary. (2000). Make Them Go Away: Clint Eastwood, Christopher Reeve & the Case Against Disability Rights. Louisville, KY: The Advocado Press.
* Mayer, Arlene. (1992). The History of the Americans with Disabilities Act: A Movement Perspective. Available online at the [http://dredf.org/news/publications/the-history-of-the-ada/ Disability Rights Education & Defense Fund website]
* O'Brien, Ruth, ed. Voices from the Edge: Narratives about the Americans with Disabilities Act. New York: Oxford, 2004.
* Pletcher, David and Ashlee Russeau-Pletcher. [https://web.archive.org/web/20120601171408/http://aabss.org/Perspectives2008/AABSS2008Article5DisabilityHistory.pdf History of the Civil Rights Movement for the Physically Disabled]
* Switzer, Jacqueline Vaughn. Disabled Rights: American Disability Policy and the Fight for Equality. Washington, D.C.: Georgetown University Press, 2003.
* Weber, Mark C. Disability Harassment. New York: NYU Press, 2007.
External links
* from the DOJ Civil Rights Division
* [https://www.dol.gov/general/topic/disability/ada ADA page] from the Department of Labor
* [https://www.eeoc.gov/eeoc-disability-related-resources ADA page] from the Equal Employment Opportunity Commission
* [https://uscode.house.gov/view.xhtml?path/prelim@title42/chapter126&editionprelim As codified in 42 U.S.C. chapter 126] of the United States Code from the US House of Representatives
* [https://www.law.cornell.edu/uscode/text/42/chapter-126 As codified in 42 U.S.C. chapter 126] of the United States Code from the LII
* [https://www.govinfo.gov/content/pkg/COMPS-803/uslm/COMPS-803.xml Americans with Disabilities Act of 1990] as amended ([https://www.govinfo.gov/content/pkg/COMPS-803/pdf/COMPS-803.pdf PDF]/[https://www.govinfo.gov/app/details/COMPS-803/ details]) in the GPO [https://www.govinfo.gov/help/comps Statute Compilations collection]
* [https://fndusa.org/ Family Network on Disabilities FNDUSA.ORG]—Florida Parent Training and Information Center funded by DOED Offices of Special Education Programs (OSEP)
* [https://www.lflegal.com/global-law-and-policy/#United-States-8211-federal-national Lainey Feingold's Global Law and Policy: United States – federal (national)]
* [https://prep.continualengine.com/blog/ada-compliance/ What is ADA compliance? How to Create an ADA-Compliant PDF?]
Category:101st United States Congress
Category:1990 in American law
Category:Anti-discrimination law in the United States
Category:Civil rights in the United States
Category:Disability in law
Category:United States federal civil rights legislation
Category:United States federal disability legislation
Category:Civil Rights Acts | https://en.wikipedia.org/wiki/Americans_with_Disabilities_Act_of_1990 | 2025-04-05T18:25:38.006070 |
1344 | Apple I | prefix|Internet-related prefixes#"i-"|other uses|Apple 1 (disambiguation)}}
| lifespan | price
| discontinued =
| os Custom system monitor
| unitssold =
| unitsshipped | media
| power | soc
| cpu = MOS 6502
| CPUspeed = 1 MHz
| memory 4 or 8 KB)
| sound | input
| controllers | camera
| touchpad | connectivity
| platform | service
| dimensions | weight
| topgame | compatibility
| predecessor | successor Apple II
| marketing_target = Early hobbyist
| related =
}}
The Apple Computer 1 (Apple-1its first product and would later become the world's largest technology company. The idea of starting a company and selling the computer came from Wozniak's friend and Apple co-founder Steve Jobs. A differentiator of the Apple I was that it included video display terminal circuitry on its circuit board, allowing it to connect to a low-cost composite video monitor or television, whereas others avoided this and used more expensive monitors because business was used to more characters per displayed/typewritten line. It and the Sol-20 were some of the first home computers to have this capability.
To finance the Apple I's development, Wozniak and Jobs sold some of their possessions for a few hundred dollars. Wozniak demonstrated the first prototype in July 1976 at the Homebrew Computer Club in Palo Alto, California, impressing the Byte Shop, an early computer retailer. After securing an order for 50 computers, Jobs was able to order the parts on credit and deliver the first Apple products after ten days. As relatively few computers were made before they were discontinued, coupled with their status as Apple's first product, surviving Apple I units are now displayed in computer museums.]]
In 1974, while visiting famous phone phreak John Draper in California, Steve Wozniak watched him connect a modem to the ARPANET – the precursor to the internet – and use a teleprinter to play chess with someone from Boston; this inspired him to make a cheap terminal that used an inexpensive keyboard from Sears and a standard TV. Later in March 1975, Wozniak started attending meetings of the Homebrew Computer Club, which was a major source of inspiration for him. New microcomputers such as the Altair 8800 inspired Wozniak to build a microprocessor into his video terminal circuit to make a complete computer. At the time the only appropriate CPUs available were the Intel 8080, and the Motorola 6800. Of these options, Wozniak preferred the 6800, though he was financially unable to obtain either. Instead, he began designing computers on paper until he could afford a CPU.
When the $25 MOS Technology 6502 was released in late 1975, in }} Wozniak wrote a version of BASIC for it, then began to design a computer for it to run on. The 6502 was developed by many of the same engineers that designed the 6800, as many in Silicon Valley left employers to form their own companies. Wozniak's earlier 6800 computer design needed only minor changes to run on the new processor.
<!--
After building a prototype computer for himself and showing it at the club, he and Steve Jobs gave out schematics (technical designs) for the computer to interested club members and even helped some of them build and test out copies. Then, Steve Jobs suggested that they design and sell a single etched and silkscreened circuit boardjust the bare board, with no electronic partsthat people could use to build the computers. Wozniak calculated that having the board design laid out would cost and manufacturing would cost another per board; he hoped to recoup his costs if 50 people bought the boards for each.
-->
By March 1, 1976, Wozniak completed the basic design of his computer. Wozniak originally offered the design to HP while working there, but it was rejected by the company on five occasions. When he demonstrated his computer at the Homebrew Computer Club, his friend and fellow club regular Steve Jobs was immediately interested in its commercial potential. Wozniak intended to share schematics of the machine for free; however, Jobs advised him to start a business together and sell bare printed circuit boards for the computer. Wozniak, at first skeptical, was later convinced by Jobs that even if they were not successful they could at least say to their grandchildren that they had had their own company. To raise the money they needed to build the first batch of the circuit boards, Wozniak sold his HP-65 scientific calculator while Jobs sold his Volkswagen van.
After the company was formed a month later, Jobs and Wozniak gave a presentation of the fully assembled "Apple Computer A" at the Homebrew Computer Club. Paul Terrell, who was starting a new computer shop in Mountain View, California, called the Byte Shop, saw the presentation and was impressed by the machine. Terrell told Jobs that he would order 50 units of the Apple I and pay $500 each}} on delivery, but only if they came fully assembledhe was not interested in buying bare printed circuit boards with no components.
Jobs took the purchase order from the Byte Shop to national electronic parts distributor Cramer Electronics, and ordered the components needed. When asked by the credit manager how he would pay for the parts, Jobs replied, "I have this purchase order from the Byte Shop chain of computer stores for 50 of my computers and the payment terms are COD. If you give me the parts on net 30-day terms I can build and deliver the computers in that time frame, collect my money from Terrell at the Byte Shop and pay you."
To verify the purchase order, the credit manager called Paul Terrell, who assured him if the computers showed up, Jobs would have more than enough money for the parts order. The two Steves and their small crew spent day and night building and testing the computers, and delivered to Terrell on time. Terrell was surprised to receive a batch of assembled circuit boards, as he had expected complete computers with a case, monitor and keyboard. Nonetheless, he kept his word and paid the two Steves the money promised.
<!--
To fulfill the order, they obtained in parts at 30 days net and delivered the finished product in 10 days. Together the duo assembled the first boards in Jobs's parents' Los Altos home; initially in his bedroom and later (when there was no space left) in the garage. Wozniak's apartment in San Jose was too filled with monitors, electronic devices, and computer games that he had developed. and because it was a one-third markup on the wholesale price. Jobs had managed to get the inventory into the nation's first four storefront microcomputer retailers: Byte Shop (Palo Alto, California), itty bitty machine company (Evanston, Illinois), Data Domain (Bloomington, Indiana), and Computer Mart (New York City).
The first unit produced was used in a high school math class, and donated to Liza Loop's public-access computer center. About 200 units were produced, and all but 25 were sold within nine or ten months. It continued to be sold through August 1977, despite the introduction of the Apple II in April 1977, which began shipping in June of that year. In October 1977, the Apple I was officially discontinued and removed from Apple's price list. As Wozniak was the only person who could answer most customer support questions about the computer, the company offered Apple I owners discounts and trade-ins for Apple IIs to persuade them to return their computers. These recovered boards were then destroyed by Apple, contributing to their later rarity.
Both Steve Jobs and Steve Wozniak have stated that Apple did not assign serial numbers to the Apple l. Several boards have been found with numbered stickers affixed to them, which appear to be inspection stickers from the PCB manufacturer/assembler. A batch of boards is known to have numbers hand-written in black permanent marker on the back; these usually appear as "01-00##". As of January 2022, 29 Apple-1s with a serial number are known. The highest known number is . Two original Apple-1s have been analyzed by Professional Sports Authenticator in Los Angeles, concluding that the serial numbers had been hand-written by Steve Jobs.
Hardware
The Apple I used a MOS Technologies 6502 microprocessor running at , and its design was based largely on Wozniak's previous work centered around a Motorola 6800. The unconventional clock speed was chosen to be a fraction () of the NTSC color carrier, which simplified video circuitry. of memory was included on the base machine, which was expandable to on-board and up to by using an add-on card. On-board memory utilized newly available 4Kbit DRAM chips, and was designed to be upgradeable to the next generation of 16Kbit chips for a maximum of on-board memory. An optional $75 plug-in cassette interface card allowed users to store programs on ordinary audio cassette tapes. A BASIC interpreter, originally written by Wozniak, was provided with the cassette interface that let users easily write programs and play simple games. An onboard AC power supply was included.
The Apple I did not come with a case. It could be used bare, though some users chose to build custom (typically wooden) enclosures.
Video and Input
The Apple I included built-in computer terminal circuitry with composite video output. To use the computer, a user-supplied composite monitor and ASCII-encoded keyboard needed to be connected. If a monitor was not available, a standard television set could be used along with an RF modulator. In comparison, competing machines generally required an expensive dedicated video display terminal or teletypewriter. This, combined with its single-board construction, made the Apple I an elegant and inexpensive machine for its day, though competitors such as the Sol-20 and Sphere 1 offered similar feature sets.
The computer generated its video output using a shift register memory and a Signetics 2513 64×8×5 Character Generator. It was capable of displaying uppercase characters, numbers and basic punctuation and math symbols with a 5x8 pixel font:
{|
|-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|}
Apple Cassette Interface expansion
A cassette interface was available in the form of an optional add-on for the Apple I's expansion slot. A cassette deck plugged in to the expansion's phone connector ports could be written to and read from as a form of removable storage. The only alternative to the interface for loading programs was typing machine code by hand, making the add-on "ubiquitous".
The expansion came with a free cassette tape containing Steve Wozniak's Integer BASIC interpreter. Other software tapes were supplied "at minimal cost" After the success of the Apple II, and of Apple broadly, the Apple I was recognized as an important historical computer. According to the 1986 ''Apple IIe Owner's Guide'', an Apple I was then worth "between $10,000 and $15,000"}} and $}} in }} and a board was reportedly sold for $50,000 in 1999.}}
In November 2010, an Apple I with a cache of original documents and packaging sold for £133,250 ($)}} ($|GBR||sf3}}) in }} at Christie's auction house in London. The documents included the return label showing Steve Jobs's parents' address, a personally typed and signed letter from Jobs (answering technical questions about the computer), and the invoice (listing "Steven" as the salesman). The computer was brought to Polytechnic University of Turin for restoration.
In October 2014 the Henry Ford Museum purchased an Apple I at a Bonhams auction for .}} in }} The sale included the keyboard, monitor, cassette decks and a manual. In 2017, an Apple I removed from Steve Jobs's office in 1985 by Apple quality control engineer Don Hutmacher was placed on display at Living Computers: Museum + Labs.
On May 30, 2015, an elderly woman reportedly dropped off boxes of electronics for disposal at an electronics recycling center in the Silicon Valley of Northern California. Included in the electronics (removed from her garage after the death of her husband) was an original Apple I computer, which the recycling firm sold for . When a discarded item is sold, it is the company's practice to give 50% of the proceeds to the original owner,
Apple I computers with original documents and memorabilia have frequently been auctioned for over $300,000 throughout the 2010s and 2020s. The production prototype for the Apple I survives in a badly damaged state and was itself auctioned in 2022 for $677,196.
Replicas
Several Apple I clones and replicas have been released in recent years. These are created by hobbyists and marketed to the hobbyist/collector community. Availability is usually limited to small runs in response to demand.EmulationEmulation software for the Apple I has been written for modern home computers and for web browsers. and Commodore 64.
See also
* Computer museum
* History of computer science
* History of computing
* KIM-1
Notes
References
Citations
Sources
<!-- I -->
*
**
<!-- O -->
*
<!-- P -->
*
<!-- S -->
*
*
External links
* [http://www.applefritter.com/apple1 Apple I Owners Club]
* [https://www.applefritter.com/files/a1man.pdf Apple I Operational Manual] ([https://archive.org/details/applei_manual/mode/1up browse])
* [https://www.retroplace.com/de/feature/operation-manuell/161 German making-of article to recreate the Apple I Operational Manual]
* [http://www.sbprojects.com/projects/apple1/ Apple I project on www.sbprojects.com]
* [https://www.Apple1Registry.com Apple 1 Computer Registry]
* [http://apple1computer.blogspot.com John Calande III blog – Building the Apple I clone, including corrections on the early history of Apple Computer]
* [https://web.archive.org/web/20151005035147/http://cameronscloset.com/category/apple-1 Apple 1 | Cameron's Closet] – includes display of the Apple 1's character set on real hardware, compared to on most emulators
*
Category:Computer-related introductions in 1976
Category:Apple II family
I
Category:Early microcomputers
Category:6502-based home computers
Category:Products and services discontinued in 1977
Category:Discontinued Apple Inc. products
Category:Steve Jobs | https://en.wikipedia.org/wiki/Apple_I | 2025-04-05T18:25:38.050697 |
1346 | Apatosaurus | | image = Louisae.jpg
| image_caption = Mounted A. louisae (specimen CM 3018), Carnegie Museum of Natural History
| image_upright = 1.1
| taxon = Apatosaurus
| authority = Marsh, 1877
| type_species = Apatosaurus ajax
| type_species_authority = Marsh, 1877
| subdivision_ranks = Other species
| subdivision =
*A. louisae<br /><small>Holland, 1916</small>
| synonyms *Atlantosaurus montanus?<br /><small>Marsh, 1877</small>
}}
Apatosaurus (; meaning "deceptive lizard") is a genus of herbivorous sauropod dinosaur that lived in North America during the Late Jurassic period. Othniel Charles Marsh described and named the first-known species, A. ajax, in 1877, and a second species, A. louisae, was discovered and named by William H. Holland in 1916. Apatosaurus lived about 152 to 151 million years ago (mya), during the late Kimmeridgian to early Tithonian age, and are now known from fossils in the Morrison Formation of modern-day Colorado, Oklahoma, New Mexico, Wyoming, and Utah in the United States. Apatosaurus had an average length of , and an average mass of . A few specimens indicate a maximum length of 11–30% greater than average and a mass of approximately .
The cervical vertebrae of Apatosaurus are less elongated and more heavily constructed than those of Diplodocus, a diplodocid like Apatosaurus, and the bones of the leg are much stockier despite being longer, implying that Apatosaurus was a more robust animal. The tail was held above the ground during normal locomotion. Apatosaurus had a single claw on each forelimb and three on each hindlimb. The Apatosaurus skull, long thought to be similar to Camarasaurus, is much more similar to that of Diplodocus. Apatosaurus was a generalized browser that likely held its head elevated. To lighten its vertebrae, Apatosaurus had air sacs that made the bones internally full of holes. Like that of other diplodocids, its tail may have been used as a whip to create loud noises, or, as more recently suggested, as a sensory organ.
The skull of Apatosaurus was confused with that of Camarasaurus and Brachiosaurus until 1909, when the holotype of A. louisae was found, and a complete skull just a few meters away from the front of the neck. Henry Fairfield Osborn disagreed with this association, and went on to mount a skeleton of Apatosaurus with a Camarasaurus skull cast. Apatosaurus skeletons were mounted with speculative skull casts until 1970, when McIntosh showed that more robust skulls assigned to Diplodocus were more likely from Apatosaurus.
Apatosaurus is a genus in the family Diplodocidae. It is one of the more basal genera, with only Amphicoelias and possibly a new, unnamed genus more primitive. Although the subfamily Apatosaurinae was named in 1929, the group was not used validly until an extensive 2015 study. Only Brontosaurus is also in the subfamily, with the other genera being considered synonyms or reclassified as diplodocines. Brontosaurus has long been considered a junior synonym of Apatosaurus; its type species was reclassified as A.excelsus in 1903. A 2015 study concluded that Brontosaurus is a valid genus of sauropod distinct from Apatosaurus, but not all paleontologists agree with this division. As it existed in North America during the late Jurassic, Apatosaurus would have lived alongside dinosaurs such as Allosaurus, Camarasaurus, Diplodocus, and Stegosaurus.
Description
(green)]]
Apatosaurus was a large, long-necked, quadrupedal animal with a long, whip-like tail. Its forelimbs were slightly shorter than its hindlimbs. Most size estimates are based on specimen CM3018, the type specimen of A.louisae, reaching in length and in body mass.
The skull is small in relation to the size of the animal. The jaws are lined with spatulate (chisel-like) teeth suited to an herbivorous diet. One of the best specimens collected by Lakes in 1877 was a well preserved partial postcranial skeleton, including many vertebrae, and a partial braincase (YPM VP 1860), which was sent to Marsh and named Apatosaurus ajax in November 1877.
During excavation and transportation, the bones of the holotype skeleton were mixed with those of another Apatosaurine individual originally described as Atlantosaurus immanis; as a consequence, some elements cannot be ascribed to either specimen with confidence. Later in 1884, Othniel Marsh named Diplodocus lacustris based on a chimeric partial dentary, snout, and several teeth collected by Lakes in 1877 at Morrison. In 2013, it was suggested that the dentary of D. lacustris and its teeth were actually from Apatosaurus ajax based on its proximity to the type braincase of A. ajax. The competition to mount the first sauropod skeleton specifically was the most intense, with the American Museum of Natural History, Carnegie Museum of Natural History, and Field Museum of Natural History all sending expeditions to the west to find the most complete sauropod specimen, To complete the mount, sauropod feet that were discovered at the same quarry and a tail fashioned to appear as Marsh believed it shouldbut which had too few vertebraewere added. In addition, a sculpted model of what the museum thought the skull of this massive creature might look like was made. This was not a delicate skull like that of Diplodocuswhich was later found to be more accuratebut was based on "the biggest, thickest, strongest skull bones, lower jaws and tooth crowns from three different quarries".
in the 1950s, with its original, inaccurately reconstructed skull]]
It was not until 1909 that an Apatosaurus skull was found during the first expedition, led by Earl Douglass, to what would become known as the Carnegie Quarry at Dinosaur National Monument. The skull was found a short distance from a skeleton (specimen CM3018) identified as the new species Apatosaurus louisae, named after Louise Carnegie, wife of Andrew Carnegie, who funded field research to find complete dinosaur skeletons in the American West. The skull was designated CM11162; it was very similar to the skull of Diplodocus. Recent discoveries and reassessment In 2011, the first specimen of Apatosaurus where a skull was found articulated with its cervical vertebrae was described. This specimen, CMCVP7180, was found to differ in both skull and neck features from A.louisae, but shared many features of the cervical vertebrae with A.ajax. Mammal paleontologist Donald Prothero criticized the mass media reaction to this study as superficial and premature, concluding that he would keep "Brontosaurus" in quotes and not treat the name as a valid genus.Valid species
, which may be A.ajax or a new species]]
Many species of Apatosaurus have been designated from scant material. Marsh named as many species as he could, which resulted in many being based upon fragmentary and indistinguishable remains. In 2005, Paul Upchurch and colleagues published a study that analyzed the species and specimen relationships of Apatosaurus. They found that A.louisae was the most basal species, followed by FMNHP25112, and then a polytomy of A.ajax, A.parvus, and A.excelsus. More recently, Baron (2020) considers the use of the tail as a bullwhip unlikely because of the potentially catastrophic muscle and skeletal damage such speeds could cause on the large and heavy tail. Instead, he proposes that the tails might have been used as a tactile organ to keep in touch with the individuals behind and on the sides in a group while migrating, which could have augmented cohesion and allowed communication among individuals while limiting more energetically demanding activities like stopping to search for dispersed individuals, turning to visually check on individuals behind, or communicating vocally.
Paleoecology
and A. sp., Sam Noble Oklahoma Museum of Natural History]]
The Morrison Formation is a sequence of shallow marine and alluvial sediments which, according to radiometric dating, dates from between 156.3mya at its base, Apatosaurus may have been more solitary than other Morrison Formation dinosaurs.
<!--UNUSED REFS:
-->
}}
External links
*
* Batuman, Elif. [http://www.newyorker.com/tech/elements/apatosaurus-brontosaurus-rising Brontosaurus Rising] (April 2015), The New Yorker
* Krystek, Lee. [http://www.unmuseum.org/dinobront.htm "Whatever Happened to the Brontosaurus?"] UnMuseum (Museum of Unnatural Mystery), 2002.
* Taylor, Mike. [http://www.miketaylor.org.uk/dino/faq/s-class/bronto/ "Why is 'Brontosaurus' now called Apatosaurus?"] MikeTaylor.org.uk, June 28, 2004.
Category:Dinosaurs of the Morrison Formation
Category:Fossil taxa described in 1877
Category:Paleontology in Colorado
Category:Paleontology in Wyoming
Category:Taxa named by Othniel Charles Marsh
Category:Diplodocidae
Category:Multispecific sauropod genera | https://en.wikipedia.org/wiki/Apatosaurus | 2025-04-05T18:25:38.132985 |
1347 | Allosaurus | | image = Allosaurus SDNHM (1).jpg
| image_caption = Mounted A. fragilis skeleton cast, San Diego Natural History Museum
| image_upright = 1.15
| parent_authority = Marsh, 1878
| taxon = Allosaurus
| authority = Marsh, 1877
| type_species = Allosaurus fragilis
| type_species_authority = Marsh, 1877
| subdivision_ranks = Other species
| subdivision_ref | subdivision *A. europaeus <br/><small>Mateus et al., 2006</small>
*A. jimmadseni <br/><small>Chure & Loewen, 2020</small>
*A. anax <br/><small>Danison et al., 2024</small>
| synonyms
}}
Allosaurus () is an extinct genus of large theropod dinosaur that lived 155 to 145 million years ago during the Late Jurassic period (Kimmeridgian to late Tithonian ages). The name "Allosaurus" means "different lizard", alluding to its unique (at the time of its discovery) concave vertebrae. The first fossil remains that could definitively be ascribed to this genus were described in 1877 by Othniel Charles Marsh. The genus has a very complicated taxonomy and includes at least three valid species, the best known of which is A. fragilis. The bulk of Allosaurus remains have come from North America's Morrison Formation, with material also known from the Alcobaça Formation and Lourinhã Formation in Portugal with teeth known from Germany. It was known for over half of the 20th century as Antrodemus, but a study of the abundant remains from the Cleveland-Lloyd Dinosaur Quarry returned the name "Allosaurus" to prominence. As one of the first well-known theropod dinosaurs, it has long attracted attention outside of paleontological circles.
Allosaurus was a large bipedal predator for its time. Its skull was light, robust, and equipped with dozens of sharp, serrated teeth. It averaged in length for A. fragilis, with the largest specimens estimated as being long. Relative to the large and powerful legs, its three-fingered hands were small and the body was balanced by a long, muscular tail. It is classified in the family Allosauridae. As the most abundant large predator of the Morrison Formation, Allosaurus was at the top of the food chain and probably preyed on large herbivorous dinosaurs, with the possibility of hunting other predators. Potential prey included ornithopods, stegosaurids, and sauropods. Some paleontologists interpret Allosaurus as having had cooperative social behavior and hunting in packs, while others believe individuals may have been aggressive toward each other and that congregations of this genus are the result of lone individuals feeding on the same carcasses.
Discovery and history
Early discoveries and research
The discovery and early study of Allosaurus is complicated by the multiplicity of names coined during the Bone Wars of the late 19th century. The first described fossil in this history was a bone obtained secondhand by Ferdinand Vandeveer Hayden in 1869. It came from Middle Park, near Granby, Colorado, probably from Morrison Formation rocks. The locals had identified such bones as "petrified horse hoofs". Hayden sent his specimen to Joseph Leidy, who identified it as half of a tail vertebra and tentatively assigned it to the European dinosaur genus Poekilopleuron as Poicilopleuron valens. He later decided it deserved its own genus, Antrodemus.
Allosaurus itself is based on YPM 1930, a small collection of fragmentary bones including parts of three vertebrae, a rib fragment, a tooth, a toe bone, and (most useful for later discussions) the shaft of the right humerus (upper arm). Othniel Charles Marsh gave these remains the formal name Allosaurus fragilis in 1877. Allosaurus comes from the Greek words /, meaning "strange" or "different", and /, meaning "lizard" or "reptile". It was named 'different lizard' because its vertebrae were different from those of other dinosaurs known at the time of its discovery. The species epithet fragilis is Latin for "fragile", referring to lightening features in the vertebrae. The bones were collected from the Morrison Formation of Garden Park, north of Cañon City. as well as Cope's Epanterias. This is the well-known mount poised over a partial Apatosaurus skeleton as if scavenging it, illustrated as such in a painting by Charles R. Knight. Although notable as the first free-standing mount of a theropod dinosaur and often illustrated and photographed, it has never been scientifically described.
The multiplicity of early names complicated later research, with the situation compounded by the terse descriptions provided by Marsh and Cope. Even at the time, authors such as Samuel Wendell Williston suggested that too many names had been coined. For example, Williston pointed out in 1901 that Marsh had never been able to adequately distinguish Allosaurus from Creosaurus. The most influential early attempt to sort out the convoluted situation was produced by Charles W. Gilmore in 1920. He came to the conclusion that the tail vertebra named Antrodemus by Leidy was indistinguishable from those of Allosaurus and that Antrodemus should be the preferred name because, as the older name, it had priority.
Cleveland-Lloyd discoveries
Although sporadic work at what became known as the Cleveland-Lloyd Dinosaur Quarry in Emery County, Utah, had taken place as early as 1927 and the fossil site itself described by William L. Stokes in 1945, major operations did not begin there until 1960. Under a cooperative effort involving nearly 40 institutions, thousands of bones were recovered between 1960 and 1965, led by James Henry Madsen. Regardless of the actual cause, the great quantity of well-preserved Allosaurus remains has allowed this genus to be known in great detail, making it among the best-known of all theropods. Skeletal remains from the quarry pertain to individuals of almost all ages and sizes, from less than Modern studyThe period since Madsen's monograph has been marked by a great expansion in studies dealing with topics concerning Allosaurus in life (paleobiological and paleoecological topics). Such studies have covered topics including skeletal variation, growth, skull construction, hunting methods, the brain, and the possibility of gregarious living and parental care. Reanalysis of old material (particularly of large 'allosaur' specimens), new discoveries in Portugal, and several very complete new specimens have also contributed to the growing knowledge base.
"Big Al" and "Big Al II"
]]
In 1991, "Big Al" (MOR 693), a 95% complete, partially articulated specimen of Allosaurus was discovered, measuring about long. MOR 693 was excavated near Shell, Wyoming, by a joint Museum of the Rockies and University of Wyoming Geological Museum team. This skeleton was discovered by a Swiss team, led by Kirby Siber. Chure and Loewen in 2020 identified the individual as a representative of the species A. jimmadseni. In 1996, the same team discovered a second Allosaurus, "Big Al II". This specimen, the best preserved skeleton of its kind to date, is also referred to A. jimmadseni. The specimen was described by Breithaupt in 1996. "Big Al II" is also known to have multiple injuries.Portuguese discoveries
outcrops, Portugal]]
In 1988, during construction works of a warehouse, a skeleton of a large theropod was discovered near the village of Andrés, Leiria District, Portugal. The Andrés quarry is included in the Bombarral Formation ("Grés Superiores"). The lower part of this formation is diachronic with the Alcobaça Formation in the northen Lusitanian Basin, and is dated to the Early Tithonian. This specimen was reported in 1999 as the first occurrence of Allosaurus fragilis outside North America.
The Guimarota coal mine in Leiria, Portugal, produced plenty of remains of micro-vertebrates while it was being explored. The Guimarota beds belong to the Alcobaça Formation, and are dated of the Late Kimmeridgian. In 2005, Oliver Rauhut and Regina Fechner describe the right maxilla of a juvenile theropod (IPFUB Gui Th 4) from the Guimarota mine, that was stored in the collections of the Institute of Geological Sciences of the Free University of Berlin. They attribute the maxilla to Allosaurus sp. based on the large maxillary fenestra and coeval presence of the other Allosaurus specimens. This specimen allowed the authors to conclude that the development of paranasal pneumacity in theropods is heterochronic, with juveniles having more pronouced pneumaticity than adults. The specimen, labeled ML415, is deposited in the [https://museulourinha.org/ Lourinhã Museum], and consists of a partial skull, three cervical vertebrae and cervical ribs. It was found in rocks of the Praia Azul Member of the Lourinhã Formation, which in that sector is dated to the Early Tithonian.
In 2005, the Andrés quarry was reactivated for further prospection, which yielded remains of a diverse vertebrate fauna and new Allosaurus remains. The remains were collected between 1988 and 2010, and include cranial elements (such as the maxilla, nasal, lacrimals, prefrontal, postorbitals, frontals, palatines, quadrate, quadratojugal, squamosal, vomer, braincase, articular, surangulars, prearticular, angulars, supradentary and coronoid, isolated mesial and lateral teeth) and postcranial elements (intercentrum of the atlas, dorsal, sacral and caudal vertebrae, cervical and dorsal ribs, chevrons, coracoid, ilium, pubes, femora, tibiae, fibulae, astragalus and calcaneum, distal tarsal III, second, tird, and fourth metatarsals, and several phalanges). A. atrox, Among these (excluding A. anax, which was named in 2024), Daniel Chure and Mark Loewen in 2020 only recognized the species A. fragilis, A. europaeus, and the newly-named A. jimmadseni as being valid species. though other authors have suggested that the species is valid and has a number of distinguishing characters.
A. fragilis is the type species and was named by Marsh in 1877. This species differs from A. fragilis in several anatomical details, including a jugal (cheekbone) with a straight lower margin. Fossils are confined to the Salt Wash Member of the Morrison Formation, with A. fragilis only found in the higher Brushy Basin Member. The specific name jimmadseni is named in honor of Madsen, for his contributions to the taxonomy of the genus, notably for his 1976 work. However, subsequent analysis of specimens from the Cleveland-Lloyd Dinosaur Quarry, Como Bluff, and Dry Mesa Quarry showed that the differences seen in the Morrison Formation material could be attributed to individual variation.
The Allosaurus material from Portugal has a controversial taxonomic research history. The Andrés Allosaurus specimens, consisting of very complete cranial and post-cranial remains, have been attributed to A. fragilis, a decision that was ratified by the ICZN on December 29, 2023.
Teeth of indeterminate species of Allosaurus have been reported from Tönniesberg and Kahlberg in Saxony, Germany, dating to the upper Kimmeridigian. Later researchers suggested that the bone was pathologic, showing an injury to the living animal, It is now regarded as an example of A. fragilis. and YPM 1893 has been treated as a specimen of A fragilis. being based on remains from Dinosaur National Monument assigned to Allosaurus or Creosaurus (a synonym of Allosaurus), and was to be described by paleontologist Robert Bakker as "Madsenius trux". However, "Madsenius" is now seen as yet another synonym of Allosaurus because Bakker's action was predicated upon the false assumption of USNM 4734 being distinct from long-snouted Allosaurus due to errors in Gilmore's 1920 reconstruction of USNM 4734.
"Wyomingraptor" was informally coined by Bakker for allosaurid remains from the Morrison Formation of the Late Jurassic. The remains unearthed are labeled as Allosaurus and are housed in the Tate Geological Museum. However, there has been no official description of the remains and "Wyomingraptor" has been dismissed as a nomen nudum, with the remains referable to Allosaurus.
Formerly assigned species and fossils
valens holotype tail vertebra (above) compared to the same of Allosaurus (below)]]
Several species initially classified within or referred to Allosaurus do not belong within the genus. A. medius was named by Marsh in 1888 for various specimens from the Early Cretaceous Arundel Formation of Maryland, although most of the remains were removed by Richard Swann Lull to the new ornithopod species Dryosaurus grandis, except for a tooth. It was transferred to Antrodemus by Oliver Hay in 1902, but Hay later clarified that this was an inexplicable error on his part. Gilmore considered the tooth nondiagnostic but transferred it to Dryptosaurus, as D. medius.
Allosaurus valens is a new combination for Antrodemus valens used by Friedrich von Huene in 1932; Paul and Carpenter stated that the type specimen of this species, YPM 1931, was from a younger age than Allosaurus, and might represent a different genus. However, they found that the specimen was undiagnostic, and thus A. lucaris was a nomen dubium. It was transferred to Chilantaisaurus in 1990, but is now considered a nomen dubium indeterminate beyond Theropoda.
Allosaurus meriani was a new combination by George Olshevsky for Megalosaurus meriani Greppin, 1870, based on a tooth from the Late Jurassic of Switzerland. However, a recent overview of Ceratosaurus included it in Ceratosaurus sp.
as an Allosaurus-like taxon attacking Apatosaurus sp., in Oklahoma Museum of Natural History. The latter dinosaur may be closer to the actual identity of Saurophaganax, and the former instead represents A. anax]]
A. amplexus was named by Gregory S. Paul for giant Morrison allosaur remains, and included in his conception Saurophagus maximus (later Saurophaganax). and is based on what is now AMNH 5767, parts of three vertebrae, a coracoid, and a metatarsal. Following Paul's work, this species has been accepted as a synonym of A. fragilis. was listed by Donald F. Glut as a species of Allosaurus, L. sulcatus, named by Marsh in 1896 for a Morrison theropod tooth, Although tabulated as a tentatively valid species of Allosaurus in the second edition of the Dinosauria, Although obscure, it was a large theropod, possibly around long and in weight. They were reclassified as an indeterminate theropod. These were interpreted as Torvosaurus remains in 2012. This identification was challenged by Samuel Welles, who thought it more resembled that of an ornithomimid, but the original authors defended their identification. With fifteen years of new specimens and research to look at, Daniel Chure reexamined the bone and found that it was not Allosaurus, but could represent an allosauroid. Similarly, Yoichi Azuma and Phil Currie, in their description of Fukuiraptor, noted that the bone closely resembled that of their new genus. This specimen is sometimes referred to as "Allosaurus robustus", an informal museum name. although one study considered it to belong to an abelisaur.
Description
Allosaurus was a typical large theropod, having a massive skull on a short neck, a long, slightly sloping tail, and reduced forelimbs. Allosaurus fragilis, the best-known species, had an average length of and mass of , with the largest definitive Allosaurus specimen (AMNH 680) estimated at long, with an estimated weight of . In his 1976 monograph on Allosaurus, James H. Madsen mentioned a range of bone sizes which he interpreted to show a maximum length of . As with dinosaurs in general, weight estimates are debatable, and since 1980 have ranged between , , and approximately for modal adult weight (not maximum). John Foster, a specialist on the Morrison Formation, suggests that is reasonable for large adults of A. fragilis, but that is a closer estimate for individuals represented by the average-sized thigh bones he has measured. Using the subadult specimen nicknamed "Big Al", since assigned to the species Allosaurus jimmadseni, A separate computational project estimated the adaptive optimum body mass in Allosaurus to be ~2,345 kg. A. europaeus has been measured up to in length and in body mass. However, a 2024 study concluded that some material assigned to Saurophaganax actually belonged to a diplodocid sauropod with the material confidently assigned to Allosauridae belonging to a new species of Allosaurus, A. anax, and the body mass of this species was tentatively estimated around based on fragmentary material.
David K. Smith, examining Allosaurus fossils by quarry, found that the Cleveland-Lloyd Dinosaur Quarry (Utah) specimens are generally smaller than those from Como Bluff (Wyoming) or Brigham Young University's Dry Mesa Quarry (Colorado), but the shapes of the bones themselves did not vary between the sites. A later study by Smith incorporating Garden Park (Colorado) and Dinosaur National Monument (Utah) specimens found no justification for multiple species based on skeletal variation; skull variation was most common and was gradational, suggesting individual variation was responsible. Kenneth Carpenter, using skull elements from the Cleveland-Lloyd site, found wide variation between individuals, calling into question previous species-level distinctions based on such features as the shape of the horns, and the proposed differentiation of A. jimmadseni based on the shape of the jugal. A study published by Motani et al., in 2020 suggests that Allosaurus was also sexually dimorphic in the width of the femur's head against its length.SkullThe skull and teeth of Allosaurus were modestly proportioned for a theropod of its size. Paleontologist Gregory S. Paul gives a length of for a skull belonging to an individual he estimates at long. Each premaxilla (the bones that formed the tip of the snout) held five teeth with D-shaped cross-sections, and each maxilla (the main tooth-bearing bones in the upper jaw) had between 14 and 17 teeth; the number of teeth does not exactly correspond to the size of the bone. Each dentary (the tooth-bearing bone of the lower jaw) had between 14 and 17 teeth, with an average count of 16. The teeth became shorter, narrower, and more curved toward the back of the skull. All of the teeth had saw-like edges. They were shed easily, and were replaced continually, making them common fossils. (although they were fragile). Within the maxillae were sinuses that were better developed than those of more basal theropods such as Ceratosaurus and Marshosaurus; they may have been related to the sense of smell, perhaps holding something like Jacobson's organs. The roof of the braincase was thin, perhaps to improve thermoregulation for the brain. The braincase and frontals may also have had a joint. The number of tail vertebrae is unknown and varied with individual size; James Madsen estimated about 50, The rib cage was broad, giving it a barrel chest, especially in comparison to less derived theropods like Ceratosaurus. Allosaurus had gastralia (belly ribs), but these are not common findings, A furcula (wishbone) was also present, but has only been recognized since 1996; in some cases furculae were confused with gastralia. The ilium, the main hip bone, was massive, and the pubic bone had a prominent foot that may have been used for both muscle attachment and as a prop for resting the body on the ground. Madsen noted that in about half of the individuals from the Cleveland-Lloyd Dinosaur Quarry, independent of size, the pubes had not fused to each other at their foot ends. He suggested that this was a sexual characteristic, with females lacking fused bones to make egg-laying easier. and had three fingers per hand, tipped with large, strongly curved and pointed claws. The wrist had a version of the semilunate carpal also found in more derived theropods like maniraptorans. Of the three fingers, the innermost (or thumb) was the largest, The legs were not as long or suited for speed as those of tyrannosaurids, and the claws of the toes were less developed and more hoof-like than those of earlier theropods.
Skin
Skin impressions from Allosaurus have been described. One impression, from a juvenile specimen, measures 30 cm² and is associated with the anterior dorsal ribs/pectoral region. The impression shows small scales measuring 1–3 mm in diameter. A skin impression from the "Big Al Two" specimen, associated with the base of the tail, measures 20 cm × 20 cm and shows large scales measuring up to 2 cm in diameter. However, it has been noted that these scales are more similar to those of sauropods, and due to the presence of non-theropod remains associated with the tail of "Big Al Two" there is a possibility that this skin impression is not from Allosaurus.
Another Allosaurus fossil features a skin impression from the mandible, showing scales measuring 1–2 mm in diameter. The same fossil also preserves skin measuring 20 × 20 cm from the ventral side of the neck, showing scutate scales measuring 0.5 cm wide and 11 cm long. A small skin impression from an Allosaurus skull has been reported but never described. but the term was largely unused until the 1970s in favor of Megalosauridae, another family of large theropods that eventually became a wastebasket taxon. This, along with the use of Antrodemus for Allosaurus during the same period, is a point that needs to be remembered when searching for information on Allosaurus in publications that predate James Madsen's 1976 monograph. Major publications using the name "Megalosauridae" instead of "Allosauridae" include Gilmore, 1920, Romer, 1956 and 1966, Steel, 1970, and Walker, 1964.
Following the publication of Madsen's influential monograph, Allosauridae became the preferred family assignment, but it too was not strongly defined. Semi-technical works used Allosauridae for a variety of large theropods, usually those that were larger and better-known than megalosaurids. Typical theropods that were thought to be related to Allosaurus included Indosaurus, Piatnitzkysaurus, Piveteausaurus, Yangchuanosaurus, Acrocanthosaurus, Chilantaisaurus, Compsosuchus, Stokesosaurus, and Szechuanosaurus. Given modern knowledge of theropod diversity and the advent of cladistic study of evolutionary relationships, none of these theropods is now recognized as an allosaurid, although several, like Acrocanthosaurus and Yangchuanosaurus, are members of closely related families.
"></span>
|2="></span>
|2="></span> }} }}
|2="></span>
|2="></span>
|2= }} }} }} }} }} }} }} }}
Allosauridae is one of four families in Allosauroidea; the other three are Neovenatoridae, but this has been rejected, with tyrannosaurids identified as members of a separate branch of theropods, the Coelurosauria. Allosauridae is the smallest of the carnosaur families, with only Saurophaganax and a currently unnamed French allosauroid accepted as possible valid genera besides Allosaurus in the most recent review. In 2024, Saurophaganax was reassessed as a dubious, chimeric taxon with the holotype being so fragmentary that it could only be confidently referred to the Saurischia, and some specimens more likely belonging to a diplodocid sauropod. However, other studies have called into question some cases of medullary bone in dinosaurs, including this Allosaurus individual. Data from extant birds suggested that the medullary bone in this Allosaurus individual may have been the result of a bone pathology instead. However, with the confirmation of medullary tissue indicating sex in a specimen of Tyrannosaurus, it may be possible to ascertain whether or not the Allosaurus in question was indeed female.
The discovery of a juvenile specimen with a nearly complete hindlimb shows that the legs were relatively longer in juveniles, and the lower segments of the leg (shin and foot) were relatively longer than the thigh. These differences suggest that younger Allosaurus were faster and had different hunting strategies than adults, perhaps chasing small prey as juveniles, then becoming ambush hunters of large prey upon adulthood. Conversely, the skull bones appear to have generally grown isometrically, increasing in size without changing in proportion. Sauropods seem to be likely candidates as both live prey and as objects of scavenging, based on the presence of scrapings on sauropod bones fitting allosaur teeth well and the presence of shed allosaur teeth with sauropod bones. However, as Gregory Paul noted in 1988, Allosaurus was probably not a predator of fully grown sauropods, unless it hunted in packs, as it had a modestly sized skull and relatively small teeth, and was greatly outweighed by contemporaneous sauropods. but the skull could withstand nearly 55,500 N of vertical force against the tooth row. The original authors noted that Allosaurus itself has no modern equivalent, that the tooth row is well-suited to such an attack, and that articulations in the skull cited by their detractors as problematic actually helped protect the palate and lessen stress. Another possibility for handling large prey is that theropods like Allosaurus were "flesh grazers" which could take bites of flesh out of living sauropods that were sufficient to sustain the predator so it would not have needed to expend the effort to kill the prey outright. This strategy would also potentially have allowed the prey to recover and be fed upon in a similar way later.
]]
A biomechanical study published in 2013 by Eric Snively and colleagues found that Allosaurus had an unusually low attachment point on the skull for the longissimus capitis superficialis neck muscle compared to other theropods such as Tyrannosaurus. This would have allowed the animal to make rapid and forceful vertical movements with the skull. The authors found that vertical strikes as proposed by Bakker and Rayfield are consistent with the animal's capabilities. They also found that the animal probably processed carcasses by vertical movements in a similar manner to falcons, such as kestrels: The animal could have gripped prey with the skull and feet, then pulled back and up to remove flesh. This differs from the prey-handling envisioned for tyrannosaurids, which probably tore flesh with lateral shakes of the skull, similar to crocodilians. In addition, Allosaurus was able to "move its head and neck around relatively rapidly and with considerable control", at the cost of power.
Other aspects of feeding include the eyes, arms, and legs. The shape of the skull of Allosaurus limited potential binocular vision to 20° of width, slightly less than that of modern crocodilians. As with crocodilians, this may have been enough to judge prey distance and time attacks. The arms, compared with those of other theropods, were suited for both grasping prey at a distance or clutching it close,
A paper on the cranio-dental morphology of Allosaurus and how it worked has deemed the hatchet jaw attack unlikely, reinterpreting the unusually wide gape as an adaptation to allow Allosaurus to deliver a muscle-driven bite to large prey, with the weaker jaw muscles being a trade-off to allow for the widened gape.
rearing to defend itself against a pair of A. fragilis]]
Sauropod carrion may also have been important to large theropods in the Morrison Formation. Forensic techniques indicate that sauropod carcasses were targeted by Allosaurus at all stages of decomposition, indicating that late-stage decay pathogens were not a significant deterrent. A survey of sauropod bones from the Morrison Formation also reported widespread bite marks on sauropod bones in low-economy regions, which suggests that large theropods scavenged large sauropods when available, with the scarcity of such bite marks on the remains of smaller bones being potentially attributable to much more complete consumption of smaller or adolescent sauropods and on ornithischians, which would have been more commonly taken as live prey. A single dead adult Barosaurus or Brachiosaurus'' would have had enough calories to sustain multiple large theropods for weeks or months, though the vast majority of the Morrison's sauropod fossil record consisted of much smaller-bodied taxa such as Camarasaurus lentus or Diplodocus.
It has also been argued that disabled individuals such as Big Al and Big Al II were physically incapable of hunting due to their numerous injuries but were able to survive nonetheless as scavengers of giant sauropod-falls, Interestingly, a recent review of paleopathologies in theropods may support this conclusion. The researchers found a positive association between allosaurids and fractures to the appendicular skeleton, while tyrannosaurs had a statistically negative association with these types of injuries. The fact that allosaurs were more likely to survive and heal even when severe fractures limited their locomotion abilities can be explained, in part, by different resource accessibility paradigms for the two groups, as allosauroids generally lived in sauropod-inhabited ecosystems, some of which, including the Morrison, have been interpreted as arid and highly water-stressed environments; however, the water-stressed nature of the Morrison has been heavily criticized in several more recent works on the basis of fossil evidence for the presence of extensive forest cover and aquatic ecosystems.
Such a depiction is common in semitechnical and popular dinosaur literature.
Although Allosaurus may have hunted in packs, it has been argued that Allosaurus and other theropods had largely aggressive interactions instead of cooperative interactions with other members of their own species. The study in question noted that cooperative hunting of prey much larger than an individual predator, as is commonly inferred for theropod dinosaurs, is rare among vertebrates in general, and modern diapsid carnivores (including lizards, crocodiles, and birds) rarely cooperate to hunt in such a way. Instead, they are typically territorial and will kill and cannibalize intruders of the same species, and will also do the same to smaller individuals that attempt to eat before they do when aggregated at feeding sites. According to this interpretation, the accumulation of remains of multiple Allosaurus individuals at the same site; e.g., in the Cleveland–Lloyd Quarry, are not due to pack hunting, but to the fact that Allosaurus individuals were drawn together to feed on other disabled or dead allosaurs, and were sometimes killed in the process. This could explain the high proportion of juvenile and subadult allosaurs present, as juveniles and subadults are disproportionally killed at modern group feeding sites of animals like crocodiles and Komodo dragons. The same interpretation applies to Bakker's lair sites. There is some evidence for cannibalism in Allosaurus, including Allosaurus shed teeth found among rib fragments, possible tooth marks on a shoulder blade, and cannibalized allosaur skeletons among the bones at Bakker's lair sites.Brain and senses
(cast of the brain cavity) of Allosaurus]]
The brain of Allosaurus, as interpreted from spiral CT scanning of an endocast, was more consistent with crocodilian brains than those of the other living archosaurs, birds. The structure of the vestibular apparatus indicates that the skull was held nearly horizontal, as opposed to strongly tipped up or down. The structure of the inner ear was like that of a crocodilian, indicating that Allosaurus was more adapted to hear lower frequencies and would have had difficulty hearing subtle sounds. The olfactory bulbs were large and well suited for detecting odors,PaleopathologyIn 2001, Bruce Rothschild and others published a study examining evidence for stress fractures and tendon avulsions in theropod dinosaurs and the implications for their behavior. Since stress fractures are caused by repeated trauma rather than singular events they are more likely to be caused by the behavior of the animal than other kinds of injury. Stress fractures and tendon avulsions occurring in the forelimb have special behavioral significance since while injuries to the feet could be caused by running or migration, resistant prey items are the most probable source of injuries to the hand. Allosaurus was one of only two theropods examined in the study to exhibit a tendon avulsion, and in both cases the avulsion occurred on the forelimb. When the researchers looked for stress fractures, they found that Allosaurus had a significantly greater number of stress fractures than Albertosaurus, Ornithomimus or Archaeornithomimus. Of the 47 hand bones the researchers studied, three were found to contain stress fractures. Of the feet, 281 bones were studied and 17 were found to have stress fractures. The stress fractures in the foot bones "were distributed to the proximal phalanges" and occurred across all three weight-bearing toes in "statistically indistinguishable" numbers. Since the lower end of the third metatarsal would have contacted the ground first while an allosaur was running, it would have borne the most stress. If the allosaurs' stress fractures were caused by damage accumulating while walking or running this bone should have experience more stress fractures than the others. The lack of such a bias in the examined Allosaurus fossils indicates an origin for the stress fractures from a source other than running. The authors conclude that these fractures occurred during interaction with prey, like an allosaur trying to hold struggling prey with its feet. The abundance of stress fractures and avulsion injuries in Allosaurus provide evidence for "very active" predation-based rather than scavenging diets.
The left scapula and fibula of an Allosaurus fragilis specimen cataloged as USNM 4734 are both pathological, both probably due to healed fractures. The specimen USNM 8367 preserved several pathological gastralia which preserve evidence of healed fractures near their middle. Some of the fractures were poorly healed and "formed pseudoarthroses". A specimen with a fractured rib was recovered from the Cleveland-Lloyd Quarry. Another specimen had fractured ribs and fused vertebrae near the end of the tail. An apparent subadult male Allosaurus fragilis was reported to have extensive pathologies, with a total of fourteen separate injuries. The specimen MOR 693 had pathologies on five ribs, the sixth neck vertebra, the third, eighth, and thirteenth back vertebrae, the second tail vertebra and its chevron, the gastralia right scapula, manual phalanx I left ilium metatarsals III and V, the first phalanx of the third toe and the third phalanx of the second. The ilium had "a large hole...caused by a blow from above". The near end of the first phalanx of the third toe was afflicted by an involucrum.
Other pathologies reported in Allosaurus include:<!---->
* Willow breaks in two ribs
* Healed fractures in the humerus and radius
* Distortion of joint surfaces in the foot, possibly due to osteoarthritis or developmental issues
* Osteopetrosis along the endosteal surface of a tibia.
* Distortions of the joint surfaces of the tail vertebrae, possibly due to osteoarthritis or developmental issues
* "[E]xtensive 'neoplastic' ankylosis of caudals", possibly due to physical trauma, as well as the fusion of chevrons to centra
* Coossification of vertebral centra near the end of the tail
* Amputation of a chevron and foot bone, both possibly a result of bites
* "[E]xtensive exostoses" in the first phalanx of the third toe
* Lesions similar to those caused by osteomyelitis in two scapulae
* Bone spurs in a premaxilla, ungual, and two metacarpals
* Exostosis in a pedal phalanx possibly attributable to an infectious disease
* A metacarpal with a round depressed fracture
Paleoecology
(yellow) where Allosaurus remains have been found]]
Allosaurus was the most common large theropod in the vast tract of Western American fossil-bearing rock known as the Morrison Formation, accounting for 70 to 75% of theropod specimens, The Morrison Formation is interpreted as a semiarid environment with distinct wet and dry seasons, and flat floodplains. Vegetation varied from river-lining forests of conifers, tree ferns, and ferns (gallery forests), to fern savannas with occasional trees such as the Araucaria-like conifer Brachyphyllum.
The Morrison Formation has been a rich fossil hunting ground. The flora of the period has been revealed by fossils of green algae, fungi, mosses, horsetails, ferns, cycads, ginkgoes, and several families of conifers. Animal fossils discovered include bivalves, snails, ray-finned fishes, frogs, salamanders, turtles, sphenodonts, lizards, terrestrial and aquatic crocodylomorphs, several species of pterosaur, numerous dinosaur species, and early mammals such as docodonts, multituberculates, symmetrodonts, and triconodonts. Dinosaurs known from the Morrison include the theropods Ceratosaurus, Ornitholestes, Tanycolagreus, and Torvosaurus, the sauropods Haplocanthosaurus, Camarasaurus, Cathetosaurus, Brachiosaurus, Suuwassea, Apatosaurus, Brontosaurus, Barosaurus, Diplodocus, Supersaurus, Amphicoelias, and Maraapunisaurus, and the ornithischians Camptosaurus, Dryosaurus, and Stegosaurus. Allosaurus is commonly found at the same sites as Apatosaurus, Camarasaurus, Diplodocus, and Stegosaurus. The Late Jurassic formations of Portugal where Allosaurus is present are interpreted as having been similar to the Morrison, but with a stronger marine influence. Many of the dinosaurs of the Morrison Formation are the same genera as those seen in Portuguese rocks (mainly Allosaurus, Ceratosaurus, Torvosaurus, and Stegosaurus), or have a close counterpart (Brachiosaurus and Lusotitan, Camptosaurus and Draconyx).
Allosaurus coexisted with fellow large theropods Ceratosaurus and Torvosaurus in both the United States and Portugal. Ceratosaurus, better known than Torvosaurus, differed noticeably from Allosaurus in functional anatomy by having a taller, narrower skull with large, broad teeth.
A bone assemblage in the Upper Jurassic Mygatt-Moore Quarry preserves an unusually high occurrence of theropod bite marks, most of which can be attributed to Allosaurus and Ceratosaurus, while others could have been made by Torvosaurus given the size of the striations. While the position of the bite marks on the herbivorous dinosaurs is consistent with predation or early access to remains, bite marks found on Allosaurus material suggest scavenging, either from the other theropods or from another Allosaurus. The unusually high concentration of theropod bite marks compared to other assemblages could be explained either by a more complete utilization of resources during a dry season by theropods, or by a collecting bias in other localities.ReferencesExternal links
*
*
*
*
* [https://web.archive.org/web/20130929080234/http://archosaur.us/theropoddatabase/Carnosauria.htm#Allosaurusfragilis Specimens, discussion, and references pertaining to Allosaurus fragilis] at The Theropod Database
* [http://pioneer.utah.gov/research/utah_symbols/fossil.html Utah State Fossil, Allosaurus] , from Pioneer: Utah's Online Library
* [https://web.archive.org/web/20070926062344/http://skeletaldrawing.com/psgallery/images/allosaurus.jpg Restoration of MOR 693 ("Big Al")] and [https://web.archive.org/web/20071007120836/http://www.skeletaldrawing.com/psgallery/pages/allosaurdeepmuscle.html muscle and organ restoration] at Scott Hartman's Skeletal Drawing website
* [http://dml.cmnh.org/1995Nov/msg00278.html List of the many possible Allosaurus species...]
Category:Allosauridae
Category:Lourinhã Formation
Category:Fossil taxa described in 1877
Category:Taxa named by Othniel Charles Marsh
Category:Symbols of Utah
Category:Dinosaur genera
Category:Morrison Formation
Category:Kimmeridgian dinosaurs
Category:Tithonian dinosaurs
Category:Dinosaurs of the United States
Category:Fossil taxa described in 2006
Category:Fossil taxa described in 2020 | https://en.wikipedia.org/wiki/Allosaurus | 2025-04-05T18:25:38.242201 |
1348 | AK-47 | |}}
The new rifle proved to be reliable under a wide range of conditions and possessed convenient handling characteristics. In 1949, it was adopted by the Soviet Army as the "7.62 mm Kalashnikov rifle (AK)".Further developmentThere were many difficulties during the initial phase of production. The first production models had stamped sheet metal receivers with a milled trunnion and butt stock insert and a stamped body. Difficulties were encountered in welding the guide and ejector rails, causing high rejection rates. Instead of halting production, a heavy machined receiver was substituted for the sheet metal receiver. Even though production of these milled rifles started in 1951, they were officially referred to as AK-49, based on the date their development started, but they are widely known in the collectors' and current commercial market as "Type 2 AK-47". AKS and AKMS models featured a downward-folding metal butt-stock similar to that of the German MP40 submachine-gun, for use in the restricted space in the BMP infantry combat vehicle, as well as by paratroops. All 100 series AKs use plastic furniture with side-folding stocks. Magazines
arsenal mark on the bottom right. The other magazine has a "star" Tula arsenal mark on the bottom right]]
The standard magazine capacity is 30 rounds. There are also 10-, 20-, and 40-round box magazines, as well as 75-round drum magazines.
The AK-47's standard 30-round magazines have a pronounced curve that allows them to smoothly feed ammunition into the chamber. Their heavy steel construction combined with "feed-lips" (the surfaces at the top of the magazine that control the angle at which the cartridge enters the chamber) machined from a single steel billet makes them highly resistant to damage. These magazines are so strong that "Soldiers have been known to use their mags as hammers, and even bottle openers". As a replacement steel-reinforced 30-round plastic 7.62×39mm box magazines were introduced. These rust-colored magazines weigh empty and are often mistakenly identified as being made of Bakelite (a phenolic resin), but were fabricated from two parts of AG-S4 molding compound (a glass-reinforced phenol-formaldehyde binder impregnated composite), assembled using an epoxy resin adhesive. to 10,000, Still in production primarily for export markets.
For the further developed AK models, see Kalashnikov rifles.
Production
<!--most of this table is not cited-->
Manufacturing countries of AK-47 and its variants in alphabetical order.
{| class"wikitable" style"text-align:left;"
|-
! Country !! Military variant(s)
|-
! Albania
| Automatiku Shqiptar 1978 model 56 (ASH-78 Tip-1) made at Poliçan Arsenal (copy of Type 56 based on AKM rifle); model 56 Tip-2, copy of RPK; model 56 Tip-3 hybrid for multi-purpose roles with secondary rifle and grenade launcher capability; 1982 model (ASH-82) copy of AKMS. Several other versions of the AKMS have been produced mainly with short barrels similar to Soviet AKS-74U for special forces, tank & armoured crew and for helicopter pilots and police. There have also been modified ASh-82 (AKMS) with SOPMOD accessories, mainly for Albania's special forces RENEA & exports.
|-
! Armenia
| K-3 (bullpup, 5.45×39mm)
|-
! Azerbaijan
| Khazri (AK-74M)
|-
! Bangladesh
| Chinese Type 56
|-
! Bulgaria
| AKK/AKKS (Type 3 AK-47/w. side-folding buttstock); AKKMS (AKMS), AKKN-47 (fittings for NPSU night sights); AK-47M1 (Type 3 with black polymer furniture); AK-47MA1/AR-M1 (same as -M1, but in 5.56mm NATO); AKS-47M1 (AKMS in 5.56×45mm NATO); AKS-47S (AK-47M1, short version, with East German folding stock, laser aiming device); AKS-47UF (short version of -M1, Russian folding stock), AR-SF (same as −47UF, but 5.56mm NATO); AKS-93SM6 (similar to −47M1, cannot use grenade launcher); and RKKS (RPK), AKT-47 (.22 rimfire training rifle)
|-
! Cambodia
| Chinese Type 56, Soviet AK-47, and AKM
|-
! China
| Type 56
|-
! Colombia
| Galil ACE, Galil Córdova
|-
! Croatia
| APS-95
|-
! Cuba
| AKM
|-
! East Germany
| MPi-K/MPi-KS (AK-47/AKS); MPi-KM (AKM; wooden and plastic stock), MPi-KMS-72 (side-folding stock), MPi-KMS-K (carbine); MPi-AK-74N (AK-74), MPi-AKS-74N (side-folding stock), MPi-AKS-74NK (carbine); KK-MPi Mod.69 (.22 LR select-fire trainer)
|-
! Egypt
| AK-47, Misr rifle (AKMS), Maadi ARM (AKM)
|-
! Ethiopia
| AK-47, AK-103 (manufactured locally at the State-run Gafat Armament Engineering Complex as the Et-97/1)
|-
! Finland
| Rk 62, Valmet M76 (other names Rk 62 76, M62/76), Valmet M78 (light machine gun), Rk 95 Tp
|-
! Hungary
| AK-55 (domestic manufacture of the 2nd Model AK-47); AKM-63 (also known as AMD-63 in the US; modernized AK-55), AMD-65M (modernized AKM-63, shorter barrel and side-folding stock), AMP-69 (rifle grenade launcher); AK-63F/D (other name AMM/AMMSz), AK-63MF (modernized); NGM-81 (5.56×45mm NATO; fixed and under-folding stock)
|-
! India
| INSAS (fixed and side-folding stock), KALANTAK (carbine), INSAS light machine gun (fixed and side-folding stock), a local unlicensed version with carbon fibre furniture designated as AK-7; and Trichy Rifle 7.62 mm manufactured by Ordnance Factory Tiruchirappalli of Ordnance Factories Board SAR 308
|-
! Ukraine
| Vepr (bullpup, 5.45×39mm), Malyuk (bullpup)
The single-shot hit-probability on the NATO E-type Silhouette Target (a human upper body half and head silhouette) of the AK-47 and the later developed AK-74, M16A1, and M16A2 rifles were measured by the US military under ideal proving ground conditions in the 1980s as follows:
{|class"wikitable" style"text-align: center;"
|-valign="top"
|+Single-shot hit-probability on Crouching Man (NATO E-type Silhouette) Target
|-
! rowspan=2|Rifle
! rowspan=2|Chambering
! colspan=9|Hit-probability (With no range estimation or aiming errors)
|-
! 50 m
! 100 m
! 200 m
! 300 m
! 400 m
! 500 m
! 600 m
! 700 m
! 800 m
|-
|AK-47 (1949)
|7.62×39mm
|100%
|100%
|99%
|94%
|82%
|67%
|54%
|42%
|31%
|-
|AK-74 (1974)
|5.45×39mm
|100%
|100%
|100%
|99%
|93%
|81%
|66%
|51%
|34%
|-
|M16A1 (1967)
|5.56×45mm NATO M193
|100%
|100%
|100%
|100%
|96%
|87%
|73%
|56%
|39%
|-
|M16A2 (1982)
|5.56×45mm NATO SS109/M855
|100%
|100%
|100%
|100%
|98%
|90%
|79%
|63%
|43%
|}
Under worst field exercise circumstances, the hit probabilities for all the tested rifles were drastically reduced, from 34% at 50m down to 3–4% at 600m with no significant differences between weapons at each range.
|-
!Range||Vertical accuracy of fire (R<sub>50</sub>) semi-automatic||Horizontal accuracy of fire (R<sub>50</sub>) semi-automatic||Vertical accuracy of fire (R<sub>50</sub>) short burst||Horizontal accuracy of fire (R<sub>50</sub>) short burst||Remaining bullet energy||Remaining bullet velocity
|-
|||||||||||||
|-
|||||||||||||
|-
|||||||||||||
|-
|||||||||||||
|-
|||||||||||||
|-
|||||||||||||
|-
|||||||||||||
|-
|||||||||||||
|-
|||||||||||||
|}
* R<sub>50</sub> means the closest 50 percent of the shot group will all be within a circle of the mentioned diameter.
The vertical and horizontal mean (R<sub>50</sub>) deviations with service ammunition at for AK platforms are.
{| class"wikitable" style"text-align: center;"
|-
|+SKS, AK-47, AKM, and AK-74 dispersion at
|-
!Rifle||Firing mode||Vertical accuracy of fire (R<sub>50</sub>)||Horizontal accuracy of fire (R<sub>50</sub>)
|-
|SKS (1945)||semi-automatic||||
|-
|AK-47 (1949)||semi-automatic||||
|-
|AK-47 (1949)||short burst||||
|-
|AKM (1959)||short burst||||
|-
|AK-74 (1974)||short burst||||
|-
|}
Users
<!--READ FIRST: This section is for cited entries only. Please do not add entries into this list without a citation from a reliable source. All entries without a citation will be removed. Thank you.-->
Current
*
*
*
*
*
* − EKAM: The counter-terrorist unit of the Hellenic Police
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* − Type 58 variant
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* − Used by Thahan Phran
*
*
*
*
*
*
*
* FARC dissidents
*
*
* − Captured from the Syrian Army
* Karen National Defence Organisation
* Karen National Liberation Army
* Kurdistan Workers Party
* National Movement for the Liberation of Azawad
* New People's Army
*
* Syrian opposition
* Ta'ang National Liberation Army
Former
* − MPi-K (AK-47) and MPi-KM (AKM)
*
* − Passed on to the unified Vietnamese state
* − Used by the Panama Defense Forces
*
* − Captured rifles were issued to ARVN irregular unitsNon-state former* Afghan mujahideen − CIA supplied Egyptian and Chinese variants
*
* Contras
*
* Farabundo Martí National Liberation Front
* Iraqi insurgents
* Khmer Rouge
* Liberation Tigers of Tamil Eelam
* Illicit trade
, photographed in Manege Military Museum. The stocks are missing on the top three AKs.]]
Throughout the world, the AK and its variants are commonly used by governments, revolutionaries, terrorists, criminals, and civilians alike. In some countries, such as Somalia, Rwanda, Mozambique, Congo, and Tanzania, the prices for Black Market AKs are between $30 and $125 per weapon and prices have fallen in the last few decades due to mass counterfeiting.
* Vietnam War (1955–1975)
* Laotian Civil War (1959–1975)
;1960s
* Congo Crisis (1960–1965)
* Portuguese Colonial War (1961–1974)
* Rhodesian Bush War (1964–1979)
* The Troubles (late 1960s–1998)
* Communist insurgency in Thailand (1965–1983)
* South African Border War (1966–1990)
* India-China clashes (1967)
* Cambodian Civil War (1968–1975)
* Communist insurgency in Malaysia (1968–1989)
* Moro conflict (1968−2019)
;1970s
* Yom Kippur War (1973)
* Ethiopian Civil War (1974–1991)
* Western Sahara War (1975–1991)
* Cambodian–Vietnamese War (1978–1989)
* Chadian–Libyan War (1978–1987)
* Soviet–Afghan War (1979–1989)
;1980s
* 1979 Kurdish rebellion in Iran
* Iran–Iraq War (1980–1988)
* Insurgency in Jammu and Kashmir (1988–present)
* Sri Lankan Civil War (1983–2009)
* South Lebanon conflict (1985–2000)
* Lord's Resistance Army insurgency (1987–present)
* United States invasion of Panama (1989)
;1990s
* KDPI insurgency (1989–1996)
* Tuareg rebellion (1990–1995)
* Gulf War (1990–1991)
* Somali Civil War (1991–present)
* Yugoslav Wars (1991–2001)
* Burundian Civil War (1993–2005)
* First Chechen War (1994−1996)
* Republic of the Congo Civil War (1997–1999)
* Kargil War (1999)
;2000s
* War in Afghanistan (2001–2021)
* Iraq War (2003–2011)
* South Thailand insurgency (2004–present)
* Mexican drug war (2006–present)
;2010s
* Libyan Civil War (2011)
* Syrian civil war (2011–present)
* Mali War (2012–present) During the 1980s, the Soviet Union became the principal arms dealer to countries embargoed by Western nations, including Middle Eastern nations such as Libya and Syria, which welcomed Soviet Union backing against Israel. After the fall of the Soviet Union, AK-47s were sold both openly and on the black market to any group with cash, including drug cartels and dictatorial states, and more recently they have been seen in the hands of Islamic groups such as Al-Qaeda, ISIL, and the Taliban in Afghanistan and Iraq, and FARC, Ejército de Liberación Nacional guerrillas in Colombia.
The proliferation of this weapon is reflected by more than just numbers. The AK-47 is included on the flag of Mozambique and its emblem, an acknowledgment that the country gained its independence in large part through the effective use of their AK-47s. In 2013, a decommissioned AK-47 was included in the A History of Ireland in 100 Objects collection.
The AK-47 made an appearance in U.S. popular culture as a recurring focus in the Nicolas Cage film Lord of War (2005). Numerous monologues in the movie focus on the weapon, and its effects on global conflict and the gun running market.
In 2006, the Colombian musician and peace activist César López devised the escopetarra, an AK converted into a guitar. One sold for US$17,000 in a fundraiser held to benefit the victims of anti-personnel mines, while another was exhibited at the United Nations' Conference on Disarmament.
<!--unused -->
}}
Bibliography
*
*
*
*
*
*
*
* }}
*
*
*
*
*
*
*
*
*
*
* }}
*
Further reading
*
*
*
*
*
*
*
*
*
*
*
*Ружье. Оружие и амуниция, 1999/3, pp. 18–21 has an article about the AK-47 prototypes.
* An article rejecting some of the alternative theories as to the authorship of the AK-47.
* An article comparing the internals of the StG 44 and AK-47.
* Transcription of the commission report on the testing round from the summer of 1947; no winner was selected at this point, but the commission held Kalashnikov's, Dementiev's and Bulkin's designs as most closely satisfying TTT number 3131.
* Report/letter on the final round of testing, 27 December 1947, declaring Kalashnikov's design the winner.
* Articles on the 1948 military trials.External links
*US Army Operator's Manual for the AK-47 Assault Rifle
*
*
*
*
*
*
* &
*
*
Category:Weapons and ammunition introduced in 1947
Category:7.62×39mm assault rifles
Category:Infantry weapons of the Cold War
Category:Rifles of the Cold War
Category:Kalashnikov derivatives
Category:Assault rifles of the Soviet Union
Category:Kalashnikov Concern products
Category:Long stroke piston firearms | https://en.wikipedia.org/wiki/AK-47 | 2025-04-05T18:25:38.349731 |
1349 | Atanasoff–Berry computer | | price | connectivity
| lifespan | media
| os = <!-- operating system -->
| input = Decimal, via standard IBM 80-column punched cards
| power | cpu More than 300 vacuum tubes
| CPUspeed = 60 Hz
| storage | memory 3000 bits
| RAMtype | display Decimal, via a front panel display
| dimensions | weight
| touchpad | predecessor
| successor | related
}}
The Atanasoff–Berry computer (ABC) was the first automatic electronic digital computer. The device was limited by the technology of the day. The ABC's priority is debated among historians of computer technology, because it was neither programmable, nor Turing-complete. Conventionally, the ABC would be considered the first electronic ALU (arithmetic logic unit) which is integrated into every modern processor's design.
Its unique contribution was to make computing faster by being the first to use vacuum tubes to do arithmetic calculations. Prior to this, slower electro-mechanical methods were used by Konrad Zuse's Z1 computer, and the simultaneously developed Harvard Mark I. The first electronic, programmable, digital machine, the Colossus computer from 1943 to 1945, used similar tube-based technology as ABC.
Overview
Conceived in 1937, the machine was built by Iowa State College mathematics and physics professor John Vincent Atanasoff with the help of graduate student Clifford Berry. It was designed only to solve systems of linear equations and was successfully tested in 1942. However, its intermediate result storage mechanism, a paper card writer/reader, was not perfected, and when John Vincent Atanasoff left Iowa State College for World War II assignments, work on the machine was discontinued. The ABC pioneered important elements of modern computing, including binary arithmetic and electronic switching elements, but its special-purpose nature and lack of a changeable, stored program distinguish it from modern computers. The computer was designated an IEEE Milestone in 1990.
Atanasoff and Berry's computer work was not widely known until it was rediscovered in the 1960s, amid patent disputes over the first instance of an electronic computer. At that time ENIAC, that had been created by John Mauchly and J. Presper Eckert, was considered to be the first computer in the modern sense, but in 1973 a U.S. District Court invalidated the ENIAC patent and concluded that the ENIAC inventors had derived the subject matter of the electronic digital computer from Atanasoff. When, in the mid-1970s, the secrecy surrounding the British World War II development of the Colossus computers that pre-dated ENIAC, was lifted and Colossus was described at a conference in Los Alamos, New Mexico, in June 1976, John Mauchly and Konrad Zuse were reported to have been astonished.Design and constructionAccording to Atanasoff's account, several key principles of the Atanasoff–Berry computer were conceived in a sudden insight after a long nighttime drive to Rock Island, Illinois, during the winter of 1937–38. The ABC innovations included electronic computation, binary arithmetic, parallel processing, regenerative capacitor memory, and a separation of memory and computing functions. The mechanical and logic design was worked out by Atanasoff over the next year. A grant application to build a proof of concept prototype was submitted in March 1939 to the Agronomy department, which was also interested in speeding up computation for economic and research analysis. $5,000 of further funding () to complete the machine came from the nonprofit Research Corporation of New York City.
The ABC was built by Atanasoff and Berry in the basement of the physics building at Iowa State College from 1939 to 1942. The initial funds were released in September, and the 11-tube prototype was first demonstrated in October 1939. A December demonstration prompted a grant for construction of the full-scale machine. The ABC was built and tested over the next two years. A January 15, 1941, story in the Des Moines Register announced the ABC as "an electrical computing machine" with more than 300 vacuum tubes that would "compute complicated algebraic equations" (but gave no precise technical description of the computer). The system weighed more than . It contained approximately of wire, 280 dual-triode vacuum tubes, 31 thyratrons, and was about the size of a desk.
It was not programmable, which distinguishes it from more general machines of the same era, such as Konrad Zuse's 1941 Z3 (or earlier iterations) and the Colossus computers of 1943–1945. Nor did it implement the stored-program architecture, first implemented in the Manchester Baby of 1948, required for fully general-purpose practical computing machines.
The machine was, however, the first to implement:
#Using vacuum tubes, rather than wheels, ratchets, mechanical switches, or telephone relays, allowing for greater speed than previous computers
#Using capacitors for memory, rather than mechanical components, allowing for greater speed and density
The memory of the Atanasoff–Berry computer was a system called regenerative capacitor memory, which consisted of a pair of drums, each containing 1600 capacitors that rotated on a common shaft once per second. The capacitors on each drum were organized into 32 "bands" of 50 (30 active bands and two spares in case a capacitor failed), giving the machine a speed of 30 additions/subtractions per second. Data was represented as 50-bit binary fixed-point numbers. The electronics of the memory and arithmetic units could store and operate on 60 such numbers at a time (3000 bits).
The alternating current power-line frequency of 60 Hz was the primary clock rate for the lowest-level operations.
The arithmetic logic functions were fully electronic, implemented with vacuum tubes. The family of logic gates ranged from inverters to two- and three-input gates. The input and output levels and operating voltages were compatible between the different gates. Each gate consisted of one inverting vacuum-tube amplifier, preceded by a resistor divider input network that defined the logical function. The control logic functions, which only needed to operate once per drum rotation and therefore did not require electronic speed, were electromechanical, implemented with relays.
The ALU operated on only one bit of each number at a time; it kept the carry/borrow bit in a capacitor for use in the next AC cycle.
Although the Atanasoff–Berry computer was an important step up from earlier calculating machines, it was not able to run entirely automatically through an entire problem. An operator was needed to operate the control switches to set up its functions, much like the electro-mechanical calculators and unit record equipment of the time. Selection of the operation to be performed, reading, writing, converting to or from binary to decimal, or reducing a set of equations was made by front-panel switches and, in some cases, jumpers.
There were two forms of input and output: primary user input and output and an intermediate results output and input. The intermediate results storage allowed operation on problems too large to be handled entirely within the electronic memory. (The largest problem that could be solved without the use of the intermediate output and input was two simultaneous equations, a trivial problem.)
Intermediate results were binary, written onto paper sheets by electrostatically modifying the resistance at 1500 locations to represent 30 of the 50-bit numbers (one equation). Each sheet could be written or read in one second. The reliability of the system was limited to about 1 error in 100,000 calculations by these units, primarily attributed to lack of control of the sheets' material characteristics. In retrospect, a solution could have been to add a parity bit to each number as written. This problem was not solved by the time Atanasoff left the university for war-related work.
Primary user input was decimal, via standard IBM 80-column punched cards, and output was decimal, via a front-panel display.
rest stop 100 north of Des Moines honoring the ABC Computer]]
Function
The ABC was designed for a specific purpose the solution of systems of simultaneous linear equations. It could handle systems with up to 29 equations, a difficult problem for the time. Problems of this scale were becoming common in physics, the department in which John Atanasoff worked. The machine could be fed two linear equations with up to 29 variables and a constant term and eliminate one of the variables. This process would be repeated manually for each of the equations, which would result in a system of equations with one fewer variable. Then the whole process would be repeated to eliminate another variable.
George W. Snedecor, the head of Iowa State's Statistics Department, was very likely the first user of an electronic digital computer to solve real-world mathematics problems. He submitted many of these problems to Atanasoff.Patent disputeOn June 26, 1947, J. Presper Eckert and John Mauchly were the first to file for patent on a digital computing device (ENIAC), much to the surprise of Atanasoff. The ABC had been examined by John Mauchly in June 1941, and Isaac Auerbach, a former student of Mauchly's, alleged that it influenced his later work on ENIAC, although Mauchly denied this. The ENIAC patent did not issue until 1964, and by 1967 Honeywell sued Sperry Rand in an attempt to break the ENIAC patents, arguing that the ABC constituted prior art. The United States District Court for the District of Minnesota released its judgement on October 19, 1973, finding in Honeywell v. Sperry Rand that the ENIAC patent was a derivative of John Atanasoff's invention.
Campbell-Kelly and Aspray conclude:
The case was legally resolved on October 19, 1973, when U.S. District Judge Earl R. Larson held the ENIAC patent invalid, ruling that the ENIAC derived many basic ideas from the Atanasoff–Berry computer. Judge Larson explicitly stated:
Herman Goldstine, one of the original developers of ENIAC wrote:
Replica
The original ABC was eventually dismantled in 1948, when the university converted the basement to classrooms, and all of its pieces except for one memory drum were discarded.
In 1997, a team of researchers led by Delwyn Bluhm and John Gustafson from Ames Laboratory (located on the Iowa State University campus) finished building a working replica of the Atanasoff–Berry computer at a cost of $350,000 (equivalent to $ in ). The replica ABC was on display in the first floor lobby of the Durham Center for Computation and Communication at Iowa State University and was subsequently exhibited at the Computer History Museum.
See also
* History of computing hardware
* List of vacuum-tube computers
* Mikhail Kravchuk
References
Bibliography
*
*
*
*
*
External links
*[http://jva.cs.iastate.edu/operation.php The Birth of the ABC]
*[http://jva.cs.iastate.edu/team.php Reconstruction of the ABC, 1994-1997]
*[http://johngustafson.net/pubs/pub57/ABCPaper.htm John Gustafson, Reconstruction of the Atanasoff-Berry Computer]
*[https://web.archive.org/web/20121025030709/http://www.scl.ameslab.gov/Projects/ABC/Trial.html The ENIAC patent trial]
*[http://purl.umn.edu/40608 Honeywell v. Sperry Rand Records, 1846-1973], Charles Babbage Institute, University of Minnesota.
*[https://www.youtube.com/watch?v=YyxGIbtMS9E The Atanasoff-Berry Computer In Operation] (YouTube)
Category:1940s computers
Category:One-of-a-kind computers
Category:Vacuum tube computers
Category:Computer-related introductions in 1942
Category:Early computers
Category:Iowa State University
Category:Serial computers
Category:Paper data storage | https://en.wikipedia.org/wiki/Atanasoff–Berry_computer | 2025-04-05T18:25:38.383314 |
1354 | Andes | | other_name=
| photo= Cordillera de los Andes.jpg
| photo_caption= An aerial view of the Andes between Santiago in Chile and Mendoza, Argentina with a large ice field on the southern slope of San José volcano (left), Marmolejo (right), and Tupungato (far right)
<!-- Due to a bug in the tracking code, using hlist will cause the page to be tracked -->
| country=
| geology| orogeny
| area_km2| area_ref
| length_km= 8900
| length_orientation| length_ref
| width_km= 330
| width_orientation| width_ref
| highest= Aconcagua
| highest_location= Mendoza, Argentina
| elevation_m= 6961
| elevation_ref| coordinates
| coordinates_ref| range_coordinates
| range_coordinates_ref| map_image South America laea relief location map.jpg
| map_caption= Map of South America showing the Andes running along the entire western part (roughly parallel to the Pacific coast) of the continent
}}
" in the Puna de Atacama, Salta (Argentina)]]
]]
The Andes ( ), Andes Mountains or Andean Mountain Range (; ) are the longest continental mountain range in the world, forming a continuous highland along the western edge of South America. The range is long and wide (widest between 18°S and 20°S latitude) and has an average height of about . The Andes extend from South to North through seven South American countries: Argentina, Chile, Bolivia, Peru, Ecuador, Colombia, and Venezuela.
Along their length, the Andes are split into several ranges, separated by intermediate depressions. The Andes are the location of several high plateaus—some of which host major cities such as Quito, Bogotá, Cali, Arequipa, Medellín, Bucaramanga, Sucre, Mérida, El Alto, and La Paz. The Altiplano Plateau is the world's second highest after the Tibetan Plateau. These ranges are in turn grouped into three major divisions based on climate: the Tropical Andes, the Dry Andes, and the Wet Andes.
The Andes are the highest mountain range outside of Asia. The range's highest peak, Argentina's Aconcagua, rises to an elevation of about above sea level. The peak of Chimborazo in the Ecuadorian Andes is farther from the Earth's center than any other location on the Earth's surface, due to the equatorial bulge resulting from the Earth's rotation. The world's highest volcanoes are in the Andes, including Ojos del Salado on the Chile-Argentina border, which rises to .
The Andes are also part of the American Cordillera, a chain of mountain ranges (cordillera) that consists of an almost continuous sequence of mountain ranges that form the western "backbone" of the Americas and Antarctica.
Etymology
The etymology of the word Andes has been debated. The majority consensus is that it derives from the Quechua word "east" as in Antisuyu (Quechua for "east region"), and is used as a descriptive name for several contiguous sections of the Andes, as well as the entire Andean range, and the combined mountain chain along the western part of the North and South American continents.
Geography
in the Tierra del Fuego. The Andes range is about wide throughout its length, except in the Bolivian flexure where it is about wide.|altMountains with snowy peaks]]
The Andes can be divided into three sections:
: The Southern Andes in Argentina and Chile, south of Llullaillaco,
: The Central Andes in Peru and Bolivia, and
: The Northern Andes in Venezuela, Colombia, and Ecuador.
At the northern end of the Andes, the separate Sierra Nevada de Santa Marta range is often, but not always, treated as part of the Northern Andes.
The Leeward Antilles islands Aruba, Bonaire, and Curaçao, which lie in the Caribbean Sea off the coast of Venezuela, were formerly thought to represent the submerged peaks of the extreme northern edge of the Andes range, but ongoing geological studies indicate that such a simplification does not do justice to the complex tectonic boundary between the South American and Caribbean plates.Geology
The Andes are an orogenic belt of mountains along the Pacific Ring of Fire, a zone of volcanic activity that encompasses the Pacific rim of the Americas as well as the Asia-Pacific region. The Andes are the result of tectonic plate processes extending during the Mesozoic and Tertiary eras, caused by the subduction of oceanic crust beneath the South American Plate as the Nazca Plate and South American Plate converge. These processes were accelerated by the effects of climate. As the uplift of the Andes created a rain shadow on the western fringes of Chile, ocean currents and prevailing winds carried moisture away from the Chilean coast. This caused some areas of the subduction zone to be sediment-starved, which in turn prevented the subducting plate from having a well lubricated surface. These factors increased the rate of contractional coastal uplift in the Andes. The main cause of the rise of the Andes is the contraction of the western rim of the South American Plate due to the subduction of the Nazca Plate and the Antarctic Plate. To the east, the Andes range is bounded by several sedimentary basins, such as the Orinoco Basin, the Amazon Basin, the Madre de Dios Basin, and the Gran Chaco, that separate the Andes from the ancient cratons in eastern South America. In the south, the Andes share a long boundary with the former Patagonia Terrane. To the west, the Andes end at the Pacific Ocean, although the Peru-Chile trench can be considered their ultimate western limit. From a geographical approach, the Andes are considered to have their western boundaries marked by the appearance of coastal lowlands and less-rugged topography. The Andes also contain large quantities of iron ore located in many mountains within the range.
The Andean orogen has a series of bends or oroclines. The Bolivian Orocline is a seaward-concave bending in the coast of South America and the Andes Mountains at about 18° S. At this point, the orientation of the Andes turns from northwest in Peru to south in Chile and Argentina. The Bolivian Orocline area overlaps with the area of the maximum width of the Altiplano Plateau, and according to Isacks (1988) the Orocline is related to crustal shortening. The specific point at 18° S where the coastline bends is known as the Arica Elbow. Further south lies the Maipo Orocline, a more subtle orocline between 30° S and 38°S with a seaward-concave break in the trend at 33° S. Near the southern tip of the Andes lies the Patagonian Orocline.
Orogeny
The western rim of the South American Plate has been the place of several pre-Andean orogenies since at least the late Proterozoic and early Paleozoic, when several terranes and microcontinents collided and amalgamated with the ancient cratons of eastern South America, by then the South American part of Gondwana.
The formation of the modern Andes began with the events of the Triassic, when Pangaea began the breakup that resulted in developing several rifts. The development continued through the Jurassic Period. It was during the Cretaceous Period that the Andes began to take their present form, by the uplifting, faulting, and folding of sedimentary and metamorphic rocks of the ancient cratons to the east. The rise of the Andes has not been constant, as different regions have had different degrees of tectonic stress, uplift, and erosion.
Across the Drake Passage lie the mountains of the Antarctic Peninsula south of the Scotia Plate, which appear to be a continuation of the Andes chain.
The far east regions of the Andes experience a series of changes resulting from the Andean orogeny. Parts of the Sunsás Orogen in Amazonian craton disappeared from the surface of the earth, being overridden by the Andes. The Sierras de Córdoba, where the effects of the ancient Pampean orogeny can be observed, owe their modern uplift and relief to the Andean orogeny in the Tertiary. Further south in southern Patagonia, the onset of the Andean orogeny caused the Magallanes Basin to evolve from being an extensional back-arc basin in the Mesozoic to being a contractional foreland basin in the Cenozoic. Seismic activity
Tectonic forces above the subduction zone along the entire west coast of South America where the Nazca Plate and a part of the Antarctic Plate are sliding beneath the South American Plate continue to produce an ongoing orogenic event resulting in minor to major earthquakes and volcanic eruptions to this day. Many high-magnitude earthquakes have been recorded in the region, such as the 2010 Maule earthquake (M8.8), the 2015 Illapel earthquake (M8.2), and the 1960 Valdivia earthquake (M9.5), which as of 2024 was the strongest ever recorded on seismometers.
The amount, magnitude, and type of seismic activity varies greatly along the subduction zone. These differences are due to a wide range of factors, including friction between the plates, angle of subduction, buoyancy of the subducting plate, rate of subduction, and hydration value of the mantle material. The highest rate of seismic activity is observed in the central portion of the boundary, between 33°S and 35°S. In this area, the angle of subduction is very low, meaning the subducting plate is nearly horizontal. Studies of mantle hydration across the subduction zone have shown a correlation between increased material hydration and lower-magnitude, more-frequent seismic activity. Zones exhibiting dehydration instead are thought to have a higher potential for larger, high-magnitude earthquakes in the future.
The mountain range is also a source of shallow intraplate earthquakes within the South American Plate. The largest such earthquake (as of 2024) struck Peru in 1947 and measured 7.5. In the Peruvian Andes, these earthquakes display normal (1946), strike-slip (1976), and reverse (1969, 1983) mechanisms. The Amazonian Craton is actively underthrusted beneath the sub-Andes region of Peru, producing thrust faults. In Colombia, Ecuador, and Peru, thrust faulting occurs along the sub-Andes due in response to contraction brought on by subduction, while in the high Andes, normal faulting occurs in response to gravitational forces.
In the extreme south, a major transform fault separates Tierra del Fuego from the small Scotia Plate.
Volcanism
near Quilotoa, Ecuador]]
shows the high plains of the Andes Mountains in the foreground, with a line of young volcanoes facing the much lower Atacama Desert]]
The Andes range has many active volcanoes distributed in four volcanic zones separated by areas of inactivity. The Andean volcanism is a result of the subduction of the Nazca Plate and Antarctic Plate underneath the South American Plate. The belt is subdivided into four main volcanic zones that are separated from each other by volcanic gaps. The volcanoes of the belt are diverse in terms of activity style, products, and morphology. Although some differences can be explained by which volcanic zone a volcano belongs to, there are significant differences inside volcanic zones and even between neighboring volcanoes. Despite being a typical location for calc-alkalic and subduction volcanism, the Andean Volcanic Belt has a large range of volcano-tectonic settings, such as rift systems, extensional zones, transpressional faults, subduction of mid-ocean ridges, and seamount chains apart from a large range of crustal thicknesses and magma ascent paths, and different amount of crustal assimilations.Ore deposits and evaporitesThe Andes Mountains host large ore and salt deposits, and some of their eastern fold and thrust belts act as traps for commercially exploitable amounts of hydrocarbons. In the forelands of the Atacama Desert, some of the largest porphyry copper mineralizations occur, making Chile and Peru the first- and second-largest exporters of copper in the world. Porphyry copper in the western slopes of the Andes has been generated by hydrothermal fluids (mostly water) during the cooling of plutons or volcanic systems. The porphyry mineralization further benefited from the dry climate that reduced the disturbing actions of meteoric water. The dry climate in the central western Andes has also led to the creation of extensive saltpeter deposits that were extensively mined until the invention of synthetic nitrates. Yet another result of the dry climate are the salars of Atacama and Uyuni, the former being the largest source of lithium and the latter the world's largest reserve of the element. Early Mesozoic and Neogene plutonism in Bolivia's Cordillera Central created the Bolivian tin belt as well as the famous, now mostly depleted, silver deposits of Cerro Rico de Potosí.History
The Andes Mountains, initially inhabited by hunter-gatherers, experienced the development of agriculture and the rise of politically centralized civilizations, which culminated in the establishment of the century-long Inca Empire. This all changed in the 16th century, when the Spanish conquistadors colonized the mountains in advance of the mining economy.
In the tide of anti-imperialist nationalism, the Andes became the scene of a series of independence wars in the 19th century, when rebel forces swept through the region to overthrow Spanish colonial rule. Since then, many former Spanish territories have become five independent Andean states.
Climate and hydrology
The climate in the Andes varies greatly depending on latitude, altitude, and proximity to the sea. Temperature, atmospheric pressure, and humidity decrease in higher elevations. The southern section is rainy and cool, while the central section is dry. The northern Andes are typically rainy and warm, with an average temperature of in Colombia. The climate is known to change drastically in rather short distances. Rainforests exist just kilometers away from the snow-covered peak of Cotopaxi. The mountains have a large effect on the temperatures of nearby areas. The snow line depends on the location. It is between in the tropical Ecuadorian, Colombian, Venezuelan, and northern Peruvian Andes, rising to in the drier mountains of southern Peru and northern Chile south to about 30°S before descending to on Aconcagua at 32°S, at 40°S, at 50°S, and only in Tierra del Fuego at 55°S; from 50°S, several of the larger glaciers descend to sea level.
The Andes of Chile and Argentina can be divided into two climatic and glaciological zones: the Dry Andes and the Wet Andes. Since the Dry Andes extend from the latitudes of the Atacama Desert to the area of the Maule River, precipitation is more sporadic, and there are strong temperature oscillations. The line of equilibrium may shift drastically over short periods of time, leaving a whole glacier in the ablation area or in the accumulation area.
In the high Andes of Central Chile and Mendoza Province, rock glaciers are larger and more common than glaciers; this is due to the high exposure to solar radiation. In these regions, glaciers occur typically at higher altitudes than rock glaciers.
Though precipitation increases with height, there are semiarid conditions in the nearly highest mountains of the Andes. This dry steppe climate is considered to be typical of the subtropical position at 32–34° S. The valley bottoms have no woods, just dwarf scrub. The largest glaciers, for example the Plomo Glacier and the Horcones Glaciers, do not even reach in length and have only insignificant ice thickness. At glacial times, however, 20,000 years ago, the glaciers were over ten times longer. On the east side of this section of the Mendozina Andes, they flowed down to and on the west side to about above sea level. The massifs of Aconcagua (), Tupungato (), and Nevado Juncal () are tens of kilometres away from each other and were connected by a joint ice stream network. The Andes' dendritic glacier arms, components of valley glaciers, were up to long and over thick, and spanned a vertical distance of . The climatic glacier snowline (ELA) was lowered from to at glacial times.Flora
tropical dry forest in Northern Andes]]
The Andean region cuts across several natural and floristic regions, due to its extension, from Caribbean Venezuela to cold, windy, and wet Cape Horn passing through the hyperarid Atacama Desert. Rainforests and tropical dry forests used to encircle much of the northern Andes but are now greatly diminished, especially in the Chocó and inter-Andean valleys of Colombia. Opposite the humid Andean slopes are the relatively dry Andean slopes in most of western Peru, Chile, and Argentina. Along with several Interandean Valles, they are typically dominated by deciduous woodland, shrub and xeric vegetation, reaching the extreme in the slopes near the virtually lifeless Atacama Desert.
About 30,000 species of vascular plants live in the Andes, with roughly half being endemic to the region, surpassing the diversity of any other hotspot.
Fauna
, a species found in humid Andean forests and the national bird of Peru]]
s near Ausangate mountain]]
The Andes are rich in fauna: With almost 1,000 species, of which roughly 2/3 are endemic to the region, the Andes are the most important region in the world for amphibians. The diversity of animals in the Andes is high, with almost 600 species of mammals (13% endemic), more than 1,700 species of birds (about 1/3 endemic), more than 600 species of reptiles (about 45% endemic), and almost 400 species of fish (about 1/3 endemic). The Andean condor, the largest bird of its kind in the Western Hemisphere, occurs throughout much of the Andes but generally in very low densities. Other animals found in the relatively open habitats of the high Andes include the huemul, cougar, foxes in the genus Pseudalopex, A few species of hummingbirds, notably some hillstars, can be seen at altitudes above , but far higher diversities can be found at lower altitudes, especially in the humid Andean forests ("cloud forests") growing on slopes in Colombia, Ecuador, Peru, Bolivia, and far northwestern Argentina. The government sponsored the construction of aqueducts and roads in addition to pre-existing installations. Some of these constructions still exist today.
, Heart of the Andes, 1859.]]
Devastated by European diseases and by civil war, the Incas were defeated in 1532 by an alliance composed of tens of thousands of allies from nations they had subjugated (e.g. Huancas, Chachapoyas, Cañaris) and a small army of 180 Spaniards led by Francisco Pizarro. One of the few Inca sites the Spanish never found in their conquest was Machu Picchu, which lay hidden on a peak on the eastern edge of the Andes where they descend to the Amazon. The main surviving languages of the Andean peoples are those of the Quechua and Aymara language families. Woodbine Parish and Joseph Barclay Pentland surveyed a large part of the Bolivian Andes from 1826 to 1827.
Cities
In modern times, the largest cities in the Andes are Bogotá, with a metropolitan population of over ten million, and Santiago, Medellín, Cali, and Quito. Lima is a coastal city adjacent to the Andes and is the largest city of all Andean countries. It is the seat of the Andean Community of Nations.
La Paz, Bolivia's seat of government, is the highest capital city in the world, at an elevation of approximately . Parts of the La Paz conurbation, including the city of El Alto, extend up to .
Other cities in or near the Andes include Bariloche, Catamarca, Jujuy, Mendoza, Salta, San Juan, Tucumán, and Ushuaia in Argentina; Calama and Rancagua in Chile; Cochabamba, Oruro, Potosí, Sucre, Tarija, and Yacuiba in Bolivia; Arequipa, Cajamarca, Cusco, Huancayo, Huánuco, Huaraz, Juliaca, and Puno in Peru; Ambato, Cuenca, Ibarra, Latacunga, Loja, Riobamba, and Tulcán in Ecuador; Armenia, Cúcuta, Bucaramanga, Duitama, Ibagué, Ipiales, Manizales, Palmira, Pasto, Pereira, Popayán, Rionegro, Sogamoso, Tunja, and Villavicencio in Colombia; and Barquisimeto, La Grita, Mérida, San Cristóbal, Tovar, Trujillo, and Valera in Venezuela. The cities of Caracas, Valencia, and Maracay are in the Venezuelan Coastal Range, which is a debatable extension of the Andes at the northern extremity of South America.
Transportation
Cities and large towns are connected with asphalt-paved roads, while smaller towns are often connected by dirt roads, which may require a four-wheel-drive vehicle.
The rough terrain has historically put the costs of building highways and railroads that cross the Andes out of reach of most neighboring countries, even with modern civil engineering practices. For example, the main crossover of the Andes between Argentina and Chile is still accomplished through the Paso Internacional Los Libertadores. Only recently have the ends of some highways that came rather close to one another from the east and the west been connected. Much of the transportation of passengers is done via aircraft.
There is one railroad that connects Chile with Peru via the Andes, however, and there are others that make the same connection via southern Bolivia.
There are multiple highways in Bolivia that cross the Andes. Some of these were built during a period of war between Bolivia and Paraguay, in order to transport Bolivian troops and their supplies to the war front in the lowlands of southeastern Bolivia and western Paraguay.
For decades, Chile claimed ownership of land on the eastern side of the Andes. These claims were given up in about 1870 during the War of the Pacific between Chile and the allied Bolivia and Peru, in a diplomatic deal to keep Peru out of the war. The Chilean Army and Chilean Navy defeated the combined forces of Bolivia and Peru, and Chile took over Bolivia's only province on the Pacific Coast, some land from Peru that was returned to Peru decades later. Bolivia has been completely landlocked ever since. It mostly uses seaports in eastern Argentina and Uruguay for international trade because its diplomatic relations with Chile have been suspended since 1978.
Because of the tortuous terrain in places, villages and towns in the mountains—to which travel via motorized vehicles is of little use—are still located in the high Andes of Chile, Bolivia, Peru, and Ecuador. Locally, the relatives of the camel, the llama, and the alpaca continue to carry out important uses as pack animals, but this use has generally diminished in modern times. Donkeys, mules, and horses are also useful.
Agriculture
The ancient peoples of the Andes such as the Incas have practiced irrigation techniques for over 6,000 years. Because of the mountain slopes, terracing has been a common practice. Terracing, however, was only extensively employed after Incan imperial expansions to fuel their expanding realm. The potato holds a very important role as an internally consumed staple crop. Maize was also an important crop for these people, and was used for the production of chicha, important to Andean native people. Currently, tobacco, cotton, and coffee are the main export crops. Coca, despite eradication programs in some countries, remains an important crop for legal local use in a mildly stimulating herbal tea, and illegally for the production of cocaine.Irrigation
In unirrigated land, pasture is the most common type of land use. In the rainy season (summer), part of the rangeland is used for cropping (mainly potatoes, barley, broad beans, and wheat).
Irrigation is helpful in advancing the sowing data of the summer crops, which guarantees an early yield in periods of food shortage. Also, by early sowing, maize can be cultivated higher up in the mountains (up to ). In addition, it makes cropping in the dry season (winter) possible and allows the cultivation of frost-resistant vegetable crops like onion and carrot.
Mining
s, 19th century]]
The Andes rose to fame for their mineral wealth during the Spanish conquest of South America. Although Andean Amerindian peoples crafted ceremonial jewelry of gold and other metals, the mineralizations of the Andes were first mined on a large scale after the Spanish arrival. Potosí in present-day Bolivia and Cerro de Pasco in Peru were among the principal mines of the Spanish Empire in the New World. Río de la Plata and Argentina derive their names from the silver of Potosí.
Currently, mining in the Andes of Chile and Peru places these countries as the first and second major producers of copper in the world. Peru also contains the 4th-largest goldmine in the world: the Yanacocha. The Bolivian Andes principally produce tin, although historically silver mining had a huge impact on the economy of 17th-century Europe.
There is a long history of mining in the Andes, from the Spanish silver mines in Potosí in the 16th century to the vast current porphyry copper deposits of Chuquicamata and Escondida in Chile and Toquepala in Peru. Other metals, including iron, gold, and tin, in addition to non-metallic resources are important. The Andes have a vast supply of lithium; Argentina, Bolivia, and Chile have the three largest reserves in the world respectively. Accion Andina's reforestation plan Depending on the country, this species goes by different names. In Peru, it is known as queñual, queuña, or queñoa; in Bolivia, as kewiña; in Ecuador, as yagual; and in Argentina, tabaquillo. Regardless of the name, Polylepis is a high-Andean genus encompassing up to 45 species of trees and shrubs distributed across the South American Andes, from Venezuela to Patagonia, found up to 5,000 meters above sea level.
In 2000, biologist Constantino Aucca founded Ecoan, an NGO promoting conservation of threatened species and endangered Andean ecosystems. Since then, the organization has reforested 4.5 million plants across 16 protected areas, involving 37 Andean communities in the process.<ref name="LA" />
Aucca's efforts caught the attention of Florent Kaiser, a Franco-German forest engineer. During a visit to Peru in 2018, Aucca invited Kaiser to the Queuña Raymi festival, where Cusco communities engage in queñual reforestation.<ref name"LA" />Peaks
This list contains some of the major peaks in the Andes mountain range. The highest peak is Aconcagua of Argentina.
Argentina
, Argentina, the highest mountain in the Americas]]
* Aconcagua,
* Cerro Bonete,
* Galán,
* Mercedario,
* Pissis, The border between Argentina and Chile
* Cerro Bayo,
* Cerro Fitz Roy, or 3,405 m, Patagonia, also known as Cerro Chaltén
* Cerro Escorial,
* Cordón del Azufre,
* Falso Azufre,
* Incahuasi,
* Lastarria,
* Llullaillaco,
* Maipo,
* Marmolejo,
* Ojos del Salado,
* Olca,
* Sierra Nevada de Lagunas Bravas,
* Socompa,
* Nevado Tres Cruces, (south summit) (III Region)
* Tronador,
* Tupungato,
* Nacimiento, Bolivia
, Bolivia]]
* Janq'u Uma,
* Cabaraya,
* Chacaltaya,
* Chachacomani,
* Chaupi Orco,
* Huayna Potosí,
* Illampu,
* Illimani,
* Laram Q'awa,
* Macizo de Pacuni,
* Mururata,
* Nevado Anallajsi,
* Nevado Charquini,
* Nevado Sajama,
* Patilla Pata,
* Tata Sabaya,
* Tunari,
* Uturuncu,
* Wayna Potosí, Border between Bolivia and Chile
, Bolivia/Chile]]
* Acotango,
* Aucanquilcha,
* Michincha,
* Iru Phutunqu,
* Licancabur,
* Olca,
* Parinacota,
* Paruma,
* Pomerape, Chile
, Chile]]
* Monte San Valentin,
* Cerro Paine Grande,
* Cerro Macá, c.
* Monte Darwin, c.
* Volcan Hudson, c.
* Cerro Castillo Dynevor, c.
* Mount Tarn, c.
* Polleras, c.
* Acamarachi, c.Colombia
, Colombia]]
* Nevado del Huila,
* Nevado del Ruiz,
* Nevado del Tolima,
* Pico Pan de Azúcar,
* Ritacuba Negro,
* Nevado del Cumbal,
* Cerro Negro de Mayasquer,
* Ritacuba Blanco,
* Nevado del Quindío,
* Puracé,
* Santa Isabel,
* Doña Juana,
* Galeras,
* Azufral, Ecuador
near Riobamba, Ecuador]]
* Antisana,
* Cayambe,
* Chiles,
* Chimborazo,
* Corazón,
* Cotopaxi,
* El Altar,
* Illiniza,
* Pichincha,
* Quilotoa,
* Reventador,
* Sangay,
* Tungurahua, Peru
, Peru]]
, Peru]]
* Alpamayo,
* Artesonraju,
* Carnicero,
* Chumpe,
* Coropuna,
* El Misti,
* El Toro,
* Huandoy,
* Huascarán,
* Jirishanca,
* Pumasillo,
* Rasac,
* Rondoy,
* Sarapo,
* Salcantay,
* Seria Norte,
* Siula Grande,
* Huaytapallana,
* Yerupaja,
* Yerupaja Chico, Venezuela* Pico Bolívar,
* Pico Humboldt,
* Pico Bonpland,
* Pico La Concha,
* Pico Piedras Blancas,
* Pico El Águila,
* Pico El Toro
* Pico El León
* Pico Mucuñuque See also
* Andean Geology—a scientific journal
* Andesite line
* Apu (god)
* Mountain passes of the Andes
* List of mountain ranges
* Sutter Buttes
Notes
References
*
* Biggar, J. (2005). The Andes: A Guide For Climbers. 3rd. edition. Andes: Kirkcudbrightshire.
* de Roy, T. (2005). The Andes: As the Condor Flies. Firefly books: Richmond Hill.
* Fjeldså, J. & N. Krabbe (1990). The Birds of the High Andes. Zoological Museum, University of Copenhagen:
* Fjeldså, J. & M. Kessler (1996). Conserving the biological diversity of Polylepis woodlands of the highlands on Peru and Bolivia, a contribution to sustainable natural resource management in the Andes. NORDECO: Copenhagen.
Bibliography
*
* External links*
* [https://web.archive.org/web/20050922180841/http://www.geo.arizona.edu/geo5xx/geo527/Andes/intro.html University of Arizona: Andes geology]
* [http://www.blueplanetbiomes.org/andes_climate_page.htm Blueplanetbiomes.org: Climate and animal life of the Andes]
* [http://www.discover-peru.org/peru-geography-regions-and-microclimates-andes/ Discover-peru.org: Regions and Microclimates in the Andes]
* [http://www.peaklist.org/WWlists/ultras/southamerica.html Peaklist.org: Complete list of mountains in South America with an elevation at/above ]
Category:Mountain ranges of South America
*
Category:Regions of South America
Category:Physiographic divisions | https://en.wikipedia.org/wiki/Andes | 2025-04-05T18:25:38.427225 |
1356 | Ancylopoda | | taxon = Ancylopoda
| image = Chalicotherium paris.jpg
| subdivision_ranks = Superfamilies
| subdivision_ref =
| subdivision =
*Chalicotherioidea
*Lophiodontidae
}}
Ancylopoda is a group of browsing, herbivorous, mammals in the Perissodactyla that show long, curved and cleft claws. Morphological evidence indicates the Ancylopoda diverged from the tapirs, rhinoceroses and horses (Euperissodactyla) after the Brontotheria; however, earlier authorities such as Osborn sometimes considered the Ancylopoda to be outside Perissodactyla or, as was popular more recently, to be related to Brontotheriidae.
Macrotherium, which is typically from the middle Miocene of Sansan, in Gers, France, may indicate a distinct genus. Limb-bones resembling those of Macrotherium, but relatively stouter, have been described from the Pliocene beds of Attica and Samos as Ancylotherium. In the Americas, the names Morothorium and Moropus have been applied to similar bones, in the belief that they indicated xenarthrans. Macrotherium magnum must have been an animal of about in length.
References
Category:Tapiromorpha
Category:Eocene first appearances
Category:Pleistocene extinctions | https://en.wikipedia.org/wiki/Ancylopoda | 2025-04-05T18:25:38.438287 |
1358 | Anchor | thumb|Stockless ship's anchor and chain on display
thumb|Anchor of Amoco Cadiz in Portsall, north-west Brittany, France
thumb|Memorial anchor in Kirjurinluoto, Pori, Finland
thumb|Massive anchor chain for large ships. The weight of the chain is vital for proper holding of the anchor.
An anchor is a device, normally made of metal, used to secure a vessel to the bed of a body of water to prevent the craft from drifting due to wind or current. The word derives from Latin , which itself comes from the Greek ().
Anchors can either be temporary or permanent. Permanent anchors are used in the creation of a mooring, and are rarely moved; a specialist service is normally needed to move or maintain them. Vessels carry one or more temporary anchors, which may be of different designs and weights.
A sea anchor is a drag device, not in contact with the seabed, used to minimize drift of a vessel relative to the water. A drogue is a drag device used to slow or help steer a vessel running before a storm in a following or overtaking sea, or when crossing a bar in a breaking sea.
Anchoring
thumb|Anchor winch, or windlass, on
thumb|Colored plastic inserts on a modern anchor chain show the operator how much chain has been paid out. This knowledge is crucial in all anchoring methods.
thumb|A stockless anchor being broken out
thumb|Holding ground in Akaroa Harbour
Anchors achieve holding power either by "hooking" into the seabed, or weight, or a combination of the two. The weight of the anchor chain can be more than that of the anchor and is critical to proper holding. Permanent moorings use large masses (commonly a block or slab of concrete) resting on the seabed. Semi-permanent mooring anchors (such as mushroom anchors) and large ship's anchors derive a significant portion of their holding power from their weight, while also hooking or embedding in the bottom. Modern anchors for smaller vessels have metal flukes that hook on to rocks on the bottom or bury themselves in soft seabed.
The vessel is attached to the anchor by the rode (also called a cable or a warp). It can be made of rope, chain or a combination of rope and chain. The ratio of the length of rode to the water depth is known as the scope.
Holding ground is the area of sea floor that holds an anchor, and thus the attached ship or boat. Different types of anchor are designed to hold in different types of holding ground. Some bottom materials hold better than others; for instance, hard sand holds well, shell holds poorly. An anchorage location may be chosen for its holding ground. In poor holding ground, only the weight of an anchor and chain matters; in good holding ground, it is able to dig in, and the holding power can be significantly higher.
The basic anchoring consists of determining the location, dropping the anchor, laying out the scope, setting the hook, and assessing where the vessel ends up. The ship seeks a location that is sufficiently protected; has suitable holding ground, enough depth at low tide and enough room for the boat to swing.
The location to drop the anchor should be approached from down wind or down current, whichever is stronger. As the chosen spot is approached, the vessel should be stopped or even beginning to drift back. The anchor should initially be lowered quickly but under control until it is on the bottom (see anchor windlass). The vessel should continue to drift back, and the cable should be veered out under control (slowly) so it is relatively straight.
Once the desired scope is laid out, the vessel should be gently forced astern, usually using the auxiliary motor but possibly by backing a sail. A hand on the anchor line may telegraph a series of jerks and jolts, indicating the anchor is dragging, or a smooth tension indicative of digging in. As the anchor begins to dig in and resist backward force, the engine may be throttled up to get a thorough set. If the anchor continues to drag, or sets after having dragged too far, it should be retrieved and moved back to the desired position (or another location chosen.)
Using an anchor weight, kellet or sentinel
Lowering a concentrated, heavy weight down the anchor line – rope or chain – directly in front of the bow to the seabed behaves like a heavy chain rode and lowers the angle of pull on the anchor. If the weight is suspended off the seabed it acts as a spring or shock absorber to dampen the sudden actions that are normally transmitted to the anchor and can cause it to dislodge and drag. In light conditions, a kellet reduces the swing of the vessel considerably. In heavier conditions these effects disappear as the rode becomes straightened and the weight ineffective. Known as an "anchor chum weight" or "angel" in the UK.
Forked moor
Using two anchors set approximately 45° apart, or wider angles up to 90°, from the bow is a strong mooring for facing into strong winds. To set anchors in this way, first one anchor is set in the normal fashion. Then, taking in on the first cable as the boat is motored into the wind and letting slack while drifting back, a second anchor is set approximately a half-scope away from the first on a line perpendicular to the wind. After this second anchor is set, the scope on the first is taken up until the vessel is lying between the two anchors and the load is taken equally on each cable.
This moor also to some degree limits the range of a vessel's swing to a narrower oval. Care should be taken that other vessels do not swing down on the boat due to the limited swing range.
Bow and stern
(Not to be mistaken with the Bahamian moor, below.) In the bow and stern technique, an anchor is set off each the bow and the stern, which can severely limit a vessel's swing range and also align it to steady wind, current or wave conditions. One method of accomplishing this moor is to set a bow anchor normally, then drop back to the limit of the bow cable (or to double the desired scope, e.g. 8:1 if the eventual scope should be 4:1, 10:1 if the eventual scope should be 5:1, etc.) to lower a stern anchor. By taking up on the bow cable the stern anchor can be set. After both anchors are set, tension is taken up on both cables to limit the swing or to align the vessel.
Bahamian moor
Similar to the above, a Bahamian moor is used to sharply limit the swing range of a vessel, but allows it to swing to a current. One of the primary characteristics of this technique is the use of a swivel as follows: the first anchor is set normally, and the vessel drops back to the limit of anchor cable. A second anchor is attached to the end of the anchor cable, and is dropped and set. A swivel is attached to the middle of the anchor cable, and the vessel connected to that.
The vessel now swings in the middle of two anchors, which is acceptable in strong reversing currents, but a wind perpendicular to the current may break out the anchors, as they are not aligned for this load.
Backing an anchor
Also known as tandem anchoring, in this technique two anchors are deployed in line with each other, on the same rode. With the foremost anchor reducing the load on the aft-most, this technique can develop great holding power and may be appropriate in "ultimate storm" circumstances. It does not limit swinging range, and might not be suitable in some circumstances. There are complications, and the technique requires careful preparation and a level of skill and experience above that required for a single anchor.
Kedging
thumb|Statue of Peter the Great in Voronezh, Russia. He is leaning on an anchor, symbolic of his contributions to modernizing and expanding Russia's navy (1860)
Kedging or warping is a technique for moving or turning a ship by using a relatively light anchor.
In yachts, a kedge anchor is an anchor carried in addition to the main, or bower, anchor, and usually stowed aft. Every yacht should carry at least two anchors – the main or bower anchor and a second lighter kedge anchor. It is used occasionally when it is necessary to limit the turning circle as the yacht swings when it is anchored, such as in a narrow river or a deep pool in an otherwise shallow area. Kedge anchors are sometimes used to recover vessels that have run aground.
For ships, a kedge may be dropped while a ship is underway, or carried out in a suitable direction by a tender or ship's boat to enable the ship to be winched off if aground or swung into a particular heading, or even to be held steady against a tidal or other stream.
Historically, it was of particular relevance to sailing warships that used them to outmaneuver opponents when the wind had dropped but might be used by any vessel in confined, shoal water to place it in a more desirable position, provided she had enough manpower.
Club hauling
Club hauling is an archaic technique. When a vessel is in a narrow channel or on a lee shore so that there is no room to tack the vessel in a conventional manner, an anchor attached to the lee quarter may be dropped from the lee bow. This is deployed when the vessel is head to wind and has lost headway. As the vessel gathers sternway the strain on the cable pivots the vessel around what is now the weather quarter turning the vessel onto the other tack. The anchor is then normally cut away (the ship's momentum prevents recovery without aborting the maneuver).
Multiple anchor patterns
When it is necessary to moor a ship or floating platform with precise positioning and alignment, such as when drilling the seabed, for some types of salvage work, and for some types of diving operation, several anchors are set in a pattern which allows the vessel to be positioned by shortening and lengthening the scope of the anchors, and adjusting the tension on the rodes. The anchors are usually laid in prearranged positions by an anchor tender, and the moored vessel uses its own winches to adjust position and tension.
Similar arrangements are used for some types of single buoy moorings, like the catenary anchor leg mooring (CALM) used for loading and unloading liquid cargoes.
Weighing anchor
Since all anchors that embed themselves in the bottom require the strain to be along the seabed, anchors can be broken out of the bottom by shortening the rope until the vessel is directly above the anchor; at this point the anchor chain is "up and down", in naval parlance. If necessary, motoring slowly around the location of the anchor also helps dislodge it. Anchors are sometimes fitted with a trip line attached to the crown, by which they can be unhooked from underwater hazards.
The term aweigh describes an anchor when it is hanging on the rope and not resting on the bottom. This is linked to the term to weigh anchor, meaning to lift the anchor from the sea bed, allowing the ship or boat to move. An anchor is described as aweigh when it has been broken out of the bottom and is being hauled up to be stowed. Aweigh should not be confused with under way, which describes a vessel that is not moored to a dock or anchored, whether or not the vessel is moving through the water. Aweigh is also often confused with away, which is incorrect.
History
Evolution of the anchor
thumb|upright=2|left|Anchors come in a wide variety of shapes, types, and sizes for different conditions, functions and vessels.
The earliest anchors were probably rocks, and many rock anchors have been found dating from at least the Bronze Age. Pre-European Māori waka (canoes) used one or more hollowed stones, tied with flax ropes, as anchors. Many modern moorings still rely on a large rock as the primary element of their design. However, using pure weight to resist the forces of a storm works well only as a permanent mooring; a large enough rock would be nearly impossible to move to a new location.
The ancient Greeks used baskets of stones, large sacks filled with sand, and wooden logs filled with lead. According to Apollonius Rhodius and Stephen of Byzantium, anchors were formed of stone, and Athenaeus states that they were also sometimes made of wood. Such anchors held the vessel merely by their weight and by their friction along the bottom.
Fluked anchors
thumb|Anchor of the Ladby Ship
Iron was afterwards introduced for the construction of anchors, and an improvement was made by forming them with teeth, or "flukes", to fasten themselves into the bottom. This is the iconic anchor shape most familiar to non-sailors.
This form has been used since antiquity. The Roman Nemi ships of the 1st century AD used this form. The Viking Ladby ship (probably 10th century) used a fluked anchor of this type, made of iron, which would have had a wooden stock mounted perpendicular to the shank and flukes to make the flukes contact the bottom at a suitable angle to hook or penetrate.
Admiralty anchor
thumb|left|An Admiralty Pattern anchor; when deployed on the seafloor the stock forces one of its flukes into the bottom.
The Admiralty Pattern anchor, or simply "Admiralty", also known as a "Fisherman", consists of a central shank with a ring or shackle for attaching the rode (the rope, chain, or cable connecting the ship and the anchor). At the other end of the shank there are two arms, carrying the flukes, while the stock is mounted to the shackle end, at ninety degrees to the arms. When the anchor lands on the bottom, it generally falls over with the arms parallel to the seabed. As a strain comes onto the rope, the stock digs into the bottom, canting the anchor until one of the flukes catches and digs into the bottom.
The Admiralty Anchor is an entirely independent reinvention of a classical design, as seen in one of the Nemi ship anchors. This basic design remained unchanged for centuries, with the most significant changes being to the overall proportions, and a move from stocks made of wood to iron stocks in the late 1830s and early 1840s.
Since one fluke always protrudes up from the set anchor, there is a great tendency of the rode to foul the anchor as the vessel swings due to wind or current shifts. When this happens, the anchor may be pulled out of the bottom, and in some cases may need to be hauled up to be re-set. In the mid-19th century, numerous modifications were attempted to alleviate these problems, as well as improve holding power, including one-armed mooring anchors. The most successful of these patent anchors, the Trotman Anchor, introduced a pivot at the centre of the crown where the arms join the shank, allowing the "idle" upper arm to fold against the shank. When deployed the lower arm may fold against the shank tilting the tip of the fluke upwards, so each fluke has a tripping palm at its base, to hook on the bottom as the folded arm drags along the seabed, which unfolds the downward oriented arm until the tip of the fluke can engage the bottom.
Handling and storage of these anchors requires special equipment and procedures. Once the anchor is hauled up to the hawsepipe, the ring end is hoisted up to the end of a timber projecting from the bow known as the cathead. The crown of the anchor is then hauled up with a heavy tackle until one fluke can be hooked over the rail. This is known as "catting and fishing" the anchor. Before dropping the anchor, the fishing process is reversed, and the anchor is dropped from the end of the cathead.
Stockless anchor
thumb|The action of a stockless anchor being set
The stockless anchor, patented in England in 1821, represented the first significant departure in anchor design in centuries. Although their holding-power-to-weight ratio is significantly lower than admiralty pattern anchors, their ease of handling and stowage aboard large ships led to almost universal adoption. In contrast to the elaborate stowage procedures for earlier anchors, stockless anchors are simply hauled up until they rest with the shank inside the hawsepipes, and the flukes against the hull (or inside a recess in the hull called the anchor box).
While there are numerous variations, stockless anchors consist of a set of heavy flukes connected by a pivot or ball and socket joint to a shank. Cast into the crown of the anchor is a set of tripping palms, projections that drag on the bottom, forcing the main flukes to dig in.
Small boat anchors
Until the mid-20th century, anchors for smaller vessels were either scaled-down versions of admiralty anchors, or simple grapnels. As new designs with greater holding-power-to-weight ratios were sought, a great variety of anchor designs have emerged. Many of these designs are still under patent, and other types are best known by their original trademarked names.
Grapnel anchor / drag
thumb|left|A grapnel anchor
A traditional design, the grapnel is merely a shank (no stock) with four or more tines, also known as a drag. It has a benefit in that, no matter how it reaches the bottom, one or more tines are aimed to set. In coral, or rock, it is often able to set quickly by hooking into the structure, but may be more difficult to retrieve. A grapnel is often quite light, and may have additional uses as a tool to recover gear lost overboard. Its weight also makes it relatively easy to move and carry, however its shape is generally not compact and it may be awkward to stow unless a collapsing model is used.
Grapnels rarely have enough fluke area to develop much hold in sand, clay, or mud. It is not unknown for the anchor to foul on its own rode, or to foul the tines with refuse from the bottom, preventing it from digging in. On the other hand, it is quite possible for this anchor to find such a good hook that, without a trip line from the crown, it is impossible to retrieve.
Herreshoff anchor
Designed by yacht designer L. Francis Herreshoff, this is essentially the same pattern as an admiralty anchor, albeit with small diamond-shaped flukes or palms. The novelty of the design lay in the means by which it could be broken down into three pieces for stowage. In use, it still presents all the issues of the admiralty pattern anchor.
Northill anchor
Originally designed as a lightweight anchor for seaplanes, this design consists of two plough-like blades mounted to a shank, with a folding stock crossing through the crown of the anchor.
CQR plough anchor
thumb|right|A CQR plough anchor
Many manufacturers produce a plough-type anchor, so-named after its resemblance to an agricultural plough. All such anchors are copied from the original CQR (Coastal Quick Release, or Clyde Quick Release, later rebranded as 'secure' by Lewmar), a 1933 design patented in the UK by mathematician Geoffrey Ingram Taylor.
Plough anchors stow conveniently in a roller at the bow, and have been popular with cruising sailors and private boaters. Ploughs can be moderately good in all types of seafloor, though not exceptional in any. Contrary to popular belief, the CQR's hinged shank is not to allow the anchor to turn with direction changes rather than breaking out, but actually to prevent the shank's weight from disrupting the fluke's orientation while setting. The hinge can wear out and may trap a sailor's fingers. Some later plough anchors have a rigid shank, such as the Lewmar's "Delta".
A plough anchor has a fundamental flaw: like its namesake, the agricultural plough, it digs in but then tends to break out back to the surface. Plough anchors sometimes have difficulty setting at all, and instead skip across the seafloor. By contrast, modern efficient anchors tend to be "scoop" types that dig ever deeper.
Delta anchor
The Delta anchor was derived from the CQR. It was patented by Philip McCarron, James Stewart, and Gordon Lyall of British marine manufacturer Simpson-Lawrence Ltd in 1992. It was designed as an advance over the anchors used for floating systems such as oil rigs. It retains the weighted tip of the CQR but has a much higher fluke area to weight ratio than its predecessor. The designers also eliminated the sometimes troublesome hinge. It is a plough anchor with a rigid, arched shank. It is described as self-launching because it can be dropped from a bow roller simply by paying out the rode, without manual assistance. This is an oft copied design with the European Brake and Australian Sarca Excel being two of the more notable ones. Although it is a plough type anchor, it sets and holds reasonably well in hard bottoms.
Danforth anchor
thumb|right|The Danforth is a light, versatile, highly popular fluke-style anchor.
American Richard Danforth invented the Danforth Anchor in the 1940s for use aboard landing craft. It uses a stock at the crown to which two large flat triangular flukes are attached. The stock is hinged so the flukes can orient toward the bottom (and on some designs may be adjusted for an optimal angle depending on the bottom type). Tripping palms at the crown act to tip the flukes into the seabed. The design is a burying variety, and once well set can develop high resistance. Its lightweight and compact flat design make it easy to retrieve and relatively easy to store; some anchor rollers and hawsepipes can accommodate a fluke-style anchor.
A Danforth does not usually penetrate or hold in gravel or weeds. In boulders and coral it may hold by acting as a hook. If there is much current, or if the vessel is moving while dropping the anchor, it may "kite" or "skate" over the bottom due to the large fluke area acting as a sail or wing.
The FOB HP anchor designed in Brittany in the 1970s is a Danforth variant designed to give increased holding through its use of rounded flukes setting at a 30° angle.
The Fortress is an American aluminum alloy Danforth variant that can be disassembled for storage and it features an adjustable 32° and 45° shank/fluke angle to improve holding capability in common sea bottoms such as hard sand and soft mud. This anchor performed well in a 1989 US Naval Sea Systems Command (NAVSEA) test and in an August 2014 holding power test that was conducted in the soft mud bottoms of the Chesapeake Bay.
Bruce or claw anchor
thumb|right|The Bruce anchor
was an evolutionary improvement in its day. It is most effective in larger sizes.
This claw-shaped anchor was designed by Peter Bruce from Scotland in the 1970s. Bruce gained his early reputation from the production of large-scale commercial anchors for ships and fixed installations such as oil rigs. It was later scaled down for small boats, and copies of this popular design abound. The Bruce and its copies, known generically as "claw type anchors", have been adopted on smaller boats (partly because they stow easily on a bow roller) but they are most effective in larger sizes. Claw anchors are quite popular on charter fleets as they have a high chance to set on the first try in many bottoms. They have the reputation of not breaking out with tide or wind changes, instead slowly turning in the bottom to align with the force.
Bruce anchors can have difficulty penetrating weedy bottoms and grass. They offer a fairly low holding-power-to-weight ratio and generally have to be oversized to compete with newer types.
Scoop type anchors
Three time circumnavigator German Rolf Kaczirek invented the Bügel Anker in the 1980s. Kaczirek wanted an anchor that was self-righting without necessitating a ballasted tip. Instead, he added a roll bar and switched out the plough share for a flat blade design. As none of the innovations of this anchor were patented, copies of it abound.
Alain Poiraud of France introduced the scoop type anchor in 1996. Similar in design to the Bügel anchor, Poiraud's design features a concave fluke shaped like the blade of a shovel, with a shank attached parallel to the fluke, and the load applied toward the digging end. It is designed to dig into the bottom like a shovel, and dig deeper as more pressure is applied. The common challenge with all the scoop type anchors is that they set so well, they can be difficult to weigh.
Bügelanker, or Wasi: This German-designed bow anchor has a sharp tip for penetrating weed, and features a roll-bar that allows the correct setting attitude to be achieved without the need for extra weight to be inserted into the tip.
thumb|Spade anchor
Spade: This is a French design that has proven successful since 1996. It features a demountable shank (hollow in some instances) and the choice of galvanized steel, stainless steel, or aluminum construction, which means a lighter and more easily stowable anchor. The geometry also makes this anchor self stowing on a single roller. The Spade anchor is the anchor of choice for Rubicon 3, one of Europe's largest adventure sailing companies
thumb|A galvanised Rocna Anchor
Rocna: This New Zealand spade design, available in galvanised or stainless steel, has been produced since 2004. It has a roll-bar (similar to that of the Bügel), a large spade-like fluke area, and a sharp toe for penetrating weed and grass. The Rocna sets quickly and holds well.
thumb|Mantus anchor
Mantus: This is claimed to be a fast setting anchor with high holding power. It is designed as an all round anchor capable of setting even in challenging bottoms such as hard sand/clay bottoms and grass. The shank is made out of a high tensile steel capable of withstanding high loads. It is similar in design to the Rocna but has a larger and wider roll-bar that reduces the risk of fouling and increases the angle of the fluke that results in improved penetration in some bottoms.
Ultra: This is an innovative spade design that dispenses with a roll-bar. Made primarily of stainless steel, its main arm is hollow, while the fluke tip has lead within it. It is similar in appearance to the Spade anchor.
thumb|A Vulcan anchor, by Rocna Anchors
Vulcan: A recent sibling to the Rocna, this anchor performs similarly but does not have a roll-bar. Instead the Vulcan has patented design features such as the "V-bulb" and the "Roll Palm" that allow it to dig in deeply. The Vulcan was designed primarily for sailors who had difficulties accommodating the roll-bar Rocna on their bow. Peter Smith (originator of the Rocna) designed it specifically for larger powerboats. Both Vulcans and Rocnas are available in galvanised steel, or in stainless steel. The Vulcan is similar in appearance to the Spade anchor.
thumb|Knox Anchor
Knox Anchor: This is produced in Scotland and was invented by Professor John Knox. It has a divided concave large area fluke arrangement and a shank in high tensile steel. A roll bar similar to the Rocna gives fast setting and a holding power of about 40 times anchor weight.
Other temporary anchors
Mud weight: Consists of a blunt heavy weight, usually cast iron or cast lead, that sinks into the mud and resist lateral movement. It is suitable only for soft silt bottoms and in mild conditions. Sizes range between 5 and 20 kg for small craft. Various designs exist and many are home produced from lead or improvised with heavy objects. This is a commonly used method on the Norfolk Broads in England.
Bulwagga: This is a unique design featuring three flukes instead of the usual two. It has performed well in tests by independent sources such as American boating magazine Practical Sailor.
Permanent anchors
These are used where the vessel is permanently or semi-permanently sited, for example in the case of lightvessels or channel marker buoys. The anchor needs to hold the vessel in all weathers, including the most severe storm, but needs to be lifted only occasionally, at most – for example, only if the vessel is to be towed into port for maintenance. An alternative to using an anchor under these circumstances, especially if the anchor need never be lifted at all, may be to use a pile that is driven into the seabed.
Permanent anchors come in a wide range of types and have no standard form. A slab of rock with an iron staple in it to attach a chain to would serve the purpose, as would any dense object of appropriate weight (for instance, an engine block). Modern moorings may be anchored by augers, which look and act like oversized screws drilled into the seabed, or by barbed metal beams pounded in (or even driven in with explosives) like pilings, or by a variety of other non-mass means of getting a grip on the bottom. One method of building a mooring is to use three or more conventional anchors laid out with short lengths of chain attached to a swivel, so no matter which direction the vessel moves, one or more anchors are aligned to resist the force.
Mushroom
thumb|upright=1.2|Mushroom anchor (right) on the lightship Portsmouth at Portsmouth, Virginia
The mushroom anchor is suitable where the seabed is composed of silt or fine sand. It was invented by Robert Stevenson, for use by an 82-ton converted fishing boat, Pharos, which was used as a lightvessel between 1807 and 1810 near to Bell Rock whilst the lighthouse was being constructed. It was equipped with a 1.5-ton example.
It is shaped like an inverted mushroom, the head becoming buried in the silt. A counterweight is often provided at the other end of the shank to lay it down before it becomes buried.
A mushroom anchor normally sinks in the silt to the point where it has displaced its own weight in bottom material, thus greatly increasing its holding power. These anchors are suitable only for a silt or mud bottom, since they rely upon suction and cohesion of the bottom material, which rocky or coarse sand bottoms lack. The holding power of this anchor is at best about twice its weight until it becomes buried, when it can be as much as ten times its weight. They are available in sizes from about 5 kg up to several tons.
Deadweight
A deadweight is an anchor that relies solely on being a heavy weight. It is usually just a large block of concrete or stone at the end of the chain. Its holding power is defined by its weight underwater (i.e., taking its buoyancy into account) regardless of the type of seabed, although suction can increase this if it becomes buried. Consequently, deadweight anchors are used where mushroom anchors are unsuitable, for example in rock, gravel or coarse sand. An advantage of a deadweight anchor over a mushroom is that if it does drag, it continues to provide its original holding force. The disadvantage of using deadweight anchors in conditions where a mushroom anchor could be used is that it needs to be around ten times the weight of the equivalent mushroom anchor.
Auger
Auger anchors can be used to anchor permanent moorings, floating docks, fish farms, etc. These anchors, which have one or more slightly pitched self-drilling threads, must be screwed into the seabed with the use of a tool, so require access to the bottom, either at low tide or by use of a diver. Hence they can be difficult to install in deep water without special equipment.
Weight for weight, augers have a higher holding than other permanent designs, and so can be cheap and relatively easily installed, although difficult to set in extremely soft mud.
High-holding-types
There is a need in the oil-and-gas industry to resist large anchoring forces when laying pipelines and for drilling vessels. These anchors are installed and removed using a support tug and pennant/pendant wire. Some examples are the Stevin range supplied by Vrijhof Ankers. Large plate anchors such as the Stevmanta are used for permanent moorings.
Anchoring gear
thumb|upright|Thomas Brunton invented and patented in 1813 studded-link marine chain cable, which replaced hempen cables and is still in use.
thumb|upright|Naval anchor incorporated into memorial, Canberra, Australia
The elements of anchoring gear include the anchor, the cable (also called a rode), the method of attaching the two together, the method of attaching the cable to the ship, charts, and a method of learning the depth of the water.
Vessels may carry a number of anchors: bower anchors are the main anchors used by a vessel and normally carried at the bow of the vessel. A kedge anchor is a light anchor used for warping an anchor, also known as kedging, or more commonly on yachts for mooring quickly or in benign conditions. A stream anchor, which is usually heavier than a kedge anchor, can be used for kedging or warping in addition to temporary mooring and restraining stern movement in tidal conditions or in waters where vessel movement needs to be restricted, such as rivers and channels.
Charts are vital to good anchoring. Knowing the location of potential dangers, as well as being useful in estimating the effects of weather and tide in the anchorage, is essential in choosing a good place to drop the hook. One can get by without referring to charts, but they are an important tool and a part of good anchoring gear, and a skilled mariner would not choose to anchor without them.
Anchor rode
The anchor rode (or "cable" or "warp") that connects the anchor to the vessel is usually made up of chain, rope, or a combination of those. Large ships use only chain rode. Smaller craft might use a rope/chain combination or an all chain rode. All rodes should have some chain; chain is heavy but it resists abrasion from coral, sharp rocks, or shellfish beds, whereas a rope warp is susceptible to abrasion and can fail in a short time when stretched against an abrasive surface. The weight of the chain also helps keep the direction of pull on the anchor closer to horizontal, which improves holding, and absorbs part of snubbing loads. Where weight is not an issue, a heavier chain provides better holding by forming a catenary curve through the water and resting as much of its length on the bottom as would not be lifted by tension of the mooring load. Any changes to the tension are accommodated by additional chain being lifted or settling on the bottom, and this absorbs shock loads until the chain is straight, at which point the full load is taken by the anchor. Additional dissipation of shock loads can be achieved by fitting a snubber between the chain and a bollard or cleat on deck. This also reduces shock loads on the deck fittings, and the vessel usually lies more comfortably and quietly.
Being strong and elastic, nylon rope is the most suitable as an anchor rode. Polyester (terylene) is stronger but less elastic than nylon. Both materials sink, so they avoid fouling other craft in crowded anchorages and do not absorb much water. Neither breaks down quickly in sunlight. Elasticity helps absorb shock loading, but causes faster abrasive wear when the rope stretches over an abrasive surface, like a coral bottom or a poorly designed chock. Polypropylene ("polyprop") is not suited to rodes because it floats and is much weaker than nylon, being barely stronger than natural fibres. Some grades of polypropylene break down in sunlight and become hard, weak, and unpleasant to handle. Natural fibres such as manila or hemp are still used in developing nations but absorb a lot of water, are relatively weak, and rot, although they do give good handling grip and are often relatively cheap. Ropes that have little or no elasticity are not suitable as anchor rodes. Elasticity is partly a function of the fibre material and partly of the rope structure.
All anchors should have chain at least equal to the boat's length. Some skippers prefer an all chain warp for greater security on coral or sharp edged rock bottoms. The chain should be shackled to the warp through a steel eye or spliced to the chain using a chain splice. The shackle pin should be securely wired or moused. Either galvanized or stainless steel is suitable for eyes and shackles, galvanized steel being the stronger of the two. Some skippers prefer to add a swivel to the rode. There is a school of thought that says these should not be connected to the anchor itself, but should be somewhere in the chain. However, most skippers connect the swivel directly to the anchor.
Scope
Scope is the ratio of length of the rode to the depth of the water measured from the highest point (usually the anchor roller or bow chock) to the seabed, making allowance for the highest expected tide. When making this ratio large enough, one can ensure that the pull on the anchor is as horizontal as possible. This will make it unlikely for the anchor to break out of the bottom and drag, if it was properly embedded in the seabed to begin with. When deploying chain, a large enough scope leads to a load that is entirely horizontal, whilst an anchor rode made only of rope will never achieve a strictly horizontal pull.
In moderate conditions, the ratio of rode to water depth should be 4:1 – where there is sufficient swing-room, a greater scope is always better. In rougher conditions it should be up to twice this with the extra length giving more stretch and a smaller angle to the bottom to resist the anchor breaking out. For example, if the water is deep, and the anchor roller is above the water, then the 'depth' is 9 meters (~30 feet). The amount of rode to let out in moderate conditions is thus 36 meters (120 feet). (For this reason, it is important to have a reliable and accurate method of measuring the depth of water.)
When using a rope rode, there is a simple way to estimate the scope: The ratio of bow height of the rode to length of rode above the water while lying back hard on the anchor is the same or less than the scope ratio. The basis for this is simple geometry (Intercept Theorem): The ratio between two sides of a triangle stays the same regardless of the size of the triangle as long as the angles do not change.
Generally, the rode should be between 5 and 10 times the depth to the seabed, giving a scope of 5:1 or 10:1; the larger the number, the shallower the angle is between the cable and the seafloor, and the less upwards force is acting on the anchor. A 10:1 scope gives the greatest holding power, but also allows for much more drifting about due to the longer amount of cable paid out. Anchoring with sufficient scope and/or heavy chain rode brings the direction of strain close to parallel with the seabed. This is particularly important for light, modern anchors designed to bury in the bottom, where scopes of 5:1 to 7:1 are common, whereas heavy anchors and moorings can use a scope of 3:1, or less. Some modern anchors, such as the Ultra holds with a scope of 3:1; but, unless the anchorage is crowded, a longer scope always reduces shock stresses.
A major disadvantage of the concept of scope is that it does not take into account the fact that a chain is forming a catenary when hanging between two points (i.e., bow roller and the point where the chain hits the seabed), and thus is a non-linear curve (in fact, a cosh() function), whereas scope is a linear function. As a consequence, in deep water the scope needed will be less, whilst in very shallow water the scope must be chosen much larger to achieve the same pulling angle at the anchor shank. For this reason, the British Admiralty does not use a linear scope formula, but a square root formula instead.
A couple of online calculators exist to work out the amount of chain and rope needed to achieve a (possibly nearly) horizontal pull at the anchor shank, and the associated anchor load.
As symbol
thumb|upright|left|A 1914 Russian poster depicting the Triple Entente of World War I, with Britannia's association with the sea symbolized by her holding a large anchor
thumb|upright|An anchor pictured in the coat of arms of Mariehamn, the capital city of Åland
An anchor frequently appears on the flags and coats of arms of institutions involved with the sea, as well as of port cities and seacoast regions and provinces in various countries. There also exists in heraldry the "Anchored Cross", or Mariner's Cross, a stylized cross in the shape of an anchor. The symbol can be used to signify 'fresh start' or 'hope'.
The Mariner's Cross is also referred to as St. Clement's Cross, in reference to the way this saint was killed (being tied to an anchor and thrown from a boat into the Black Sea in 102). Anchored crosses are occasionally a feature of coats of arms in which context they are referred to by the heraldic terms anchry or ancre.
The Unicode anchor (Miscellaneous Symbols) is represented by: .
See also
"Anchors Aweigh", United States Navy marching song
Anchorage (maritime)
References
Bibliography
Blackwell, Alex & Daria; Happy Hooking – the Art of Anchoring, 2008, 2011, 2019 White Seahorse;
Edwards, Fred; Sailing as a Second Language: An illustrated dictionary, 1988 Highmark Publishing;
Hinz, Earl R.; The Complete Book of Anchoring and Mooring, Rev. 2d ed., 1986, 1994, 2001 Cornell Maritime Press;
Hiscock, Eric C.; Cruising Under Sail, second edition, 1965 Oxford University Press;
Pardey, Lin and Larry; The Capable Cruiser; 1995 Pardey Books/Paradise Cay Publications;
Rousmaniere, John; The Annapolis Book of Seamanship, 1983, 1989 Simon and Schuster;
Smith, Everrett; Cruising World's Guide to Seamanship: Hold me tight, 1992 New York Times Sports/Leisure Magazines
Further reading
William N. Brady (1864). The Kedge-anchor; Or, Young Sailors' Assistant.
First published as The Naval Apprentice's Kedge Anchor. New York, Taylor and Clement, 1841.--The Kedge-anchor; 3rd ed. New York, 1848.--6th ed. New York, 1852.--9th ed. New York, 1857.
External links
Anchor Tests: Soft Sand Over Hard Sand—Practical-Sailor
The Big Anchor Project
Anchor comparison
Category:Heraldic charges
Category:Nautical terminology
Category:Sailboat components
Category:Sailing ship components
Category:Ship anchors
Category:Watercraft components
Category:Weights | https://en.wikipedia.org/wiki/Anchor | 2025-04-05T18:25:38.488621 |
1359 | Anbar (town) | <!-- Infobox begins -->
| website | footnotes
}}
<!-- Infobox ends -->
Anbar (, ) was an ancient and medieval town in central Iraq. It played a role in the Roman–Persian Wars of the 3rd–4th centuries, and briefly became the capital of the Abbasid Caliphate before the founding of Baghdad in 762. It remained a moderately prosperous town through the 10th century, but quickly declined thereafter. As a local administrative centre, it survived until the 14th century, but was later abandoned.
Its ruins are near modern Fallujah. The city gives its name to the Al-Anbar Governorate.
History
Origins
The city is located on the left bank of the Middle Euphrates, at the junction with the Nahr Isa canal, the first of the navigable canals that link the Euphrates to the River Tigris to the east. The origins of the city are unknown, but ancient, perhaps dating to the Babylonian era and even earlier: the local artificial mound of Tell Aswad dates to . Sasanian period The town was originally known as Misiche (Greek: ), Mesiche (), or Massice (𐭩𐭪}} mšyk; 𐭔𐭉𐭊}} mšyk). As a major crossing point of the Euphrates, and occupying the northernmost point of the complex irrigation network of the Sawad, the town was of considerable strategic significance. As the western gate to central Mesopotamia, it was fortified by the Sasanian ruler Shapur I () to shield his capital, Ctesiphon, from the Roman Empire. After his decisive victory over the Roman emperor Gordian III at the Battle of Misiche in 244, Shapur renamed the town to Peroz-Shapur (Pērōz-Šāpūr or Pērōz-Šābuhr, from , meaning "victorious Shapur"; in ; in ). It became known as Pirisapora or Bersabora () to the Greeks and Romans.
The city was fortified by a double wall, possibly through the use of Roman prisoner labour; it was sacked and burned after an agreement with its garrison in March 363 by the Roman emperor Julian during his invasion of the Sasanian Empire. It was rebuilt by Shapur II. By 420, it is attested as a bishopric, both for the Church of the East and for the Syriac Orthodox Church. The town's garrison was Persian, but it also contained sizeable Arab and Jewish populations. Anbar was adjacent or identical to the Babylonian Jewish center of Nehardea (), and lies a short distance from the present-day town of Fallujah, formerly the Babylonian Jewish center of Pumbedita ().
Islamic period
The city fell to the Rashidun Caliphate in July 633, after a fiercely fought siege. When Ali ibn Abi Talib (r. 656–661) passed through the city, he was warmly welcomed by ninety-thousand Jews who then lived there, and he "received them with great friendliness."
The Arabs retained the name (Fīrūz Shābūr) for the surrounding district, but the town itself became known as Anbar (Middle Persian word for "granary" or "storehouse") from the granaries in its citadel, a name that had appeared already during the 6th century. According to Baladhuri, the third mosque to be built in Iraq was erected in the city by Sa'd ibn Abi Waqqas. Ibn Abi Waqqas initially considered Anbar as a candidate for the location of one of the first Muslim garrison towns, but the fever and fleas endemic in the area persuaded him otherwise.
According to medieval Arabic sources, most of the inhabitants of the town migrated north to found the city of Hdatta south of Mosul. The famous governor al-Hajjaj ibn Yusuf cleared the canals of the city.
Abu'l-Abbas as-Saffah (), the founder of the Abbasid Caliphate, made it his capital in 752, constructing a new town half a farsakh (}}) to the north for his Khurasani troops. There he died and was buried at the palace he had built. His successor, al-Mansur (), remained in the city until the founding of Baghdad in 762. The Abbasids also dug the great Nahr Isa canal to the south of the city, which carried water and commerce east to Baghdad. The Nahr al-Saqlawiyya or Nahr al-Qarma canal, which branches off from the Euphrates to the west of the city, is sometimes erroneously held to be the Nahr Isa, but it is more likely that it is to be identified with the pre-Islamic Nahr al-Rufayl.
It continued to be a place of much importance throughout the Abbasid period. Caliph Harun al-Rashid () stayed at the town in 799 and in 803. The town's prosperity was founded on agricultural activities, but also on trade between Iraq and Syria. The town was still prosperous in the early 9th century, but the decline of Abbasid authority during the later 9th century exposed it to Bedouin attacks in 882 and 899. In 927, the Qarmatians under Abu Tahir al-Jannabi sacked the city during their invasion of Iraq, and the devastation was compounded by another Bedouin attack two years later. The town's decline accelerated after that: while the early 10th-century geographer Istakhri still calls the town modest but populous, with the ruins of the buildings of as-Saffah still visible, Ibn Hawqal and al-Maqdisi, who wrote a generation later, attest to its decline, and the diminution of its population.
The town was sacked again in 1262 by the Mongols under Kerboka. The Ilkhanids retained Anbar as an administrative centre, a role it retained until the first half of the 14th century; the Ilkhanid minister Shams al-Din Juvayni had a canal dug from the city to Najaf, and the city was surrounded by a wall of sun-dried bricks.
Ecclesiastical history
Anbar used to host an Assyrian community from the fifth century: the town was the seat of a bishopric of the Church of the East. The names of fourteen of its bishops of the period 486–1074 are known, three of whom became Chaldean Patriarchs of Babylon.
* Narses
* Simeon
* Salibazachi
* Paul
* Theodosius
* John
* Enos 890
* Elias
* Jaballaha
* Sebarjesus
* Elias II
* Unnamed bishop
* Mundar
* Maris
* Zacharias
Titular see
Anbar is listed by the Catholic Church as a titular see of the Chaldean Catholic Church, established as titular bishopric in 1980.
It has had the following incumbents:
* Titular Archbishop Stéphane Katchou (1980.10.03 – 1981.11.10), as Coadjutor Archeparch of Bassorah of the Chaldeans (Iraq) (1980.10.03 – 1981.11.10)
* Titular Bishop Ibrahim Namo Ibrahim (1982.01.11 – 1985.08.03), as Apostolic Exarch in the United States of America (1982.01.11 – 1985.08.03)
* Titular Bishop Shlemon Warduni (since 2001.01.12), Curial Bishop of the Chaldean Catholic Church
Today
It is now entirely deserted, occupied only by mounds of ruins, whose great number indicate the city's former importance. Its ruins are northwest of Fallujah, with a circumference of some . The remains include traces of the late medieval wall, a square fortification, and the early Islamic mosque. Citations General sources * }}
* }}
*
*
*
*
* [http://www.gcatholic.org/dioceses/former/t0126.htm GCatholic, with titular incumbent biography links]
Category:History of Al Anbar Governorate
Category:Dioceses of the Church of the East
Category:Eastern Catholic titular sees
Category:Former populated places in Iraq
Category:Medieval history of Iraq
Category:Abbasid Caliphate
Category:Capitals in Asia
Category:Archaeological sites in Iraq
Category:History of Fallujah | https://en.wikipedia.org/wiki/Anbar_(town) | 2025-04-05T18:25:38.499913 |
1360 | Anazarbus | |alternate_name = Caesarea, Justinopolis
|image = Anavarza_Triumphal_arch_in_Anazarbus_2754.jpg
|alt |caption The triumphal arch of Anazarbus was later converted to the city's South Gate.
|map_type = Turkey
|map_alt |map_size 270
|coordinates
|location = Adana Province, Turkey
|region = Cilicia
|type = Settlement
|part_of |length
|width |area
|height |builder
|material |built
|abandoned = 1374
|epochs = <!-- actually displays as "Periods" -->
|cultures |dependency_of
|occupants |event
|excavations |archaeologists
|condition |ownership
|management |public_access
|website = <!-- -->
|notes =
}}
Anazarbus, also known as Justinopolis (, medieval Ain Zarba; modern Anavarza; ), was an ancient Cilician city. Under the late Roman Empire, it was the capital of Cilicia Secunda. Roman emperor Justinian I rebuilt the city in 527 after a strong earthquake hit it. It was destroyed in 1374 by the forces of the Mamluk Empire, after their conquest of Cilician Armenia.
Location
It was situated in Anatolia in modern Turkey, in the present Çukurova (or classical Aleian plain) about 15 km west of the main stream of the present Ceyhan River (or classical Pyramus river) and near its tributary the Sempas Su.
A lofty isolated ridge formed its acropolis. Though some of the masonry in the ruins is certainly pre-Roman, the Suda's identification of it with Cyinda, famous as a treasure city in the wars of Eumenes of Cardia, cannot be accepted in the face of Strabo's express location of Cyinda in western Cilicia.
History
According to the Suda, the original name of the place was Cyinda or Kyinda or Quinda (); and that it was next called Diocaesarea (Διοκαισάρεια). A city in Cilicia called Kundu rebelled against the Assyrian king Esarhaddon in 7th century BC, but it's unclear if there is a connection. At least it's known a city called Anazarbus (Ἀνάζαρβος) and Anazarba (Ἀνάζαρβα) and Anazarbon (Ἀνάζαρβον), situated on the river Pyramus, existed in the first century BC and was a part of the small client-kingdom of Tarcondimotus I until it was annexed by Rome. How the city obtained the name is a matter of conjecture. According to Stephanus of Byzantium, after the city was destroyed by an earthquake, the emperor Nerva sent thither one Anazarbus, a man of senatorial rank, who rebuilt the city, and gave to it his own name. This account cannot be accurate, as Valesius remarks, for it was called Anazarbus in Pliny's time. There are three writers of antiquity from this city. Pedanius Dioscorides is called a native of Anazarbus; but the period of Dioscorides is not certain. It was also the home of the poet Oppian and the historian Asclepiades of Anazarba. Its later name was Caesarea ad Anazarbum, and there are many medals of the place in which it is both named Anazarbus and Caesarea at or under Anazarbus. On the division of Cilicia it became the chief place of the Roman province of Cilicia Secunda, with the title of Metropolis. Early in the sixth century, in the reign of Eastern Roman emperor Justin I, it was named Justinopolis or Ioustinoupolis (Ἰουστινούπολις). The city suffered from an earthquake in 526 and was rebuilt by Justinian I and renamed Justinianopolis or Ioustinianoupolis (Ἰουστινιανούπολις); but the old name persisted, and when Thoros I, king of Lesser Armenia, made it his capital early in the 12th century, it was known as Anazarva.
Its great natural strength and situation, not far from the mouth of the Sis pass, and near the great road which debouched from the Cilician Gates, made Anazarbus play a considerable part in the struggles between the Eastern Roman Empire and the early Muslim invaders. It had been rebuilt by Harun al-Rashid in 796, refortified at great expense by the Hamdanid Sayf al-Dawla In late 1097 or early 1098 it was captured by the armies of the First Crusade and after the conquest of Antioch it was incorporated into Bohemond of Taranto's Principality of Antioch.
The site briefly exchanged hands between the Byzantine Empire and Armenians, until it was formally part of the Armenian Kingdom of Cilicia. Anazarbus was one of a chain of Armenian fortifications stretching through Cilicia. The castle of Sis (modern Kozan, Adana) lies to the north while Tumlu Castle and Yilankale are to the south, and the fortresses of Amouda and Sarvandikar are to the east. The Mamluk Empire of Egypt finally destroyed the city in 1374.
Remains
The Crusaders are probably responsible for the construction of an impressive donjon atop the center of the outcrop. Most of the remaining fortifications, including the curtain walls, massive horseshoe-shaped towers, undercrofts, cisterns, and free-standing structures date from the Armenian periods of occupation, which began with the arrival of the Rubenid Baron T‛oros I, . Within the fortress are two Armenian chapels and the magnificent (but severely damaged) three-aisle church built by T‛oros I to celebrate his conquests. The church was once surrounded by a continuous, well-executed dedicatory inscription in Armenian.
The present wall of the lower city is of late construction. It encloses a mass of ruins conspicuous in which are a fine triumphal arch, the colonnades of two streets, a gymnasium, etc. A stadium and a theatre lie outside the walls to the south. The remains of the acropolis fortifications are very interesting, including roads and ditches hewn in the rock. There are no notable structures in the upper town. For picturesqueness the site is not equaled in Cilicia, and it is worthwhile to trace the three fine aqueducts to their sources.
In 2017, archaeologists discovered a limestone statue of the goddess Hygieia and the god Eros. The statue is thought to date to the third or fourth century B.C.
In the 4th century, one of the bishops of Anazarbus was Athanasius, a "consistent expounder of the theology of Arius." His theological opponent, Athanasius of Alexandria, in De Synodis 17, 1 refers to Anazarbus as Ναζαρβῶν.
Maximin of Anazarbus attended the Council of Chalcedon.
A 6th century Notitia Episcopatuum indicates that it had as suffragan sees Epiphania, Alexandria Minor, Irenopolis, Flavias, Castabala and Aegeae. Rhosus was also subject to Anazarbus, but after the 6th century was made exempt, and Mopsuestia was raised to the rank of autocephalous metropolitan see, though without suffragans.
Latin Catholic titular see
The titular archbishopric was revived in the 18th century as a see of the Latin Catholic church, Anazarbus.
It is vacant, having had the following incumbents, generally of the highest (Metropolitan) rank, with an episcopal (lowest rank) exception:
* Titular Archbishop Giuseppe Maria Saporiti (1726.04.08 – 1743.12.02)
* Titular Bishop Isidro Alfonso Cavanillas (1753.04.09 – 1755.05.12)
* Titular Archbishop Gerolamo Formagliari (1760.07.21 – 1781)
* Titular Archbishop Romain-Frédéric Gallard (1839.02.21 – 1839.09.28)
* Titular Archbishop Andon Bedros Hassoun (1842.06.07 – 1846.08.02), as Coadjutor Archeparch of Istanbul of the Armenians (Turkey) (1842.06.07 – 1846.08.02), succeeded as Archeparch of Istanbul of the Armenians (Turkey) (1846.08.02 – 1866.09.14), later Patriarch of Cilicia of the Armenians (Lebanon) ([1866.09.14] 1867.07.12 – 1881.06), created Cardinal-Priest of Ss. Vitale, Valeria, Gervasio e Protasio (1880.12.16 – 1884.02.28)
* Titular Archbishop Giorgio Labella, Friars Minor (O.F.M.) (1847.06.04 – 1860.10.27)
* Titular Archbishop Charles Petre Eyre (1868.12.03 – 1878.03.15)
* Titular Archbishop John Baptist Salpointe (1884.04.22 – 1885.08.18)
* Titular Archbishop Michael Logue (1887.04.19 – 1887.12.03) (later Cardinal)*
* Titular Archbishop François Laurencin (1888.06.01 – 1892.12.18)
* Titular Archbishop Joaquín Larraín Gandarillas (1893.06.15 – 1897.09.26)
* Titular Archbishop Raimondo Ingheo (1907.12.16 – 1911.07.08)
* Titular Archbishop Cláudio José Gonçalves Ponce de Leon, Lazarists (C.M.) (1912.01.09 – 1924.05.26)
* Titular Archbishop Raymund Netzhammer, Benedictine Order(] O.S.B.) (1924.07.14 – 1945.09.18)
* Titular Archbishop Michele Akras (1945.10.27 – 1947.02.05)
* Titular Archbishop Heinrich Döring (ハインリヒ・デーリング), S.J. (1948.01.15 – 1951.12.17)
* Titular Archbishop Joseph-Marie Le Gouaze (1955.06.24 – 1964.07.31)
Armenian Catholic titular see
In the 19th century, an Armenian Catholic titular bishopric of Anazarbus (of the Armenians) (Anazarbus degli Armeni in Curiate Italian) was established.
It was a suppressed in 1933, having had a single incumbent, of the intermediary (archiepiscopal) rank :
* Titular Archbishop Avedis Arpiarian (1898.04.05 – 1911.08.27), previously Eparch of Kharput of the Armenians (1890.09.23 – 1898.04.05); later Eparch of Marasc of the Armenians (1911.08.27 – 1928.06.29), Auxiliary Eparch of the patriarchate Cilicia of the Armenians (Lebanon) (1928.06.29 – 1931.10.17), Armenian Catholic Patriarch of Cilicia (Lebanon) ([1931.10.17] 1933.03.13 – 1937.10.26)
Notable locals
* Pedanius Dioscorides (1st century) Greek physician, pharmacologist and botanist
* St. Domnina of Anazarbus
* St. Theodula of Anazarbus
See also
* Diocese of Alexandretta
References
Citations
General references
*
External links
* [http://www.gcatholic.org/dioceses/former/t0125.htm GCatholic Latin titular see]
* [http://www.gcatholic.org/dioceses/former/t3412.htm GCatholic Armenian Catholic former titular see]
* [https://charlvarchive.org/Site/79 Carefully documented photographic survey and plan of Anazarbus Castle]
Category:Ancient Greek archaeological sites in Turkey
Category:Former populated places in Cilicia
Category:Armenian Kingdom of Cilicia
Category:Catholic titular sees in Asia
Category:Eastern Catholic titular sees
Category:History of Adana Province
Category:Roman towns and cities in Turkey
Category:Tourist attractions in Adana Province
Category:World Heritage Tentative List for Turkey
Category:Defunct dioceses of the Ecumenical Patriarchate of Constantinople
Category:Populated places in ancient Cilicia | https://en.wikipedia.org/wiki/Anazarbus | 2025-04-05T18:25:38.508773 |
1361 | Anagram | An anagram is a word or phrase formed by rearranging the letters of a different word or phrase, typically using all the original letters exactly once. For example, the word anagram itself can be rearranged into the phrase "nag a ram"; which is an Easter egg suggestion in Google after searching for the word "anagram".
The original word or phrase is known as the subject of the anagram. Any word or phrase that exactly reproduces the letters in another order is an anagram. Someone who creates anagrams may be called an "anagrammatist", and the goal of a serious or skilled anagrammatist is to produce anagrams that reflect or comment on their subject.
Examples
= a baptism redone"]]
Anagrams may be created as a commentary on the subject. They may be a parody, a criticism or satire. For example:
* "New York Times" = "monkeys write"
* "Church of Scientology" = "rich-chosen goofy cult"
* "McDonald's restaurants" = "Uncle Sam's standard rot"
* "coronavirus" = "carnivorous"
* "She Sells Sanctuary" = "Santa; shy, less cruel" or "Satan; cruel, less shy"
An anagram may also be a synonym of the original word. For example:
* "evil" = "vile"
* "a gentleman" = "elegant man"
* "silent" = "listen"
An anagram that has a meaning opposed to that of the original word or phrase is called an "antigram". For example:
* "restful" = "fluster"
* "cheater" = "teacher"
* "funeral" = "real fun"
* "adultery" = "true lady"
* "forty five" = "over fifty"
* "Santa" = "Satan"
They can sometimes change from a proper noun or personal name into an appropriate sentence:
* "William Shakespeare" = "I am a weakish speller"
* "Madam Curie" = "Radium came"
* "George Bush" = "He bugs Gore"
* "Tom Marvolo Riddle" = "I am Lord Voldemort"
* "The Morse code" = "Here come dots"
They can change part of speech, such as the adjective "silent" to the verb "listen".
"Anagrams" itself can be anagrammatized as "Ars magna" (Latin, 'the great art').History
Anagrams can be traced back to the time of the ancient Greeks, and were used to find the hidden and mystical meaning in names.
They were popular throughout Europe during the Middle Ages, for example with the poet and composer Guillaume de Machaut. They are said to date back at least to the Greek poet Lycophron, in the third century BCE; but this relies on an account of Lycophron given by John Tzetzes in the 12th century.
In the Talmudic and Midrashic literature, anagrams were used to interpret the Hebrew Bible, notably by Eleazar of Modi'im. Later, Kabbalists took this up with enthusiasm, calling anagrams temurah.
Anagrams in Latin were considered witty over many centuries. Est vir qui adest, explained below, was cited as the example in Samuel Johnson's A Dictionary of the English Language. They became hugely popular in the early modern period, especially in Germany.
Any historical material on anagrams must always be interpreted in terms of the assumptions and spellings that were current for the language in question. In particular, spelling in English only slowly became fixed. There were attempts to regulate anagram formation, an important one in English being that of George Puttenham's Of the Anagram or Posy Transposed in The Art of English Poesie (1589).
Influence of Latin
As a literary game when Latin was the common property of the literate, Latin anagrams were prominent. Two examples are the change of Ave Maria, gratia plena, Dominus tecum (Latin: Hail Mary, full of grace, the Lord [is] with you) into Virgo serena, pia, munda et immaculata (Latin: Serene virgin, pious, clean and spotless), and the anagrammatic answer to Pilate's question, Quid est veritas? (Latin: What is truth?), namely, Est vir qui adest (Latin: It is the man who is here). The origins of these are not documented.
Latin continued to influence letter values (such as I J, U V and W = VV). There was an ongoing tradition of allowing anagrams to be "perfect" if the letters were all used once, but allowing for these interchanges. This can be seen in a popular Latin anagram against the Jesuits: Societas Jesu turned into Vitiosa seces (Latin: Cut off the wicked things). Puttenham, in the time of Elizabeth I, wished to start from Elissabet Anglorum Regina (Latin: Elizabeth Queen of the English), to obtain Multa regnabis ense gloria (Latin: By thy sword shalt thou reign in great renown); he explains carefully that H is "a note of aspiration only and no letter", and that Z in Greek or Hebrew is a mere SS. The rules were not completely fixed in the 17th century. William Camden in his Remains commented, singling out some letters—Æ, K, W, and Z—not found in the classical Roman alphabet:
Early modern period
When it comes to the 17th century and anagrams in English or other languages, there is a great deal of documented evidence of learned interest. The lawyer Thomas Egerton was praised through the anagram gestat honorem ('he carries honor'); the physician George Ent took the anagrammatic motto genio surget ('he rises through spirit/genius'), which requires his first name as Georgius. James I's courtiers discovered in "James Stuart" "a just master", and converted "Charles James Stuart" into "Claims Arthur's seat" (even at that point in time, the letters I and J were more-or-less interchangeable). Walter Quin, tutor to the future Charles I, worked hard on multilingual anagrams on the name of father James. A notorious murder scandal, the Overbury case, threw up two imperfect anagrams that were aided by typically loose spelling and were recorded by Simonds D'Ewes: "Francis Howard" (for Frances Carr, Countess of Somerset, her maiden name spelled in a variant) became "Car findes a whore", with the letters E hardly counted, and the victim Thomas Overbury, as "Thomas Overburie", was written as "O! O! a busie murther" (an old form of "murder"), with a V counted as U.
William Drummond of Hawthornden, in an essay On the Character of a Perfect Anagram, tried to lay down rules for permissible substitutions (such as S standing for Z) and letter omissions. William Camden provided a definition of "Anagrammatisme" as "a dissolution of a name truly written into his letters, as his elements, and a new connection of it by artificial transposition, without addition, subtraction or change of any letter, into different words, making some perfect sense appliable (i.e., applicable) to the person named." Dryden in MacFlecknoe disdainfully called the pastime the "torturing of one poor word ten thousand ways".
"Eleanor Audeley", wife of Sir John Davies, is said to have been brought before the High Commission in 1634 for extravagances, stimulated by the discovery that her name could be transposed to "Reveale, O Daniel", and to have been laughed out of court by another anagram submitted by Sir John Lambe, the dean of the Arches, "Dame Eleanor Davies", "Never soe mad a ladie".
An example from France was a flattering anagram for Cardinal Richelieu, comparing him to Hercules or at least one of his hands (Hercules being a kingly symbol), where Armand de Richelieu became ''Ardue main d'Hercule ("difficult hand of Hercules").
Modern period
Examples from the 19th century are the transposition of "Horatio Nelson" into Honor est a Nilo (Latin: Honor is from the Nile); and of "Florence Nightingale" into "Flit on, cheering angel". The Victorian love of anagramming as recreation is alluded to by the mathematician Augustus De Morgan using his own name as an example; "Great Gun, do us a sum!" is attributed to his son William De Morgan, but a family friend John Thomas Graves was prolific, and a manuscript with over 2,800 has been preserved.
With the advent of surrealism as a poetic movement, anagrams regained the artistic respect they had had in the Baroque period. The German poet Unica Zürn, who made extensive use of anagram techniques, came to regard obsession with anagrams as a "dangerous fever", because it created isolation of the author. The surrealist leader André Breton coined the anagram Avida Dollars for Salvador Dalí, to tarnish his reputation by the implication of commercialism.
Applications
While anagramming is certainly a recreation first, there are ways in which anagrams are put to use, and these can be more serious, or at least not quite frivolous and formless. For example, psychologists use anagram-oriented tests, often called "anagram solution tasks", to assess the implicit memory of young adults and adults alike.Establishment of priority
Natural philosophers (astronomers and others) of the 17th century transposed their discoveries into Latin anagrams, to establish their priority. In this way they laid claim to new discoveries before their results were ready for publication.
Galileo used for '' (Latin: I have observed the most distant planet to have a triple form) for discovering the rings of Saturn in 1610. Galileo announced his discovery that Venus had phases like the Moon in the form (Latin: These immature ones have already been read in vain by me -oy), that is, when rearranged, (Latin: The Mother of Loves [Venus] imitates the figures of Cynthia [ the moon]). In both cases, Johannes Kepler had solved the anagrams incorrectly, assuming they were talking about the Moons of Mars () and a red spot on Jupiter (), respectively. By coincidence, he turned out to be right about the actual objects existing.
In 1656, Christiaan Huygens, using a better telescope than those available to Galileo, figured that Galileo's earlier observations of Saturn actually meant it had a ring (Galileo's tools were only sufficient to see it as bumps) and, like Galileo, had published an anagram, . Upon confirming his observations, three years later he revealed it to mean (Latin: It [Saturn] is surrounded by a thin, flat, ring, nowhere touching, inclined to the ecliptic).
When Robert Hooke discovered Hooke's law in 1660, he first published it in anagram form, , for (Latin: as the extension, so the force).PseudonymsAnagrams are connected to pseudonyms, by the fact that they may conceal or reveal, or operate somewhere in between like a mask that can establish identity. For example, Jim Morrison used an anagram of his name in the Doors song "L.A. Woman", calling himself "Mr. Mojo Risin'". The use of anagrams and fabricated personal names may be to circumvent restrictions on the use of real names, as happened in the 18th century when Edward Cave wanted to get around restrictions imposed on the reporting of the House of Commons. In a genre such as farce or parody, anagrams as names may be used for pointed and satiric effect.
Pseudonyms adopted by authors are sometimes transposed forms of their names; thus "Calvinus" becomes "Alcuinus" (here V U) or "François Rabelais" "Alcofribas Nasier". The name "Voltaire" of François Marie Arouet fits this pattern, and is allowed to be an anagram of "Arouet, l[e] j[eune]" (U V, J I) that is, "Arouet the younger". Other examples include:
* "Damon Albarn" = "Dan Abnormal"
* "Dave Barry" = "Ray Adverb"
* "Arrigo Boito" = "Tobia Gorrio"
* "Buckethead" = "Death Cube K"
* "Daniel Clowes" = "Enid Coleslaw"
* "Marguerite (de) Crayencour" = "Marguerite Yourcenar"
* "Siobhán Donaghy" = "Shanghai Nobody"
* "Glen Duncan" = "Declan Gunn"
* "(Theodor) Geisel" = "(Theo) Le Sieg"
* "Edward Gorey" "Ogdred Weary", "Regera Dowdy" or = "E. G. Deadworry" (and others)
* "Anna Madrigal" = "A man and a girl"
* "Ted Morgan" = "(Sanche) de Gramont"
* "Lorin Morgan-Richards" = "Marcil d'Hirson Garron"
* "Vladimir Nabokov" "Vivian Darkbloom", "Vivian Bloodmark", "Blavdak Vinomori", or "Dorian Vivalkomb"
Several of these are "imperfect anagrams", letters having been left out in some cases for the sake of easy pronunciation.
Titles
Anagrams used for titles afford scope for some types of wit. Examples:
* Homer Hickam's book Rocket Boys was adapted into the 1999 film October Sky.
* The tapes for the revival of the BBC show Doctor Who were labeled with the anagram Torchwood, which later went on to be used as the name for a spin-off show. In multi-episode shows, the program occasionally substitutes the anagram of an actor's name for the actual name to prevent revealing the true identity of the role (for instance, The Master) being played by the actor.
* The New Wave band Missing Persons' best-selling album was called Spring Session M.
* Hip-hop artist MF Doom recorded a 2004 album called Mm..Food.
* Brian Eno's album Before and After Science includes a song entitled "King's Lead Hat", an anagram of "Talking Heads", a band Eno has worked with.
* Juan Maria Solare's piano ballad "Jura ser anomalía" (literally "he/she swears to be an anomaly") is an anagram of the composer's full name. His composition for English horn titled "A Dot in Time" is an anagram of "Meditation", which describes the piece. The title of his piano piece that is a homage to Claude Debussy is "Seduce Us Badly".
* Bill Evans's overdubbed piano elegy for fellow jazz pianist Sonny Clark is titled "N.Y.C.'s No Lark", and another composition, "Re: Person I Knew" is a tribute to his producer, Orrin Keepnews.
* The title of Imogen Heap's album iMegaphone is an anagram of her name.
* Progressive rock group Rush published a song on their 1989 album Presto titled "Anagram (for Mongo)" that makes use of anagrams in every line of the song.
* The title of the fifth album by American rock band Interpol, El Pintor, is an anagram of the band's name and also Spanish for "the painter".
* Many of the song titles on Aphex Twin's ...I Care Because You Do are anagrams of either "Aphex Twin", "The Aphex Twin", or "Richard D. James".
* In Disney's 1964 film Mary Poppins, Dick Van Dyke played Mr. Dawes Sr. as the anagram of his name, Navckid Keyd. In the credits, the words unscrambled themselves to reveal his name.
* The title of King Crimson's 1982 song Thela Hun Ginjeet is an anagram of "heat in the jungle".
* Two albums released in 2022 by Australian rock band King Gizzard & the Lizard Wizard titled "Made in Timeland" and "Laminated Denim".
Coincidences
In Hebrew, the name "Gernot Zippe" (גרנוט ציפה), the inventor of the Zippe-type centrifuge, is an anagram of the word "centrifuge" (צנטריפוגה).
The sentence "Name is Anu Garg", referring to anagrammer and founder of wordsmith.org Anu Garg, can be rearranged to spell "Anagram genius".
Games and puzzles
Anagrams are in themselves a recreational activity, but they also make up part of many other games, puzzles and game shows. The Jumble is a puzzle found in many newspapers in the United States requiring the unscrambling of letters to find the solution. Cryptic crossword puzzles frequently use anagrammatic clues, usually indicating that they are anagrams by the inclusion of a descriptive term like "confused" or "in disarray". An example would be Businessman burst into tears (9 letters). The solution, stationer, is an anagram of into tears, the letters of which have burst out of their original arrangement to form the name of a type of businessman.
Numerous other games and contests involve some element of anagram formation as a basic skill. Some examples:
* In Anagrams, players flip tiles over one at a time and race to take words. They can "steal" each other's words by rearranging the letters and extending the words.
* In a version of Scrabble called Clabbers, the name itself is an anagram of Scrabble. Tiles may be placed in any order on the board as long as they anagram to a valid word.
* On the British game show Countdown, contestants are given 30 seconds to make the longest word from nine random letters.
* In Boggle, players make constrained words from a grid of sixteen random letters, by joining adjacent cubes.
* On the British game show BrainTeaser, contestants are shown a word broken into randomly arranged segments and must announce the whole word. At the end of the game there is a "Pyramid" which starts with a three-letter word. A letter appears in the line below to which the player must add the existing letters to find a solution. The pattern continues until the player reaches the final eight-letter anagram. The player wins the game by solving all the anagrams within the allotted time.
* In Bananagrams, players place tiles from a pool into crossword-style word arrangements in a race to see who can finish the pool of tiles first.
Ciphers<!-- This section heading is linked to in Rasterschlüssel 44 if you change it, please change it their as well. -->
Multiple anagramming is a technique used to solve some kinds of cryptograms, such as a permutation cipher, a transposition cipher, and the Jefferson disk. Solutions may be computationally found using a Jumble algorithm.
Methods of construction
Sometimes, it is possible to "see" anagrams in words, unaided by tools, though the more letters involved the more difficult this becomes. The difficulty is that for a word of different letters, there are (factorial of ) different permutations and so different anagrams of the word. Anagram dictionaries can also be used. Computer programs, known as "anagram search", "anagram servers", and "anagram solvers", among other names, offer a much faster route to creating anagrams, and a large number of these programs are available on the Internet. Some programs use the Anatree algorithm to compute anagrams efficiently.
The program or server carries out an exhaustive search of a database of words, to produce a list containing every possible combination of words or phrases from the input word or phrase using a jumble algorithm. Some programs (such as Lexpert) restrict to one-word answers. Many anagram servers (for example, [http://findwords.online4me.com The Words Oracle]) can control the search results, by excluding or including certain words, limiting the number or length of words in each anagram, or limiting the number of results. Anagram solvers are often banned from online anagram games. The disadvantage of computer anagram solvers, especially when applied to multi-word anagrams, is their poor understanding of the meaning of the words they are manipulating. They usually cannot filter out meaningful or appropriate anagrams from large numbers of nonsensical word combinations. Some servers attempt to improve on this using statistical techniques that try to combine only words that appear together often. This approach provides only limited success since it fails to recognize ironic and humorous combinations.
Some anagrammatists indicate the method they used. Anagrams constructed without the aid of a computer are noted as having been done "manually" or "by hand"; those made by utilizing a computer may be noted "by machine" or "by computer", or may indicate the name of the computer program (using Anagram Genius).
There are also a few "natural" instances: English words unconsciously created by switching letters around. The French chaise longue ("long chair") became the American "chaise lounge" by metathesis (transposition of letters and/or sounds). It has also been speculated that the English "curd" comes from the Latin crudus ("raw"). Similarly, the ancient English word for bird was "brid".
Notable anagrammatists
The French king Louis XIII had a man named Thomas Billon appointed as his Royal Anagrammatist with an annual salary of 1,200 livres. Among contemporary anagrammers, Anu Garg, created an Internet Anagram Server in 1994 together with the satirical anagram-based newspaper The Anagram Times. Mike Keith has anagrammed the complete text of Moby Dick. He, along with Richard Brodie, has published The Anagrammed Bible that includes anagrammed version of many books of the Bible. Popular television personality Dick Cavett is known for his anagrams of famous celebrities such as Alec Guinness and Spiro Agnew.
See also
* Acronym
* Ambigram
* Anagrammatic poem
* Anagrams, a board game
* Ananym
* Blanagram
* Constrained writing
* Isogram
* Letter bank
* Lipogram
* List of geographic anagrams and ananyms
* List of taxa named by anagrams
* London Underground anagram map
* Palindrome
* Pangram
* Rebus
* Sator Square
* Spoonerism
* Tautonym
* Word play
References
Further reading
* Henry Benjamin Wheatley. Of Anagrams: A Monograph Treating of Their History from the Earliest Ages to the Present Time. Williams & Norgate, 1862.
* Word Ways: The Journal of Recreational Linguistics. Greenwood Periodicals et al., 1968–. .
* Howard W. Bergerson. Palindromes and Anagrams. Dover Publications, 1973. .
External links
* [https://www.anagramthis.com AnagramThis] - An ad-free online anagram creator | https://en.wikipedia.org/wiki/Anagram | 2025-04-05T18:25:38.528117 |
1362 | Anadyr (river) | | mouth = Bering Sea
| mouth_location = Gulf of Anadyr
| mouth_coordinates
| subdivision_type1 = Country
| subdivision_name1 = Siberia, Russian Federation
| length
| source1_elevation
| mouth_elevation
| tributaries_left= Belaya, Tanyurer
| tributaries_right= Yablon, Yeropol, Mayn
| discharge1_location= Anadyr Estuary, Gulf of Anadyr
| discharge1_avg
| basin_size
| pushpin_map = Russia Chukotka Autonomous Okrug
| pushpin_map_size | pushpin_map_caption Mouth location in Chukotka, Russia
}}
The Anadyr (; Yukaghir: Онандырь; ) is a river in the far northeast of Siberia which flows into the Gulf of Anadyr of the Bering Sea and drains much of the interior of Chukotka Autonomous Okrug. Its basin corresponds to the Anadyrsky District of Chukotka.
Geography
The Anadyr is long and has a basin of . It is frozen from October to late May and has a maximum flow in June with the snowmelt. It is navigable in small boats for about to near Markovo. West of Markovo it is in the Anadyr Highlands (moderate mountains and valleys with a few trees) and east of Markovo it moves into the Anadyr Lowlands (very flat treeless tundra with lakes and bogs). The drop from Markovo to the sea is less than .
It rises at about 67°N latitude and 171°E longitude in the Anadyr Highlands, near the headwaters of the Maly Anyuy, flows southwest receiving the waters of the rivers Yablon and Yeropol, turns east around the Shchuchy Range and passes Markvovo and the old site of Anadyrsk, turns north and east and receives the Mayn from the south, thereby encircling the Lebediny Zakaznik, turns northeast to receive the Belaya from the north in the Parapol-Belsky Lowlands, then past Ust-Belaya it turns southeast into the Anadyr Lowlands past the Ust-Tanyurer Zakaznik and receives the Tanyurer from the north. At Lake Krasnoye, it turns east and flows into the Onemen Bay of the Anadyr Estuary. If the Onemen Bay is considered part of the river, it also receives the Velikaya from the south and the Kanchalan from the north. Other important tributaries are the Yablon, Yeropol and Mamolina from the right and the Chineyveyem and Ubiyenka from the left.
Its basin is surrounded by the Amguema and Palyavaam basins to the north, the Bolshoy Anyuy, Oloy and Kolyma basins to the northwest, and the Penzhina basin to the southwest.
{|
|- valign="top"
|
|
|}
History
In 1648, Semyon Dezhnev reached the mouth of the Anadyr after being shipwrecked on the coast. In 1649, he went upriver and built winter quarters at Anadyrsk. For the next 100 years, the Anadyr was the main route from the Arctic to the Pacific and Kamchatka. In the 18th century, the Anadyr was described by the polar explorer Dmitry Laptev.
Ecology
The country through which it passes is thinly populated, and is dominated by tundra, with a rich variety of plant life..}} Much of the region's landscapes are dominated by rugged mountains. For nine months of the year the ground is covered with snow, and the frozen rivers become navigable roads. George Kennan, an American working on the Western Union Telegraph Expedition in the late 1860s, found that dog sled travel on the lower Anadyr was limited by lack of firewood.
Reindeer, upon which the local inhabitants subsisted, were once found in considerable numbers,.}} but the domestic reindeer population has collapsed dramatically since the reorganization and privatization of state-run collective farms beginning in 1992. As herds of domestic reindeer have declined, herds of wild caribou have increased.
There are ten species of salmon inhabiting the Anadyr river basin. Every year, on the last Sunday in April, there is an ice fishing competition in the frozen estuarine waters of the Anadyr's mouth. This festival is locally known as Korfest.
The area is a summering place for a number of migratory birds including brent geese, Eurasian wigeons, and the pintails of California.See also* Operation AnadyrSourcesFootnotesNotesReferences*
*
*
External links
* [http://www.chukotka.org/en/tourism/about_tourism/kind_of_tourism/ "Tourist and environmental information"] Chukotka Autonomous Okrug website, in English
* [https://web.archive.org/web/20071018001037/http://wildsalmoncenter.org/pops/AnadyrRiver.php "Russia Far East: Anadyr River" Wild Salmon Center]
** [https://web.archive.org/web/20080510105121/http://www.wildsalmoncenter.org/RapidAssessments/AnadyrRapidAssessment.pdf Anadyr River Watershed]
* [https://web.archive.org/web/20090305111407/http://www.faculty.uaf.edu/ffpag/snezhnoe.html "Snezhnoye: a village on the Anadyr' River"]
Category:Rivers of Chukotka Autonomous Okrug
Category:Drainage basins of the Bering Sea | https://en.wikipedia.org/wiki/Anadyr_(river) | 2025-04-05T18:25:38.534151 |
1363 | André-Marie Ampère | | image = Ampere Andre 1825.jpg
| caption = Engraving of Ampère by Ambroise Tardieu, 1825
| birth_date
| birth_place = Lyon, Kingdom of France
| death_date
| death_place = Marseille, Kingdom of France
| known_for =
| awards = ForMemRS (1827)
| fields = Physics<br>Mathematics
| work_institutions = École polytechnique<br>Collège de France
| signature = André-Marie Ampère signature.svg
}}
André-Marie Ampère (, ; ; 20 January 177510 June 1836) was a French physicist and mathematician who was one of the founders of the science of classical electromagnetism, which he referred to as electrodynamics. He is also the inventor of numerous applications, such as the solenoid (a term coined by him) and the electrical telegraph. As an autodidact, Ampère was a member of the French Academy of Sciences and professor at the École polytechnique and the Collège de France.
The SI unit of electric current, the ampere (A), is named after him. His name is also one of the 72 names inscribed on the Eiffel Tower. The term kinematic is the English version of his cinématique, which he constructed from the Greek kinema ("movement, motion"), itself derived from kinein ("to move"). Biography Early life André-Marie Ampère was born on 20 January 1775 in Lyon to Jean-Jacques Ampère, a prosperous businessman, and Jeanne Antoinette Desutières-Sarcey Ampère, during the height of the French Enlightenment. He spent his childhood and adolescence at the family property at Poleymieux-au-Mont-d'Or near Lyon. Jean-Jacques Ampère, a successful merchant, was an admirer of the philosophy of Jean-Jacques Rousseau, whose theories of education (as outlined in his treatise Émile) were the basis of Ampère's education. Rousseau believed that young boys should avoid formal schooling and pursue instead a "direct education from nature." Ampère's father actualized this ideal by allowing his son to educate himself within the walls of his well-stocked library. French Enlightenment masterpieces such as Georges-Louis Leclerc, comte de Buffon's Histoire naturelle, générale et particulière (begun in 1749) and Denis Diderot and Jean le Rond d'Alembert's Encyclopédie (volumes added between 1751 and 1772) thus became Ampère's schoolmasters. The young Ampère, however, soon resumed his Latin lessons, which enabled him to master the works of Leonhard Euler and Daniel Bernoulli.
French Revolution
In addition, Ampère used his access to the latest books to begin teaching himself advanced mathematics at age 12. In later life Ampère claimed that he knew as much about mathematics and science when he was eighteen as ever he knew, but as a polymath, his reading embraced history, travels, poetry, philosophy, and the natural sciences. becoming a local judge (juge de paix) in a small town near Lyon. When the Jacobin faction seized control of the Revolutionary government in 1792, his father Jean-Jacques Ampère resisted the new political tides, and he was guillotined on 24 November 1793, as part of the Jacobin purges of the period.
In 1796, Ampère met Julie Carron and, in 1799, they were married. Ampère took his first regular job in 1799 as a mathematics teacher, which gave him the financial security to marry Carron and father his first child, Jean-Jacques (named after his father), the next year. (Jean-Jacques Ampère eventually achieved his own fame as a scholar of languages.) Ampère's maturation corresponded with the transition to the Napoleonic regime in France, and the young father and teacher found new opportunities for success within the technocratic structures favoured by the new French First Consul. In 1802, Ampère was appointed a professor of physics and chemistry at the École Centrale in Bourg-en-Bresse, leaving his ailing wife and infant son in Lyon. He used his time in Bourg to research mathematics, producing Considérations sur la théorie mathématique du jeu (1802; "Considerations on the Mathematical Theory of Games"), a treatise on mathematical probability that he sent to the Paris Academy of Sciences in 1803.
Teaching career
After the death of his wife in July 1803, Ampère moved to Paris, where he began a tutoring post at the new École Polytechnique in 1804. Despite his lack of formal qualifications, Ampère was appointed a professor of mathematics at the school in 1809. As well as holding positions at this school until 1828, in 1819 and 1820 Ampère offered courses in philosophy and astronomy, respectively, at the University of Paris, and in 1824 he was elected to the prestigious chair in experimental physics at the Collège de France. In 1814, Ampère was invited to join the class of mathematicians in the new Institut Impérial, the umbrella under which the reformed state Academy of Sciences would sit.
Ampère engaged in a diverse array of scientific inquiries during the years leading up to his election to the academy—writing papers and engaging in topics from mathematics and philosophy to chemistry and astronomy, which was customary among the leading scientific intellectuals of the day. Ampère claimed that "at eighteen years he found three culminating points in his life, his First Communion, the reading of Antoine Leonard Thomas's "Eulogy of Descartes", and the Taking of the Bastille. On the day of his wife's death he wrote two verses from the Psalms, and the prayer, 'O Lord, God of Mercy, unite me in Heaven with those whom you have permitted me to love on earth.' In times of duress he would take refuge in the reading of the Bible and the Fathers of the Church."
A lay Catholic, he took for a time into his family the young student Frédéric Ozanam (1813–1853), one of the founders of the Conference of Charity, later known as the Society of Saint Vincent de Paul. Ozanam would much later be beatified by Pope John Paul II in 1998. Through Ampère, Ozanam had contact with leaders of the neo-Catholic movement, such as François-René de Chateaubriand, Jean-Baptiste Henri Lacordaire, and Charles Forbes René de Montalembert.
Work in electromagnetism
In September 1820, Ampère's friend and eventual eulogist François Arago showed the members of the French Academy of Sciences the surprising discovery by Danish physicist Hans Christian Ørsted that a magnetic needle is deflected by an adjacent electric current. Ampère began developing a mathematical and physical theory to understand the relationship between electricity and magnetism. Furthering Ørsted's experimental work, Ampère showed that two parallel wires carrying electric currents attract or repel each other, depending on whether the currents flow in the same or opposite directions, respectively - this laid the foundation of electrodynamics. He also applied mathematics in generalizing physical laws from these experimental results. The most important of these was the principle that came to be called Ampère's law, which states that the mutual action of two lengths of current-carrying wire is proportional to their lengths and to the intensities of their currents. Ampère also applied this same principle to magnetism, showing the harmony between his law and French physicist Charles Augustin de Coulomb's law of electric action. Ampère's devotion to, and skill with, experimental techniques anchored his science within the emerging fields of experimental physics.
Ampère also provided a physical understanding of the electromagnetic relationship, theorizing the existence of an "electrodynamic molecule" (the forerunner of the idea of the electron) that served as the component element of both electricity and magnetism. Using this physical explanation of electromagnetic motion, Ampère developed a physical account of electromagnetic phenomena that was both empirically demonstrable and mathematically predictive. Almost 100 years later, in 1915, Albert Einstein together with Wander Johannes de Haas made the proof of the correctness of Ampère's hypothesis through the Einstein–de Haas effect. In 1827, Ampère published his magnum opus, ''Mémoire sur la théorie mathématique des phénomènes électrodynamiques uniquement déduite de l'experience (Memoir on the Mathematical Theory of Electrodynamic Phenomena, Uniquely Deduced from Experience), the work that coined the name of his new science, electrodynamics, and became known ever after as its founding treatise.
In 1827, Ampère was elected a Foreign Member of the Royal Society and in 1828, a foreign member of the Royal Swedish Academy of Science. Probably the highest recognition came from James Clerk Maxwell, who in his Treatise on Electricity and Magnetism'' named Ampère "the Newton of electricity". Honours * 8.10.1825: Member of the Royal Academy of Science, Letters and Fine Arts of Belgium.Legacy
An international convention, signed at the 1881 International Exposition of Electricity, established the ampere as one of the standard units of electrical measurement, in recognition of his contribution to the creation of modern electrical science and along with the coulomb, volt, ohm, watt and farad, which are named, respectively, after Ampère's contemporaries Charles-Augustin de Coulomb of France, Alessandro Volta of Italy, Georg Ohm of Germany, James Watt of Scotland and Michael Faraday of England. Ampère's name is one of the 72 names inscribed on the Eiffel Tower.
Many streets and squares are named after Ampère, as are schools, a Lyon metro station, a graphics processing unit microarchitecture, a mountain on the moon and an electric ferry in Norway.Writings
* Considérations sur la théorie mathématique du jeu, Perisse, Lyon Paris 1802, [https://archive.org/details/considerationssu00ampuoft online lesen] im Internet-Archiv
* |access-date=2010-09-26}}
* |access-date=2010-09-26}}
* |access-date2010-09-26}}
* |access-date2010-09-26}}
**
* |access-date2010-09-26}}
** |access-date=2010-09-26}}
** |access-date=2010-09-26}}
Partial translations:
* Magie, W.M. (1963). A Source Book in Physics. Harvard: Cambridge MA. pp. 446–460.
* .
Complete translations:
*
*
References
Further reading
*
*
* ([https://isidore.co/calibre/get/EPUB/6855 EPUB])
External links
* [http://www.ampere.cnrs.fr Ampère and the history of electricity] – a French-language, edited by CNRS, site with Ampère's correspondence (full text and critical edition with links to manuscripts pictures, more than 1000 letters), an Ampère bibliography, experiments, and 3D simulations
* [https://web.archive.org/web/20080418102502/http://musee-ampere.univ-lyon1.fr/ Ampère Museum] – a French-language site from the museum in Poleymieux-au-Mont-d'or, near Lyon, France
* [https://www.ifi.unicamp.br/~assis/Amperes-Electrodynamics.pdf ''Ampere's Electrodynamics] Includes complete English translation of Theory of Electrodynamic Phenomena''
* "Société des Amis d'André-Marie Ampère", a French society dedicated to maintain the memory of André-Marie Ampère and in charge of the Ampère Museum.
*
*
* [http://www.newadvent.org/cathen/01437c.htm Catholic Encyclopedia on André Marie Ampère]
* [http://histoires-de-sciences.over-blog.fr/2013/11/electrical-units-history.html Electrical units history.]
Category:1775 births
Category:1836 deaths
Category:Scientists from Lyon
Category:Electrostatics
Category:19th-century French physicists
Category:People associated with electricity
Category:Independent scientists
Category:French Roman Catholics
Category:Academic staff of the Collège de France
Category:Foreign members of the Royal Society
Category:Fellows of the Royal Society of Edinburgh
Category:Members of the French Academy of Sciences
Category:Members of the Royal Academy of Belgium
Category:Members of the Royal Swedish Academy of Sciences
Category:Honorary members of the Saint Petersburg Academy of Sciences
Category:Burials at Montmartre Cemetery
Category:Magneticians
Category:Academic staff of École Polytechnique | https://en.wikipedia.org/wiki/André-Marie_Ampère | 2025-04-05T18:25:38.545599 |
1365 | Ammonia | |Ammonium|the gum ammoniac|Ammoniacum|the route in South Africa|R717 (South Africa)|other uses|NH 3 (disambiguation)|and|Ammonia (disambiguation)}}
<!-- THIS ARTICLE WAS STARTED IN BRITISH SPELLING. PLEASE KEEP PER WP:ENGVAR. -->
|Section1 =
|PubChem = 222
|ChEMBL_Ref =
|ChEMBL = 1160819
|ChemSpiderID = 217
|ChemSpiderID_Ref =
|UNII = 5138Q19F1X
|UNII_Ref =
|EINECS = 231-635-3
|UNNumber = 1005
|KEGG = D02916
|KEGG_Ref =
|MeSHName = Ammonia
|ChEBI_Ref =
|ChEBI = 16134
|RTECS = BO0875000
|SMILES = N
|StdInChI_Ref =
|StdInChI = 1S/H3N/h1H3
|StdInChIKey_Ref =
|StdInChIKey = QGZKDVFQNNGYKY-UHFFFAOYSA-N
|Beilstein = 3587154
|Gmelin = 79
|3DMet = B00004}}
|Section2 =
|N1|H3
|Appearance = Colourless gas
|Odour = Strong pungent odour
|Density
|MeltingPtC = −77.73
|MeltingPt_notes = (Triple point at 6.060 kPa, 195.4 K)<!-- the solid–liquid transition line is essentially vertical, meaning the melting point is the same from ~0.05 to 12+ atm -->
|BoilingPtC = −33.34<!-- Critical point 11.300 MPa, 405.5 K see Ammonia (data page) -->
|CriticalTP ,
|Solubility
|SolubleOther = soluble in chloroform, ether, ethanol, methanol
|pKa 32.5 (−33 °C), 9.24 (of ammonium)
|pKb = 4.75
|ConjugateAcid = Ammonium
|ConjugateBase = Amide
|RefractIndex = 1.3327
|Viscosity
|VaporPressure = 857.3 kPa
|MagSus
}}
|Section3 =
|Section4 =
| LCLo at a pressure of one atmosphere, but the liquid can often be handled in the laboratory without external cooling. Household ammonia or ammonium hydroxide is a solution of ammonia in water.
Etymology
Pliny, in Book XXXI of his Natural History, refers to a salt named hammoniacum, so called because of the proximity of its source to the Temple of Jupiter Amun (Greek Ἄμμων Ammon) in the Roman province of Cyrenaica. However, the description Pliny gives of the salt does not conform to the properties of ammonium chloride. According to Herbert Hoover's commentary in his English translation of Georgius Agricola's De re metallica, it is likely to have been common sea salt. In any case, that salt ultimately gave ammonia and ammonium compounds their name.
Natural occurrence (abiological)
Traces of ammonia/ammonium are found in rainwater. Ammonium chloride (sal ammoniac), and ammonium sulfate are found in volcanic districts. Crystals of ammonium bicarbonate have been found in Patagonia guano.
Ammonia is found throughout the Solar System on Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto, among other places: on smaller, icy bodies such as Pluto, ammonia can act as a geologically important antifreeze, as a mixture of water and ammonia can have a melting point as low as if the ammonia concentration is high enough and thus allow such bodies to retain internal oceans and active geology at a far lower temperature than would be possible with water alone. Substances containing ammonia, or those that are similar to it, are called ammoniacal. Properties
Ammonia is a colourless gas with a characteristically pungent smell. It is lighter than air, its density being 0.589 times that of air. It is easily liquefied due to the strong hydrogen bonding between molecules. Gaseous ammonia turns to a colourless liquid, which boils at , and freezes to colourless crystals at . Little data is available at very high temperatures and pressures, but the liquid-vapor critical point occurs at 405 K and 11.35 MPa.
Solid
The crystal symmetry is cubic, Pearson symbol cP16, space group P2<sub>1</sub>3 No.198, lattice constant 0.5125 nm.
Liquid
Liquid ammonia possesses strong ionising powers reflecting its high ε of 22 at . Liquid ammonia has a very high standard enthalpy change of vapourization (23.5 kJ/mol; for comparison, water's is 40.65 kJ/mol, methane 8.19 kJ/mol and phosphine 14.6 kJ/mol) and can be transported in pressurized or refrigerated vessels; however, at standard temperature and pressure liquid anhydrous ammonia will vaporize.
Solvent properties
Ammonia readily dissolves in water. In an aqueous solution, it can be expelled by boiling. The aqueous solution of ammonia is basic, and may be described as aqueous ammonia or ammonium hydroxide. The maximum concentration of ammonia in water (a saturated solution) has a specific gravity of 0.880 and is often known as '.880 ammonia'.
{|class="wikitable mw-collapsible"
|+Thermal and physical properties of saturated liquid ammonia Most ammonium salts are soluble and act as acids in liquid ammonia solutions. The solubility of halide salts increases from fluoride to iodide. A saturated solution of ammonium nitrate ('''Divers' solution', named after Edward Divers) contains 0.83 mol solute per mole of ammonia and has a vapour pressure of less than 1 bar even at . However, few oxyanion salts with other cations dissolve.
Liquid ammonia will dissolve all of the alkali metals and other electropositive metals such as Ca, Sr, Ba, Eu and Yb (also Mg using an electrolytic process). At low concentrations (<0.06 mol/L), deep blue solutions are formed: these contain metal cations and solvated electrons, free electrons that are surrounded by a cage of ammonia molecules.
These solutions are strong reducing agents. At higher concentrations, the solutions are metallic in appearance and in electrical conductivity. At low temperatures, the two types of solution can coexist as immiscible phases.
Redox properties of liquid ammonia
{| class"wikitable" style"text-align:center"
!
! E° (V, ammonia)
! E° (V, water)
|-
|
| −2.24
| −3.04
|-
|
| −1.98
| −2.93
|-
|
| −1.85
| −2.71
|-
|
| −0.53
| −0.76
|-
|
| 0.00
| —
|-
|
| +0.43
| +0.34
|-
|
| +0.83
| +0.80
|}
The range of thermodynamic stability of liquid ammonia solutions is very narrow, as the potential for oxidation to dinitrogen, E''° (), is only +0.04 V. In practice, both oxidation to dinitrogen and reduction to dihydrogen are slow. This is particularly true of reducing solutions: the solutions of the alkali metals mentioned above are stable for several days, slowly decomposing to the metal amide and dihydrogen. Most studies involving liquid ammonia solutions are done in reducing conditions; although oxidation of liquid ammonia is usually slow, there is still a risk of explosion, particularly if transition metal ions are present as possible catalysts.
Structure
.]]
structure of ammonia]]
The ammonia molecule has a trigonal pyramidal shape, as predicted by the valence shell electron pair repulsion theory (VSEPR theory) with an experimentally determined bond angle of 106.7°. The central nitrogen atom has five outer electrons with an additional electron from each hydrogen atom. This gives a total of eight electrons, or four electron pairs that are arranged tetrahedrally. Three of these electron pairs are used as bond pairs, which leaves one lone pair of electrons. The lone pair repels more strongly than bond pairs; therefore, the bond angle is not 109.5°, as expected for a regular tetrahedral arrangement, but 106.7°. and was used in the first maser. Amphotericity One of the most characteristic properties of ammonia is its basicity. Ammonia is considered to be a weak base. It combines with acids to form ammonium salts; thus, with hydrochloric acid it forms ammonium chloride (sal ammoniac); with nitric acid, ammonium nitrate, etc. Perfectly dry ammonia gas will not combine with perfectly dry hydrogen chloride gas; moisture is necessary to bring about the reaction.
As a demonstration experiment under air with ambient moisture, opened bottles of concentrated ammonia and hydrochloric acid solutions produce a cloud of ammonium chloride, which seems to appear 'out of nothing' as the salt aerosol forms where the two diffusing clouds of reagents meet between the two bottles.
}}
The salts produced by the action of ammonia on acids are known as the ammonium salts and all contain the ammonium ion ().
Although ammonia is well known as a weak base, it can also act as an extremely weak acid. It is a protic substance and is capable of formation of amides (which contain the ion). For example, lithium dissolves in liquid ammonia to give a blue solution (solvated electron) of lithium amide:
}}
Self-dissociation
Like water, liquid ammonia undergoes molecular autoionisation to form its acid and base conjugates:
}}
Ammonia often functions as a weak base, so it has some buffering ability. Shifts in pH will cause more or fewer ammonium cations () and amide anions () to be present in solution. At standard pressure and temperature,
10<sup>−30</sup>.}} Combustion
catalyzes the combustion of a flask of ammonia.]]
Ammonia does not burn readily or sustain combustion, except under narrow fuel-to-air mixtures of 15–28% ammonia by volume in air. When mixed with oxygen, it burns with a pale yellowish-green flame. Ignition occurs when chlorine is passed into ammonia, forming nitrogen and hydrogen chloride; if chlorine is present in excess, then the highly explosive nitrogen trichloride () is also formed.
The combustion of ammonia to form nitrogen and water is exothermic:
, ΔH°<sub>r</sub> −1267.20 kJ (or −316.8 kJ/mol if expressed per mol of )}}
The standard enthalpy change of combustion, ΔH°<sub>c</sub>, expressed per mole of ammonia and with condensation of the water formed, is −382.81 kJ/mol. Dinitrogen is the thermodynamic product of combustion: all nitrogen oxides are unstable with respect to and , which is the principle behind the catalytic converter. Nitrogen oxides can be formed as kinetic products in the presence of appropriate catalysts, a reaction of great industrial importance in the production of nitric acid:
}}
A subsequent reaction leads to :
}}
The combustion of ammonia in air is very difficult in the absence of a catalyst (such as platinum gauze or warm chromium(III) oxide), due to the relatively low heat of combustion, a lower laminar burning velocity, high auto-ignition temperature, high heat of vapourization, and a narrow flammability range. However, recent studies have shown that efficient and stable combustion of ammonia can be achieved using swirl combustors, thereby rekindling research interest in ammonia as a fuel for thermal power production. The flammable range of ammonia in dry air is 15.15–27.35% and in 100% relative humidity air is 15.95–26.55%. For studying the kinetics of ammonia combustion, knowledge of a detailed reliable reaction mechanism is required, but this has been challenging to obtain. Precursor to organonitrogen compounds
Ammonia is a direct or indirect precursor to most manufactured nitrogen-containing compounds. It is the precursor to nitric acid, which is the source for most N-substituted aromatic compounds.
Amines can be formed by the reaction of ammonia with alkyl halides or, more commonly, with alcohols:
}}
Its ring-opening reaction with ethylene oxide give ethanolamine, diethanolamine, and triethanolamine.
Amides can be prepared by the reaction of ammonia with carboxylic acid and their derivatives. For example, ammonia reacts with formic acid (HCOOH) to yield formamide () when heated. Acyl chlorides are the most reactive, but the ammonia must be present in at least a twofold excess to neutralise the hydrogen chloride formed. Esters and anhydrides also react with ammonia to form amides. Ammonium salts of carboxylic acids can be dehydrated to amides by heating to 150–200 °C as long as no thermally sensitive groups are present.
* Amino acids, using Strecker amino-acid synthesis
* Acrylonitrile, in the Sohio process
Other organonitrogen compounds include alprazolam, ethanolamine, ethyl carbamate and hexamethylenetetramine.
Precursor to inorganic nitrogenous compounds
Nitric acid is generated via the Ostwald process by oxidation of ammonia with air over a platinum catalyst at , ≈9 atm. Nitric oxide and nitrogen dioxide are intermediate in this conversion:
}}
Nitric acid is used for the production of fertilisers, explosives, and many organonitrogen compounds.
The hydrogen in ammonia is susceptible to replacement by a myriad substituents.
Ammonia gas reacts with metallic sodium to give sodamide, .
With chlorine, monochloramine is formed.
Pentavalent ammonia is known as λ<sup>5</sup>-amine, nitrogen pentahydride decomposes spontaneously into trivalent ammonia (λ<sup>3</sup>-amine) and hydrogen gas at normal conditions. This substance was once investigated as a possible solid rocket fuel in 1966.
Ammonia is also used to make the following compounds:
* Hydrazine, in the Olin Raschig process and the peroxide process
* Hydrogen cyanide, in the BMA process and the Andrussow process
* Hydroxylamine and ammonium carbonate, in the Raschig process
* Urea, in the Bosch–Meiser urea process and in Wöhler synthesis
* ammonium perchlorate, ammonium nitrate, and ammonium bicarbonate
() is a widely used anticancer drug.|upright=0.6]]
Ammonia is a ligand forming metal ammine complexes. For historical reasons, ammonia is named ammine in the nomenclature of coordination compounds. One notable ammine complex is cisplatin (, a widely used anticancer drug. Ammine complexes of chromium(III) formed the basis of Alfred Werner's revolutionary theory on the structure of coordination compounds. Werner noted only two isomers (fac- and mer-) of the complex could be formed, and concluded the ligands must be arranged around the metal ion at the vertices of an octahedron.
Ammonia forms 1:1 adducts with a variety of Lewis acids such as , phenol, and . Ammonia is a hard base (HSAB theory) and its E & C parameters are E<sub>B</sub> 2.31 and C<sub>B</sub> 2.04. Its relative donor strength toward a series of acids, versus other Lewis bases, can be illustrated by C-B plots.
Detection and determination
Ammonia in solution
Ammonia and ammonium salts can be readily detected, in very minute traces, by the addition of Nessler's solution, which gives a distinct yellow colouration in the presence of the slightest trace of ammonia or ammonium salts. The amount of ammonia in ammonium salts can be estimated quantitatively by distillation of the salts with sodium (NaOH) or potassium hydroxide (KOH), the ammonia evolved being absorbed in a known volume of standard sulfuric acid and the excess of acid then determined volumetrically; or the ammonia may be absorbed in hydrochloric acid and the ammonium chloride so formed precipitated as ammonium hexachloroplatinate, . Gaseous ammonia Sulfur sticks are burnt to detect small leaks in industrial ammonia refrigeration systems. Larger quantities can be detected by warming the salts with a caustic alkali or with quicklime, when the characteristic smell of ammonia will be at once apparent. Ammonia is an irritant and irritation increases with concentration; the permissible exposure limit is 25 ppm, and lethal above 500 ppm by volume. Higher concentrations are hardly detected by conventional detectors, the type of detector is chosen according to the sensitivity required (e.g. semiconductor, catalytic, electrochemical). Holographic sensors have been proposed for detecting concentrations up to 12.5% in volume.
In a laboratorial setting, gaseous ammonia can be detected by using concentrated hydrochloric acid or gaseous hydrogen chloride. A dense white fume (which is ammonium chloride vapor) arises from the reaction between ammonia and HCl(g). Ammoniacal nitrogen (NH<sub>3</sub>–N) Ammoniacal nitrogen (NH<sub>3</sub>–N) is a measure commonly used for testing the quantity of ammonium ions, derived naturally from ammonia, and returned to ammonia via organic processes, in water or waste liquids. It is a measure used mainly for quantifying values in waste treatment and water purification systems, as well as a measure of the health of natural and man-made water reserves. It is measured in units of mg/L (milligram per litre). History
in Ludwigshafen and was re-erected on the premises of the University of Karlsruhe in Germany.]]
The ancient Greek historian Herodotus mentioned that there were outcrops of salt in an area of Libya that was inhabited by a people called the 'Ammonians' (now the Siwa oasis in northwestern Egypt, where salt lakes still exist). The Greek geographer Strabo also mentioned the salt from this region. However, the ancient authors Dioscorides, Apicius, Arrian, Synesius, and Aëtius of Amida described this salt as forming clear crystals that could be used for cooking and that were essentially rock salt. Hammoniacus sal appears in the writings of Pliny, although it is not known whether the term is equivalent to the more modern sal ammoniac (ammonium chloride).
The fermentation of urine by bacteria produces a solution of ammonia; hence fermented urine was used in Classical Antiquity to wash cloth and clothing, to remove hair from hides in preparation for tanning, to serve as a mordant in dying cloth, and to remove rust from iron. It was also used by ancient dentists to wash teeth.
In the form of sal ammoniac (نشادر, nushadir), ammonia was important to the Muslim alchemists. It was mentioned in the Book of Stones, likely written in the 9th century and attributed to Jābir ibn Hayyān. It was also important to the European alchemists of the 13th century, being mentioned by Albertus Magnus. It was also used by dyers in the Middle Ages in the form of fermented urine to alter the colour of vegetable dyes. In the 15th century, Basilius Valentinus showed that ammonia could be obtained by the action of alkalis on sal ammoniac. At a later period, when sal ammoniac was obtained by distilling the hooves and horns of oxen and neutralizing the resulting carbonate with hydrochloric acid, the name 'spirit of hartshorn' was applied to ammonia.
Gaseous ammonia was first isolated by Joseph Black in 1756 by reacting sal ammoniac (ammonium chloride) with calcined magnesia (magnesium oxide). It was isolated again by Peter Woulfe in 1767, by Carl Wilhelm Scheele in 1770 and by Joseph Priestley in 1773 and was termed by him 'alkaline air'. Eleven years later in 1785, Claude Louis Berthollet ascertained its composition.
The production of ammonia from nitrogen in the air (and hydrogen) was invented by Fritz Haber and Robert LeRossignol. The patent was sent in 1909 (USPTO Nr 1,202,995) and awarded in 1916. Later, Carl Bosch developed the industrial method for ammonia production (Haber–Bosch process). It was first used on an industrial scale in Germany during World War I, following the allied blockade that cut off the supply of nitrates from Chile. The ammonia was used to produce explosives to sustain war efforts. The Nobel Prize in Chemistry 1918 was awarded to Fritz Haber "for the synthesis of ammonia from its elements".
Before the availability of natural gas, hydrogen as a precursor to ammonia production was produced via the electrolysis of water or using the chloralkali process.
With the advent of the steel industry in the 20th century, ammonia became a byproduct of the production of coking coal.
Applications
Fertiliser
In the US , approximately 88% of ammonia was used as fertilisers either as its salts, solutions or anhydrously. When applied to soil, it helps provide increased yields of crops such as maize and wheat. 30% of agricultural nitrogen applied in the US is in the form of anhydrous ammonia, and worldwide, 110 million tonnes are applied each year.
Solutions of ammonia ranging from 16% to 25% are used in the fermentation industry as a source of nitrogen for microorganisms and to adjust pH during fermentation.
Refrigeration–R717
Because of ammonia's vapourization properties, it is a useful refrigerant. The ammonia is under sufficient pressure to remain liquid throughout the process. Single-phase ammonia cooling systems also serve the power electronics in each pair of solar arrays.
The potential importance of ammonia as a refrigerant has increased with the discovery that vented CFCs and HFCs are potent and stable greenhouse gases.
Antimicrobial agent for food products
As early as in 1895, it was known that ammonia was 'strongly antiseptic ... it requires 1.4 grams per litre to preserve beef tea (broth).' In one study, anhydrous ammonia destroyed 99.999% of zoonotic bacteria in three types of animal feed, but not silage. Anhydrous ammonia is currently used commercially to reduce or eliminate microbial contamination of beef.
Lean finely textured beef (popularly known as 'pink slime') in the beef industry is made from fatty beef trimmings (c. 50–70% fat) by removing the fat using heat and centrifugation, then treating it with ammonia to kill E. coli. The process was deemed effective and safe by the US Department of Agriculture based on a study that found that the treatment reduces E. coli to undetectable levels. There have been safety concerns about the process as well as consumer complaints about the taste and smell of ammonia-treated beef.
Fuel
drawn by Alfred Waud in 1871]]
Ammonia has been used as fuel, and is a proposed alternative to fossil fuels and hydrogen. Being liquid at ambient temperature under its own vapour pressure and having high volumetric and gravimetric energy density, ammonia is considered a suitable carrier for hydrogen, and may be cheaper than direct transport of liquid hydrogen.
Compared to hydrogen, ammonia is easier to store. Compared to hydrogen as a fuel, ammonia is much more energy efficient, and could be produced, stored and delivered at a much lower cost than hydrogen, which must be kept compressed or as a cryogenic liquid. The raw energy density of liquid ammonia is 11.5 MJ/L, which is about a third that of diesel.
Ammonia can be converted back to hydrogen to be used to power hydrogen fuel cells, or it may be used directly within high-temperature solid oxide direct ammonia fuel cells to provide efficient power sources that do not emit greenhouse gases. Ammonia to hydrogen conversion can be achieved through the sodium amide process or the catalytic decomposition of ammonia using solid catalysts.
aircraft used ammonia as one component fuel of its rocket engine]]
Ammonia engines or ammonia motors, using ammonia as a working fluid, have been proposed and occasionally used. The principle is similar to that used in a fireless locomotive, but with ammonia as the working fluid, instead of steam or compressed air. Ammonia engines were used experimentally in the 19th century by Goldsworthy Gurney in the UK and the St. Charles Streetcar Line in New Orleans in the 1870s and 1880s, and during World War II ammonia was used to power buses in Belgium. However, ammonia cannot be easily used in existing Otto cycle engines because of its very narrow flammability range. Despite this, several tests have been run. Its high octane rating of 120 and low flame temperature allows the use of high compression ratios without a penalty of high production. Since ammonia contains no carbon, its combustion cannot produce carbon dioxide, carbon monoxide, hydrocarbons, or soot.
Ammonia production currently creates 1.8% of global emissions. 'Green ammonia' is ammonia produced by using green hydrogen (hydrogen produced by electrolysis with electricity from renewable energy), whereas 'blue ammonia' is ammonia produced using blue hydrogen (hydrogen produced by steam methane reforming (SMR) where the carbon dioxide has been captured and stored (cfr. carbon capture and storage CCS).
Rocket engines have also been fueled by ammonia. The Reaction Motors XLR99 rocket engine that powered the hypersonic research aircraft used liquid ammonia. Although not as powerful as other fuels, it left no soot in the reusable rocket engine, and its density approximately matches the density of the oxidiser, liquid oxygen, which simplified the aircraft's design.
In 2020, Saudi Arabia shipped 40 metric tons of liquid 'blue ammonia' to Japan for use as a fuel. It was produced as a by-product by petrochemical industries, and can be burned without giving off greenhouse gases. Its energy density by volume is nearly double that of liquid hydrogen. If the process of creating it can be scaled up via purely renewable resources, producing green ammonia, it could make a major difference in avoiding climate change. The company ACWA Power and the city of Neom have announced the construction of a green hydrogen and ammonia plant in 2020.
Green ammonia is considered as a potential fuel for future container ships. In 2020, the companies DSME and MAN Energy Solutions announced the construction of an ammonia-based ship, DSME plans to commercialize it by 2025. The use of ammonia as a potential alternative fuel for aircraft jet engines is also being explored.
Japan intends to implement a plan to develop ammonia co-firing technology that can increase the use of ammonia in power generation, as part of efforts to assist domestic and other Asian utilities to accelerate their transition to carbon neutrality.
In October 2021, the first International Conference on Fuel Ammonia (ICFA2021) was held.
In June 2022, IHI Corporation succeeded in reducing greenhouse gases by over 99% during combustion of liquid ammonia in a 2,000-kilowatt-class gas turbine achieving truly -free power generation.
In July 2022, Quad nations of Japan, the U.S., Australia and India agreed to promote technological development for clean-burning hydrogen and ammonia as fuels at the security grouping's first energy meeting. , however, significant amounts of are produced. Nitrous oxide may also be a problem as it is a "greenhouse gas that is known to possess up to 300 times the Global Warming Potential (GWP) of carbon dioxide".
The IEA forecasts that ammonia will meet approximately 45% of shipping fuel demands by 2050.
At high temperature and in the presence of a suitable catalyst ammonia decomposes into its constituent elements. Decomposition of ammonia is a slightly endothermic process requiring 23 kJ/mol (5.5 kcal/mol) of ammonia, and yields hydrogen and nitrogen gas.
Other
Remediation of gaseous emissions
Ammonia is used to scrub from the burning of fossil fuels, and the resulting product is converted to ammonium sulfate for use as fertiliser. Ammonia neutralises the nitrogen oxide () pollutants emitted by diesel engines. This technology, called SCR (selective catalytic reduction), relies on a vanadia-based catalyst.
Ammonia may be used to mitigate gaseous spills of phosgene.
Stimulant
sign on tank of anhydrous ammonia, Otley, Iowa. Anhydrous ammonia is a common farm fertiliser that is also a critical ingredient in making methamphetamine. In 2005, Iowa used grant money to provide thousands of locks to prevent criminals from gaining access to the tanks.]]
Ammonia, as the vapour released by smelling salts, has found significant use as a respiratory stimulant. Ammonia is commonly used in the illegal manufacture of methamphetamine through a Birch reduction. The Birch method of making methamphetamine is dangerous because the alkali metal and liquid ammonia are both extremely reactive, and the temperature of liquid ammonia makes it susceptible to explosive boiling when reactants are added.
Textile
Liquid ammonia is used for treatment of cotton materials, giving properties like mercerisation, using alkalis. In particular, it is used for prewashing of wool.
Lifting gas
At standard temperature and pressure, ammonia is less dense than atmosphere and has approximately 45–48% of the lifting power of hydrogen or helium. Ammonia has sometimes been used to fill balloons as a lifting gas. Because of its relatively high boiling point (compared to helium and hydrogen), ammonia could potentially be refrigerated and liquefied aboard an airship to reduce lift and add ballast (and returned to a gas to add lift and reduce ballast). Fuming
Ammonia has been used to darken quartersawn white oak in Arts & Crafts and Mission-style furniture. Ammonia fumes react with the natural tannins in the wood and cause it to change colour.
Safety
(roughly 2400 km long), running from the TogliattiAzot plant in Russia to Odesa in Ukraine]]
The US Occupational Safety and Health Administration (OSHA) has set a 15-minute exposure limit for gaseous ammonia of 35 ppm by volume in the environmental air and an 8-hour exposure limit of 25 ppm by volume. The National Institute for Occupational Safety and Health (NIOSH) recently reduced the IDLH (Immediately Dangerous to Health or Life, the level to which a healthy worker can be exposed for 30 minutes without suffering irreversible health effects) from 500 ppm to 300 ppm based on recent more conservative interpretations of original research in 1943. The 1 hour IDLH limit is still 500 ppm. Other organisations have varying exposure levels. US Navy Standards [U.S. Bureau of Ships 1962] maximum allowable concentrations (MACs): for continuous exposure (60 days) is 25 ppm; for exposure of 1 hour is 400 ppm.
Ammonia vapour has a sharp, irritating, pungent odor that acts as a warning of potentially dangerous exposure. The average odor threshold is 5 ppm, well below any danger or damage. Exposure to very high concentrations of gaseous ammonia can result in lung damage and death.
Liquid ammonia is dangerous because it is hygroscopic and because it can cause caustic burns. See for more information.
Toxicity
The toxicity of ammonia solutions does not usually cause problems for humans and other mammals, as a specific mechanism exists to prevent its build-up in the bloodstream. Ammonia is converted to carbamoyl phosphate by the enzyme carbamoyl phosphate synthetase, and then enters the urea cycle to be either incorporated into amino acids or excreted in the urine. Fish and amphibians lack this mechanism, as they can usually eliminate ammonia from their bodies by direct excretion. Ammonia even at dilute concentrations is highly toxic to aquatic animals, and for this reason it is classified as "dangerous for the environment". Atmospheric ammonia plays a key role in the formation of fine particulate matter.
Ammonia is a constituent of tobacco smoke.
Coking wastewater
Ammonia is present in coking wastewater streams, as a liquid by-product of the production of coke from coal. In some cases, the ammonia is discharged to the marine environment where it acts as a pollutant. The Whyalla Steelworks in South Australia is one example of a coke-producing facility that discharges ammonia into marine waters.
Aquaculture
Ammonia toxicity is believed to be a cause of otherwise unexplained losses in fish hatcheries. Excess ammonia may accumulate and cause alteration of metabolism or increases in the body pH of the exposed organism. Tolerance varies among fish species. At lower concentrations, around 0.05 mg/L, un-ionised ammonia is harmful to fish species and can result in poor growth and feed conversion rates, reduced fecundity and fertility and increase stress and susceptibility to bacterial infections and diseases. Exposed to excess ammonia, fish may suffer loss of equilibrium, hyper-excitability, increased respiratory activity and oxygen uptake and increased heart rate. Experiments have shown that the lethal concentration for a variety of fish species ranges from 0.2 to 2.0 mg/L. Ammonia is used in numerous different industrial applications requiring carbon or stainless steel storage vessels. Ammonia with at least 0.2% by weight water content is not corrosive to carbon steel. carbon steel construction storage tanks with 0.2% by weight or more of water could last more than 50 years in service. Experts warn that ammonium compounds not be allowed to come in contact with bases (unless in an intended and contained reaction), as dangerous quantities of ammonia gas could be released. Laboratory
The hazards of ammonia solutions depend on the concentration: 'dilute' ammonia solutions are usually 5–10% by weight (< 5.62 mol/L); 'concentrated' solutions are usually prepared at >25% by weight. A 25% (by weight) solution has a density of 0.907 g/cm<sup>3</sup>, and a solution that has a lower density will be more concentrated. The European Union classification of ammonia solutions is given in the table.
<!-- EU Index no. 007-001-01-2 -->
{| class="wikitable"
|-
! Concentration<br />by weight (w/w)
! Molarity
! Concentration<br />mass/volume (w/v)
! GHS pictograms
! H-phrases
|-
| 5–10%
| 2.87–5.62 mol/L
| 48.9–95.7 g/L
|
|
|-
| 10–25%
| 5.62–13.29 mol/L
| 95.7–226.3 g/L
|
|
|-
| >25%
| >13.29 mol/L
| >226.3 g/L
|
|
|}
The ammonia vapour from concentrated ammonia solutions is severely irritating to the eyes and the respiratory tract, and experts warn that these solutions only be handled in a fume hood. Saturated ('0.880'–see ) solutions can develop a significant pressure inside a closed bottle in warm weather, and experts also warn that the bottle be opened with care. This is not usually a problem for 25% ('0.900') solutions.
Experts warn that ammonia solutions not be mixed with halogens, as toxic and/or explosive products are formed. Experts also warn that prolonged contact of ammonia solutions with silver, mercury or iodide salts can also lead to explosive products: such mixtures are often formed in qualitative inorganic analysis, and that it needs to be lightly acidified but not concentrated (<6% w/v) before disposal once the test is completed.
Laboratory use of anhydrous ammonia (gas or liquid)
<!-- EU index no. 007-001-00-5 -->
<!-- R10, 23, 34, 50; S1/2, 9, 16, 26, 36/37/39, 45, 61 -->
Anhydrous ammonia is classified as toxic (T) and dangerous for the environment (N). The gas is flammable (autoignition temperature: 651 °C) and can form explosive mixtures with air (16–25%). The permissible exposure limit (PEL) in the United States is 50 ppm (35 mg/m<sup>3</sup>), while the IDLH concentration is estimated at 300 ppm. Repeated exposure to ammonia lowers the sensitivity to the smell of the gas: normally the odour is detectable at concentrations of less than 50 ppm, but desensitised individuals may not detect it even at concentrations of 100 ppm. Anhydrous ammonia corrodes copper- and zinc-containing alloys, which makes brass fittings not appropriate for handling the gas. Liquid ammonia can also attack rubber and certain plastics.
Ammonia reacts violently with the halogens. Nitrogen triiodide, a primary high explosive, is formed when ammonia comes in contact with iodine. Ammonia causes the explosive polymerisation of ethylene oxide. It also forms explosive fulminating compounds with compounds of gold, silver, mercury, germanium or tellurium, and with stibine. Violent reactions have also been reported with acetaldehyde, hypochlorite solutions, potassium ferricyanide and peroxides.
Production
|caption Global ammonia production 1950–2020 (expressed as fixed nitrogen in U.S. tons)
}}
Ammonia has one of the highest rates of production of any inorganic chemical. Production is sometimes expressed in terms of 'fixed nitrogen'. Global production was estimated as being 160 million tonnes in 2020 (147 tons of fixed nitrogen). China accounted for 26.5% of that, followed by Russia at 11.0%, the United States at 9.5%, and India at 8.3%. of nitrogenous vegetable and animal waste products, including camel dung, where it was distilled by the reduction of nitrous acid and nitrites with hydrogen; in addition, it was produced by the distillation of coal, and also by the decomposition of ammonium salts by alkaline hydroxides such as quicklime:
}}
For small scale laboratory synthesis, one can heat urea and calcium hydroxide or sodium hydroxide:
}}
Haber–Bosch
Electrochemical
The electrochemical synthesis of ammonia involves the reductive formation of lithium nitride, which can be protonated to ammonia, given a proton source. The first use of this chemistry was reported in 1930, where lithium solutions in ethanol were used to produce ammonia at pressures of up to 1000 bar, with ethanol acting as the proton source. Beyond simply mediating proton transfer to the nitrogen reduction reaction, ethanol has been found to play a multifaceted role, influencing electrolyte transformations and contributing to the formation of the solid electrolyte interphase, which enhances overall reaction efficiency Subsequent studies have further explored the ethanol–tetrahydrofuran system for electrochemical ammonia synthesis.
In 2020, a solvent-agnostic gas diffusion electrode was shown to improve nitrogen transport to the reactive lithium. production rates of up to and Faradaic efficiencies of up to 47.5 ± 4% at ambient temperature and 1 bar pressure were achieved.
In 2021, it was demonstrated that ethanol could be replaced with a tetraalkyl phosphonium salt. The study observed production rates of at 69 ± 1% Faradaic efficiency experiments under 0.5 bar hydrogen and 19.5 bar nitrogen partial pressure at ambient temperature.
In 2022, ammonia was produced via the lithium mediated process in a continuous-flow electrolyzer also demonstrating the hydrogen gas as proton source. The study synthesized ammonia at 61 ± 1% Faradaic efficiency at a current density of −6 mA/cm<sup>2</sup> at 1 bar and room temperature.
Biochemistry and medicine
Ammonia is essential for life. For example, it is required for the formation of amino acids and nucleic acids, fundamental building blocks of life. Ammonia is however quite toxic. Nature thus uses carriers for ammonia. Within a cell, glutamate serves this role. In the bloodstream, glutamine is a source of ammonia.
Ethanolamine, required for cell membranes, is the substrate for ethanolamine ammonia-lyase, which produces ammonia:
}}
Ammonia is both a metabolic waste and a metabolic input throughout the biosphere. It is an important source of nitrogen for living systems. Although atmospheric nitrogen abounds (more than 75%), few living creatures are capable of using atmospheric nitrogen in its diatomic form, gas. Therefore, nitrogen fixation is required for the synthesis of amino acids, which are the building blocks of protein. Some plants rely on ammonia and other nitrogenous wastes incorporated into the soil by decaying matter. Others, such as nitrogen-fixing legumes, benefit from symbiotic relationships with rhizobia bacteria that create ammonia from atmospheric nitrogen.
In humans, inhaling ammonia in high concentrations can be fatal. Exposure to ammonia can cause headaches, edema, impaired memory, seizures and coma as it is neurotoxic in nature.
Biosynthesis
In certain organisms, ammonia is produced from atmospheric nitrogen by enzymes called nitrogenases. The overall process is called nitrogen fixation. Intense effort has been directed toward understanding the mechanism of biological nitrogen fixation. The scientific interest in this problem is motivated by the unusual structure of the active site of the enzyme, which consists of an ensemble.
Ammonia is also a metabolic product of amino acid deamination catalyzed by enzymes such as glutamate dehydrogenase 1. Ammonia excretion is common in aquatic animals. In humans, it is quickly converted to urea (by liver), which is much less toxic, particularly less basic. This urea is a major component of the dry weight of urine. Most reptiles, birds, insects, and snails excrete uric acid solely as nitrogenous waste.
Physiology
Ammonia plays a role in both normal and abnormal animal physiology. It is biosynthesised through normal amino acid metabolism and is toxic in high concentrations. The liver converts ammonia to urea through a series of reactions known as the urea cycle. Liver dysfunction, such as that seen in cirrhosis, may lead to elevated amounts of ammonia in the blood (hyperammonemia). Likewise, defects in the enzymes responsible for the urea cycle, such as ornithine transcarbamylase, lead to hyperammonemia. Hyperammonemia contributes to the confusion and coma of hepatic encephalopathy, as well as the neurological disease common in people with urea cycle defects and organic acidurias.
Ammonia is important for normal animal acid/base balance. After formation of ammonium from glutamine, α-ketoglutarate may be degraded to produce two bicarbonate ions, which are then available as buffers for dietary acids. Ammonium is excreted in the urine, resulting in net acid loss. Ammonia may itself diffuse across the renal tubules, combine with a hydrogen ion, and thus allow for further acid excretion.
Excretion
Ammonium ions are a toxic waste product of metabolism in animals. In fish and aquatic invertebrates, it is excreted directly into the water. In mammals, sharks, and amphibians, it is converted in the urea cycle to urea, which is less toxic and can be stored more efficiently. In birds, reptiles, and terrestrial snails, metabolic ammonium is converted into uric acid, which is solid and can therefore be excreted with minimal water loss. Extraterrestrial occurrence
of the outer giant planets such as Jupiter (0.026% ammonia), Saturn (0.012% ammonia), and in the atmospheres and ices of Uranus and Neptune.]]
Ammonia has been detected in the atmospheres of the giant planets Jupiter, Saturn, Uranus and Neptune, along with other gases such as methane, hydrogen, and helium. The interior of Saturn may include frozen ammonia crystals. It is found on Deimos and Phobos–the two moons of Mars. Interstellar space Ammonia was first detected in interstellar space in 1968, based on microwave emissions from the direction of the galactic core. This was the first polyatomic molecule to be so detected. The sensitivity of the molecule to a broad range of excitations and the ease with which it can be observed in a number of regions has made ammonia one of the most important molecules for studies of molecular clouds. The relative intensity of the ammonia lines can be used to measure the temperature of the emitting medium.
The following isotopic species of ammonia have been detected: ,{{chem2|^{15}NH3}}, , , and . The detection of triply deuterated ammonia was considered a surprise as deuterium is relatively scarce. It is thought that the low-temperature conditions allow this molecule to survive and accumulate.
Since its interstellar discovery, has proved to be an invaluable spectroscopic tool in the study of the interstellar medium. With a large number of transitions sensitive to a wide range of excitation conditions, has been widely astronomically detected–its detection has been reported in hundreds of journal articles. Listed below is a sample of journal articles that highlights the range of detectors that have been used to identify ammonia.
The study of interstellar ammonia has been important to a number of areas of research in the last few decades. Some of these are delineated below and primarily involve using ammonia as an interstellar thermometer.
Interstellar formation mechanisms
The interstellar abundance for ammonia has been measured for a variety of environments. The []/[] ratio has been estimated to range from 10<sup>−7</sup> in small dark clouds up to 10<sup>−5</sup> in the dense core of the Orion molecular cloud complex. Although a total of 18 total production routes have been proposed, the principal formation mechanism for interstellar is the reaction:
}}
The rate constant, k, of this reaction depends on the temperature of the environment, with a value of <math>5.2\times 10^{-6}</math> at 10 K. The rate constant was calculated from the formula . For the primary formation reaction, }} and . Assuming an abundance of <math>3\times 10^{-7}</math>and an electron abundance of 10<sup>−7</sup> typical of molecular clouds, the formation will proceed at a rate of in a molecular cloud of total density .
All other proposed formation reactions have rate constants of between two and 13 orders of magnitude smaller, making their contribution to the abundance of ammonia relatively insignificant. As an example of the minor contribution other formation reactions play, the reaction:
}}
has a rate constant of 2.2. Assuming densities of 10<sup>5</sup> and []/[] ratio of 10<sup>−7</sup>, this reaction proceeds at a rate of 2.2, more than three orders of magnitude slower than the primary reaction above.
Some of the other possible formation reactions are:
}}
}}
Interstellar destruction mechanisms
There are 113 total proposed reactions leading to the destruction of . Of these, 39 were tabulated in extensive tables of the chemistry among C, N and O compounds. A review of interstellar ammonia cites the following reactions as the principal dissociation mechanisms: and 2.2×10<sup>−9</sup>, respectively. The above equations (, ) run at a rate of 8.8×10<sup>−9</sup> and 4.4×10<sup>−13</sup>, respectively. These calculations assumed the given rate constants and abundances of []/[] 10<sup>−5</sup>, []/[] 2×10<sup>−5</sup>, []/[] 2×10<sup>−9</sup>, and total densities of n 10<sup>5</sup>, typical of cold, dense, molecular clouds. Clearly, between these two primary reactions, equation () is the dominant destruction reaction, with a rate ≈10,000 times faster than equation (). This is due to the relatively high abundance of .
Single antenna detections
Radio observations of from the Effelsberg 100-m Radio Telescope reveal that the ammonia line is separated into two components–a background ridge and an unresolved core. The background corresponds well with the locations previously detected CO. The 25 m Chilbolton telescope in England detected radio signatures of ammonia in H II regions, HNH<sub>2</sub>O masers, H–H objects, and other objects associated with star formation. A comparison of emission line widths indicates that turbulent or systematic velocities do not increase in the central cores of molecular clouds.
Microwave radiation from ammonia was observed in several galactic objects including W3(OH), Orion A, W43, W51, and five sources in the galactic centre. The high detection rate indicates that this is a common molecule in the interstellar medium and that high-density regions are common in the galaxy. Interferometric studies VLA observations of in seven regions with high-velocity gaseous outflows revealed condensations of less than 0.1 pc in L1551, S140, and Cepheus A. Three individual condensations were detected in Cepheus A, one of them with a highly elongated shape. They may play an important role in creating the bipolar outflow in the region.
Extragalactic ammonia was imaged using the VLA in IC 342. The hot gas has temperatures above 70 K, which was inferred from ammonia line ratios and appears to be closely associated with the innermost portions of the nuclear bar seen in CO. was also monitored by VLA toward a sample of four galactic ultracompact HII regions: G9.62+0.19, G10.47+0.03, G29.96-0.02, and G31.41+0.31. Based upon temperature and density diagnostics, it is concluded that in general such clumps are probably the sites of massive star formation in an early evolutionary phase prior to the development of an ultracompact HII region. Infrared detections Absorption at 2.97 micrometres due to solid ammonia was recorded from interstellar grains in the Becklin–Neugebauer Object and probably in NGC 2264-IR as well. This detection helped explain the physical shape of previously poorly understood and related ice absorption lines.
A spectrum of the disk of Jupiter was obtained from the Kuiper Airborne Observatory, covering the 100 to 300 cm<sup>−1</sup> spectral range. Analysis of the spectrum provides information on global mean properties of ammonia gas and an ammonia ice haze.
A total of 149 dark cloud positions were surveyed for evidence of 'dense cores' by using the (J,K) (1,1) rotating inversion line of NH<sub>3</sub>. In general, the cores are not spherically shaped, with aspect ratios ranging from 1.1 to 4.4. It is also found that cores with stars have broader lines than cores without stars.
Ammonia has been detected in the Draco Nebula and in one or possibly two molecular clouds, which are associated with the high-latitude galactic infrared cirrus. The finding is significant because they may represent the birthplaces for the Population I metallicity B-type stars in the galactic halo that could have been borne in the galactic disk. Observations of nearby dark clouds By balancing and stimulated emission with spontaneous emission, it is possible to construct a relation between excitation temperature and density. Moreover, since the transitional levels of ammonia can be approximated by a 2-level system at low temperatures, this calculation is fairly simple. This premise can be applied to dark clouds, regions suspected of having extremely low temperatures and possible sites for future star formation. Detections of ammonia in dark clouds show very narrow linesindicative not only of low temperatures, but also of a low level of inner-cloud turbulence. Line ratio calculations provide a measurement of cloud temperature that is independent of previous CO observations. The ammonia observations were consistent with CO measurements of rotation temperatures of ≈10 K. With this, densities can be determined, and have been calculated to range between 10<sup>4</sup> and 10<sup>5</sup> cm<sup>−3</sup> in dark clouds. Mapping of gives typical clouds sizes of 0.1 pc and masses near 1 solar mass. These cold, dense cores are the sites of future star formation. UC HII regions Ultra-compact HII regions are among the best tracers of high-mass star formation. The dense material surrounding UCHII regions is likely primarily molecular. Since a complete study of massive star formation necessarily involves the cloud from which the star formed, ammonia is an invaluable tool in understanding this surrounding molecular material. Since this molecular material can be spatially resolved, it is possible to constrain the heating/ionising sources, temperatures, masses, and sizes of the regions. Doppler-shifted velocity components allow for the separation of distinct regions of molecular gas that can trace outflows and hot cores originating from forming stars. Extragalactic detection Ammonia has been detected in external galaxies, and by simultaneously measuring several lines, it is possible to directly measure the gas temperature in these galaxies. Line ratios imply that gas temperatures are warm (≈50 K), originating from dense clouds with sizes of tens of parsecs. This picture is consistent with the picture within our Milky Way galaxyhot dense molecular cores form around newly forming stars embedded in larger clouds of molecular material on the scale of several hundred parsecs (giant molecular clouds; GMCs). See also
*
*
*
*
*
*
*
*
*
References
Works cited
*
*
*
Further reading
*
*
*
*
* External links
* [http://www.inchem.org/documents/icsc/icsc/eics0414.htm International Chemical Safety Card 0414] (anhydrous ammonia), ilo.org.
* [http://www.inchem.org/documents/icsc/icsc/eics0215.htm International Chemical Safety Card 0215] (aqueous solutions), ilo.org.
*
*
* [http://www.ammoniaspills.org/ Emergency Response to Ammonia Fertiliser Releases (Spills)] for the Minnesota Department of Agriculture.ammoniaspills.org
* [https://www.cdc.gov/niosh/topics/ammonia National Institute for Occupational Safety and Health–Ammonia Page], cdc.gov
* [https://www.cdc.gov/niosh/npg/npgd0028.html NIOSH Pocket Guide to Chemical Hazards–Ammonia], cdc.gov
* [https://web.archive.org/web/20151030194722/http://www.mozalearn.com/Extra-Videos-Ammonia_NH3-210353 Ammonia, video]
Category:Bases (chemistry)
Category:Foul-smelling chemicals
Category:Gaseous signaling molecules
Category:Household chemicals
Category:Industrial gases
Category:Inorganic solvents
Category:Nitrogen cycle
Category:Nitrogen hydrides
Category:Nitrogen(−III) compounds
Category:Refrigerants
Category:Toxicology
Category:Rocket fuels | https://en.wikipedia.org/wiki/Ammonia | 2025-04-05T18:25:38.651997 |
1366 | Amethyst | )
| molweight | system Trigonal
| class = Trapezohedral (32)
| symmetry = P321 (no. 154)
| color = Purple, violet, dark purple
| habit = 6 sided prism ending in 6 sided pyramid (typical)
| twinning = Dauphine law, Brazil law, and Japan law
| cleavage = None
| fracture = Conchoidal
| mohs = 7 (lower in impure varieties)
| luster = Vitreous/glassy
| refractive n<sub>ω</sub> 1.543–1.553 <br/>}} = 1.552–1.554
| opticalprop = Uniaxial (+)
| birefringence = +0.009 (B-G interval)
| pleochroism = Weak to moderate purple/reddish purple
| streak = White
| gravity = 2.65 constant; variable in impure varieties
| density | melt ±75 °C
| fusibility | diagnostic
| solubility = Insoluble in common solvents
| diaphaneity = Transparent to translucent
| other = Piezoelectric
}}
Amethyst is a violet variety of quartz. The name comes from the Koine Greek from - , "not" and (Ancient Greek) / (Modern Greek), "intoxicate", a reference to the belief that the stone protected its owner from drunkenness. Ancient Greeks wore amethyst and carved drinking vessels from it in the belief that it would prevent intoxication.
Amethyst, a semiprecious stone, is often used in jewelry.
Structure
Amethyst is a violet variety of quartz () and owes its violet color to irradiation, impurities of iron () and in some cases other transition metals, and the presence of other trace elements, which result in complex crystal lattice substitutions.
The irradiation causes the iron ions that replace Si in the lattice to lose an electron and form a color center.
Amethyst is a three-dimensional network of tetrahedra where the silicon atoms are in the center and are surrounded by four oxygen atoms located at the vertices of a tetrahedron. This structure is quite rigid and results in quartz's hardness and resistance to weathering. The hardness of the mineral is the same as quartz, thus making it suitable for use in jewelry.
Hue and tone
Amethyst occurs in primary hues from a light lavender or pale violet to a deep purple. Amethyst may exhibit one or both secondary hues, red and blue.
High-quality amethyst can be found in Siberia, Sri Lanka, Brazil, Uruguay, and the Far East. The ideal grade, called "Deep Siberian", has a primary purple hue of around 75–80%, with 15–20% blue and (depending on the light source) red secondary hues.
"Rose de France" is defined by its markedly light shade of the purple, reminiscent of a lavender / lilac shade. These pale colors were once considered undesirable, but have recently become popular due to intensive marketing.
Green quartz is sometimes called green amethyst; the scientific name is prasiolite.
Other names for green quartz are vermarine and lime citrine.
Amethyst frequently shows color zoning, with the most intense color typically found at the crystal terminations. One of gem cutters' tasks is to make a finished product with even color. Sometimes, only a thin layer of a natural, uncut amethyst is violet colored, or the color is very uneven. The uncut gem may have only a small portion that is suitable for faceting.
The color of amethyst has been demonstrated to result from substitution by irradiation of trivalent iron (Fe<sup>3+</sup>) for silicon in the structure, in the presence of trace elements of large ionic radius, but loses its dichroism, unlike genuine citrine. When partially heated, amethyst can result in ametrine.
Amethyst can fade in tone if overexposed to light sources, and can be artificially darkened with adequate irradiation.
collected from Artigas, Uruguay.]]
Amethyst is produced in abundance in the state of Rio Grande do Sul in Brazil where it occurs in large geodes within volcanic rocks.
Many of the hollow agates of southwestern Brazil and Uruguay contain a crop of amethyst crystals in the interior. Artigas, Uruguay and neighboring Brazilian state Rio Grande do Sul are large world producers, with lesser quantities mined in Minas Gerais and Bahia states. The large opencast amethyst vein at Maissau, Lower Austria, was historically important,
Amethyst occurs at many localities in the United States. The most important production is at Four Peaks, Gila and Maricopa Counties, Arizona, and Jackson's Crossroads, Wilkes County, Georgia.
History
Amethyst was used as a gemstone by the ancient Egyptians and was largely employed in antiquity for intaglio engraved gems.
The ancient Greeks believed amethyst gems could prevent intoxication,
while medieval European soldiers wore amethyst amulets as protection in battle in the belief that amethysts heal people and keep them cool-headed.
Beads of amethyst were found in Anglo-Saxon graves in England.
Anglican bishops wear an episcopal ring often set with an amethyst, an allusion to the description of the Apostles as "not drunk" at Pentecost in Acts 2:15.
A large geode, or "amethyst-grotto", from near Santa Cruz in southern Brazil was presented at a 1902 exhibition in Düsseldorf, Germany.) can be used to identify most synthetic amethyst rather easily. Synthesizing twinned amethyst is possible, but this type is not available in large quantities in the market.
Cultural history
Ancient Greece
amethyst]]
The Greek word may be translated as "not drunken", from Greek , "not" + , "intoxicated". Amethyst was considered to be a strong antidote against drunkenness. }}).
:
An epigram by Plato the Younger also mentions amethyst in connection with drinking: "The stone is an amethyst; but I, the tipler Dionysus, say, "Let it either persuade me to be sober, or let it learn to get drunk."
:
Pliny says about amethysts: "The falsehoods of the magicians would persuade us that these stones are preventive of inebriety, and that it is from this that they have derived their name." which is why wine goblets were often carved from it.
}}
In his poem "L'Amethyste, ou les Amours de Bacchus et d'Amethyste" (Amethyst or the loves of Bacchus and Amethyste), the French poet Rémy Belleau (1528–1577) invented a myth in which Bacchus, the god of intoxication, of wine, and grapes was pursuing a maiden named Amethyste, who refused his affections. Amethyste prayed to the gods to remain chaste, a prayer which the chaste goddess Diana answered, transforming her into a white stone. Humbled by Amethyste's desire to remain chaste, Bacchus poured wine over the stone as an offering, dyeing the crystals purple.
This myth and its variations are not found in classical sources. However, the goddess Rhea does present Dionysus with an amethyst stone to preserve the wine-drinker's sanity in historical text.
Other cultural associations
Tibetans consider amethyst sacred to the Buddha and make prayer beads from it. Amethyst is considered the birthstone of February.
In the Middle Ages, it was considered a symbol of royalty and used to decorate English regalia.
Value
Until the 18th century, amethyst was included in the cardinal, or most valuable, gemstones (along with diamond, sapphire, ruby, and emerald), but since the discovery of extensive deposits in locations such as Brazil, it has lost most of its value.
Collectors look for depth of color, possibly with red flashes if cut conventionally.
As amethyst is readily available in large structures, the value of the gem is not primarily defined by carat weight. This is different from most gemstones, since the carat weight typically exponentially increases the value of the stone. The biggest factor in the value of amethyst is the color displayed.
The highest-grade amethyst (called deep Russian) is exceptionally rare. When one is found, its value is dependent on the demand of collectors; however, the highest-grade sapphires or rubies are still orders of magnitude more expensive than amethyst.
Amethyst has a good hardness, and handling it with proper care will prevent any damage to the stone. Amethyst is sensitive to strong heat and may lose or change its colour when exposed to prolonged heat or light. Polishing the stone or cleaning it by ultrasonic or steamer must be done with caution.<ref nameGIA-GemDurDes/> Footnotes See also
*Ametrine
*List of minerals
*Specimen Ridge
References
*
*
External links
Category:Quartz gemstones
Category:Provincial symbols of Ontario
Category:Trigonal minerals
Category:Minerals in space group 152 or 154
Category:Symbols of Rio Grande do Sul | https://en.wikipedia.org/wiki/Amethyst | 2025-04-05T18:25:38.670882 |
1367 | Albertosaurus | <small>Possible Campanian record</small>
| image = Albertosaurus_sarcophagus_cast.jpg
| image_caption = Mounted cast in the Milwaukee Public Museum
| display_parents = 2
| genus = Albertosaurus
| parent_authority = Osborn, 1905
| species = sarcophagus
| authority = Osborn, 1905
| synonyms = *Deinodon sarcophagus <br/><small>(Osborn, 1905) Matthew and Brown, 1922</small>
*Albertosaurus arctunguis <br/><small>Parks, 1928</small>
*Deinodon arctunguis <br/><small>(Parks, 1928) Kuhn, 1939</small>
}}
Albertosaurus (; meaning "Alberta lizard") is a genus of large tyrannosaurid theropod dinosaur that lived in northwestern North America during the early to middle Maastrichtian age of the Late Cretaceous period, about 71 million years ago. The type species, A. sarcophagus, was apparently restricted in range to the modern-day Canadian province of Alberta, after which the genus is named, although an indeterminate species ("cf. Albertosaurus sp.") has been discovered in the Corral de Enmedio and Packard Formations of Mexico. Its namesake is Alberta, the Canadian province established the very same year where the first remains were found. The generic name also incorporates the Greek word /sauros, meaning "lizard", which is the most common suffix in dinosaur names. The type species is Albertosaurus sarcophagus and the specific name is derived from the Ancient Greek term σαρκοφάγος (), meaning "flesh-eating", and having the same etymology as the funeral container with which it shares its name, which is a combination of the Greek words σαρξ/ ("flesh") and / ("to eat"). More than 30 specimens of all ages are known to science. The two skulls were assigned to the preexisting species Laelaps incrassatus by Edward Drinker Cope in 1892. Although the name Laelaps was preoccupied by a genus of mite and had been changed to Dryptosaurus in 1877 by Othniel Charles Marsh, Cope stubbornly refused to recognize the new name created by his archrival. However, Lawrence Lambe used the name Dryptosaurus incrassatus instead of Laelaps incrassatus when he described the remains in detail in 1903 and 1904, which was a combination first coined by Oliver Perry Hay in 1902.
Shortly later, Osborn pointed out that D. incrassatus was based on generic tyrannosaurid teeth, so the two Horseshoe Canyon skulls could not be confidently referred to that species. The Horseshoe Canyon skulls also differed markedly from the remains of D. aquilunguis, type species of Dryptosaurus, so Osborn gave them the new name Albertosaurus sarcophagus in 1905. He did not describe the remains in any great detail, citing Lambe's complete description the year before.
Dry Island bone bed
]]
On August 11, 1910, American paleontologist Barnum Brown discovered the remains of a large group of Albertosaurus at another quarry alongside the Red Deer River. Because of the large number of bones and the limited time available, Brown's party did not collect every specimen, but made sure to collect remains from all of the individuals that they could identify in the bone bed. Among the bones deposited in the American Museum of Natural History collections in New York City are seven sets of right metatarsals, along with two isolated toe bones that did not match any of the metatarsals in size. This indicated the presence of at least nine individuals in the quarry. Palaeontologist Philip J. Currie of the Royal Tyrrell Museum of Palaeontology rediscovered the bonebed in 1997 and resumed fieldwork at the site, which is now located inside Dry Island Buffalo Jump Provincial Park. Further excavation from 1997 to 2005 turned up the remains of 13 more individuals of various ages, including a diminutive two-year-old and a very old individual estimated at over long. None of these individuals are known from complete skeletons and most are represented by remains in both museums.Other discoveries
In 1911, Barnum Brown, during the second year of the American Museum of Natural History's operations in Alberta, uncovered a fragmentary partial Albertosaurus skull at the Red Deer River near Tolman Bridge (specimen AMNH 5222).
William Parks described a new species in 1928, Albertosaurus arctunguis, based on a partial skeleton lacking a skull that was excavated by Gus Lindblad and Ralph Hornell near the Red Deer River in 1923, but this species has been considered identical to A. sarcophagus since 1970.Gorgosaurus libratus
, which was described as a second species of Albertosaurus, A. libratus by Dale Russell.]]
In 1913, paleontologist Charles H. Sternberg recovered another tyrannosaurid skeleton from the slightly older Dinosaur Park Formation in Alberta. Lawrence Lambe named this dinosaur Gorgosaurus libratus in 1914. Other specimens were later found in Alberta and the US state of Montana. Finding no significant differences to separate the two taxa (due mostly to a lack of good Albertosaurus skull material), Dale Russell declared the name Gorgosaurus a junior synonym of Albertosaurus, which had been named first, and G. libratus was renamed Albertosaurus libratus in 1970. A species distinction was maintained because of the age difference. The addition extended the temporal range of the genus Albertosaurus earlier by several million years and its geographic range southwards by hundreds of kilometres. but some have not. In 1932, Friedrich von Huene renamed Dryptosaurus incrassatus, not considered a nomen dubium by him, to Albertosaurus incrassatus. Because he had identified Gorgosaurus with Albertosaurus, in 1970, Russell also renamed Gorgosaurus sternbergi (Matthew & Brown 1922) into Albertosaurus sternbergi and Gorgosaurus lancensis (Gilmore 1946) into Albertosaurus lancensis. It was renamed Dinotyrannus in 1995, but is now thought to represent a juvenile Tyrannosaurus rex.
On two occasions, species based on valid Albertosaurus material were reassigned to a different genus, Deinodon. In 1922, William Diller Matthew renamed A. sarcophagus into Deinodon sarcophagus. In 1939, German paleontologist Oskar Kuhn renamed A. arctunguis into Deinodon arctunguis.
Description
Albertosaurus was a fairly large bipedal predator, but smaller than Tarbosaurus and Tyrannosaurus rex. Typical Albertosaurus adults measured up to long
Albertosaurus shared a similar body appearance with all other tyrannosaurids, Gorgosaurus in particular. Typical for a theropod, Albertosaurus was bipedal and balanced its large, heavy head and torso with a long, muscular tail. However, tyrannosaurid forelimbs were extremely small for their body size and retained only two functional fingers, the second being longer than the first. The legs were long and ended in a four-toed foot on which the first toe, the hallux, was very short and did not reach the ground. The third <!--'(middle)' - with four digits, here is no middle one; instead, there are two middle ones: the 2nd & 3rd.--> toe was longer than the rest. At least for the younger individuals, a high running speed is plausible. making Albertosaurus, along with Carnotaurus, the only known theropods with preserved feature scales. Another skin impression is from an unknown part of the body. These scales are small, diamond-shaped, and arranged in rows. Wide openings in the skull, called fenestrae, provided space for muscle attachment sites and sensory organs that reduced its overall weight. Its long jaws contained, both sides combined, 58 or more banana-shaped teeth. Larger tyrannosaurids possessed fewer teeth, but Gorgosaurus had 62. Unlike most theropods, Albertosaurus and other tyrannosaurids were heterodont, with teeth of different forms depending on their position in the mouth. The premaxillary teeth at the tip of the upper jaw, four per side, were much smaller than the rest, more closely packed, and D-shaped in cross section. Above the eyes were short bony crests that may have been brightly coloured in life and possibly used, by males in particular, in courtship to attract a mate.
]]
In 2001, William Abler observed that Albertosaurus tooth serrations resemble a crack in the tooth ending in a round void called an ampulla. Tyrannosaurid teeth were used as holdfasts for pulling flesh off a body, so when a tyrannosaur pulled back on a piece of meat, the tension could cause a purely crack-like serration to spread through the tooth. These two species are the only described albertosaurines, but other undescribed species may exist. Thomas Holtz found Appalachiosaurus to be an albertosaurine in 2004, in agreement with other authors.
The other major subfamily of tyrannosaurids is Tyrannosaurinae, which includes members like Daspletosaurus, Tarbosaurus, and Tyrannosaurus. Compared with the more robust tyrannosaurines, albertosaurines had slender builds, with proportionately smaller skulls and longer bones of the lower legs (tibia) and feet (metatarsals and phalanges).
|label2=Tyrannosaurinae
|2= }} }} }} }} }} }} }} }} }}PalaeobiologyGrowth patternMost age categories of Albertosaurus are represented in the fossil record. Using bone histology, the age of an individual animal at the time of death can often be determined, allowing growth rates to be estimated and compared with other species. The youngest known Albertosaurus is a two-year-old discovered in the Dry Island bonebed, which would have weighed about 50 kilograms (110 lb) and measured slightly more than long. The specimen from the same quarry is 28 years old, the oldest and largest one known. When specimens of intermediate age and size are plotted on a graph, an S-shaped growth curve results, with the most rapid growth occurring in a four-year period ending around the sixteenth year of life, a pattern also seen in other tyrannosaurids. The growth rate during this phase was per year, based on an adult weighing 1.3 tonnes. Other studies have suggested higher adult weights, which would affect the magnitude of the growth rate, but not the overall pattern. Tyrannosaurids similar in size to Albertosaurus had similar growth rates, although the much larger Tyrannosaurus rex grew at almost five times this rate ( per year) at its peak. and large dinosaurs, as well as in large mammals like humans and elephants.
Life history
fighting off Albertosaurus]]
Most known Albertosaurus individuals were aged 14 years or older at the time of death. Juvenile animals are rarely fossilized for several reasons, mainly preservation bias, where the smaller bones of younger animals were less likely to be preserved by fossilization than the larger bones of adults, and collection bias, where smaller fossils are less likely to be noticed by collectors in the field. Young Albertosaurus are relatively large for juvenile animals, but their remains are still rare in the fossil record when compared to adults. It has been suggested that this phenomenon is a consequence of life history, rather than bias, and that fossils of juvenile Albertosaurus are rare because they simply did not die as often as adults did.
Social behaviour
The Dry Island bonebed discovered by Barnum Brown and his crew contains the remains of 26 Albertosaurus, the most individuals found in one locality of any large Cretaceous theropod and the second-most of any large theropod dinosaur behind the Allosaurus assemblage at the Cleveland-Lloyd Dinosaur Quarry in Utah. The group seems to be composed of one very old adult, eight adults between 17 and 23 years old, seven sub-adults undergoing their rapid growth phases at between 12 and 16 years old, and six juveniles between the ages of 2 and 11 years old that had not yet reached the growth phase.
]]
There is plentiful evidence for gregarious behaviour among herbivorous dinosaurs, including ceratopsians and hadrosaurs. However, only rarely are so many dinosaurian predators found at the same site. Small theropods, like Deinonychus and Coelophysis, have been found in aggregations, as have larger predators, such as Allosaurus and Mapusaurus. There is some evidence of gregarious behaviour in other tyrannosaurids as well, as fragmentary remains of smaller individuals were found alongside "Sue", the Tyrannosaurus mounted in the Field Museum of Natural History in Chicago, and a bonebed in the Two Medicine Formation of Montana contains at least three specimens of Daspletosaurus preserved alongside several hadrosaurs. These findings may corroborate the evidence for social behaviour in Albertosaurus, although some or all of the above localities may represent temporary or unnatural aggregations.
Currie has also speculated on the pack-hunting habits of Albertosaurus. The leg proportions of the smaller individuals were comparable to those of ornithomimids, which were probably among the fastest dinosaurs. Younger Albertosaurus were probably equally fleet-footed or at least faster than their prey. Currie hypothesized that the younger members of the pack may have been responsible for driving their prey towards the adults, who were larger and more powerful, but also slower. However, as the preservation of behaviour in the fossil record is exceedingly rare, these ideas cannot readily be tested. In 2010, Currie, though still favouring the hunting pack hypothesis, admitted that the concentration could have been brought about by other causes, such as a slowly rising water level during an extended flood.Palaeopathology
-type lesions; D (upper right) is Albertosaurus]]
In 2009, researchers hypothesized that smooth-edged holes found in the fossil jaws of tyrannosaurid dinosaurs, such as Albertosaurus, were caused by a parasite similar to Trichomonas gallinae, which infects birds. They suggested that tyrannosaurids transmitted the infection by biting each other and that the infection impaired their ability to eat. ROM 807, the holotype of A. arctunguis (now referred to A. sarcophagus), had a deep hole in the iliac blade, although the describer of the species did not recognize this as pathological. The specimen also contains some exostosis on the fourth left metatarsal. In 1970, two of the five Albertosaurus sarcophagus specimens with humeri were reported by Dale Russel as having pathological damage to them.
In 2010, the health of the Dry Island Albertosaurus assembly was reported upon. Most specimens showed no sign of disease. On three phalanges of the foot, strange bony spurs that consisted of abnormal ossifications of the tendons, so-called enthesophytes, were present, but their cause is unknown. Two ribs and a belly-rib showed signs of breaking and healing. One adult specimen had a left lower jaw showing a puncture wound and both healed and unhealed bite marks. The low number of abnormalities compares favourably with the health condition of a Majungasaurus population of which it was established, in 2007, that 19% of individuals showed bone pathologies.
Palaeoecology
is exposed in its type section at Horseshoe Canyon, Alberta]]
Most fossils of Albertosaurus sarcophagus are known from the upper Horseshoe Canyon Formation in Alberta. These younger units of this geologic formation date to the early Maastrichtian age of the Late Cretaceous period, about 70 to 68 million years ago. Immediately below this formation is the Bearpaw Shale, a marine formation representing a section of the Western Interior Seaway. The Inland Sea was receding as the climate cooled and sea levels subsided towards the end of the Cretaceous, thus exposing land that had previously been underwater. It was not a smooth process, however, and the seaway would periodically rise to cover parts of the region throughout Horseshoe Canyon before finally receding altogether in the years after. Due to the changing sea levels, many different environments are represented in the Horseshoe Canyon Formation, including offshore and near-shore marine habitats and coastal habitats, such as lagoons, estuaries, and tidal flats. Numerous coal seams represent ancient peat swamps. Like most of the other vertebrate fossils from the formation, Albertosaurus remains are found in deposits laid down in the deltas and floodplains of large rivers during the later half of Horseshoe Canyon times.
The fauna of the Horseshoe Canyon Formation is well-known, as vertebrate fossils, including those of dinosaurs, are very common. Sharks, rays, sturgeons, bowfins, gars, and the gar-like Aspidorhynchus made up the fish fauna. Mammals included multituberculates and the marsupial Didelphodon. The saltwater plesiosaur Leurospondylus has been found in marine sediments in the Horseshoe Canyon, while freshwater environments were populated by turtles, Champsosaurus, and crocodilians like Leidyosuchus and Stangerochampsa. Dinosaurs dominate the fauna, especially hadrosaurs, which make up half of all dinosaurs known. These include the genera Edmontosaurus, Saurolophus, and Hypacrosaurus. Ceratopsians and ornithomimids were also very common, together making up another third of the known fauna. Along with much rarer ankylosaurians and pachycephalosaurs, all of these animals would have been prey for a diverse array of carnivorous theropods, including troodontids, dromaeosaurids, and caenagnathids. Intermingled with the Albertosaurus remains of the Dry Island bonebed, the bones of the small theropod Albertonykus were found. Adult Albertosaurus were the apex predators in their environment, with intermediate niches possibly filled by juvenile Albertosaurus.<ref nameeberth1997/>
See also
* Timeline of tyrannosaur research
References
External links
*
Category:Late Cretaceous dinosaurs of North America
Category:Tyrannosauridae
Category:Fossil taxa described in 1905
Category:Taxa named by Henry Fairfield Osborn
Category:Maastrichtian life
Category:Paleontology in Alberta
Category:Maastrichtian genus first appearances
Category:Maastrichtian genus extinctions
Category:Horseshoe Canyon fauna | https://en.wikipedia.org/wiki/Albertosaurus | 2025-04-05T18:25:38.727215 |
1368 | Assembly language | | latest release version | latest release date <!-- -->
| typing = None
| scope | programming language
| platform | operating system
| license | file ext <code>.asm</code>, <code>.s</code>, <code>.S</code>, <code>.inc</code>, <code>.wla</code>, <code>.SRC</code> as well as several others depending on the assembler
| file format <!-- or: | file formats -->
| website = <!-- -->
| implementations | dialects
| influenced by | influenced
}}
In computer programming, assembly language (alternatively assembler language often referred to simply as assembly and commonly abbreviated as ASM or asm, is any low-level programming language with a very strong correspondence between the instructions in the language and the architecture's machine code instructions. Assembly code is converted into executable machine code by a utility program referred to as an assembler. The term "assembler" is generally attributed to Wilkes, Wheeler and Gill in their 1951 book The Preparation of Programs for an Electronic Digital Computer, is specific to a particular computer architecture.
Sometimes there is more than one assembler for the same architecture, and sometimes an assembler is specific to an operating system or to particular operating systems. Most assembly languages do not provide specific syntax for operating system calls, and most assembly languages can be used universally with any operating system, as the language provides access to all the real capabilities of the processor, upon which all system call mechanisms ultimately rest. In contrast to assembly languages, most high-level programming languages are generally portable across multiple architectures but require interpreting or compiling, much more complicated tasks than assembling.
In the first decades of computing, it was commonplace for both systems programming and application programming to take place entirely in assembly language. While still irreplaceable for some purposes, the majority of programming is now conducted in higher-level interpreted and compiled languages. In "No Silver Bullet", Fred Brooks summarised the effects of the switch away from assembly language programming: "Surely the most powerful stroke for software productivity, reliability, and simplicity has been the progressive use of high-level languages for programming. Most observers credit that development with at least a factor of five in productivity, and with concomitant gains in reliability, simplicity, and comprehensibility."
Assembly language syntax
Assembly language uses a mnemonic to represent, e.g., each low-level machine instruction or opcode, each directive, typically also each architectural register, flag, etc. Some of the mnemonics may be built-in and some user-defined. Many operations require one or more operands in order to form a complete instruction. Most assemblers permit named constants, registers, and labels for program and memory locations, and can calculate expressions for operands. Thus, programmers are freed from tedious repetitive calculations and assembler programs are much more readable than machine code. Depending on the architecture, these elements may also be combined for specific instructions or addressing modes using offsets or other data as well as fixed addresses. Many assemblers offer additional mechanisms to facilitate program development, to control the assembly process, and to aid debugging.
Some are column oriented, with specific fields in specific columns; this was very common for machines using punched cards in the 1950s and early 1960s. Some assemblers have free-form syntax, with fields separated by delimiters, e.g., punctuation, white space. Some assemblers are hybrid, with, e.g., labels, in a specific column and other fields separated by delimiters; this became more common than column-oriented syntax in the 1960s.
Terminology
* A macro assembler is an assembler that includes a macroinstruction facility so that (parameterized) assembly language text can be represented by a name, and that name can be used to insert the expanded text into other code.
** Open code refers to any assembler input outside of a macro definition.
* A cross assembler (see also cross compiler) is an assembler that is run on a computer or operating system (the host system) of a different type from the system on which the resulting code is to run (the target system). Cross-assembling facilitates the development of programs for systems that do not have the resources to support software development, such as an embedded system or a microcontroller. In such a case, the resulting object code must be transferred to the target system, via read-only memory (ROM, EPROM, etc.), a programmer (when the read-only memory is integrated in the device, as in microcontrollers), or a data link using either an exact bit-by-bit copy of the object code or a text-based representation of that code (such as Intel hex or Motorola S-record).
* A high-level assembler is a program that provides language abstractions more often associated with high-level languages, such as advanced control structures (IF/THEN/ELSE, DO CASE, etc.) and high-level abstract data types, including structures/records, unions, classes, and sets.
* A microassembler is a program that helps prepare a microprogram to control the low level operation of a computer.
* A meta-assembler is "a program that accepts the syntactic and semantic description of an assembly language, and generates an assembler for that language", Sperry Univac also provided a Meta-Assembler for the UNIVAC 1100/2200 series.
* inline assembler (or embedded assembler) is assembler code contained within a high-level language program. This is most often used in systems programs which need direct access to the hardware.
Key concepts
Assembler<!-- This section is linked from Computer software -->
An assembler program creates object code by translating combinations of mnemonics and syntax for operations and addressing modes into their numerical equivalents. This representation typically includes an operation code ("opcode") as well as other control bits and data. The assembler also calculates constant expressions and resolves symbolic names for memory locations and other entities.
Assemblers have been available since the 1950s, as the first step above machine language and before high-level programming languages such as Fortran, Algol, COBOL and Lisp. There have also been several classes of translators and semi-automatic code generators with properties similar to both assembly and high-level languages, with Speedcode as perhaps one of the better-known examples.
There may be several assemblers with different syntax for a particular CPU or instruction set architecture. For instance, an instruction to add memory data to a register in a x86-family processor might be <code>add eax,[ebx]</code>, in original Intel syntax, whereas this would be written <code>addl (%ebx),%eax</code> in the AT&T syntax used by the GNU Assembler. Despite different appearances, different syntactic forms generally generate the same numeric machine code. A single assembler may also have different modes in order to support variations in syntactic forms as well as their exact semantic interpretations (such as FASM-syntax, TASM-syntax, ideal mode, etc., in the special case of x86 assembly programming).
Number of passes
There are two types of assemblers based on how many passes through the source are needed (how many times the assembler reads the source) to produce the object file.
* One-pass assemblers process the source code once. For symbols used before they are defined, the assembler will emit "errata" after the eventual definition, telling the linker or the loader to patch the locations where the as yet undefined symbols had been used.
* Multi-pass assemblers create a table with all symbols and their values in the first passes, then use the table in later passes to generate code.
In both cases, the assembler must be able to determine the size of each instruction on the initial passes in order to calculate the addresses of subsequent symbols. This means that if the size of an operation referring to an operand defined later depends on the type or distance of the operand, the assembler will make a pessimistic estimate when first encountering the operation, and if necessary, pad it with one or more
"no-operation" instructions in a later pass or the errata. In an assembler with peephole optimization, addresses may be recalculated between passes to allow replacing pessimistic code with code tailored to the exact distance from the target.
The original reason for the use of one-pass assemblers was memory size and speed of assembly – often a second pass would require storing the symbol table in memory (to handle forward references), rewinding and rereading the program source on tape, or rereading a deck of cards or punched paper tape. Later computers with much larger memories (especially disc storage), had the space to perform all necessary processing without such re-reading. The advantage of the multi-pass assembler is that the absence of errata makes the linking process (or the program load if the assembler directly produces executable code) faster. includes such a macro package.
Another design was A-Natural, a "stream-oriented" assembler for 8080/Z80 processors from Whitesmiths Ltd. (developers of the Unix-like Idris operating system, and what was reported to be the first commercial C compiler). The language was classified as an assembler because it worked with raw machine elements such as opcodes, registers, and memory references; but it incorporated an expression syntax to indicate execution order. Parentheses and other special symbols, along with block-oriented structured programming constructs, controlled the sequence of the generated instructions. A-natural was built as the object language of a C compiler, rather than for hand-coding, but its logical syntax won some fans.
There has been little apparent demand for more sophisticated assemblers since the decline of large-scale assembly language development. Today, assembly language is still used for direct hardware manipulation, access to specialized processor instructions, or to address critical performance issues. Typical uses are device drivers, low-level embedded systems, and real-time systems (see ).
Numerous programs were written entirely in assembly language. The Burroughs MCP (1961) was the first computer for which an operating system was not developed entirely in assembly language; it was written in Executive Systems Problem Oriented Language (ESPOL), an Algol dialect. Many commercial applications were written in assembly language as well, including a large amount of the IBM mainframe software developed by large corporations. COBOL, FORTRAN and some PL/I eventually displaced assembly language, although a number of large organizations retained assembly-language application infrastructures well into the 1990s.
Assembly language was the primary development language for 8-bit home computers such as the Apple II, Atari 8-bit computers, ZX Spectrum, and Commodore 64. Interpreted BASIC on these systems did not offer maximum execution speed and full use of facilities to take full advantage of the available hardware. Assembly language was the default choice for programming 8-bit consoles such as the Atari 2600 and Nintendo Entertainment System.
Key software for IBM PC compatibles such as MS-DOS, Turbo Pascal, and the Lotus 1-2-3 spreadsheet was written in assembly language. As computer speed grew exponentially, assembly language became a tool for speeding up parts of programs, such as the rendering of Doom, rather than a dominant development language. In the 1990s, assembly language was used to maximise performance from systems such as the Sega Saturn, and dav1d (the reference decoder for AV1) contain assembly to leverage AVX2 and ARM Neon instructions when available.
* Modify and extend legacy code written for IBM mainframe computers.
* Situations where complete control over the environment is required, in extremely high-security situations where nothing can be taken for granted.
* Computer viruses, bootloaders, certain device drivers, or other items very close to the hardware or low-level operating system.
* Instruction set simulators for monitoring, tracing and debugging where additional overhead is kept to a minimum.
* Situations where no high-level language exists, on a new or specialized processor for which no cross compiler is available.
* Reverse engineering and modifying program files such as:
** existing binaries that may or may not have originally been written in a high-level language, for example when trying to recreate programs for which source code is not available or has been lost, or cracking copy protection of proprietary software.
** Video games (also termed ROM hacking), which is possible via several methods. The most widely employed method is altering program code at the assembly language level.
Assembly language is still taught in most computer science and electronic engineering programs. Although few programmers today regularly work with assembly language as a tool, the underlying concepts remain important. Such fundamental topics as binary arithmetic, memory allocation, stack processing, character set encoding, interrupt processing, and compiler design would be hard to study in detail without a grasp of how a computer operates at the hardware level. Since a computer's behaviour is fundamentally defined by its instruction set, the logical way to learn such concepts is to study an assembly language. Most modern computers have similar instruction sets. Therefore, studying a single assembly language is sufficient to learn the basic concepts, recognize situations where the use of assembly language might be appropriate, and to see how efficient executable code can be created from high-level languages.
}}
References
Further reading
* [https://web.archive.org/web/20090206015549/http://download.savannah.gnu.org/releases-noredirect/pgubook/ProgrammingGroundUp-1-0-booksize.pdf]
*
* (2+xiv+270+6 pages)
*
*
*
*
*
*
*
*
*
* ("An online book full of helpful ASM info, tutorials and code examples" by the ASM Community, archived at the internet archive.)External links
* [http://wiki.c2.com/?AssemblyLanguage Assembly Language] and [http://wiki.c2.com/?LearningAssemblyLanguage Learning Assembly Language] pages on WikiWikiWeb
* [http://www.azillionmonkeys.com/qed/asmexample.html Assembly Language Programming Examples]
*Assembly language
Category:Computer-related introductions in 1949
Category:Embedded systems
Category:Low-level programming languages
Category:Programming language implementation
Category:Programming languages created in 1949 | https://en.wikipedia.org/wiki/Assembly_language | 2025-04-05T18:25:38.765195 |
1369 | Ambrosia | dish attributed to Nicola da Urbino]]
In the ancient Greek myths, ambrosia (, ) is the food or drink of the Greek gods, and is often depicted as conferring longevity or immortality upon whoever consumed it. It was brought to the gods in Olympus by doves and served either by Hebe or by Ganymede at the heavenly feast.
Ancient art sometimes depicted ambrosia as distributed by the nymph named Ambrosia, a nurse of Dionysus.
Definition
Ambrosia is very closely related to the gods' other form of sustenance, nectar. The two terms may not have originally been distinguished; though in Homer's poems nectar is usually the drink and ambrosia the food of the gods; it was with ambrosia that Hera "cleansed all defilement from her lovely flesh", and with ambrosia Athena prepared Penelope in her sleep, so that when she appeared for the final time before her suitors, the effects of years had been stripped away, and they were inflamed with passion at the sight of her. On the other hand, in Alcman, nectar is the food, and in Sappho and Anaxandrides, ambrosia is the drink. A character in Aristophanes' Knights says, "I dreamed the goddess poured ambrosia over your head—out of a ladle." Both descriptions could be correct, as ambrosia could be a liquid considered a food (such as honey).
The consumption of ambrosia was typically reserved for divine beings. Upon his assumption into immortality on Olympus, Heracles is given ambrosia by Athena, while the hero Tydeus is denied the same thing when the goddess discovers him eating human brains. In one version of the myth of Tantalus, part of Tantalus' crime is that after tasting ambrosia himself, he attempts to steal some to give to other mortals. Those who consume ambrosia typically have ichor, not blood, in their veins.
Both nectar and ambrosia are fragrant, and may be used as perfume: in the Odyssey Menelaus and his men are disguised as seals in untanned seal skins, "and the deadly smell of the seal skins vexed us sore; but the goddess saved us; she brought ambrosia and put it under our nostrils." Homer speaks of ambrosial raiment, ambrosial locks of hair, even the gods' ambrosial sandals.
Among later writers, ambrosia has been so often used with generic meanings of "delightful liquid" that such late writers as Athenaeus, Paulus and Dioscurides employ it as a technical term in contexts of cookery, medicine, and botany. Pliny used the term in connection with different plants, as did early herbalists.
Additionally, some modern ethnomycologists, such as Danny Staples, identify ambrosia with the hallucinogenic mushroom Amanita muscaria: "it was the food of the gods, their ambrosia, and nectar was the pressed sap of its juices", Staples asserts.
W. H. Roscher thinks that both nectar and ambrosia were kinds of honey, in which case their power of conferring immortality would be due to the supposed healing and cleansing powers of honey, (n-: negative prefix from which the prefix a- in both Greek and Sanskrit are derived; mṛ: zero grade of *mer-, "to die"; and -to-: adjectival suffix). A semantically similar etymology exists for nectar, the beverage of the gods (Greek: νέκταρ néktar) presumed to be a compound of the PIE roots *nek-, "death", and -*tar, "overcoming". Other examples in mythology
(1673–1748)]]
* In one version of the story of the birth of Achilles, Thetis anoints the infant with ambrosia and passes the child through the fire to make him immortal but Peleus, appalled, stops her, leaving only his heel unimmortalised (Argonautica 4.869–879).
* In the Iliad'' xvi, Apollo washes the black blood from the corpse of Sarpedon and anoints it with ambrosia, readying it for its dreamlike return to Sarpedon's native Lycia. Similarly, Thetis anoints the corpse of Patroclus in order to preserve it. Ambrosia and nectar are depicted as unguents (xiv. 170; xix. 38).
* In the Odyssey, Calypso is described as having "spread a table with ambrosia and set it by Hermes, and mixed the rosy-red nectar." It is ambiguous whether he means the ambrosia itself is rosy-red, or if he is describing a rosy-red nectar Hermes drinks along with the ambrosia. Later, Circe mentions to Odysseus that a flock of doves are the bringers of ambrosia to Olympus.
* In the Odyssey (ix.345–359), Polyphemus likens the wine given to him by Odysseus to ambrosia and nectar.
* One of the impieties of Tantalus, according to Pindar, was that he offered to his guests the ambrosia of the Deathless Ones, a theft akin to that of Prometheus, Karl Kerenyi noted (in Heroes of the Greeks).
* In the Homeric hymn to Aphrodite, the goddess uses "ambrosial bridal oil that she had ready perfumed."
* In the story of Eros and Psyche as told by Apuleius, Psyche is given ambrosia upon her completion of the quests set by Aphrodite and her acceptance on Olympus. After she partakes, she and Eros are wed as gods.
* In the Aeneid, Aeneas encounters his mother in an alternate, or illusory form. When she became her godly form "Her hair's ambrosia breathed a holy fragrance."
Ambrosia (nymph)
from Herculaneum, 45–79 AD)]]
Lycurgus, king of Thrace, forbade the cult of Dionysus, whom he drove from Thrace, and attacked the gods' entourage when they celebrated the god. Among them was Ambrosia, who turned herself into a grapevine to hide from his wrath. Dionysus, enraged by the king's actions, drove him mad. In his fit of insanity he killed his son, whom he mistook for a stock of ivy, and then himself.
See also
* Amrita
* Elixir of life, a potion sought by alchemy to produce immortality
* Ichor, blood of the Greek gods, related to ambrosia
* Iðunn's apples in Norse mythology
* Manna, food given by God to the Israelites
* Peaches of Immortality in Chinese mythology
* Pill of Immortality
* Silphium
* Soma and Haoma, a ritual drink of importance among the early Vedic peoples and Indo-Iranians.
References
Sources
* Clay, Jenny Strauss, "Immortal and ageless forever", The Classical Journal 77.2 (December 1981:pp. 112–117).
* Ruck, Carl A.P. and Danny Staples, The World of Classical Myth 1994, p. 26 et seq. [https://web.archive.org/web/20120415105236/http://csp.org/chrestomathy/world_of.html]
* Wright, F. A., "The Food of the Gods", The Classical Review 31.1, (February 1917:4–6).
External links
*
Category:Ancient Greek cuisine
Category:Mount Olympus
Category:Mythological medicines and drugs
Category:Mythological food and drink
Category:Immortality
Category:Thetis
Category:Achilles
Category:Metamorphoses | https://en.wikipedia.org/wiki/Ambrosia | 2025-04-05T18:25:38.775070 |
1370 | Ambrose | –500) of Ambrose in the Basilica of Sant'Ambrogio
| church | diocese Mediolanum (Milan)
| see = Mediolanum
| term_start = 374 AD
| term_end = 4 April 397
| predecessor = Auxentius
| successor = Simplician
<!---------- Orders ---------->
| ordination | ordained_by
| consecration = 7 December 374
| consecrated_by | rank <!---------- Personal details ---------->
| birth_name = Aurelius Ambrosius
| birth_date
| baptised = <!-- will not display if birth_date is entered -->
| birth_place = Augusta Treverorum, Gallia Belgica, Roman Empire
| death_date
| death_place = Mediolanum, Italia, Western Roman Empire
| buried = Crypt of the Basilica of Sant'Ambrogio
| religion = Christian
| module = (386–390)|De obitu Theodosii (395)}}
| era = Patristic Age
| tradition_movement = Trinitarianism
| main_interests = Christian ethics and mariology
| notable_ideas Anti-paganism, mother of the Church
}}
<!---------- Sainthood ---------->
| feast_day = 7 December
| venerated =
| saint_title = Doctor of the Church
| beatified_date | beatified_place
| beatified_by | canonized_date
| canonized_place | canonized_by
| attributes | patronage Milan and beekeepers
|Bakers of honeybread, bees, bishops, candlemakers, chandlers, domestic animals, the French Commissariat, geese, gingerbread makers, learning, schoolchildren, stone masons, students, wax melters and Bologna
}}
| shrine = Basilica of Sant'Ambrogio
}}
Ambrose of Milan (; 4 April 397), venerated as Saint Ambrose, ; .}} was a theologian and statesman who served as Bishop of Milan from 374 to 397. He expressed himself prominently as a public figure, fiercely promoting Roman Christianity against Arianism and paganism. He left a substantial collection of writings, of which the best known include the ethical commentary De officiis ministrorum (377–391), and the exegetical (386–390). His preaching, his actions and his literary works, in addition to his innovative musical hymnography, made him one of the most influential ecclesiastical figures of the 4th century.
Ambrose was serving as the Roman governor of Aemilia-Liguria in Milan when he was unexpectedly made Bishop of Milan in 374 by popular acclamation. As bishop, he took a firm position against Arianism and attempted to mediate the conflict between the emperors Theodosius I and Magnus Maximus. Tradition credits Ambrose with developing an antiphonal chant, known as Ambrosian chant, and for composing the "Te Deum" hymn, though modern scholars now reject both of these attributions. Ambrose's authorship on at least four hymns, including the well-known "Veni redemptor gentium", is secure; they form the core of the Ambrosian hymns, which includes others that are sometimes attributed to him. He also had a notable influence on Augustine of Hippo (354–430), whom he helped convert to Christianity.
Western Christianity identified Ambrose, along with Augustine, Jerome and pope Gregory the Great, as one of the four Great Latin Church Fathers, declared Doctors of the Church in 1298. He is considered a saint by the Catholic Church, Eastern Orthodox Church, Anglican Communion, and various Lutheran denominations, and venerated as the patron saint of Milan and beekeepers.
Background and career
<gallery>
Image:Sant'Ambrogio (Pacher).jpg|Painting by Michael Pacher
Image:AmbroseStatue.png|Engraving of a statue of Ambrose
Image:AugustineBaptism.jpg|Fresco of Ambrose baptizing Saint Augustine, by Benozzo Gozzoli
</gallery>
Legends about Ambrose had spread through the empire long before his biography was written, making it difficult for modern historians to understand his true character and fairly place his behaviour within the context of antiquity. Most agree he was the personification of his era. This would make Ambrose a genuinely spiritual man who spoke up and defended his faith against opponents, an aristocrat who retained many of the attitudes and practices of a Roman governor, and also an ascetic who served the poor. Early life by depicting Ambrose as a child while bees swarm his crib. His father is on the right of the image while the sky has three clouds "sending forth flames". The relief is from the Altar of Sant'Ambrogio in the Basilica of Sant'Ambrogio.]]
Ambrose was born into a Roman Christian family, of Greek descent, in the year 339. Ambrose himself wrote that he was 53 years old in his letter number 49, which has been dated to 392. He began life in Augusta Treverorum (modern Trier) the capital of the Roman province of Gallia Belgica in what was then northeastern Gaul and is now in the Rhineland-Palatinate in Germany. Scholars disagree on who exactly his father was. His father is sometimes identified with Aurelius Ambrosius,}} a praetorian prefect of Gaul; but some scholars identify his father as an official named Uranius who received an imperial constitution dated 3 February 339 (addressed in a brief extract from one of the three emperors ruling in 339, Constantine II, Constantius II, or Constans, in the Codex Theodosianus, book XI.5). What does seem certain is that Ambrose was born in Trier and his father was either the praetorian prefect or part of his administration.
A legend about Ambrose as an infant recounts that a swarm of bees settled on his face while he lay in his cradle, leaving behind a drop of honey. His father is said to have considered this a sign of his future eloquence and honeyed tongue. Bees and beehives often appear in the saint's symbology.
Ambrose's mother was a woman of intellect and piety. It was probable that she was a member of the Roman family Aurelii Symmachi, which would make Ambrose a cousin of the orator Quintus Aurelius Symmachus. The family had produced one martyr (the virgin Soteris) in its history. Ambrose was the youngest of three children. His siblings were Satyrus, the subject of Ambrose's De excessu fratris Satyri, and Marcellina, who made a profession of virginity sometime between 352 and 355; Pope Liberius himself conferred the veil upon her. Both Ambrose's siblings also became venerated as saints.
Sometime early in the life of Ambrose, his father died. At an unknown later date, his mother left Trier with her three children, and the family moved to Rome. There Ambrose studied literature, law, and rhetoric. He then followed in his father's footsteps and entered public service. Praetorian Prefect Sextus Claudius Petronius Probus first gave him a place as a judicial councillor, and then in about 372 made him governor of the province of Liguria and Emilia, with headquarters in Milan.
Bishop of Milan
In 374 the bishop of Milan, Auxentius, an Arian, died, and the Arians challenged the succession. Ambrose went to the church where the election was to take place to prevent an uproar which seemed probable in this crisis. His address was interrupted by a call, "Ambrose, bishop!", which was taken up by the whole assembly.
Ambrose, though known to be Nicene Christian in belief, was considered acceptable to Arians due to the charity he had shown concerning their beliefs. At first, he energetically refused the office of bishop, for which he felt he was in no way prepared: Ambrose was a relatively new Christian who was not yet baptized nor formally trained in theology. Ambrose fled to a colleague's home, seeking to hide. Upon receiving a letter from the Emperor Gratian praising the appropriateness of Rome appointing individuals worthy of holy positions, Ambrose's host gave him up. Within a week, he was baptized, ordained and duly consecrated as the new bishop of Milan. This was the first time in the West that a member of the upper class of high officials had accepted the office of bishop.
As bishop, he immediately adopted an ascetic lifestyle, apportioned his money to the poor, donating all of his land, making only provision for his sister Marcellina. While Bishop of Milan, Ambrose carefully cultivated practices that respected local customs and that reflected his spiritual beliefs. He understood the link between a religious leader's life and their ability to model morality for congregants. In his work De Officiis (377-391), he asked, "How can you consider a man to be better than you when it comes to giving advice if you see that he is worse than you when it comes to morality?" His humble and upright ways raised his standing among his people even further; it was his popularity with the people that gave him considerable political leverage throughout his career. Upon the unexpected appointment of Ambrose to the episcopate, his brother Satyrus resigned a prefecture in order to move to Milan, where he took over managing the diocese's temporal affairs.
Arianism
Arius (died 336) was a Christian priest who around the year 300 asserted that God the Father must have created the Son, indicating that the Son was a lesser being who was not eternal and of a different "essence" from God the Father. This Christology, though contrary to tradition, quickly spread through Egypt, Libya and other Roman provinces. Bishops engaged in the dispute, and the people divided into parties, sometimes demonstrating in the streets in support of one side or the other.
Arianism appealed to many high-level leaders and clergy in both the Western and Eastern empires. Although the western Emperor Gratian () supported orthodoxy, his younger half brother Valentinian II, who became his colleague in the empire in 375, adhered to the Arian creed. Ambrose sought to refute Arian propositions theologically, but Ambrose did not sway the young prince's position. In the East, Emperor Theodosius I () likewise professed the Nicene creed; but there were many adherents of Arianism throughout his dominions, especially among the higher clergy.
In this state of religious ferment, two leaders of the Arians, bishops Palladius of Ratiaria and Secundianus of Singidunum, confident of numbers, prevailed upon Gratian to call a general council from all parts of the empire. This request appeared so equitable that Gratian complied without hesitation. However, Ambrose feared the consequences and prevailed upon the emperor to have the matter determined by a council of the Western bishops. Accordingly, a synod composed of thirty-two bishops was held at Aquileia in the year 381. Ambrose was elected president and Palladius, being called upon to defend his opinions, declined. A vote was then taken and Palladius and his associate Secundianus were deposed from their episcopal offices.
Ambrose struggled with Arianism for over half of his term in the episcopate. Ecclesiastical unity was important to the church, but it was no less important to the state, and as a Roman, Ambrose felt strongly about that. Conflict over heresies loomed large in an age of religious ferment comparable to the Reformation of the fourteenth and fifteenth centuries. Orthodox Christianity was determining how to define itself as it faced multiple challenges on both a theological and a practical level, and Ambrose exercised crucial influence at a crucial time.
Imperial relations
Ambrose had good relations and varying levels of influence with the Roman emperors Gratian, Valentinian II and Theodosius I, but exactly how much influence, what kind of influence, and in what ways, when, has been debated in the scholarship of the late twentieth and early twenty-first centuries.GratianIt has long been convention to see Gratian and Ambrose as having a personal friendship, putting Ambrose in the dominant role of spiritual guide, but modern scholars now find this view hard to support from the sources. The ancient Christian historian Sozomen () is the only ancient source that shows Ambrose and Gratian together in any personal interaction. In that interaction, Sozomen relates that, in the last year of Gratian's reign, Ambrose intruded on Gratian's private hunting party in order to appeal on behalf of a pagan senator sentenced to die. After years of acquaintance, according to professor Neil B. McLynn, this indicates that Ambrose could not take for granted that Gratian would see him, so instead, Ambrose had to resort to such manoeuvrings to make his appeal.
Gratian was personally devout long before meeting Ambrose. Modern scholarship indicates Gratian's religious policies do not evidence capitulation to Ambrose more than they evidence Gratian's own views. Gratian's devotion did lead Ambrose to write a large number of books and letters of theology and spiritual commentary dedicated to the emperor. The sheer volume of these writings and the effusive praise they contain has led many historians to conclude that Gratian was dominated by Ambrose, and it was that dominance that produced Gratian's anti-pagan actions. McLynn asserts that effusive praises were common in everyone's correspondence with the crown. He adds that Gratian's actions were determined by the constraints of the system as much as "by his own initiatives or Ambrose's influence".
McLynn asserts that the largest influence on Gratian's policy was the profound change in political circumstances produced by the Battle of Adrianople in 378. Gratian had become involved in fighting the Goths the previous year and had been on his way to the Balkans when his uncle and the "cream of the eastern army" were destroyed at Adrianople. Gratian withdrew to Sirmium and set up his court there. Several rival groups, including the Arians, sought to secure benefits from the government at Sirmium. In an Arian attempt to undermine Ambrose, whom Gratian had not yet met, Gratian was "warned" that Ambrose's faith was suspect. Gratian took steps to investigate by writing to Ambrose and asking him to explain his faith.
Ambrose and Gratian first met, after this, in 379 during a visit to Milan. The bishop made a good impression on Gratian and his court, which was pervasively Christian and aristocratic – much like Ambrose himself. The law cancelling this has been presented in previous scholarship as proof of Ambrose's influence over Gratian, but the law's target was Donatism which had failed to be listed in the exceptions. There is no evidence to support Ambrose as having had anything to do with this restatement since sanctions against Donatism had existed since Constantine. }} The emperor returned to Milan in 380 to find that Ambrose had complied with his request for a statement of his faith – in two volumes – known as De Fide: a statement of orthodoxy and of Ambrose' political theology, as well as a polemic against the Arian heresy – intended for public discussion. The emperor had not asked to be instructed by Ambrose, and in De Fide Ambrose states this clearly. Nor was he asked to refute the Arians. He was asked to justify his own position, but in the end, he did all three.
It seems that by 382 Ambrose had replaced Ausonius to become a major influence in Gratian's court. Ambrose had not yet become the "conscience" of kings he would in the later 380s, but he did speak out against reinstating the Altar of Victory. In 382, Gratian was the first to divert public financial subsidies that had previously supported Rome's cults. Before that year, contributions in support of the ancient customs had continued unchallenged by the state.
Valentinian II
The childless Gratian had treated his younger brother Valentinian II like a son. Ambrose, on the other hand, had incurred the lasting enmity of Valentinian II's mother, the Empress Justina, in the winter of 379 by helping to appoint a Nicene bishop in Sirmium. Not long after this, Valentinian II, his mother, and the court left Sirmium; Sirmium had come under Theodosius' control, so they went to Milan which was ruled by Gratian.
In 383 Gratian was assassinated at Lyon, in Gaul (France) by Magnus Maximus. Valentinian was twelve years old, and the assassination left his mother, Justina, in a position of something akin to a regent. In 385 (or 386) the emperor Valentinian II and his mother Justina, along with a considerable number of clergy, the laity, and the military, professed Arianism. Conflict between Ambrose and Justina soon followed.
The Arians demanded that Valentinian allocate to them two churches in Milan: one in the city (the Basilica of the Apostles), the other in the suburbs (St Victor's). Ambrose refused to surrender the churches. He answered by saying that "What belongs to God, is outside the emperor's power." In this, Ambrose called on an ancient Roman principle: a temple set apart to a god became the property of that god. Ambrose now applied this ancient legal principle to the Christian churches, seeing the bishop, as a divine representative, as guardian of his god's property.
Subsequently, while Ambrose was performing the Liturgy of the Hours in the basilica, the prefect of the city came to persuade him to give it up to the Arians. Ambrose again refused. Certain deans (officers of the court) were sent to take possession of the basilica by hanging upon it imperial escutcheons. Instead, soldiers from the ranks the emperor had placed around the basilica began pouring into the church, assuring Ambrose of their fidelity. The escutcheons outside the church were removed, and legend says the children tore them to shreds.
Ambrose refused to surrender the basilica, and sent sharp answers back to his emperor: "If you demand my person, I am ready to submit: carry me to prison or to death, I will not resist; but I will never betray the church of Christ. I will not call upon the people to succour me; I will die at the foot of the altar rather than desert it. The tumult of the people I will not encourage: but God alone can appease it." By Thursday, the emperor gave in, bitterly responding: "Soon, if Ambrose gives the orders, you will be sending me to him in chains."
In 386, Justina and Valentinian II received the Arian bishop Auxentius the younger, and Ambrose was again ordered to hand over a church in Milan for Arian usage. Ambrose and his congregation barricaded themselves inside the church, and again the imperial order was rescinded. There was an attempted kidnapping, and another attempt to arrest him and to force him to leave the city. Several accusations were made, but unlike in the case of John Chrysostom, no formal charges were brought. The emperor certainly had the power to do so, and probably did not solely because of Ambrose's popularity with the people and what they might do.
When Magnus Maximus usurped power in Gaul (383) and was considering a descent upon Italy, Valentinian sent Ambrose to dissuade him, and the embassy was successful (384). A second, later embassy was unsuccessful. Magnus Maximus entered Italy (386–387) and Milan was taken. Justina and her son fled, but Ambrose remained and had the plate of the church melted for the relief of the poor. }}Theodosius
While Ambrose was writing De Fide, Theodosius published his own statement of faith in 381 in an edict establishing Nicene Christianity as the only legitimate version of the Christian faith. There is unanimity amongst scholars that this represents the emperor's own beliefs. The aftermath of the death (378) of Valens (Emperor in the East from 364 to 378) had left many questions for the church unresolved, and Theodosius' edict can be seen as an effort to begin addressing those questions. Theodosius' natural generosity was tempered by his pressing need to establish himself and to publicly assert his personal piety.
On 28 February 380, Theodosius issued the Edict of Thessalonica, a decree addressed to the city of Constantinople, determining that only Christians who did not support Arian views were catholic and could have their places of worship officially recognized as "churches". Nonetheless, the edict is the first known secular Roman law to positively assert a religious orthodoxy.}} The Edict opposed Arianism, and attempted to establish unity in Christianity and to suppress heresy. German ancient historian writes that the Edict of Thessalonica was neither anti-pagan nor antisemitic; it did not declare Christianity to be the official religion of the empire; and it gave no advantage to Christians over other faiths.
Liebeschuetz and Hill indicate that it was not until after 388, during Theodosius' stay in Milan following the defeat of Maximus in 388, that Theodosius and Ambrose first met.
'' a "pious fiction" painted in 1619 by Anthony van Dyck. National Gallery, London]]
After the Massacre of Thessalonica in 390, Theodosius made an act of public penance at Ambrose's behest. Ambrose was away from court during the events at Thessalonica, but after being informed of them, he wrote Theodosius a letter. In that still-existing letter, Ambrose presses for a semi-public demonstration of penitence from the emperor, telling him that, as his bishop, he will not give Theodosius communion until it is done. Wolf Liebeschuetz says "Theodosius duly complied and came to church without his imperial robes, until Christmas, when Ambrose openly admitted him to communion".
Formerly, some scholars credited Ambrose with having an undue influence over Emperor Theodosius I, from this period forward, prompting him toward major anti-pagan legislation beginning in February of 391. However, this interpretation has been heavily disputed since the late-twentieth century. McLynn argues that Theodosius's anti-pagan legislation was too limited in scope for it to be of interest to the bishop. The fabled encounter at the door of the cathedral in Milan, with Ambrose as the mitred prelate braced, blocking Theodosius from entering, which has sometimes been seen as evidence of Ambrose' dominance over Theodosius, has been debunked by modern historians as "a pious fiction". There was no encounter at the church door. The story is a product of the imagination of Theodoret, a historian of the fifth century who wrote of the events of 390 "using his own ideology to fill the gaps in the historical record".
The twenty-first-century view is that Ambrose was "not a power behind the throne". The two men did not meet each other frequently, and documents that reveal the relationship between the two are less about personal friendship than they are about negotiations between two formidable leaders of the powerful institutions they represent: the Roman State and the Italian Church. Cameron says there is no evidence that Ambrose was a significant influence on the emperor.
For centuries after his death, Theodosius was regarded as a champion of Christian orthodoxy who decisively stamped out paganism. This view was recorded by Theodoret, who is recognized as an unreliable historian, in the century following their deaths. Theodosius's predecessors Constantine (), Constantius (), and Valens had all been semi-Arians. Therefore, it fell to the orthodox Theodosius to receive from Christian literary tradition most of the credit for the final triumph of Christianity. Modern scholars see this as an interpretation of history by orthodox Christian writers more than as a representation of actual history. The view of a pious Theodosius submitting meekly to the authority of the church, represented by Ambrose, is part of the myth that evolved within a generation of their deaths.
Later years and death
In April 393 Arbogast (magister militum of the West) and his puppet Emperor Eugenius marched into Italy to consolidate their position against Theodosius I and his son, Honorius, now appointed Augustus to govern the western portion of the empire. Arbogast and Eugenius courted Ambrose's support by very obliging letters; but before they arrived at Milan, he had retired to Bologna, where he assisted at the translation of the relics of Saints Vitalis and Agricola. From there he went to Florence, where he remained until Eugenius withdrew from Milan to meet Theodosius in the Battle of the Frigidus in early September 394.
Soon after acquiring the undisputed possession of the Roman Empire, Theodosius died at Milan in 395, and Ambrose gave the eulogy. Two years later (4 April 397) Ambrose also died. He was succeeded as bishop of Milan by Simplician. Ambrose's body may still be viewed in the church of Saint Ambrogio in Milan, where it has been continuously venerated – along with the bodies identified in his time as being those of Saints Gervase and Protase.
Ambrose is remembered in the calendar of the Roman Rite of the Catholic Church on 7 December, and is also honoured in the Church of England and in the Episcopal Church on 7 December. Character In 1994, Neil B. McLynn wrote a complex study of Ambrose that focused on his politics and was intended to "demonstrate that Ambrose viewed community as a means to acquire personal political power". Subsequent studies of how Ambrose handled his episcopal responsibilities, his Nicene theology and his dealings with the Arians in his episcopate, his pastoral care, his commitment to community, and his personal asceticism, have mitigated this view.
All of Ambrose's writings are works of advocacy for Nicene Christianity, and even his political views and actions were closely related to his religion. He was rarely, if ever, concerned about simply recording what had happened; he did not write to reveal his inner thoughts and struggles; he wrote to advocate for his God. Boniface Ramsey writes that it is difficult "not to posit a deep spirituality in a man" who wrote on the mystical meanings of the Song of Songs and wrote many extraordinary hymns. Despite an abiding spirituality, Ambrose had a generally straightforward manner, and a practical rather than a speculative tendency in his thinking. De Officiis is a utilitarian guide for his clergy in their daily ministry in the Milanese church rather than "an intellectual tour de force".
Christian faith in the third century developed the monastic lifestyle which subsequently spread into the rest of Roman society in a general practice of virginity, voluntary poverty and self-denial for religious reasons. This lifestyle was embraced by many new converts, including Ambrose, even though they did not become actual monks.
The bishops of this era had heavy administrative responsibilities, and Ambrose was also sometimes occupied with imperial affairs, but he still fulfilled his primary responsibility to care for the well-being of his flock. He preached and celebrated the Eucharist multiple times a week, sometimes daily, and dealt directly with the needs of the poor, as well as widows and orphans, "virgins" (nuns), and his own clergy. He replied to letters personally, practised hospitality, and made himself available to the people.
, New York City.]]
Ambrose had the ability to maintain good relationships with all kinds of people. Local church practices varied quite a bit from place to place at this time, and as the bishop, Ambrose could have required that everyone adapt to his way of doing things. It was his place to keep the churches as united as possible in both ritual and belief. Instead, he respected local customs, adapting himself to whatever practices prevailed, instructing his mother to do the same. As bishop, Ambrose undertook many different labours in an effort to unite people and "provide some stability during a period of religious, political, military, and social upheavals and transformations".
Brown says Ambrose "had the makings of a faction fighter". While he got along well with most people, Ambrose was not averse to conflict and even opposed emperors with a fearlessness born of self-confidence and a clear conscience and not from any belief he would not suffer for his decisions. Having begun his life as a Roman aristocrat and a governor, it is clear that Ambrose retained the attitudes and practices of Roman governance even after becoming a bishop.
His acts and writings show he was quite clear about the limits of imperial power over the church's internal affairs including doctrine, moral teaching, and governance. He wrote to Valentinian: "In matters of faith bishops are the judges of Christian emperors, not emperors of bishops." (Epistle 21.4). He also famously said to an Arian bishop chosen by the emperor, "The emperor is in the church, not over the church." (Sermon Against Auxentius, 36). Ambrose's acts and writings "created a sort of model which was to remain valid in the Latin West for the relations of the Church and the Christian State. Both powers stood in a basically positive relationship to each other, but the innermost sphere of the Church's life--faith, the moral order, ecclesiastical discipline--remained withdrawn from the State's influence."
Ambrose was also well aware of the limits of his power. At the height of his career as a venerable, respected and well-loved bishop in 396, imperial agents marched into his church, pushing past him and his clergy who had crowded the altar to protect a political suspect from arrest, and dragged the man from the church in front of Ambrose who could do nothing to stop them. "When it came to the central functions of the Roman state, even the vivid Ambrose was a lightweight".
Attitude towards Jews
Ambrose is recorded on occasions as taking a hostile attitude towards Jews, for example in 388, when the Emperor Theodosius I was informed that a crowd of Christians had retaliated against the local Jewish community by destroying the synagogue at Callinicum on the Euphrates. The synagogue most probably existed within the fortified town to serve the soldiers stationed there, and Theodosius ordered that the offenders be punished and that the synagogue be rebuilt at the expense of the bishop. Ambrose wrote to the emperor arguing against this, basing his argument on two assertions: first, if the bishop obeyed the order, it would be a betrayal of his faith, and second, if the bishop instead refused to obey the order, he would become a martyr and create a scandal embarrassing the emperor. Ambrose, referring to a prior incident where Magnus Maximus issued an edict censuring Christians in Rome for burning down a Jewish synagogue, warned Theodosius that the people, in turn, exclaimed "the emperor has become a Jew", implying that Theodosius would receive the same lack of support from the people. Theodosius rescinded the order concerning the bishop.
That was not enough for Ambrose, however, and when Theodosius next visited Milan Ambrose confronted him directly in an effort to get him to drop the entire case. McLynn argues that Ambrose failed to win the emperor's sympathy and was mostly excluded from his counsels thereafter. The Callinicum affair was not an isolated incident. Generally speaking, however, while McLynn says it makes Ambrose look like a bully and a bigot to modern eyes, scholars also agree that Ambrose's attitudes toward the Jews cannot be fairly summarized in one sentence, as not all of Ambrose's attitudes toward Jews were negative.
For example, Ambrose makes extensive and appreciative use of the works of a Jew, Philo of Alexandria, in his own writings, treating Philo as one of the "faithful interpreters of the Scriptures". Philo was an educated man of some standing and a prolific writer during the era of Second Temple Judaism. Forty–three of his treatises have been preserved, and these by Christians, rather than Jews. Philo became foundational in forming the Christian literary view on the six days of creation through Basil's Hexaemeron. Eusebius, the Cappadocian Fathers, and Didymus the Blind appropriated material from Philo as well, but none did so more than Ambrose. As a result of these extensive references, Philo was accepted into the Christian tradition as an honorary Church Father. "In fact, one Byzantine catena even refers to him as 'Bishop Philo'. This high regard for Philo even led to a number of legends of his conversion to Christianity, although this assertion stands on very dubious evidence". Ambrose also used Josephus, Maccabees, and other Jewish sources for his writings. He praises some individual Jews. Ambrose tended to write negatively of all non-Nicenes as if they were all in one category. This served a rhetorical purpose in his writing and should be considered accordingly. Attitude towards pagans
Modern scholarship indicates that paganism was a lesser concern than heresy for Christians in the fourth and fifth centuries, including Ambrose, but it was still a concern. Writings of this period were commonly hostile and often contemptuous toward paganism which Christianity saw as already defeated in Heaven. The great Christian writers of the third to fifth centuries attempted to discredit the continuation of these "defeated practices" by searching pagan writings, "particularly those of Varro, for everything that could be regarded by Christian standards as repulsive and irreligious." Ambrose' work reflects this triumphalism.}}
Throughout his time in the episcopate, Ambrose was active in his opposition to any state sponsorship of pagan cults. When Gratian ordered the Altar of Victory to be removed, it roused the aristocracy of Rome to send a delegation to the emperor to appeal against the decision, but Pope Damasus I induced Christian senators to petition against it, and Ambrose blocked the delegates from obtaining an audience with the emperor. Under Valentinian II, an effort was made to restore the Altar of Victory to its ancient station in the hall of the Roman Senate and to again provide support for the seven Vestal Virgins. The pagan party was led by the refined senator Quintus Aurelius Symmachus, who used all his prodigious skill and artistry to create a marvellous document full of the maiestas populi Romani''. Hans Lietzmann writes that "Pagans and Christians alike were stirred by the solemn earnestness of an admonition which called all men of goodwill to the aid of a glorious history, to render all worthy honour to a world that was fading away".
Then Ambrose wrote to Valentinian asserting that the emperor was a soldier of God – not simply a personal believer, but one bound by his position to serve the faith; under no circumstances could he agree to something that would promote the worship of idols. Ambrose held up the example of Valentinian's brother, Gratian, reminding Valentinian that the commandment of God must take precedence. The bishop's intervention led to the failure of Symmachus' appeal.
In 389, Ambrose stepped in against a pagan senatorial delegation who wished to see the emperor Theodosius I. Although Theodosius refused their requests, he was irritated at the bishop's presumption and refused to see him for several days. Later, Ambrose wrote a letter to the emperor Eugenius complaining that some gifts the latter had bestowed on pagan senators could be used for funding pagan cults. Theology
Ambrose joins Augustine, Jerome, and Gregory the Great as one of the Latin Doctors of the Church. Theologians compare him with Hilary, who they claim fell short of Ambrose's administrative excellence but demonstrated greater theological ability. He succeeded as a theologian despite his juridical training and his comparatively late handling of biblical and doctrinal subjects.
Ambrose's intense episcopal consciousness furthered the growing doctrine of the Church and its sacerdotal ministry including teaching, leading services, administering sacraments, and giving pastoral advice. He found a proper balance between offering sacraments as mysterious ways of encountering God and sacramentalism, the emphasis on ritual for ritual's sake, prevalent elsewhere. He engaged the prevalent asceticism of the day, continuing the Stoic and Ciceronian training of his youth, which enabled him to promulgate a lofty standard of Christian ethics. Thus we have the De officiis ministrorum, De viduis, De virginitate and De paenitentia.
Ambrose displayed a kind of liturgical flexibility that kept in mind that liturgy was a tool to serve people in worshiping God, and ought not to become a rigid entity that is invariable from place to place. His advice to Augustine of Hippo on this point was to follow local liturgical custom. "When I am at Rome, I fast on a Saturday; when I am at Milan, I do not. Follow the custom of the church where you are." Thus Ambrose refused to be drawn into a false conflict over which particular local church had the "right" liturgical form where there was no substantial problem. His advice has remained in the English language as the saying, "When in Rome, do as the Romans do."
Eschatology
Some scholars argue that Ambrose was a Christian universalist. It has been noted that Ambrose's theology was significantly influenced by that of Origen and Didymus the Blind, two other early Christian universalists.}}
One could interpret this passage as being another example of the Christian belief in a general resurrection (that both those in Heaven and in Hell undergo a bodily resurrection), or an allusion to purgatory (that some destined for Heaven must first undergo a phase of purification). Some other works by Ambrose could potentially be seen as teaching the mainstream view of salvation. For example:
This could be interpreted as something which is not eschatological but rather rhetorical or conditional on the state of repentance. The passage most often cited in support of Ambrose supposed belief in apokatastasis is his commentary on 1 Corinthians 15, it reads:
Other scholars interpret Ambrose's soteriology to be in agreement with Jerome of Stridon and the anonymous individuals whom Augustine criticized in his treatise "on faith and works", who argued that while the unbelievers would experience eternal judgement, all Christians who have believed in Jesus will be reunited to God at some point, even if they have sinned and fallen away.|ps. "Jerome develops the same distinction, stating that, while the Devil and the impious who have denied God will be tortured without remission, those who have trusted in Christ, even if they have sinned and fallen away, will eventually be saved. Much the same teaching appears in Ambrose, developed in greater detail."}} Giving to the poor In De Officiis, the most influential of his surviving works, and one of the most important texts of patristic literature, he reveals his views connecting justice and generosity by asserting these practices are of mutual benefit to the participants. Ambrose draws heavily on Cicero and the biblical book of Genesis for this concept of mutual inter-dependence in society. In the bishop's view, it is concern for one another's interests that binds society together. Ambrose asserts that avarice leads to a breakdown in this mutuality, therefore avarice leads to a breakdown in society itself. In the late 380s, the bishop took the lead in opposing the greed of the elite landowners in Milan by starting a series of pointed sermons directed at his wealthy constituents on the need for the rich to care for the poor.
Some scholars have suggested Ambrose's endeavours to lead his people as both a Roman and a Christian caused him to strive for what a modern context would describe as a type of communism or socialism. He was not just interested in the church but was also interested in the condition of contemporary Italian society. Ambrose considered the poor not a distinct group of outsiders, but a part of a united people to be stood with in solidarity. Giving to the poor was not to be considered an act of generosity towards the fringes of society but a repayment of resources that God had originally bestowed on everyone equally and that the rich had usurped. He defines justice as providing for the poor whom he describes as our "brothers and sisters" because they "share our common humanity".
Mariology
The theological treatises of Ambrose of Milan would come to influence Popes Damasus, Siricius and Leo XIII. Central to Ambrose is the virginity of Mary and her role as Mother of God.
* The virgin birth is worthy of God. Which human birth would have been more worthy of God, than the one in which the Immaculate Son of God maintained the purity of his immaculate origin while becoming human?
* We confess that Christ the Lord was born from a virgin, and therefore we reject the natural order of things. Because she conceived not from a man but from the Holy Spirit.
* Christ is not divided but one. If we adore him as the Son of God, we do not deny his birth from the virgin. ... But nobody shall extend this to Mary. Mary was the temple of God but not God in the temple. Therefore, only the one who was in the temple can be worshipped.
* Yes, truly blessed for having surpassed the priest (Zechariah). While the priest denied, the Virgin rectified the error. No wonder that the Lord, wishing to rescue the world, began his work with Mary. Thus she, through whom salvation was being prepared for all people, would be the first to receive the promised fruit of salvation.
Ambrose viewed celibacy as superior to marriage and saw Mary as the model of virginity.
Augustine
Ambrose studied theology with Simplician, a presbyter of Rome. Using his excellent knowledge of Greek, which was then rare in the West, Ambrose studied the Old Testament and Greek authors like Philo, Origen, Athanasius, and Basil of Caesarea, with whom he was also exchanging letters. Ambrose became a famous rhetorician whom Augustine came to hear speak. Augustine wrote in his Confessions that Faustus, the Manichean rhetorician, was a more impressive speaker, but the content of Ambrose's sermons began to affect Augustine's faith. Augustine sought guidance from Ambrose and again records in his Confessions that Ambrose was too busy to answer his questions. In a passage of Augustine's Confessions in which Augustine wonders why he could not share his burden with Ambrose, he comments: "Ambrose himself I esteemed a happy man, as the world counted happiness, because great personages held him in honour. Only his celibacy appeared to me a painful burden." Simplician regularly met with Augustine, however, and Augustine writes of Simplician's "fatherly affection" for him. It was Simplician who introduced Augustine to Christian Neoplatonism. It is commonly understood in the Christian tradition that Ambrose baptized Augustine.
In this same passage of Augustine's Confessions is an anecdote which bears on the history of reading:
Music
, London]]
Ambrose's writings extend past literature and into music, where he was an important innovator in early Christian hymnography. His contributions include the "successful invention of Christian Latin hymnody", while the hymnologist Guido Maria Dreves designated him to be "The Father of church hymnody". He was not the first to write Latin hymns; the Bishop Hilary of Poitiers had done so a few decades before. However, the hymns of Hilary are thought to have been largely inaccessible because of their complexity and length. Only fragments of hymns from Hilary's Liber hymnorum exist, making those of Ambrose the earliest extant complete Latin hymns. The assembling of Ambrose's surviving oeuvre remains controversial; the almost immediate popularity of his style quickly prompted imitations, some which may even date from his lifetime. There are four hymns for which Ambrose's authorship is universally accepted, as they are attributed to him by Augustine:
* "Aeterne rerum conditor"
* "Deus creator omnium"
* "Iam surgit hora tertia"
* "Veni redemptor gentium" (also known as "Intende qui regis Israel")
Each of these hymns has eight four-line stanzas and is written in strict iambic tetrameter (that is 4 × 2 syllables, each iamb being two syllables). Marked by dignified simplicity, they served as a fruitful model for later times. Scholars such as the theologian Brian P. Dunkle have argued for the authenticity of as many as thirteen other hymns, while the musicologist James McKinnon contends that further attributions could include "perhaps some ten others". Ambrose is traditionally credited but not actually known to have composed any of the repertory of Ambrosian chant also known simply as "antiphonal chant", a method of chanting where one side of the choir alternately responds to the other. Although Ambrosian chant was named in his honour, no Ambrosian-chant melodies can be attributed to Ambrose. With Augustine, Ambrose was traditionally credited with composing the hymn "Te Deum". Since the hymnologist Guido Maria Dreves in 1893, however, scholars have dismissed this attribution.
Writings (Cod. Sang. 97 p. 51). The work is probably Ambrose's best known.]]
Source: All works are originally in Latin. Following each is where it may be found in a standard compilation of Ambrose's writings. His first work was probably De paradiso (377–378). Most have approximate dates, and works such as De Helia et ieiunio (377–391), Expositio evangelii secundum Lucam (377–389) and De officiis ministrorum (377–391) have been given a wide variety of datings by scholars. and give dates for most of Ambrose's writings, the dates from Ramsey are preferred, as the publication is more recent and the author is dating the works from the perspective of scholarly consensus, whereas in Paredi, the author offers dates based on his own research. Regardless, when Ramsey does not provide dates for a work, those of Paredi are used.}} His best known work is probably De officiis ministrorum (377–391), while the (386–390) and De obitu Theodosii (395) are among his most noted works. In matters of exegesis he is, like Hilary, an Alexandrian. In dogma he follows Basil of Caesarea and other Greek authors, but nevertheless gives a distinctly Western cast to the speculations of which he treats. This is particularly manifest in the weightier emphasis which he lays upon human sin and divine grace, and in the place which he assigns to faith in the individual Christian life. There has been debate on the attribution of some writings: for example De mysteriis is usually attributed to Ambrose, while the related De sacramentis is written in a different style with some silent disagreements, so there is less consensus over its author. This latter work was occasionally identified as being by St. Augustine, though this is erroneous.Exegesis* |trans-titleThe Six Days of Creation |volume6 books }} (; ; )
* (; ; )
* (; ; )
* (; )
* (; )
* (; ; )
* (; ; )
* (; ; )
* (; ; )
* (; ; )
* (; ; )
* (; )
* ()
* (; )
* (; ; )
* (; )
* (; )
* (; )
* ()
* (; ; )Moral and ascetical commentary* ()
*
* ()
* ()
* ()
* ()
Dogmatic writings
* (; )
* (; ; )
* (; ; )
* ; )
* (; ; )
*
* (; )
* ()
* (fragmented; )
Sermons
* (; ; )
* (; ; )
* (; ; )
* ()
Others
* 91 letters
Editions
]]
The history of the editions of the works of St. Ambrose is a long one. Erasmus edited them in four tomes at Basle (1527). A valuable Roman edition was brought out in 1580, in five volumes, the result of many years' labour; it was begun by Sixtus V, while yet the monk Felice Peretti. Prefixed to it is the life of St. Ambrose composed by Baronius for his Annales Ecclesiastici. The excellent Maurist edition of du Frische and Le Nourry appeared at Paris (1686–90) in two folio volumes; it was twice reprinted at Venice (1748–51, and 1781–82). The latest edition of the writings of St. Ambrose is that of Paolo Angelo Ballerini (Milan, 1878) in six folio volumes.
Standard editions
* }} Based on the Maurist edition published in Paris by Jacques Du Frische and Denis-Nicolas Le Nourry.
* }}
* }} Based on the Maurist edition published in Paris by Jacques Du Frische and Denis-Nicolas Le Nourry.
* }}
* }}
Latin
* Hexameron, De paradiso, De Cain, De Noe, De Abraham, De Isaac, De bono mortis – ed. C. Schenkl 1896, Vol. 32/1 ([https://archive.org/details/sanctiambrosiio01petsgoog In Latin])
* De Iacob, De Ioseph, De patriarchis, De fuga saeculi, De interpellatione Iob et David, De apologia prophetae David, De Helia, De Nabuthae, De Tobia – ed. C. Schenkl 1897, Vol. 32/2
* Expositio evangelii secundum Lucam – ed. C. Schenkl 1902, Vol. 32/4
* Expositio de psalmo CXVIII – ed. M. Petschenig 1913, Vol. 62; editio altera supplementis aucta – cur. M. Zelzer 1999
* Explanatio super psalmos XII – ed. M. Petschenig 1919, Vol. 64; editio altera supplementis aucta – cur. M. Zelzer 1999
* Explanatio symboli, De sacramentis, De mysteriis, De paenitentia, De excessu fratris Satyri, De obitu Valentiniani, De obitu Theodosii – ed. Otto Faller 1955, Vol. 73
* De fide ad Gratianum Augustum – ed. Otto Faller 1962, Vol. 78
* De spiritu sancto, De incarnationis dominicae sacramento – ed. Otto Faller 1964, Vol. 79
* Epistulae et acta – ed. Otto Faller (Vol. 82/1: lib. 1–6, 1968); Otto Faller, M. Zelzer (Vol. 82/2: lib. 7–9, 1982); M. Zelzer (Vol. 82/3: lib. 10, epp. extra collectionem. gesta concilii Aquileiensis, 1990); Indices et addenda – comp. M. Zelzer, 1996, Vol. 82/4
English
* H. Wace and P. Schaff, eds, A Select Library of Nicene and Post–Nicene Fathers of the Christian Church, 2nd ser., Vol. X [Contains translations of De Officiis (under the title De Officiis Ministrorum), De Spiritu Sancto (On the Holy Spirit), De excessu fratris Satyri (On the Decease of His Brother Satyrus), Exposition of the Christian Faith, De mysteriis (Concerning Mysteries), De paenitentia (Concerning Repentance), De virginibus (Concerning Virgins), De viduis (Concerning Widows), and a selection of letters]
* St. Ambrose "On the mysteries" and the treatise on the sacraments by an unknown author, translated by T Thompson, (London: SPCK, 1919) [translations of De sacramentis and De mysteriis; rev edn published 1950]
* S. Ambrosii De Nabuthae: a commentary, translated by Martin McGuire, (Washington, DC: The Catholic University of America, 1927) [translation of On Naboth]
* S. Ambrosii De Helia et ieiunio: a commentary, with an introduction and translation, Sister Mary Joseph Aloysius Buck, (Washington, DC: The Catholic University of America, 1929) [translation of On Elijah and Fasting]
* S. Ambrosii De Tobia: a commentary, with an introduction and translation, Lois Miles Zucker, (Washington, DC: The Catholic University of America, 1933) [translation of On Tobit]
* Funeral orations, translated by LP McCauley et al., Fathers of the Church vol 22, (New York: Fathers of the Church, Inc., 1953) [by Gregory of Nazianzus and Ambrose],
* Letters, translated by Mary Melchior Beyenka, Fathers of the Church, vol 26, (Washington, DC: Catholic University of America, 1954) [Translation of letters 1–91]
* Saint Ambrose on the sacraments, edited by Henry Chadwick, Studies in Eucharistic faith and practice 5, (London: AR Mowbray, 1960)
* Hexameron, Paradise, and Cain and Abel, translated by John J Savage, Fathers of the Church, vol 42, (New York: Fathers of the Church, 1961) [contains translations of Hexameron, De paradise, and De Cain et Abel]
* Saint Ambrose: theological and dogmatic works, translated by Roy J. Deferrari, Fathers of the church vol 44, (Washington: Catholic University of American Press, 1963) [Contains translations of The mysteries, (De mysteriis) The holy spirit, (De Spiritu Sancto), The sacrament of the incarnation of Our Lord, (De incarnationis Dominicae sacramento), and The sacraments]
* Seven exegetical works, translated by Michael McHugh, Fathers of the Church, vol 65, (Washington: Catholic University of America Press, 1972) [Contains translations of Isaac, or the soul, (De Isaac vel anima), Death as a good, (De bono mortis), Jacob and the happy life, (De Iacob et vita beata), Joseph, (De Ioseph), The patriarchs, (De patriarchis), Flight from the world, (De fuga saeculi), The prayer of Job and David, (De interpellatione Iob et David).]
* Homilies of Saint Ambrose on Psalm 118, translated by Íde Ní Riain, (Dublin: Halcyon Press, 1998) [translation of part of Explanatio psalmorum]
* Ambrosian hymns, translated by Charles Kraszewski, (Lehman, PA: Libella Veritatis, 1999)
* Commentary of Saint Ambrose on twelve psalms, translated by Íde M. Ní Riain, (Dublin: Halcyon Press, 2000) [translations of Explanatio psalmorum on Psalms 1, 35–40, 43, 45, 47–49]
* On Abraham, translated by Theodosia Tomkinson, (Etna, CA: Center for Traditionalist Orthodox Studies, 2000) [translation of De Abraham]
* De officiis, edited with an introduction, translation, and commentary by Ivor J Davidson, 2 vols, (Oxford: OUP, 2001) [contains both Latin and English text]
* Commentary of Saint Ambrose on the Gospel according to Saint Luke, translated by Íde M. Ní Riain, (Dublin: Halcyon, 2001) [translation of Expositio evangelii secundum Lucam]
* Ambrose of Milan: political letters and speeches, translated with an introduction and notes by JHWG Liebschuetz, (Liverpool: Liverpool University Press, 2005) [contains Book Ten of Ambrose's Letters, including the oration on the death of Theodosius I; Letters outside the Collection (Epistulae extra collectionem); Letter 30 to Magnus Maximus; The oration on the death of Valentinian II (De obitu Valentiniani).]
Several of Ambrose's works have recently been published in the bilingual Latin-German Fontes Christiani series (currently edited by Brepols).
See also
* Ambrosian hymnography
* Ambrosian Liturgy and Rite
* Saint Ambrose Basilica, Milan
* Church Fathers
* St. Ambrose Cathedral, Linares
* Saint Ambrose University, Davenport, Iowa
* Ambrose University College, Calgary, Alberta
* Henry Becher, early English translator of St. Ambrose
References
Notes
Citations
Works cited
*
*
*
* }}
*
*
*
*
*
*
*
*
* }}
*
*
*
*
*
* }}
*
*
*
*
* }}
*Ford, Coleman M., Shawn J. Wilhite (2024). Ancient Wisdom for the Care of Souls. Wheaton, Ill: Crossway.ISBN 978-1-4335-7549-5.
*
*
*
*
*
*
* |doi10.4324/9781315103334 |s2cid213344890 |ref }}
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
Further reading
*
*
*
*
*
*
*
*
*
External links
*
*
*
* [https://web.archive.org/web/20060925044132/http://www.ccel.org/fathers2/NPNF2-10/TOC.htm Christian Classics Ethereal Library, Works of Ambrose of Milan]
* [http://www.fh-augsburg.de/~harsch/amb_hy00.html Hymni Ambrosii (Latin)]
* [https://earlychurch.org.uk/ambrose.php EarlyChurch.org.uk] Extensive bibliography
* [http://www.intratext.com/Catalogo/Autori/AUT12.HTM Ambrose's works]: text, concordances and frequency list
* [https://www.fourthcentury.com/letters-of-ambrose/ Letters of Ambrose] - All extant letters of Ambrose with summaries and English translations from Fourth-Century Christianity.
* [https://web.archive.org/web/20070428013944/http://oll.libertyfund.org/Home3/AuthorBioPage.php?recordID=0011 Ambrose] at The Online Library of Liberty
* [http://www.documentacatholicaomnia.eu/20_40_0339-0397-_Ambrosius_Mediolanensis,_Sanctus.html Opera Omnia]
* [https://web.archive.org/web/20000823105539/http://www.mun.ca/Ansaxdat/ambrose/ Ambrose in Anglo-Saxon England, with Pseudo-Ambrose and Ambrosiaster], Contributions to Sources of Anglo-Saxon Literary Culture, by Dabney Anderson Bankert, Jessica Wegmann, and Charles D. Wright.
* [http://www.christianiconography.info/ambrose.html "Saint Ambrose"] at the [http://www.christianiconography.info Christian Iconography] website
* [http://www.christianiconography.info/goldenLegend/ambrose.htm "Of St. Ambrose"] from the Caxton translation of the Golden Legend
* [http://www.ccel.org/ccel/schaff/npnf102.iv.V.26.html Augustine's account of the penitence of Theodosius]
*
Ambrosius
Category:340s births
Category:Year of birth unknown
Category:397 deaths
Category:4th-century Italian bishops
Category:4th-century Christian saints
Category:4th-century Christian theologians
Category:4th-century Gallo-Roman people
Category:4th-century writers in Latin
Category:4th-century philosophers
Category:4th-century Roman poets
Category:Bishops of Milan
Category:Burials at the Basilica of Sant'Ambrogio
Category:Catholic Mariology
Category:Catholic philosophers
Category:Christian ethicists
Category:Christian hymnwriters
Category:Church Fathers
Category:Doctors of the Church
Category:Gallo-Roman saints
Category:Hymnographers
Category:Letter writers in Latin
Category:Opponents of Arianism
Category:People from Trier
Category:Anglican saints
Category:Bees in religion | https://en.wikipedia.org/wiki/Ambrose | 2025-04-05T18:25:38.861221 |
1371 | Ambracia | | map_type | map_alt
| map_caption | map_size
| mapframe = <!-- "yes" to show an interactive map -->
| altitude_m = <!-- Enter a number for altitude in meters (m) -->
| altitude_ref | relief
| coordinates
| gbgridref | map_dot_label
| location | region Epirus
| type = City
| part_of | abandoned
| epochs = Greek, Roman, Byzantine
| cultures =
}}
Ambracia (; , occasionally , Ampracia) was a city of ancient Greece on the site of modern Arta. It was founded by the Corinthians in 625 BC and was situated about from the Ambracian Gulf, on a bend of the navigable river Arachthos (or Aratthus), in the midst of a fertile wooded plain.
Name
It was named after Ambracia, who according to some myths was Augeas daughter, while others describe her as Apollo's granddaughter and the daughter of Melaneus, king of the Dryope.
According to a different story, the town was named after Ambrax, Thesprotus son and Lycaon's grandson. There was an ancient book, titled Ambrakika (Ἀμβρακικά), by the writer Athanadas, that detailed the history of Ambracia. No copies of the work survive, but it was referred to by later writers such as Antoninus Liberalis as an authority on the subject.
Ambracia was captured and plundered by Marcus Fulvius Nobilior in 189 BC, after which it was declared by Rome a "free city" and gradually fell into insignificance.Athletes*Sophron, Stadion Olympics 432 BC
*Tlasimachus, Tethrippon and Synoris Olympics 296 BC
*Andromachus, Stadion Olympics 60 BC
Various
*Silanus of Ambracia, 5th BC seer
*Cleombrotus of Ambracia, student of Plato
See also
*List of cities in ancient Epirus
*List of ancient Greek cities
References
Attribution:
*
Category:Cities in ancient Epirus
Category:Populated places established in the 7th century BC
Category:Corinthian colonies
Category:Former populated places in Greece
Category:Populated places in ancient Acarnania
Category:Populated places in ancient Epirus
Category:Pyrrhus of Epirus
Category:Archaeological sites in Epirus (region)
Category:Arta, Greece | https://en.wikipedia.org/wiki/Ambracia | 2025-04-05T18:25:38.867842 |
1372 | Amber | ]]
Amber is a tree resin fossil. Examples of it have been appreciated for its color and natural beauty since the Neolithic times, Amber is used in jewelry and as a healing agent in folk medicine.
There are five classes of amber, defined on the basis of their chemical constituents. Because it originates as a soft, sticky tree resin, amber sometimes contains animal and plant material as inclusions. Amber occurring in coal seams is also called resinite, and the term ambrite is applied to that found specifically within New Zealand coal seams.
Etymology
The English word amber derives from Arabic via Middle Latin ambar and Middle French ambre. The word referred to what is now known as ambergris (ambre gris or "gray amber"), a solid waxy substance derived from the sperm whale. The word, in its sense of "ambergris," was adopted in Middle English in the 14th century.
In the Romance languages, the sense of the word was extended to Baltic amber (fossil resin) from as early as the late 13th century. At first called white or yellow amber (ambre jaune), this meaning was adopted in English by the early 15th century. As the use of ambergris waned, this became the main sense of the word.
The classical names for amber, Ancient Greek (ēlektron) and one of its Latin names, electrum,}}}} are connected to a term ἠλέκτωρ (ēlektōr) meaning "beaming Sun". According to myth, when Phaëton, son of Helios (the Sun) was killed, his mourning sisters became poplar trees, and their tears became elektron, amber. The word elektron gave rise to the words electric, electricity, and their relatives because of amber's ability to bear a charge of static electricity.Varietal namesA number of regional and varietal names have been applied to ambers over the centuries, including Allingite, Beckerite, Gedanite, Kochenite, Krantzite, and Stantienite.HistoryTheophrastus discussed amber in the 4th century BCE, as did Pytheas (), whose work "On the Ocean" is lost, but was referenced by Pliny, according to whose Natural History:
Earlier Pliny says that Pytheas refers to a large island—three days' sail from the Scythian coast and called Balcia by Xenophon of Lampsacus (author of a fanciful travel book in Greek)—as Basilia—a name generally equated with Abalus. Given the presence of amber, the island could have been Heligoland, Zealand, the shores of Gdańsk Bay, the Sambia Peninsula or the Curonian Lagoon, which were historically the richest sources of amber in northern Europe. There were well-established trade routes for amber connecting the Baltic with the Mediterranean (known as the "Amber Road"). Pliny states explicitly that the Germans exported amber to Pannonia, from where the Veneti distributed it onwards.
The ancient Italic peoples of southern Italy used to work amber; the National Archaeological Museum of Siritide (Museo Archeologico Nazionale della Siritide) at Policoro in the province of Matera (Basilicata) displays important surviving examples. It has been suggested that amber used in antiquity, as at Mycenae and in the prehistory of the Mediterranean, came from deposits in Sicily.
, the source of amber]]
Pliny also cites the opinion of Nicias ( 470–413 BCE), according to whom amber Besides the fanciful explanations according to which amber is "produced by the Sun", Pliny cites opinions that are well aware of its origin in tree resin, citing the native Latin name of succinum (sūcinum, from sucus "juice"). In Book 37, section XI of Natural History, Pliny wrote:
He also states that amber is also found in Egypt and India, and he even refers to the electrostatic properties of amber, by saying that "in Syria the women make the whorls of their spindles of this substance, and give it the name of harpax [from ἁρπάζω, "to drag"] from the circumstance that it attracts leaves towards it, chaff, and the light fringe of tissues".
The Romans traded for amber from the shores of the southern Baltic at least as far back as the time of Nero.
Amber has a long history of use in China, with the first written record from 200 BCE. Early in the 19th century, the first reports of amber found in North America came from discoveries in New Jersey along Crosswicks Creek near Trenton, at Camden, and near Woodbury. of several precursors in the labdane family, for example, communic acid, communol, and biformene. These labdanes are diterpenes (C<sub>20</sub>H<sub>32</sub>) and trienes, equipping the organic skeleton with three alkene groups for polymerization. As amber matures over the years, more polymerization takes place as well as isomerization reactions, crosslinking and cyclization. Heated above , amber decomposes, yielding an oil of amber, and leaves a black residue which is known as "amber colophony", or "amber pitch"; when dissolved in oil of turpentine or in linseed oil this forms "amber varnish" or "amber lac".
Molecular polymerization, For this to happen, the resin must be resistant to decay. Many trees produce resin, but in the majority of cases this deposit is broken down by physical and biological processes. Exposure to sunlight, rain, microorganisms, and extreme temperatures tends to disintegrate the resin. For the resin to survive long enough to become amber, it must be resistant to such forces or be produced under conditions that exclude them. Fossil resins from Europe fall into two categories, the Baltic ambers and another that resembles the Agathis group. Fossil resins from the Americas and Africa are closely related to the modern genus Hymenaea, while Baltic ambers are thought to be fossil resins from plants of the family Sciadopityaceae that once lived in north Europe.
The abnormal development of resin in living trees (succinosis) can result in the formation of amber. Impurities are quite often present, especially when the resin has dropped onto the ground, so the material may be useless except for varnish-making. Such impure amber is called firniss. Such inclusion of other substances can cause the amber to have an unexpected color. Pyrites may give a bluish color. Bony amber owes its cloudy opacity to numerous tiny bubbles inside the resin. However, so-called black amber is really a kind of jet. In darkly clouded and even opaque amber, inclusions can be imaged using high-energy, high-contrast, high-resolution X-rays.Extraction and processing Distribution and mining
amber mine "Primorskoje" in Jantarny, Kaliningrad Oblast, Russia]]
Amber is globally distributed in or around all continents, mainly in rocks of Cretaceous age or younger. Historically, the coast west of Königsberg in Prussia was the world's leading source of amber. The first mentions of amber deposits there date back to the 12th century. Juodkrantė in Lithuania was established in the mid-19th century as a mining town of amber. About 90% of the world's extractable amber is still located in that area, which was transferred to the Russian Soviet Federative Socialist Republic of the USSR in 1946, becoming the Kaliningrad Oblast.
Pieces of amber torn from the seafloor are cast up by the waves and collected by hand, dredging, or diving. Elsewhere, amber is mined, both in open works and underground galleries. Then nodules of blue earth have to be removed and an opaque crust must be cleaned off, which can be done in revolving barrels containing sand and water. Erosion removes this crust from sea-worn amber. Dominican amber is mined through bell pitting, which is dangerous because of the risk of tunnel collapse.
An important source of amber is Kachin State in northern Myanmar, which has been a major source of amber in China for at least 1,800 years. Contemporary mining of this deposit has attracted attention for unsafe working conditions and its role in funding internal conflict in the country. Amber from the Rivne Oblast of Ukraine, referred to as Rivne amber, is mined illegally by organised crime groups, who deforest the surrounding areas and pump water into the sediments to extract the amber, causing severe environmental deterioration.
Treatment
The Vienna amber factories, which use pale amber to manufacture pipes and other smoking tools, turn it on a lathe and polish it with whitening and water or with rotten stone and oil. The final luster is given by polishing with flannel.
When gradually heated in an oil bath, amber "becomes soft and flexible. Two pieces of amber may be united by smearing the surfaces with linseed oil, heating them, and then pressing them together while hot. Cloudy amber may be clarified in an oil bath, as the oil fills the numerous pores that cause the turbidity. Small fragments, formerly thrown away or used only for varnish are now used on a large scale in the formation of "ambroid" or "pressed amber". The pieces are carefully heated with exclusion of air and then compressed into a uniform mass by intense hydraulic pressure, the softened amber being forced through holes in a metal plate. The product is extensively used for the production of cheap jewelry and articles for smoking. This pressed amber yields brilliant interference colors in polarized light."
Amber has often been imitated by other resins like copal and kauri gum, as well as by celluloid and even glass. Baltic amber is sometimes colored artificially but also called "true amber". Appearance Amber occurs in a range of different colors. As well as the usual yellow-orange-brown that is associated with the color "amber", amber can range from a whitish color through a pale lemon yellow, to brown and almost black. Other uncommon colors include red amber (sometimes known as "cherry amber"), green amber, and even blue amber, which is rare and highly sought after.
Yellow amber is a hard fossil resin from evergreen trees, and despite the name it can be translucent, yellow, orange, or brown colored. Known to the Iranians by the Pahlavi compound word kah-ruba (from kah "straw" plus rubay "attract, snatch", referring to its electrical properties
from Dominican Republic]]
Although all Dominican amber is fluorescent, the rarest Dominican amber is blue amber. It turns blue in natural sunlight and any other partially or wholly ultraviolet light source. In long-wave UV light it has a very strong reflection, almost white. Only about is found per year, which makes it valuable and expensive.
Sometimes amber retains the form of drops and stalactites, just as it exuded from the ducts and receptacles of the injured trees. It is thought that, in addition to exuding onto the surface of the tree, amber resin also originally flowed into hollow cavities or cracks within trees, thereby leading to the development of large lumps of amber of irregular form.ClassificationAmber can be classified into several forms. Most fundamentally, there are two types of plant resin with the potential for fossilization. Terpenoids, produced by conifers and angiosperms, consist of ring structures formed of isoprene (C<sub>5</sub>H<sub>8</sub>) units.
Class Ia includes Succinite ('normal' Baltic amber) and Glessite.
Class Ib ambers are based on communic acid; however, they lack succinic acid. Resin from the extinct species Hymenaea protera is the source of Dominican amber and probably of most amber found in the tropics. It is not "succinite" but "retinite".
Class II
These ambers are formed from resins with a sesquiterpenoid base, such as cadinene.Geological recordThe oldest amber recovered dates to the late Carboniferous period (). Its chemical composition makes it difficult to match the amber to its producers – it is most similar to the resins produced by flowering plants; however, the first flowering plants appeared in the Early Cretaceous, about 200 million years after the oldest amber known to date, and they were not common until the Late Cretaceous. Amber becomes abundant long after the Carboniferous, in the Early Cretaceous, The oldest amber with significant numbers of arthropod inclusions comes from Lebanon. This amber, referred to as Lebanese amber, is roughly 125–135 million years old, is considered of high scientific value, providing evidence of some of the oldest sampled ecosystems.
In Lebanon, more than 450 outcrops of Lower Cretaceous amber were discovered by Dany Azar, a Lebanese paleontologist and entomologist. Among these outcrops, 20 have yielded biological inclusions comprising the oldest representatives of several recent families of terrestrial arthropods. Even older Jurassic amber has been found recently in Lebanon as well. Many remarkable insects and spiders were recently discovered in the amber of Jordan including the oldest zorapterans, clerid beetles, umenocoleid roaches, and achiliid planthoppers. the chemical composition of the resin, however, is of limited utility in reconstructing the phylogenetic affinity of the resin producer. crustaceans, bacteria and amoebae, marine microfossils, wood, flowers and fruit, hair, feathers
'' preserved in mid-Cretaceous Burmese amber.|alt=]]
The preservation of prehistoric organisms in amber forms a key plot point in Michael Crichton's 1990 novel Jurassic Park and the 1993 movie adaptation by Steven Spielberg. In the story, scientists are able to extract the preserved blood of dinosaurs from prehistoric mosquitoes trapped in amber, from which they genetically clone living dinosaurs. Scientifically this is as yet impossible, since no amber with fossilized mosquitoes has ever yielded preserved blood. Amber is, however, conducive to preserving DNA, since it dehydrates and thus stabilizes organisms trapped inside. One projection in 1999 estimated that DNA trapped in amber could last up to 100 million years, far beyond most estimates of around 1 million years in the most ideal conditions, although a later 2013 study was unable to extract DNA from insects trapped in much more recent Holocene copal. In 1938, 12-year-old David Attenborough (brother of Richard who played John Hammond in Jurassic Park) was given a piece of amber containing prehistoric creatures from his adoptive sister; it would be the focus of his 2004 BBC documentary The Amber Time Machine.Use
amber from Altamira in the Muséum de Toulouse]]
Amber has been used since prehistory (Solutrean) in the manufacture of jewelry and ornaments, and also in folk medicine.
Jewelry
is .]]
Amber has been used as jewelry since the Stone Age, from 13,000 years ago. To this day it is used in the manufacture of smoking and glassblowing mouthpieces. Amber's place in culture and tradition lends it a tourism value; Palanga Amber Museum is dedicated to the fossilized resin.Historical medicinal usesAmber has long been used in folk medicine for its purported healing properties. Amber and extracts were used from the time of Hippocrates in ancient Greece for a wide variety of treatments through the Middle Ages and up until the early twentieth century.
Amber necklaces are a traditional European remedy for colic or teething pain with purported analgesic properties of succinic acid, although there is no evidence that this is an effective remedy or delivery method. The American Academy of Pediatrics and the FDA have warned strongly against their use, as they present both a choking and a strangulation hazard.Scent of amber and amber perfumeryIn ancient China, it was customary to burn amber during large festivities. If amber is heated under the right conditions, oil of amber is produced, and in past times this was combined carefully with nitric acid to create "artificial musk" – a resin with a peculiar musky odor. Although when burned, amber does give off a characteristic "pinewood" fragrance, modern products, such as perfume, do not normally use actual amber because fossilized amber produces very little scent. In perfumery, scents referred to as "amber" are often created and patented to emulate the opulent golden warmth of the fossil.
The scent of amber was originally derived from emulating the scent of ambergris and/or the plant resin labdanum, but since sperm whales are endangered, the scent of amber is now largely derived from labdanum. The term "amber" is loosely used to describe a scent that is warm, musky, rich and honey-like, and also somewhat earthy. Benzoin is usually part of the recipe. Vanilla and cloves are sometimes used to enhance the aroma. "Amber" perfumes may be created using combinations of labdanum, benzoin resin, copal (a type of tree resin used in incense manufacture), vanilla, Dammara resin and/or synthetic materials.
Imitation substances
Young resins used as imitations:
* Kauri resin from Agathis australis trees in New Zealand.
* The copals (subfossil resins). The African and American (Colombia) copals from Leguminosae trees family (genus Hymenaea). Amber of the Dominican or Mexican type (Class I of fossil resins). Copals from Manilia (Indonesia) and from New Zealand from trees of the genus Agathis (family Araucariaceae)
* Other fossil resins: burmite in Burma, rumenite in Romania, and simetite in Sicily.
* Other natural resins — cellulose or chitin, etc.
Plastics used as imitations:
* Stained glass (inorganic material) and other ceramic materials
* Celluloid
* Cellulose nitrate (first obtained in 1833) — a product of treatment of cellulose with nitration mixture.
* Acetylcellulose (not in the use at present)
* Galalith or "artificial horn" (condensation product of casein and formaldehyde), other trade names: Alladinite, Erinoid, Lactoid.
* Resolane (phenolic resins or phenoplasts, not in the use at present)
* Bakelite resine (resol, phenolic resins), product from Africa are known under the misleading name "African amber".
* Carbamide resins — melamine, formaldehyde and urea-formaldehyde resins.
* Polyethylene
* Epoxy resins
* Polystyrene and polystyrene-like polymers (vinyl polymers).
* The resins of acrylic type (vinyl polymers<ref name"Wagner-Wysiecka 2013 32"/>), especially polymethyl methacrylate PMMA (trade mark Plexiglass, metaplex).See also
* Ammolite
* Illyrian amber jewellery
* List of types of amber
* Petrified wood
* Pearl
* Poly(methyl methacrylate)
* Precious coral
Notes
References
*
Bibliography
*
*
* External links
*[http://www.farlang.com/gemstones/amber Farlang many full text historical references on Amber] Theophrastus, George Frederick Kunz, and special on Baltic amber.
* [https://web.archive.org/web/20050731084240/http://fossilinsects.net/lib.htm IPS Publications on amber inclusions] International Paleoentomological Society: Scientific Articles on amber and its inclusions
* [http://www.webmineral.com/data/Amber.shtml Webmineral on Amber] Physical properties and mineralogical information
* [http://www.mindat.org/min-188.html Mindat Amber] Image and locality information on amber
* [https://query.nytimes.com/gst/fullpage.html?res=9E0CE2DD123BF936A1575AC0A964958260 NY Times] 40 million year old extinct bee in Dominican amber
Category:Fossil resins
Category:Amorphous solids
Category:Traditional medicine | https://en.wikipedia.org/wiki/Amber | 2025-04-05T18:25:38.900173 |
1373 | Amalaric | 502
|death_date = 531 (29 years)
|religion = later Arianism
}}
Amalaric (; Spanish and Portuguese: Amalarico; 502–531) was king of the Visigoths from 522 until his assassination. He was a son of king Alaric II and his first wife Theodegotha, daughter of Theodoric the Great.
Biography
When Alaric II was killed while fighting Clovis I, king of the Franks, in the Battle of Vouillé (507), his kingdom fell into disarray. "More serious than the destruction of the Gothic army," writes Herwig Wolfram, "than the loss of both Aquitanian provinces and the capital of Toulose, was the death of the king." Alaric had made no provision for a successor, and although he had two sons, one was of age but illegitimate and the other, Amalaric, the offspring of a legal marriage but still a child. Amalaric was carried for safety into Spain, which country and Provence were thenceforth ruled by his maternal grandfather, Theodoric the Great, acting through his vice-regent, an Ostrogothic nobleman named Theudis. The older son, Gesalec, was chosen as king but his reign was disastrous. King Theodoric of the Ostrogoths sent an army, led by his sword-bearer Theudis, against Gesalec, ostensibly on behalf of Amalaric; Gesalec fled to Africa. The Ostrogoths then drove back the Franks and their Burgundian allies, regaining possession of "the south of Novempopulana, Rodez, probably even Albi, and even Toulose". Following the 511 death of Clovis, Theodoric negotiated a peace with Clovis' successors, securing Visigothic control of the southernmost portion of Gaul for the rest of the existence of their kingdom.
In 522, the young Amalaric was proclaimed king, and four years later, on Theodoric's death, he assumed full royal power, although relinquishing Provence to his cousin Athalaric. However, this was not successful, for according to Gregory of Tours, Amalaric pressured her to forsake Orthodoxy and convert to Arian Christianity, at one point beating her until she bled; she sent to her brother Childebert I, king of Paris, a towel stained with her own blood. Ian Wood noted that although Gregory provides the fullest information for this period, where it touches Merovingian affairs, he often "allowed his religious bias to determine his interpretation of the events." Peter Heather agrees with Wood's implication in this instance: "I doubt that this is the full story, but the effects of Frankish intervention are clear enough." According to Peter Heather, Theodoric's former governor Theudis was implicated in Amalaric's murder, "and was certainly its prime beneficiary." As for Chrotilda, in Gregory's words, she died on the journey home "by some ill chance". Childebert had her body brought to Paris where she was buried alongside her father Clovis.<ref nameGregory-10/>Notes External links Further reading
*Edward Gibbon, [https://web.archive.org/web/20050721062048/http://etext.library.adelaide.edu.au/g/gibbon/edward/g43d/chapter39.html History of the Decline and Fall of the Roman Empire], Chapter 39
Category:500s births
Category:531 deaths
Category:Balt dynasty
Category:Assassinated Gothic people
Category:6th-century murdered monarchs
Category:6th-century Visigothic monarchs
Category:Year of birth unknown | https://en.wikipedia.org/wiki/Amalaric | 2025-04-05T18:25:38.904735 |
1374 | Alphorn | | hornbostel_sachs = 423.121.12
| hornbostel_sachs_desc End-blown straight labrosones with mouthpiece
| musicians | builders
| related | articles
}}
playing the alphorn at the Bardentreffen festival in Nuremberg 2009]]
The alphorn (; ; ) is a traditional lip-reed wind instrument. It consists of a very long straight wooden natural horn, with a length of , a conical bore and a wooden cup-shaped mouthpiece. Traditionally the alphorn was made in one piece from the trunk of a pine. Modern alphorns are usually made in three detachable sections for easier transport and handling, carved from blocks of spruce. The alphorn is used by rural communities in the Alps. Similar wooden horns were used for communication in most mountainous regions of Europe, from the Alps to the Carpathians.
From the 17th to 19th century, alphorns were used in rural areas of the Alps, for signalling between high pastures across the valleys and to communities on the valley floor. The alphorn sounds can carry for several kilometres, and were even used to collect together dispersed herds. Although use by herdsmen had waned by the early 19th century, a revival of interest in the musical qualities of the instrument followed by the end of the century, and the alphorn became important in Swiss tourism, and inspired Romantic composers such as Beethoven and Gustav Mahler to add alphorn, or traditional alphorn melodies, to their pieces.
*Sinfonia pastorale for corno pastoriccio in G (alphorn) and string orchestra (1755) by Leopold Mozart
*Concerto for alphorn and orchestra (1970) by Jean Daetwyler
*Concerto No. 2 for alphorn (with flute, string orchestra and percussion) (1983) by Daetwyler
*Dialogue with Nature for alphorn, flute, and orchestra by Daetwyler
*Super Alpen King for three alphorns and orchestra by Ghislain Muller (2001) VSP orkestra / Arkady Shilkloper, Renaud Leipp
*Concertino rustico (1977) by Ferenc Farkas
*Begegnung for three alphorns and concert band, by Kurt Gable.
*Säumerweg-Blues [https://www.alphornmusik.ch/noten/alphorn-mit-orgel-klavier/saeumerweg-blues.php (audio played by Kurt Ott)] among many compositions by Hans-Jürg Sommer, [http://www.alphornmusik.ch Alphorn Musik]
*Messe for alphorn and choir by Franz Schüssele [http://www.alphorn-center.de Alphorn-Center]
* Erbauliche Studie für 12 Alphörner in Abwesenheit von Bergen by Mathias Rüegg (1998)
*Wolf Music: Tapio for alphorn and echoing instruments (2003) by R. Murray Schafer
*Le Berger fantaisiste for three alphorns and orchestra by Ghislain Muller, Arkady Shilkloper, Renaud Leipp, Serge Haessler, VSP orkestra (2001)
*Bob Downes & The Alphorn Brothers (2015) by Bob Downes Open Music (CD rec. 2004)
* Concerto for alphorn in F and orchestra by Daniel Schnyder (2004)
* Matterhorn (a prelude for alphorn and wind orchestra) by Robert Litton (2013)
* Alpine Trail for alphorn and orchestra by Arkady Shilkloper
* Alpine Sketch" for alphorn and big band by Arkady Shilkloper
* Lai nair for alphorn and contrabass by John Wolf Brennan (2015)
* Der Bergschuh for alphorn and marching band by Daniel Schnyder
* Crested Butte Mountain for alphorn and wind band (or brass sextet, strings, or horn septet) by Arkady Shilkloper
* Robin'' for alphorn and wind band (big band) by Arkady Shilkloper
* Fanfare for four alphorns by Arkady Shilkloper
* Tanz der Kuhe by Carlo Brunner/Lisa Stoll
In popular culture
in Milwaukee]]
*The alphorn is prominently featured in advertisements for Ricola cough drops, which are manufactured in Laufen, Switzerland
*Brief scene in Rammstein's "Dicke Titten".
* The "Horn Top Hop" level in the video game Donkey Kong Country: Tropical Freeze features the Hootz enemies playing alphorns in time with the level's background music.
* An alphorn is heard in the song "Viver Senza Tei", Switzerland's entry for the Eurovision Song Contest 1989, performed by Furbaz.
See also
*Bucium, a type of alphorn used by mountain dwellers in Romania
*Didgeridoo, an instrument of Aboriginal Australian origins, traditionally made from a hollowed out eucalyptus tree trunk
*Erke, a similar instrument of Argentine Northwest
*Kuhreihen, a type of melody played on an alphorn
*Tiba, wind instrument made of wood or metal that originates in the Grisons canton; it was used by shepherds on alpine meadows in the Alps
*Tibetan horn, long trumpet or horn used in Tibetan Buddhist and Mongolian buddhist ceremonies
*Trembita, a Carpathian alpine horn made of wood
*Trutruca, wind instrument played mainly amongst the Mapuche people of Chile and Argentina; produces a sound that is loud and severe, with few tonal variations
References
Further reading
* Bachmann-Geiser, Brigitte, Das Alphorn: Vom Lock- zum Rockinstrument. Paul Haupt, Berne, 1999.
* Franz Schüssele, Alphorn und Hirtenhorn in Europa, book and CD with 63 sound samples available at [http://www.alphorn-center.de Alphorn-Center],
External links
*
* [https://web.archive.org/web/20100807080633/http://www.salzburgerecho.com/seminars.html Third Annual North American Alphorn Retreat]
* [http://www.alphorninconcert.ch Alphorn in concert] Concert and composition contest taking place annually in Oensingen, Canton Solothurn, Switzerland
* [http://www.nendazcordesalpes.ch International Alphorn Festival] at Nendaz, Canton Valais, Switzerland
* [http://www.vsp-orkestra.com/index.php?lang=2 VSP orkestra & Arkady Shilkloper] alphorn jazz & improvisations, composer / arranger : [https://ghislainmuller.wixsite.com/ghislain-muller Ghislain Muller], Arkady Shilkloper, Pascal Beck
Category:National symbols of Switzerland
Category:Swiss musical instruments
Category:Natural horns and trumpets | https://en.wikipedia.org/wiki/Alphorn | 2025-04-05T18:25:38.913030 |
1376 | Army | soldiers at a 2020 parade]]
soldiers on parade in 2014]]
An army, ground force or land force is an armed force that fights primarily on land. In the broadest sense, it is the land-based military branch, service branch or armed service of a nation or country. It may also include aviation assets by possessing an army aviation component. Within a national military force, the word army may also mean a field army.
Definition
In some countries, such as France and China, the term "army", especially in its plural form "armies", has the broader meaning of armed forces as a whole, while retaining the colloquial sense of land forces. To differentiate the colloquial army from the formal concept of military force, the term is qualified, for example in France the land force is called , meaning Land Army, and the air and space force is called , meaning Air and Space Army. The naval force, although not using the term "army", is also included in the broad sense of the term "armies" — thus the French Navy is an integral component of the collective French Armies (French Armed Forces) under the Ministry of the Armies. A similar pattern is seen in China, with the People's Liberation Army (PLA) being the overall military, the land force being the PLA Ground Force, and so forth for the PLA Air Force, the PLA Navy, and other branches.
Though by convention, irregular military is understood in contrast to regular armies which grew slowly from personal bodyguards or elite militia. Regular in this case refers to standardized doctrines, uniforms, organizations, etc. Regular military can also refer to full-time status (standing army), versus reserve or part-time personnel. Other distinctions may separate statutory forces (established under laws such as the National Defence Act), from de facto "non-statutory" forces such as some guerrilla and revolutionary armies.
Structure
Armies are always divided into various specialties, according to the mission, role, and training of individual units, and sometimes individual soldiers within a unit.
Some of the groupings common to all armies include the following:
*Infantry
*Armoured corps
*Artillery corps
*Signal corps
*Special forces
*Military police
*Medical corps
History
Army History}}
India
The Battle of the Ten Kings, a Hindu Aryan king named Sudas defeated an alliance of ten kings and their supportive chieftains. During the Iron Age, the Maurya and Nanda Empires had one of the largest armies in the world, the peak being approximately over 600,000 Infantry, 30,000 Cavalry, 8,000 War-Chariots and 9,000 War Elephants not including tributary state allies. In the Gupta age, large armies of longbowmen were recruited to fight off invading horse archer armies. Elephants, pikemen, and cavalry were other featured troops.
China
(475-221 BCE)]]
The states of China raised armies for at least 1000 years before the Spring and Autumn Annals. By the Warring States period, the crossbow had been perfected enough to become a military secret, with bronze bolts that could pierce any armor. Thus any political power of a state rested on the armies and their organization. China underwent political consolidation of the states of Han (韓), Wei (魏), Chu (楚), Yan (燕), Zhao (趙) and Qi (齊), until by 221 BCE, Qin Shi Huang (秦始皇帝), the first emperor of the Qin dynasty, attained absolute power. This first emperor of China could command the creation of a Terracotta Army to guard his tomb in the city of Xi'an (西安). in addition to a realignment of the Great Wall of China to strengthen his empire against insurrection, invasion and incursion.
Sun Tzu's The Art of War remains one of China's Seven Military Classics, even though it is two thousand years old. Since no political figure could exist without an army, measures were taken to ensure only the most capable leaders could control the armies. Civil bureaucracies (士大夫) arose to control the productive power of the states, and their military power.
Sparta
, .]]
The Spartan Army was one of the earliest known professional armies. Boys were sent to a barracks at the age of seven or eight to train for becoming a soldier. At the age of thirty, they were released from the barracks and allowed to marry and have a family. After that, men devoted their lives to war until their retirement at the age of 60. The Spartan Army was largely composed of hoplites, equipped with arms and armor nearly identical to each other. Each hoplite bore the Spartan emblem and a scarlet uniform. The main pieces of this armor were a round shield, a spear and a helmet.
Ancient Rome
]]
The Roman Army had its origins in the citizen army of the Republic, which was staffed by citizens serving mandatory duty for Rome. Conscription remained the main method through which Rome mustered forces until the end of the Republic. The army eventually became a professional organization largely of citizens, who would served continuously for 25 years before being discharged.
The Romans were also noted for making use of auxiliary troops, non-Romans who served with the legions and filled roles that the traditional Roman military could not fill effectively, such as light skirmish troops and heavy cavalry. After their service in the army they were made citizens of Rome and then their children were citizens also. They were also given land and money to settle in Rome. In the Late Roman Empire, these auxiliary troops, along with foreign mercenaries, became the core of the Roman Army; moreover, by the time of the Late Roman Empire tribes such as the Visigoths were paid to serve as mercenaries.
Medieval Europe
, and hired footsoldiers]]
In the earliest Middle Ages it was the obligation of every aristocrat to respond to the call to battle with his own equipment, archers, and infantry. This decentralized system was necessary due to the social order of the time, but could lead to motley forces with variable training, equipment and abilities. The more resources the noble had access to, the better his troops would be.
Initially, the words "knight" and "noble" were used interchangeably as there was not generally a distinction between them. While the nobility did fight upon horseback, they were also supported by lower class citizens – and mercenaries and criminals – whose only purpose was participating in warfare because, most often than not, they held brief employment during their lord's engagement. As the Middle Ages progressed and feudalism developed in a legitimate social and economic system, knights started to develop into their own class with a minor caveat: they were still in debt to their lord. No longer primarily driven by economic need, the newly established vassal class were, instead, driven by fealty and chivalry.
As central governments grew in power, a return to the citizen armies of the classical period also began, as central levies of the peasantry began to be the central recruiting tool. England was one of the most centralized states in the Middle Ages, and the armies that fought in the Hundred Years' War were, predominantly, composed of paid professionals.
In theory, every Englishman had an obligation to serve for forty days. Forty days was not long enough for a campaign, especially one on the continent.
Thus the scutage was introduced, whereby most Englishmen paid to escape their service and this money was used to create a permanent army. However, almost all high medieval armies in Europe were composed of a great deal of paid core troops, and there was a large mercenary market in Europe from at least the early 12th century.
As the Middle Ages progressed in Italy, Italian cities began to rely mostly on mercenaries to do their fighting rather than the militias that had dominated the early and high medieval period in this region. These would be groups of career soldiers who would be paid a set rate. Mercenaries tended to be effective soldiers, especially in combination with standing forces, but in Italy they came to dominate the armies of the city states. This made them considerably less reliable than a standing army. Mercenary-on-mercenary warfare in Italy also led to relatively bloodless campaigns which relied as much on maneuver as on battles.
In 1439 the French legislature, known as the Estates General (French: états généraux), passed laws that restricted military recruitment and training to the king alone. There was a new tax to be raised known as the taille that was to provide funding for a new Royal army. The mercenary companies were given a choice of either joining the Royal army as ''compagnies d'ordonnance'' on a permanent basis, or being hunted down and destroyed if they refused. France gained a total standing army of around 6,000 men, which was sent out to gradually eliminate the remaining mercenaries who insisted on operating on their own. The new standing army had a more disciplined and professional approach to warfare than its predecessors. The reforms of the 1440s, eventually led to the French victory at Castillon in 1453, and the conclusion of the Hundred Years' War. By 1450 the companies were divided into the field army, known as the grande ordonnance and the garrison force known as the petite ordonnance.
Early modern
and German Landsknechts fighting for glory, fame and money at the Battle of Marignan (1515). The bulk of the Renaissance armies was composed of mercenaries.]]
First nation states lacked the funds needed to maintain standing forces, so they tended to hire mercenaries to serve in their armies during wartime. Such mercenaries typically formed at the ends of periods of conflict, when men-at-arms were no longer needed by their respective governments.
The veteran soldiers thus looked for other forms of employment, often becoming mercenaries. Free Companies would often specialize in forms of combat that required longer periods of training that was not available in the form of a mobilized militia.
As late as the 1650s, most troops were mercenaries. However, after the 17th century, most states invested in better disciplined and more politically reliable permanent troops. For a time mercenaries became important as trainers and administrators, but soon these tasks were also taken by the state. The massive size of these armies required a large supporting force of administrators.
The newly centralized states were forced to set up vast organized bureaucracies to manage these armies, which some historians argue is the basis of the modern bureaucratic state. The combination of increased taxes and increased centralization of government functions caused a series of revolts across Europe such as the Fronde in France and the English Civil War.
In many countries, the resolution of this conflict was the rise of absolute monarchy. Only in England and the Netherlands did representative government evolve as an alternative. From the late 17th century, states learned how to finance wars through long term low interest loans from national banking institutions. The first state to master this process was the Dutch Republic. This transformation in the armies of Europe had great social impact. The defense of the state now rested on the commoners, not on the aristocrats. However, aristocrats continued to monopolize the officer corps of almost all early modern armies, including their high command. Moreover, popular revolts almost always failed unless they had the support and patronage of the noble or gentry classes. The new armies, because of their vast expense, were also dependent on taxation and the commercial classes who also began to demand a greater role in society. The great commercial powers of the Dutch and English matched much larger states in military might.
As any man could be quickly trained in the use of a musket, it became far easier to form massive armies. The inaccuracy of the weapons necessitated large groups of massed soldiers. This led to a rapid swelling of the size of armies. For the first time huge masses of the population could enter combat, rather than just the highly skilled professionals.
and British guards politely discussing who should fire first at the Battle of Fontenoy (1745). An example of "lace war".]]
It has been argued that the drawing of men from across the nation into an organized corps helped breed national unity and patriotism, and during this period the modern notion of the nation state was born. However, this would only become apparent after the French Revolutionary Wars. At this time, the levée en masse and conscription would become the defining paradigm of modern warfare.
Before then, however, most national armies were in fact composed of many nationalities. In Spain armies were recruited from all the Spanish European territories including Spain, Italy, Wallonia (Walloon Guards) and Germany. The French recruited some soldiers from Germany, Switzerland as well as from Piedmont. Britain recruited Hessian and Hanovrian troops until the late 18th century. Irish Catholics made careers for themselves in the armies of many Catholic European states.
Prior to the English Civil War in England, the monarch maintained a personal bodyguard of Yeomen of the Guard and the Honourable Corps of Gentlemen at Arms, or "gentlemen pensioners", and a few locally raised companies to garrison important places such as Berwick on Tweed or Portsmouth (or Calais before it was recaptured by France in 1558).
Troops for foreign expeditions were raised upon an ad hoc basis. Noblemen and professional regular soldiers were commissioned by the monarch to supply troops, raising their quotas by indenture from a variety of sources. On January 26, 1661 Charles II issued the Royal Warrant that created the genesis of what would become the British Army, although the Scottish and English Armies would remain two separate organizations until the unification of England and Scotland in 1707. The small force was represented by only a few regiments.
After the American Revolutionary War the Continental Army was quickly disbanded as part of the Americans' distrust of standing armies, and irregular state militias became the sole ground army of the United States, with the exception of one battery of artillery guarding West Point's arsenal. Then First American Regiment was established in 1784. However, because of continuing conflict with Native Americans, it was soon realized that it was necessary to field a trained standing army. The first of these, the Legion of the United States, was established in 1791.
Until 1733 the common soldiers of Prussian Army consisted largely of peasantry recruited or impressed from Brandenburg–Prussia, leading many to flee to neighboring countries. To halt this trend, Frederick William I divided Prussia into regimental cantons. Every youth was required to serve as a soldier in these recruitment districts for three months each year; this met agrarian needs and added extra troops to bolster the regular ranks.
(1813), marked the transition between aristocratic armies and national armies. Masses replace hired professionals and national hatred overrides dynastic conflicts. An early example of total wars.]]
Russian tsars before Peter I of Russia maintained professional hereditary musketeer corps (streltsy in Russian) that were highly unreliable and undisciplined. In times of war the armed forces were augmented by peasants. Peter I introduced a modern regular army built on German model, but with a new aspect: officers not necessarily from nobility, as talented commoners were given promotions that eventually included a noble title at the attainment of an officer's rank. Conscription of peasants and townspeople was based on quota system, per settlement. Initially it was based on the number of households, later it was based on the population numbers. The term of service in the 18th century was for life. In 1793 it was reduced to 25 years. In 1834 it was reduced to 20 years plus 5 years in reserve and in 1855 to 12 years plus 3 years of reserve.
|}
See also
* Lists of armies
* List of armies by country
* List of army units called Guards
* List of numbered armies
* List of countries by number of military and paramilitary personnel
* Military organization
* Paramilitary
References
External links
*
Category:Types of military forces | https://en.wikipedia.org/wiki/Army | 2025-04-05T18:25:38.925309 |
1380 | Alligatoridae | | image = Florida Alligator.jpg
| image_caption = American alligator (Alligator mississippiensis)
| authority = Gray, 1844
| subdivision_ranks = Subfamilies
| subdivision = * Alligatorinae
* Caimaninae
}}
The family Alligatoridae of crocodylians includes alligators, caimans and their extinct relatives.
Phylogeny
The superfamily Alligatoroidea includes all crocodilians (fossil and extant) that are more closely related to the American alligator than to either the Nile crocodile or the gharial. This is a stem-based definition for alligators, and is more inclusive than the crown group Alligatoridae. As a crown group, Alligatoridae only includes the last common ancestor of all extant (living) alligators, caimans, and their descendants (living or extinct), whereas Alligatoroidea, as a stem-based group, also includes more basal extinct alligator ancestors that are more closely related to living alligators than to crocodiles or gavialids. When considering only living taxa (neontology), Alligatoroidea and Alligatoridae contain the same species.
The simplified cladogram below shows Alligatoridae's relationships to other extant (living) crocodilians.
|2=
|1=Diplocynodon
|label2=Globidonta
|sublabel2=(stem-based group)
|2=
|label2=Alligatoridae
|sublabel2=(crown group)
|2=
|2=Paleosuchus }}
|label2=Alligatorinae
|sublabel2=(stem-based group)
|2=Alligator }} }} }} }}
|2= (possibly including Mekosuchinae)
|label2=Longirostres
|sublabel2=(crown group)
|2=
|2=Crocodylidae (crown group) }}
|label2=Gavialoidea
|sublabel2=(stem-based group)
|2=
|label2=Gavialidae
|sublabel2=(crown group)
|2= }} }} }} }} }}
Alligatoridae contains eight living species: two alligators within Alligatorinae, and the six caimans of Caimaninae. Phylogenetic studies using molecular DNA consistently resolve their relationships as follows:
|label2=Jacarea
|2=
|2=Caiman latirostris Broad-snouted caiman }}
|2=Melanosuchus niger Black caiman }} }}
|label2=Alligatorinae
|2= }} }}
The below detailed cladogram shows one proposal for the internal relationships within Alligatoridae including fossil species, based on morphological analysis (although the exact alligatoroid phylogeny is still disputed).
|2=
|label2=Alligatoridae
|sublabel2=(crown group)
|2=
|2=Allognathosuchus
|3=Navajosuchus
|4=Arambourgia
|5=Procaimanoidea
|6=
|2=
|2=
|2=
|2=
|2=
|3=Alligator thomsoni }} }} }} }} }} }} }} }}
|label2=Caimaninae
|sublabel2=(stem-based group)
|2=
|2=Albertochampsa
|3=Brachychampsa }}
|2=
|2=
|2=
|2=
|2=Notocaiman }}
|2=
|2=
|2=Mourasuchus }}
|2=
|2=Tsoabichi
|3= }}
|2=
|2=
|2=
|2=
|2=
|2=Caiman wannlangstoni
}} }} }} }} }} }} }} }} }} }} }} }} }} }} }} }} }}
Evolution
The superfamily Alligatoroidea is thought to have split from the crocodile-gharial lineage in the late Cretaceous, about 87 million years ago. to about 65 million years ago) and the latter reached South America by the Paleogene, before the closure of the Isthmus of Panama during the Neogene period. The Chinese alligator split from the American alligator about 33 million years ago The alligator's full mitochondrial genome was sequenced in the 1990s. The full genome, published in 2014, suggests that the alligator evolved much more slowly than mammals and birds.
True alligators
The lineage including alligators proper (Alligatorinae) occurs in the fluvial deposits of the age of the Upper Chalk in Europe, where they did not die out until the Pliocene age. The true alligators are today represented by two species, A. mississippiensis in the southeastern United States, which can grow to 15.6 ft (4.6 m) and weigh 1000 lbs(453 kg), with unverified sizes of up to 19.2 ft(5.9 m). And the small A. sinensis in the Yangtze River, China, which grows to an average of 5 ft (1.5 m). Their name derives from the Spanish el lagarto, which means "the lizard". Caimans
at the Helsinki Tropicario Zoo aquarium in Helsinki, Finland in 2010]]
In Central and South America, the alligator family is represented by six species of the subfamily Caimaninae, which differ from the alligator by the absence of a bony septum between the nostrils, and having ventral armour composed of overlapping bony scutes, each of which is formed of two parts united by a suture. Besides the three species in Caiman, the smooth-fronted caimans in genus Paleosuchus and the black caiman in Melanosuchus are described. Caimans tend to be more agile and crocodile-like in their movements, and have longer, sharper teeth than alligators.
C. crocodilus, the spectacled caiman, has the widest distribution, from southern Mexico to the northern half of Argentina, and grows to a modest size of about . The largest is the near-threatened Melanosuchus niger, the jacaré-açu or large or black caiman of the Amazon River basin. Black caimans grow to , with the unverified size of up to . The black caiman and American alligator are the only members of the alligator family that pose the same danger to humans as the larger species of the crocodile family.
Although caimans have not been studied in depth, scientists have learned their mating cycles (previously thought to be spontaneous or year-round) are linked to the rainfall cycles and the river levels, which increases chances of survival for their offspring.
Taxonomy
† = extinct, Florida, United States]]
head]]
, Jauaperi River, Amazonia]]
]]
* Family Alligatoridae
** Subfamily Alligatorinae
*** Genus Alligator
**** † Alligator hailensis
**** † Alligator mcgrewi
**** † Alligator mefferdi
**** Alligator mississippiensis, American alligator
**** † Alligator olseni
**** † Alligator prenasalis
**** Alligator sinensis, Chinese alligator
**** † Alligator thomsoni
*** Genus † Allognathosuchus
*** Genus † Arambourgia
*** Genus † Ceratosuchus
*** Genus † Chrysochampsa
*** Genus † Eoalligator
*** Genus † Hassiacosuchus
*** Genus † Krabisuchus
*** Genus † Navajosuchus?
*** Genus † Procaimanoidea
*** Genus † Wannaganosuchus
** Subfamily Caimaninae
*** Genus † Acresuchus
*** Genus † Bottosaurus
*** Genus Caiman
**** † Caiman brevirostris
**** Caiman crocodilus, Spectacled caiman
**** Caiman latirostris, Broad-snouted caiman
**** † Caiman lutescans
**** † Caiman venezuelensis
**** † Caiman wannlangstoni
**** Caiman yacare, Yacare caiman
*** Genus † Centenariosuchus
*** Genus † Chinatichampsus
*** Genus † Culebrasuchus
*** Genus † Eocaiman
*** Genus † Globidentosuchus
*** Genus † Gnatusuchus
*** Genus † Kuttanacaiman
*** Genus Melanosuchus
**** † Melanosuchus fisheri
**** Melanosuchus niger, Black caiman
*** Genus † Mourasuchus
*** Genus † Necrosuchus
*** Genus † Orthogenysuchus
*** Genus Paleosuchus
**** Paleosuchus palpebrosus'', Cuvier's dwarf caiman
**** Paleosuchus trigonatus, Smooth-fronted caiman
*** Genus † Protocaiman
*** Genus † Purussaurus
*** Genus † Tsoabichi
References
External links
*[http://www.crocodilian.com "Crocodilians: Natural History & Conservation"] crocodilian.com
*[http://www.fossilworks.org/cgi-bin/bridge.pl?taxon_no38421&is_real_user1&actiontaxonInfo# "Family Alligatoridae Gray 1844 (alligator)"] , fossilworks.org.
*
*
Category:Taxa named by John Edward Gray
Category:Crocodilian families
Category:Extant Campanian first appearances | https://en.wikipedia.org/wiki/Alligatoridae | 2025-04-05T18:25:38.945387 |
1383 | Alder | |Duschekia
|Alnaster
|Clethropsis
|Semidopsis
|Alnobetula
|Cremastogyne
}}
}}
male catkins]]
Alders are trees of the genus Alnus in the birch family Betulaceae. The genus includes about 35 species of monoecious trees and shrubs, a few reaching a large size, distributed throughout the north temperate zone with a few species extending into Central America, as well as the northern and southern Andes.
* Alnus matsumurae
* Alnus nepalensis
* Alnus oblongifolia
* Alnus orientalis
* Alnus rhombifolia
* Alnus rohlenae
* Alnus × elliptica (A. cordata × A. glutinosa)
* Alnus × fallacina (A. incana subsp. rugosa × A. serrulata)
* Alnus × hanedae (A. firma × A. sieboldiana)
* Alnus × hosoii (A. maximowiczii × A. pendula)
* Alnus × mayrii (A. hirsuta × A. japonica)
* Alnus × peculiaris (A. firma × A. pendula)
* Alnus × pubescens (A. glutinosa × A. incana)
* Alnus × suginoi
The status of the following hybrids is unresolved:
* †Alnus fairi - Miocene; Western North America
* †Alnus heterodonta – Oligocene; Fossil, Oregon
* †Alnus hollandiana - Miocene; Western North America
* †Alnus largei - Miocene; Western North America
* †Alnus relatus - Miocene; Western North America The generic name Alnus is the equivalent Latin name, from whence French aulne and Spanish Alamo (Spanish term for "poplar"). Alder leaves and especially the roots are important to the ecosystem because they enrich the soil with nitrogen and other nutrients. Nitrogen fixation and succession of woodland species
like those of all alders]]
Alder is particularly noted for its important symbiotic relationship with Frankia alni, an actinomycete, filamentous, nitrogen-fixing bacterium. This bacterium is found in root nodules, which may be as large as a human fist, with many small lobes, and light brown in colour. The bacterium absorbs nitrogen from the air and makes it available to the tree. Alder, in turn, provides the bacterium with sugars, which it produces through photosynthesis. As a result of this mutually beneficial relationship, alder improves the fertility of the soil where it grows, and as a pioneer species, it helps provide additional nitrogen for the successional species to follow.
Because of its abundance, red alder delivers large amounts of nitrogen to enrich forest soils. Red alder stands have been found to supply between of nitrogen annually to the soil. From Alaska to Oregon, Alnus viridis subsp. sinuata (A. sinuata, Sitka Alder or Slide Alder), characteristically pioneer fresh, gravelly sites at the foot of retreating glaciers. Studies show that Sitka alder, a more shrubby variety of alder, adds nitrogen to the soil at an average rate of per year, helping convert the sterile glacial terrain to soil capable of supporting a conifer forest. Alders are common among the first species to colonize disturbed areas from floods, windstorms, fires, landslides, etc. Alder groves often serve as natural firebreaks since these broad-leaved trees are much less flammable than conifers. Their foliage and leaf litter does not carry a fire well, and their thin bark is sufficiently resistant to protect them from light surface fires. In addition, the light weight of alder seedsnumbering allows for easy dispersal by the wind. Although it outgrows coastal Douglas-fir for the first 25 years, it is very shade intolerant and seldom lives more than 100 years. Red alder is the Pacific Northwest's largest alder and the most plentiful and commercially important broad-leaved tree in the coastal Northwest. Groves of red alder in diameter intermingle with young Douglas-fir forests west of the Cascades, attaining a maximum height of in about sixty years and then are afflicted by heart rot. Alders largely help create conditions favorable for giant conifers that replace them. and may be rich in protein. Reported to have a bitter and unpleasant taste, they are more useful for survival purposes. The wood of certain alder species is often used to smoke various food items such as coffee, salmon, and other seafood.
Alder is notably stable when immersed, and has been used for millennia as a material for pilings for piers and wharves. Most of the pilings that form the foundation of Venice were made from alder trees.
Alder bark contains the anti-inflammatory salicin, which is metabolized into salicylic acid in the body. Some Native American cultures use red alder bark (Alnus rubra) to treat poison oak, insect bites, and skin irritations. Blackfeet Indians have traditionally used an infusion made from the bark of red alder to treat lymphatic disorders and tuberculosis. Recent clinical studies have verified that red alder contains betulin and lupeol, compounds shown to be effective against a variety of tumors.
The inner bark of the alder, as well as red osier dogwood, or chokecherry, is used by some Indigenous peoples of the Americas in smoking mixtures, known as kinnikinnick, to improve the taste of the bearberry leaf.
Alder is illustrated in the coat of arms for the Austrian town of Grossarl.
Electric guitars, most notably those manufactured by the Fender Musical Instruments Corporation, have been built with alder bodies since the 1950s. Alder is appreciated for its tone that is claimed to be tight and evenly balanced, especially when compared to mahogany, and has been adopted by many electric guitar manufacturers. It usually is finished in opaque lacquer (nitrocellulose, polyurethane, or polyester), as it does not have a prominent grain.
As a hardwood, alder is used in making furniture, cabinets, and other woodworking products. In these applications, its aforementioned lack of prominent grain means that it is often veneered, either by stained light woods such as oak, ash, or figured maple, or by darker woods such as teak or walnut.
Alder bark and wood (like oak and sweet chestnut) contain tannin and are traditionally used to tan leather.
A red dye can also be extracted from the outer bark, and a yellow dye from the inner bark.
Culture
Ermanno Olmi's movie The Tree of Wooden Clogs (''L' Albero Degli Zoccoli'', 1978) refers in its title to alder, typically used to make clogs as in this movie's plot.
References
Further reading
*
External links
* [http://rbg-web2.rbge.org.uk/cgi-bin/nph-readbtree.pl/feout?FAMILY_XREF&GENUS_XREFAlnus&SPECIES_XREF&TAXON_NAME_XREF&RANK= Flora Europaea: Alnus]
* [http://www.efloras.org/florataxon.aspx?flora_id40&taxon_id101157 Flora of Bolivia: Alnus]
* [http://www.efloras.org/florataxon.aspx?flora_id2&taxon_id101157 Flora of China: Alnus]
* [http://www.efloras.org/florataxon.aspx?flora_id1&taxon_id101157 Flora of North America: Alnus]
* [http://www.efloras.org/florataxon.aspx?flora_id5&taxon_id101157 Flora of Pakistan: Alnus]
Category:Taxa named by Philip Miller | https://en.wikipedia.org/wiki/Alder | 2025-04-05T18:25:38.968081 |
1384 | Amos Bronson Alcott | | birth_place = Wolcott, Connecticut, U.S.
| death_date =
| death_place = Boston, Massachusetts, U.S.
| resting_place = Sleepy Hollow Cemetery, Concord, Massachusetts, U.S.
| education | occupation
| spouse
| parents | children
}}
Amos Bronson Alcott (; November 29, 1799 – March 4, 1888) was an American teacher, writer, philosopher, and reformer. As an educator, Alcott pioneered new ways of interacting with young students, focusing on a conversational style, and avoided traditional punishment. He hoped to perfect the human spirit and, to that end, advocated a plant-based diet. He was also an abolitionist and an advocate for women's rights.
Born in Wolcott, Connecticut, in 1799, Alcott had only minimal formal schooling before attempting a career as a traveling salesman. Worried that the itinerant life might have a negative impact on his soul, he turned to teaching. His innovative methods, however, were controversial, and he rarely stayed in one place very long. His most well-known teaching position was at the Temple School in Boston. His experience there was turned into two books: Records of a School and Conversations with Children on the Gospels. Alcott became friends with Ralph Waldo Emerson and became a major figure in transcendentalism. His writings on behalf of that movement, however, are heavily criticized for being incoherent. Based on his ideas for human perfection, Alcott founded Fruitlands, a transcendentalist experiment in community living. The project failed after seven months. Alcott and his family struggled financially for most of his life. Nevertheless, he continued focusing on educational projects and opened a new school at the end of his life in 1879. He died in 1888.
Alcott married Abby May in 1830, and they had four surviving children, all daughters. Their second was Louisa May, who fictionalized her experience with the family in her novel Little Women in 1868.
Life and work
Early life
A native New Englander, Amos Bronson Alcott was born in Wolcott, Connecticut (then recently renamed from "Farmingbury") on November 29, 1799. His parents were Joseph Chatfield Alcott and Anna Bronson Alcott. The family home was in an area known as Spindle Hill, and his father, Joseph Alcox, traced his ancestry to colonial-era settlers in eastern Massachusetts. The family originally spelled their name "Alcock", later changed to "Alcocke" then "Alcox". Amos Bronson, the oldest of eight children, later changed the spelling to "Alcott" and dropped his first name.
At age six, young Bronson began his formal education in a one-room schoolhouse in the center of town but learned how to read at home with the help of his mother. The school taught only reading, writing, and spelling, and he left this school at the age of 10. At age 13, his uncle, Reverend Tillotson Bronson, invited Alcott into his home in Cheshire, Connecticut, to be educated and prepared for college. Bronson gave it up after only a month and was self-educated from then on. He was not particularly social and his only close friend was his neighbor and second cousin William Alcott, with whom he shared books and ideas. Bronson Alcott later reflected on his childhood at Spindle Hill: "It kept me pure ... I dwelt amidst the hills ... God spoke to me while I walked the fields." Starting at age 15, he worked for clockmaker Seth Thomas in the nearby town of Plymouth.
At age 17, Alcott passed the exam for a teaching certificate but had trouble finding work as a teacher. At first, he thought it an acceptable occupation but soon worried about his spiritual well-being. In March 1823, Alcott wrote to his brother: "Peddling is a hard place to serve God, but a capital one to serve Mammon." Near the end of his life, he fictionalized this experience in his book, New Connecticut, originally circulated only among friends before its publication in 1881.Early career and marriageBy the summer of 1823, Alcott returned to Connecticut in debt to his father, who had bailed him out after his last two unsuccessful sales trips. He took a job as a schoolteacher in Cheshire with the help of his Uncle Tillotson. He quickly set about reforming the school. He added backs to the benches on which students sat, improved lighting and heating, de-emphasized rote learning, and provided individual slates to each student—paid for by himself. Alcott had been influenced by educational philosophy of the Swiss pedagogue Johann Heinrich Pestalozzi and even renamed his school "The Cheshire Pestalozzi School". On November 6, 1827, Alcott started teaching in Bristol, Connecticut, still using the same methods he used in Cheshire, but opposition from the community surfaced quickly; he was unemployed by March 1828. He moved to Boston on April 24, 1828, and was immediately impressed, referring to the city as a place "where the light of the sun of righteousness has risen". He opened the Salem Street Infant School two months later on June 23. Abby May applied as his teaching assistant; instead, the couple were engaged, without consent of the family. They were married at King's Chapel on May 22, 1830; he was 30 years old and she was 29. Her brother conducted the ceremony and a modest reception followed at her father's house. After their marriage the Alcotts moved to 12 Franklin Street in Boston, a boarding house run by a Mrs. Newall. Around this time, Alcott also first expressed his public disdain for slavery. In November 1830, he and William Lloyd Garrison founded what he later called a "preliminary Anti-Slavery Society", though he differed from Garrison as a nonresistant. Alcott became a member of the Boston Vigilance Committee.
Attendance at Alcott's school was falling when a wealthy Quaker named Reuben Haines III proposed that he and educator William Russell start a new school in Pennsylvania, The school was established in Germantown Pennsylvania, which at the time was a separate town from Philadelphia. The Alcotts were offered a rent-free home by Haines. Alcott and Russell were initially concerned that the area would not be conducive to their progressive approach to education and considered establishing the school in nearby Philadelphia instead. It was there that their first child, a daughter they named Anna Bronson Alcott, was born on March 16, 1831,
The couple's only son was born on April 6, 1839, but lived only a few minutes. The mother recorded: "Gave birth to a fine boy full grown perfectly formed but not living". It was in Germantown that the couple's second daughter was born. Louisa May Alcott was born on her father's birthday, November 29, 1832, at a half-hour past midnight. Bronson described her as "a very fine healthful child, much more so than Anna was at birth". The Germantown school, however, was faltering, and soon only eight pupils remained. Their benefactor Haines, having died before Louisa's birth, had recruited students and paid tuition for some of them. As Abby wrote, Haines' death, "has prostrated all our hopes here". On April 10, 1833, the family moved to Philadelphia, Alcott began to believe Boston was the best place for his ideas to flourish. He contacted theologian William Ellery Channing for support. Channing approved of Alcott's methods and promised to help find students to enroll, including his own daughter Mary. Channing also secured aid from Justice Lemuel Shaw and Boston mayor Josiah Quincy Jr.Experimental educatorOn September 22, 1834, Alcott opened a school of about 30 students, mostly from wealthy families. It was named the Temple School because classes were held at the Masonic Temple on Tremont Street in Boston. His assistant was Elizabeth Palmer Peabody, later replaced by Margaret Fuller. Mary Peabody Mann served as a French instructor for a time. The school was briefly famous, and then infamous, because of Alcott's method of "discarding text-books and teaching by conversation", his questioning attitude toward the Bible, and his reception of "a colored girl" into his classes.
Before 1830, primary and secondary teaching of writing consisted of rote drills in grammar, spelling, vocabulary, penmanship and transcription of adult texts. In that decade, however, progressive reformers such as Alcott, influenced by Pestalozzi, Friedrich Fröbel, and Johann Friedrich Herbart, began to advocate compositions based on students' own experiences. These reformers opposed beginning instruction with rules and preferred to have students learn to write by expressing their personal understanding of the events of their lives.
Alcott sought to develop instruction on the basis of self-analysis, with an emphasis on conversation and questioning rather than lecturing and drill. A similar interest in instructive conversation was shared by Abby May who, describing her idea of a family "post office" set up to curb potential domestic tension, said "I thought it would afford a daily opportunity for the children, indeed all of us, to interchange thought and sentiment".
Alongside writing and reading, Alcott gave lessons in "spiritual culture", which included interpretation of the Gospels, and advocated object teaching in writing instruction. He even went so far as to decorate his schoolroom with visual elements he thought would inspire learning: paintings, books, comfortable furniture, and busts or portraits of Plato, Socrates, Jesus, and William Ellery Channing. By age three, however, her mother changed her name to Elizabeth Sewall Alcott, after her own mother, perhaps because of the recent rupture between Bronson Alcott and Elizabeth Palmer Peabody.
In July 1835, Peabody published her account as an assistant to the Temple School as Record of a School: Exemplifying the General Principles of Spiritual Culture. published at the end of December 1836. In the Boston Daily Advertiser, Nathan Hale criticized Alcott's "flippant and off hand conversation" about serious topics from the Virgin birth of Jesus to circumcision. Joseph T. Buckingham called Alcott "either insane or half-witted" and "an ignorant and presuming charlatan". The book did not sell well; a Boston lawyer bought 750 copies to use as waste paper.
The Temple School was widely denounced in the press. Reverend James Freeman Clarke was one of Alcott's few supporters and defended him against the harsh response from Boston periodicals. Alcott was rejected by most public opinion and, by the summer of 1837, he had only 11 students left and no assistant after Margaret Fuller moved to Providence, Rhode Island. The controversy had caused many parents to remove their children and, as the school closed, Alcott became increasingly financially desperate. He became a member at the club's second meeting and hosted its third. Frederic Henry Hedge wrote similarly that "[t]here was no club in the strict sense ... only occasional meetings of like-minded men and women".
In late April 1840, Alcott moved to the town of Concord urged by Emerson. He rented a home for $50 a year within walking distance of Emerson's house. He named it Dove Cottage. A supporter of his philosophies, Emerson offered to help Alcott with his writing. This proved a difficult task. For example, after several revisions of the essay "Psyche" (Alcott's account of how he educated his daughters), Emerson deemed it unpublishable. Alcott also wrote a series patterned after the work of German writer Johann Wolfgang von Goethe which was published in the Transcendentalists' journal, The Dial. Emerson had written to Margaret Fuller, then editor, that Alcott's so-called "Orphic Sayings" might "pass muster & even pass for just & great", The following example appeared in the first issue:
With financial support from Emerson, and leaving his family in the care of his brother Junius, Alcott departed Concord for a visit to England on May 8, 1842. There he met admirers Charles Lane and Henry C. Wright, supporters of Alcott House, an experimental school outside London based on Alcott's Temple School methods.
Persuaded in part by Lane's abolitionist views, Alcott took a stand against President Tyler's plan to annex Texas as a slave territory and refused to pay his poll tax. Abby May wrote in her journal on January 17, 1843, "A day of some excitement, as Mr. Alcott refused to pay his town tax ... After waiting some time to be committed [to jail], he was told it was paid by a friend. Thus we were spared the affliction of his absence and the triumph of suffering for his principles." The incident inspired Henry David Thoreau, whose similar protest against the $1.50 poll tax led to a night in jail and his essay "Civil Disobedience".Fruitlands
Lane and Alcott collaborated on a major expansion of their educational theories into a Utopian society. Alcott, however, was still in debt and could not purchase the land needed for their planned community. In a letter, Lane wrote, "I do not see anyone to act the money part but myself." In May 1843, he purchased a farm in Harvard, Massachusetts. Up front, he paid $1,500 of the total $1,800 value of the property; the rest was meant to be paid by the Alcotts over a two-year period. They moved to the farm on June 1 and optimistically named it "Fruitlands" despite only ten old apple trees on the property. In order to achieve this, they removed themselves from the economy as much as possible and lived independently, styling themselves a "consociate family". At first scorning animal labor as exploitative, They banned coffee, tea, alcoholic drinks, milk, and warm bathwater. As Alcott had published earlier, "Our wine is water, — flesh, bread; — drugs, fruits." One member, Samuel Bower, "gave the community the reputation of refusing to eat potatoes because instead of aspiring toward the sky they grew downward in the earth", For clothing, they prohibited leather, because animals were killed for it, as well as cotton, silk, and wool, because they were products of slave labor.
The experimental community was never successful, partly because most of the land was not arable. Alcott lamented, "None of us were prepared to actualize practically the ideal life of which we dreamed. So we fell apart". Its founders were often away as well; in the middle of harvesting, they left for a lecture tour through Providence, Rhode Island, New York City, and New Haven, Connecticut. In its seven months, only 13 people joined, included the Alcotts and Lanes. Other than Abby May and her daughters, only one other woman joined, Ann Page. One rumor is that Page was asked to leave after eating a fish tail with a neighbor. Lane believed Alcott had misled him into thinking enough people would join the enterprise and developed a strong dislike for the nuclear family. He quit the project and moved to a nearby Shaker family with his son. After Lane's departure, Alcott fell into a depression and could not speak or eat for three days. Abby May thought Lane purposely sabotaged her family. She wrote to her brother, "All Mr. Lane's efforts have been to disunite us. But Mr. Alcott's ... paternal instincts were too strong for him." When the final payment on the farm was owed, Sam May refused to cover his brother-in-law's debts, as he often did, possibly at Abby May's suggestion. The experiment failed, the Alcotts had to leave Fruitlands.
The members of the Alcott family were not happy with their Fruitlands experience. At one point, Abby May threatened that she and their daughters would move elsewhere, leaving Bronson behind. Louisa May Alcott, who was ten years old at the time, later wrote of the experience in Transcendental Wild Oats (1873): "The band of brothers began by spading garden and field; but a few days of it lessened their ardor amazingly."
Return to Concord
, home in turn to the Alcott family, Nathaniel Hawthorne, and Margaret Sidney]]
In January 1844, Alcott moved his family to Still River, a village within Harvard but, on March 1, 1845, the family returned to Concord to live in a home they named "The Hillside" (later renamed "The Wayside" by Nathaniel Hawthorne). Both Emerson and Sam May assisted in securing the home for the Alcotts. While living in the home, Louisa began writing in earnest and was given her own room. She later said her years at the home "were the happiest years" of her life; many of the incidents in her novel Little Women (1868) are based on this period. Alcott renovated the property, moving a barn and painting the home a rusty olive color, as well as tending to over six acres of land. On May 23, 1845, Abby May was granted a sum from her father's estate which was put into a trust fund, granting minor financial security.
The Alcotts hosted a steady stream of visitors at The Hillside, including fugitive slaves, which they hosted in secret as a station of the Underground Railroad. Alcott's opposition to slavery also fueled his opposition to the Mexican–American War which began in 1846. He considered the war a blatant attempt to extend slavery and asked if the country was made up of "a people bent on conquest, on getting the golden treasures of Mexico into our hands, and of subjugating foreign peoples?"
In 1848, Abby May insisted they leave Concord, which she called "cold, heartless, brainless, soulless". The Alcott family put The Hillside up for rent and moved to Boston. There, next door to Peabody's book store on West Street, Bronson Alcott hosted a series based on the "Conversations" model by Margaret Fuller called "A Course on the Conversations on Man—his History, Resources, and Expectations". Participants, both men and women, were charged three dollars to attend or five dollars for all seven lectures. In March 1853, Alcott was invited to teach fifteen students at Harvard Divinity School in an extracurricular, non-credit course.
Alcott and his family moved back to Concord after 1857, where he and his family lived in the Orchard House until 1877. In 1860, Alcott was named superintendent of Concord Schools.Civil War years and beyond
in Concord, Massachusetts]]
Alcott voted in a presidential election for the first time in 1860. In his journal for November 6, 1860, he wrote: "At Town House, and cast my vote for Lincoln and the Republican candidates generally—the first vote I ever cast for a President and State officers." Alcott was an abolitionist and a friend of the more radical William Lloyd Garrison. He had attended a rally led by Wendell Phillips on behalf of 17-year-old Thomas Sims, a fugitive slave on trial in Boston. Alcott was one of several who attempted to storm the courthouse; when gunshots were heard, he was the only one who stood his ground, though the effort was unsuccessful. He had also stood his ground in a protest against the trial of Anthony Burns. A group had broken down the door of the Boston courthouse but guards beat them back. Alcott stood forward and asked the leader of the group, Thomas Wentworth Higginson, "Why are we not within?" He then walked calmly into the courthouse, was threatened with a gun, and turned back, "but without hastening a step", according to Higginson.
In 1862, Louisa moved to Washington, D.C. to volunteer as a nurse. On January 14, 1863, the Alcotts received a telegram that Louisa was sick; Bronson immediately went to bring her home, briefly meeting Abraham Lincoln while there. Louisa turned her experience into the book Hospital Sketches. Her father wrote of it, "I see nothing in the way of a good appreciation of Louisa's merits as a woman and a writer."
Henry David Thoreau died on May 6, 1862, likely from an illness he caught from Alcott two years earlier.
At Emerson's request, Alcott helped arrange Thoreau's funeral, which was held at First Parish Sanctuary in Concord, despite Thoreau having disavowed membership in the church when he was in his early twenties. Emerson wrote a eulogy, and Alcott helped plan the preparations. With Hawthorne's death, Alcott worried that few of the Concord notables remained. He recorded in his journal: "Fair figures one by one are fading from sight." The next year, Lincoln was assassinated, which Alcott called "appalling news".
In 1868, Alcott met with publisher Thomas Niles, an admirer of Hospital Sketches. Alcott asked Niles if he would publish a book of short stories by his daughter; instead, he suggested she write a book about girls. Louisa May was not interested initially but agreed to try. "They want a book of 200 pages or more", Alcott told his daughter. The result was Little Women, published later that year. The book, which fictionalized the Alcott family during the girls' coming-of-age years, recast the father figure as a chaplain, away from home at the front in the Civil War.
Alcott spoke, as opportunity arose, before the "lyceums" then common in various parts of the United States, or addressed groups of hearers as they invited him. These "conversations" as he called them, were more or less informal talks on a great range of topics, spiritual, aesthetic and practical, in which he emphasized the ideas of the school of American Transcendentalists led by Emerson, who was always his supporter and discreet admirer. He often discussed Platonic philosophy, the illumination of the mind and soul by direct communion with Spirit; upon the spiritual and poetic monitions of external nature; and upon the benefit to man of a serene mood and a simple way of life.Final yearsAlcott's published books, all from late in his life, include Tablets (1868), Concord Days (1872), New Connecticut (1881), and Sonnets and Canzonets (1882). Louisa May attended to her father's needs in his final years. She purchased a house for her sister Anna which had been the last home of Henry David Thoreau, now known as the Thoreau-Alcott House. Louisa and her parents moved in with Anna as well.
After the death of his wife Abby May on November 25, 1877, Alcott never returned to Orchard House, too heartbroken to live there. He and Louisa May collaborated on a memoir and went over her papers, letters, and journals. "My heart bleeds with the memories of those days", he wrote, "and even long years, of cheerless anxiety and hopeless dependence." Louisa noted her father had become "restless with his anchor gone". They gave up on the memoir project and Louisa burned many of her mother's papers.
On January 19, 1879, Alcott and Franklin Benjamin Sanborn wrote a prospectus for a new school which they distributed to potentially interested people throughout the country. The result was the Concord School of Philosophy and Literature, which held its first session in 1879 in Alcott's study in the Orchard House. In 1880 the school moved to the Hillside Chapel, a building next to the house, where he held conversations and, over the course of successive summers, as he entered his eighties, invited others to give lectures on themes in philosophy, religion and letters. The school, considered one of the first formal adult education centers in America, was also attended by foreign scholars. It continued for nine years.
In April 1882, Alcott's friend and benefactor Ralph Waldo Emerson was sick and bedridden. After visiting him, Alcott wrote, "Concord will be shorn of its human splendor when he withdraws behind the cloud." Emerson died the next day. Alcott himself moved out of Concord for his final years, settling at 10 Louisburg Square in Boston beginning in 1885.
As he was bedridden at the end of his life, Alcott's daughter Louisa May came to visit him at Louisburg on March 1, 1888. He said to her, "I am going up. Come with me." She responded, "I wish I could." He died three days later on March 4; Louisa May died only two days after her father.BeliefsAlcott was fundamentally and philosophically opposed to corporal punishment as a means of disciplining his students. Instead, beginning at the Temple School, he would appoint a daily student superintendent. When that student observed an infraction, he or she reported it to the rest of the class and, as a whole, they deliberated on punishment. At times, Alcott offered his own hand for an offending student to strike, saying that any failing was the teacher's responsibility. The shame and guilt this method induced, he believed, was far superior to the fear instilled by corporal punishment; when he used physical "correction" he required that the students be unanimously in support of its application, even including the student to be punished.
The most detailed discussion of his theories on education is in an essay, "Observations on the Principles and Methods of Infant Instruction". Alcott believed that early education must draw out "unpremeditated thoughts and feelings of the child" and emphasized that infancy should primarily focus on enjoyment. He noted that learning was not about the acquisition of facts but the development of a reflective state of mind.
Alcott's ideas as an educator were controversial. Writer Harriet Martineau, for example, wrote dubiously that, "the master presupposes his little pupils possessed of all truth; and that his business is to bring it out into expression". Even so, his ideas helped to found one of the first adult education centers in America, and provided the foundation for future generations of liberal education. Many of Alcott's educational principles are still used in classrooms today, including "teach by encouragement", art education, music education, acting exercises, learning through experience, risk-taking in the classroom, tolerance in schools, physical education/recess, and early childhood education. The teachings of William Ellery Channing a few years earlier had also laid the groundwork for the work of most of the Concord Transcendentalists.
The Concord School of Philosophy, which closed following Alcott's death in 1888, was reopened almost 90 years later in the 1970s. It has continued functioning with a Summer Conversational Series in its original building at Orchard House, now run by the Louisa May Alcott Memorial Association.
While many of Alcott's ideas continue to be perceived as being on the liberal/radical edge, they are still common themes in society, including vegetarian/veganism, sustainable living, and temperance/self-control. Alcott described his sustenance as a "Pythagorean diet": Meat, eggs, butter, cheese, and milk were excluded and drinking was confined to well water. Alcott believed that diet held the key to human perfection and connected physical well-being to mental improvement. He further viewed a perfection of nature to the spirit and, in a sense, predicted modern environmentalism by condemning pollution and encouraging humankind's role in sustaining ecology.
Criticism
Alcott's philosophical teachings have been criticized as inconsistent, hazy or abrupt. He formulated no system of philosophy, and shows the influence of Plato, German mysticism, and Immanuel Kant as filtered through the writings of Samuel Taylor Coleridge. Margaret Fuller referred to Alcott as "a philosopher of the balmy times of ancient Greece—a man whom the worldlings of Boston hold in as much horror as the worldlings of Athens held Socrates." In his later years, Alcott related a story from his boyhood: during a total solar eclipse, he threw rocks at the sky until he fell and dislocated his shoulder. He reflected that the event was a prophecy that he would be "tilting at the sun and always catching the fall".
Like Emerson, Alcott was always optimistic, idealistic, and individualistic in thinking. Writer James Russell Lowell referred to Alcott in his poem "Studies for Two Heads" as "an angel with clipped wings". Alcott held his principles above his and his family's well-being. Shortly before his marriage, for example, his future father-in-law Colonel Joseph May helped him find a job teaching at a school in Boston run by the Society of Free Enquirers, followers of Robert Owen, for a lucrative $1,000 to $1,200 annual salary. He refused it because he did not agree with their beliefs, writing, "I shall have nothing to do with them."
From the other perspective, the Alcotts created an environment which produced two famous daughters in different fields in a time when women were not commonly encouraged to have independent careers.
Works
* Observations on the Principles and Methods of Infant Instruction (1830)
* [https://archive.org/details/doctrinediscipli00alco/page/n2 The Doctrine and Discipline of Human Culture] (1836)
* Conversations with Children on the Gospels (Volume I, 1836)
* Conversations with Children on the Gospels (Volume II, 1837)
* [https://archive.org/details/tabletsamos00alcorich Tablets] (1868)
* Concord Days (1872)
* Table-Talk (1877)
* [https://archive.org/details/newconnecticutau00alco/page/n10 New Connecticut: An Autobiographical Poem] (1887; first edition privately printed in 1882)
* Sonnets and Canzonets (1882)
* [https://archive.org/details/ralphwaldoemerso00alco/page/n10 Ralph Waldo Emerson, Philosopher and Seer: An Estimate of His Character and Genius in Prose and Verse] (1882)
* The Journals of Bronson Alcott (1966)
References
Notes
Sources
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
External links
*
*
*[http://www.alcott.net/ Amos Bronson Alcott Network]
*[http://www.vcu.edu/engweb/transcendentalism/authors/alcott/ Alcott biography on American Transcendentalism Web]
*[https://web.archive.org/web/20081012232702/http://www.csustan.edu/english/reuben/pal/chap4/alcott.html Alcott at Perspectives in American Literature]
*[http://www.ivu.org/history/usa19/bronson-alcott.html Bronson Alcott: A glimpse at our vegetarian heritage, by Karen Iacobbo]
*[http://nrs.harvard.edu/urn-3:FHCL.Hough:hou01478 Guide to Books from the library of Amos Bronson Alcott] at [https://web.archive.org/web/20111121125844/http://hcl.harvard.edu/libraries/houghton/ Houghton Library], Harvard University
*[http://nrs.harvard.edu/urn-3:FHCL.Hough:hou00058 Guide to Amos Bronson Alcott papers] at [https://web.archive.org/web/20111121125844/http://hcl.harvard.edu/libraries/houghton/ Houghton Library], Harvard University
Category:1799 births
Category:1888 deaths
Category:19th-century American educators
Category:19th-century American philosophers
Category:Abolitionists from Boston
Category:Alcott family
Category:American male feminists
Category:American feminists
Category:American people of English descent
Category:American tax resisters
Category:American veganism activists
Category:American women's rights activists
Category:Burials at Sleepy Hollow Cemetery (Concord, Massachusetts)
Category:Founders of utopian communities
Category:Massachusetts Republicans
Category:Members of the Transcendental Club
Category:Opponents of tea drinking
Category:People from Concord, Massachusetts
Category:People from Harvard, Massachusetts
Category:People from Wolcott, Connecticut
Category:Philosophers from Connecticut
Category:Philosophers from Massachusetts
Category:Scholars of feminist philosophy
Category:Schoolteachers from Massachusetts
Category:Sonneteers
Category:Underground Railroad people
Category:American founders | https://en.wikipedia.org/wiki/Amos_Bronson_Alcott | 2025-04-05T18:25:39.012799 |
1386 | Arachnophobia | | synonym | field Psychiatry
| symptoms | complications
| onset | duration
| types | causes
| risks | diagnosis
| differential | prevention
| treatment Exposure therapy or a cultural phenomenon that is most common in predominantly European societies.Evolutionary
An evolutionary reason for the phobia remains unresolved. One view, especially held in evolutionary psychology, is that the presence of venomous spiders led to the evolution of a fear of spiders, or made the acquisition of a fear of spiders especially easy. However, there is no evidence that during the Pleistocene there were a sufficient number of venomous African spider fauna to trigger such an evolutionary fear. Like all traits, there is variability in the intensity of fear of spiders, and those with more intense fears are classified as phobic. Being relatively small, spiders do not fit the usual criterion for a threat in the animal kingdom where size is a factor, but they can have medically significant venom and/or cause skin irritation with their setae. However, a phobia is an irrational fear as opposed to a rational fear.
By ensuring that their surroundings were free from spiders, arachnophobes would have had a reduced risk of being bitten in ancestral environments, giving them a slight advantage over non-arachnophobes in terms of survival. However, having a disproportionate fear of spiders in comparison to other, potentially dangerous creatures present during Homo sapiens' environment of evolutionary adaptiveness may have had drawbacks.
In The Handbook of the Emotions (1993), psychologist Arne Öhman studied pairing an unconditioned stimulus with evolutionarily-relevant fear-response neutral stimuli (snakes and spiders) versus evolutionarily-irrelevant fear-response neutral stimuli (mushrooms, flowers, physical representation of polyhedra, firearms, and electrical outlets) on human subjects and found that ophidiophobia (fear of snakes) and arachnophobia required only one pairing to develop a conditioned response while mycophobia, anthophobia, phobias of physical representations of polyhedra, firearms, and electrical outlets required multiple pairings and went extinct without continued conditioning while the conditioned ophidiophobia and arachnophobia were permanent.
Psychiatrist Randolph M. Nesse notes that while conditioned fear responses to evolutionarily novel dangerous objects such as electrical outlets is possible, the conditioning is slower because such cues have no prewired connection to fear, noting further that despite the emphasis of the risks of speeding and drunk driving in driver's education, it alone does not provide reliable protection against traffic collisions and that nearly one-quarter of all deaths in 2014 of people aged 15 to 24 in the United States were in traffic collisions. Nesse, psychiatrist Isaac Marks, and evolutionary biologist George C. Williams have noted that people with systematically deficient responses to various adaptive phobias (e.g. arachnophobia, ophidiophobia, basophobia) are more temperamentally careless and more likely to receive unintentional injuries that are potentially fatal and have proposed that such deficient phobia should be classified as "hypophobia" due to its selfish genetic consequences.
A 2001 study found that people could detect images of spiders among images of flowers and mushrooms more quickly than they could detect images of flowers or mushrooms among images of spiders. The researchers suggested that this was because fast response to spiders was more relevant to human evolution.
Cultural
An alternative view is that the dangers, such as from spiders, are overrated and not sufficient to influence evolution. Instead, inheriting phobias would have restrictive and debilitating effects upon survival, rather than being an aid. For some communities, such as in Papua New Guinea and Cambodia, spiders are included in traditional foods. This suggests arachnophobia may, at least in part, be a cultural rather than genetic trait.
Stories about spiders in the media often contain errors and use sensationalistic vocabulary, which could contribute to the fear of spiders.TreatmentsThe fear of spiders can be treated by any of the general techniques suggested for specific phobias. The first line of treatment is systematic desensitization – also known as exposure therapy. Before engaging in systematic desensitization, it is common to train the individual with arachnophobia in relaxation techniques, which will help keep the patient calm. Systematic desensitization can be done in vivo (with live spiders) or by getting the individual to imagine situations involving spiders, then modelling interaction with spiders for the person affected and eventually interacting with real spiders. This technique can be effective in just one session, although it generally takes more time.
Recent advances in technology have enabled the use of virtual or augmented reality spiders for use in therapy. These techniques have proven to be effective. It has been suggested that exposure to short clips from the Spider-Man movies may help to reduce an individual's arachnophobia.EpidemiologyArachnophobia affects 3.5 to 6.1 percent of the global population.See also
* Apiphobia, fear of bees
* Entomophobia, fear of insects
* Myrmecophobia, fear of ants
References
External links
*
*[https://web.archive.org/web/20011018013015/http://news.nationalgeographic.com/news/2001/10/1004_snakefears.html National Geographic: "Fear of Snakes, Spiders Rooted in Evolution, Study Finds"]
| ICD10 =
| ICD9 = <!---->
| ICDO | OMIM
| MedlinePlus | MeSH
| GeneReviewsNBK | GeneReviewsName
| Orphanet =
}}
Category:Arachnids and humans
Category:Phobias
Category:Spiders and humans
Category:Zoophobias | https://en.wikipedia.org/wiki/Arachnophobia | 2025-04-05T18:25:39.024820 |
1387 | Alabaster | thumb|Calcite alabaster: The tomb of Tutankhamun (d. 1323 BC) contained a practical objet d’art, a cosmetics jar made of Egyptian alabaster, which features a lid surmounted by a lioness (goddess Bast).
Alabaster is a mineral and a soft rock used for carvings and as a source of plaster powder. Archaeologists, geologists, and the stone industry have different definitions for the word alabaster. In archaeology, the term alabaster includes objects and artefacts made from two different minerals: (i) the fine-grained, massive type of gypsum, and (ii) the fine-grained, banded type of calcite.
Chemically, gypsum is a hydrous sulfate of calcium, whereas calcite is a carbonate of calcium. Calcite alabaster also is known as onyx-marble, Egyptian alabaster, and Oriental alabaster, which terms usually describe either a compact, banded travertine stone
Etymology
thumb|upright=1.1|Alabaster windows in the Church of Santa Maria la Mayor of Morella, Spain (built 13th–16th centuries)
The English word "alabaster" was borrowed from Old French , in turn derived from Latin , and that from Greek () or (). The Greek words denoted a vase of alabaster.
The name may be derived further from ancient Egyptian , which refers to vessels of the Egyptian goddess Bast. She was represented as a lioness and frequently depicted as such in figures placed atop these alabaster vessels. Ancient Roman authors Pliny the Elder and Ptolemy wrote that the stone used for ointment jars called alabastra came from a region of Egypt known as Alabastron or Alabastrites.
Properties and usability
The purest alabaster is a snow-white material of fine uniform grain, but it often is associated with an oxide of iron, which produces brown clouding and veining in the stone. The coarser varieties of gypsum alabaster are converted by calcination into plaster of Paris, and are sometimes known as "plaster stone". The finer kinds of alabaster are employed largely as an ornamental stone, especially for ecclesiastical decoration and for the rails of staircases and halls.
Modern processing
thumb|Alabaster workshop in Volterra, Italy
Working techniques
Alabaster is mined and then sold in blocks to alabaster workshops. There they are cut to the needed size ("squaring"), and then are processed in different techniques: turned on a lathe for round shapes, carved into three-dimensional sculptures, chiselled to produce low relief figures or decoration; and then given an elaborate finish that reveals its transparency, colour, and texture. For this the stone needs to be fully immersed in various pigment solutions and heated to a specific temperature.
Window panels
When cut into thin sheets, alabaster is translucent enough to be used for small windows. It was used for this purpose in Byzantine churches and later in medieval ones, especially in Italy. Large sheets of Aragonese gypsum alabaster are used extensively in the Cathedral of Our Lady of the Angels, The cathedral incorporates special cooling to prevent the panes from overheating and turning opaque. while the modern Los Angeles cathedral employs gypsum alabaster. There are also multiple examples of alabaster windows in ordinary village churches and monasteries in northern Spain.
Calcite alabaster
thumb|Calcite dish from the Ancient Egyptian tomb of "U", Semerkhet
Calcite alabaster, harder than the gypsum variety, was used in ancient Egypt and the wider Middle East (except Assyrian palace reliefs), and also in modern times. It is found as either a stalagmitic deposit from the floor and walls of limestone caverns, or as a kind of travertine, similarly deposited in springs of calcareous water. Its deposition in successive layers gives rise to the banded appearance that the marble often shows on cross-section, from which its name is derived: onyx-marble or alabaster-onyx, or sometimes simply (and wrongly) as onyx.
North America
In Mexico, there are famous deposits of a delicate green variety at La Pedrara, in the district of Tecali, near Puebla. Onyx-marble occurs also in the district of Tehuacán and at several localities in the US including California, Arizona, Utah, Colorado and Virginia.
In Mesopotamia, gypsum alabaster was the material of choice for figures of deities and devotees in temples, as in a figure believed to represent the deity Abu dating to the first half of the 3rd millennium BC, which is kept in New York.
Aragon, Spain
Much of the world's alabaster is extracted from the centre of the Ebro Valley in Aragon, Spain, which has the world's largest known exploitable deposits. According to a brochure published by the Aragon government, alabaster has elsewhere either been depleted, or its extraction is so difficult that it has almost been abandoned or is carried out at a very high cost. During the Middle Ages the craft of alabaster was almost completely forgotten.
In the 17th and 18th centuries production of artistic, high-quality Renaissance-style artifacts stopped altogether, replaced by less sophisticated, cheaper items better suited for large-scale production and commerce. The new industry prospered, but the reduced need for skilled craftsmen left few of them still working. The 19th century brought a boom to the industry, largely due to the "traveling artisans" who offered their wares to the palaces of Europe, as well as to America and the East.
England and Wales
thumb|upright=1.1|Resurrection of Christ, typical Nottingham alabaster panel from an altarpiece set, 1450–1490, showing remnants of its painted decoration
Gypsum alabaster is a common mineral, which occurs in England in the Keuper marls of the Midlands, especially at Chellaston in Derbyshire, at Fauld in Staffordshire, and near Newark in Nottinghamshire. Deposits at all of these localities have been worked extensively.
In the 14th and 15th centuries the carving into small statues and sets of relief panels for altarpieces was a valuable local industry in Nottingham, as well as a major English export. These were usually painted, or partly painted. It was also used for the effigies, often life size, on tomb monuments, as the typical recumbent position suited the material's lack of strength, and it was cheaper and easier to work than good marble. After the English Reformation the making of altarpiece sets was discontinued, but funerary monument work in reliefs and statues continued.
In addition to the carvings still in Britain (particularly the Nottingham Castle Museum, British Museum, and Victoria and Albert Museum), trade in mineral alabaster (other than the antiques trade) is ongoing as far afield as the Musée de Cluny, Spain, and Scandinavia.
Alabaster is also found, in smaller quantity, at Watchet in Somerset, near Penarth in Glamorganshire, and elsewhere. In Cumbria it occurs largely in the New Red rocks, but at a lower geological horizon. The alabaster of Nottinghamshire and Derbyshire is found in thick nodular beds or "floors" in spheroidal masses known as "balls" or "bowls" and in smaller lenticular masses termed "cakes". At Chellaston, where the local alabaster is known as "Patrick", it has been worked into ornaments under the name of "Derbyshire spar"―a term more properly applied to fluorspar.
alt=|thumb|Attributed to Willem van den Broecke, Rijksmuseum
Black alabaster
Black alabaster is a rare anhydrite form of the gypsum-based mineral. The black form is found in only three veins in the world, one each in United States, Italy, and China.
Alabaster Caverns State Park, near Freedom, Oklahoma, is home to a natural gypsum cave in which much of the gypsum is in the form of alabaster. There are several types of alabaster found at the site, including pink, white, and the rare black alabaster.
Gallery
Ancient and Classical Near East
Ebih-Il Louvre AO17551 n01.jpg|Statue of Ebih-Il, Mari on the Euphrates, made of gypsum alabaster (25th century BC)
File:Statuette_Goddess_Louvre_AO20127.jpg|Necropolis of Hillah, near Babylon. Alabaster, gold, terracotta and rubies. Musée du Louvre
Statue Ammaalay Louvre AO20282.jpg|Alabaster statue, Yemen (1st century BC)
File:Assyrian royal lion Hunt19.JPG|Assyrian relief; King Ashurbanipal spears a lion
European Middle Ages
Norbury, Derbyshire - Nicholas Fitzherbert.jpg|Alabaster sepulchral monument of Nicholas Fitzherbert, d. AD 1473, in St Mary and St Barlock's Church, Norbury, Derbyshire, England
File:Fossanova Abbey fc02.jpg|Alabaster windows in the choir of Fossanova Abbey church (12th century) in Latina, Italy
File:Casamari coro.jpg|Alabaster windows and rosette in the central apse of Casamari Abbey church (1203–1217) in Lazio, Italy
File:Orvieto083.jpg|Alabaster window in Orvieto Cathedral (14th century), Italy
Modern
Archaizing Relief of a Seated King and Attendants, late 19th century.jpg|Archaizing Relief of a Seated King and Attendants, Iran, Qajar period (late 19th century CE, in the style of 5th–4th century BC). Brooklyn Museum.
Alabasterlampe Umgang Oktogon erleuchtet.jpg|Alabaster lamp, Aachen Cathedral, Germany (early 20th century)
alabaster-satin spar.jpg|Objet d'art with gypsum alabaster base, showing typical mottling (modern)
See also
Mineralogy
– mineral consisting of calcium carbonate (); archaeologists and stone trade professionals, unlike mineralogists, call one variety of calcite "alabaster"
– mineral composed of calcium sulfate dihydrate (); alabaster is one of its varieties
– a mineral closely related to gypsum
– the main inorganic compound () of gypsum
– translucent sheets of marble or alabaster used during the Early Middle Ages for windows instead of glass
Window and roof panels
Chronological list of examples:
– 5th century, Ravenna
– 6th century, Ravenna
– mainly 13th–14th century, Valencia, Spain; the lantern of the octagonal crossing tower
– 14th-century, Orvieto, Umbria, central Italy
– 17th century, Rome; alabaster window by Bernini (1598–1680) used to create a "spotlight"
– 1924, Jerusalem, architect: Antonio Barluzzi. Windows fitted with dyed alabaster panels.
– 1924, Mount Tabor, architect: Antonio Barluzzi. Alabaster roofing was attempted.
References
Further reading
Harrell J.A. (1990), "Misuse of the term 'alabaster' in Egyptology", Göttinger Miszellen, 119, pp. 37–42.
Mackintosh-Smith T. (1999), "Moonglow from Underground". Aramco World May–June 1999.
External links
More about alabaster and travertine, brief guide explaining the confusing, different use of the same terms by geologists, archaeologists and the stone trade. Oxford University Museum of Natural History, 2012
Alabaster Craftmanship in Volterra
Category:Calcium minerals
Category:Carbonate minerals
Category:Sulfate minerals
Category:Minerals
Category:Stone (material)
Category:Sculpture materials
Category:Bastet | https://en.wikipedia.org/wiki/Alabaster | 2025-04-05T18:25:39.058324 |
1389 | Ahab | BC
| coronation | full name
| birth_name | birth_date <!-- -->
| birth_place | death_date BC
| death_place = Ramoth-Gilead, Syria
| burial_date | burial_place Samaria, Kingdom of Israel
| predecessor = Omri
| successor = Ahaziah
| queen = Jezebel of Sidon
| spouse | issue
| royal house | dynasty Omrides
| father = Omri
| mother | signature
}}
Ahab (; ; ; ; ) was a king of the Kingdom of Israel (Samaria), the son and successor of King Omri, and the husband of Jezebel of Sidon, according to the Hebrew Bible. He is depicted in the Bible as a Baal worshipper and is criticized for causing moral decline in Israel, though modern scholars argue that Ahab was a Yahwist himself.
The existence of Ahab is historically supported outside the Bible. The contemporary Kurkh Monolith inscription of king Shalmaneser III from the Neo-Assyrian Empire documented in 853 BC that Shalmaneser III defeated an alliance of a dozen kings in the Battle of Qarqar; one of these was Ahab. Though not named, he is also mentioned on the inscriptions of the Mesha Stele.
Ahab became king of Israel in the thirty-eighth year of King Asa of Judah, and reigned for twenty-two years, according to 1 Kings 16:29. William F. Albright dated his reign to 869–850 BC, while Edwin R. Thiele offered the dates 874–853 BC. Most recently, Michael Coogan has dated Ahab's reign to 871–852 BC.
Reign
As Omri's successor, Ahab married Jezebel, the daughter of Ithobaal I of Tyre. Under Jezebel's influence, he abandoned Yahweh and established Baal and Asherah cults in Israel according to 1 Kings 16:29–33. For example, he allowed Hiel the Bethelite to rebuild Jericho, even though it was 'cursed' by Yahweh (1 Kings 16:34), and helped his wife kill opponents, such as the "servants of Yahweh" and possibly, the priests of Jeroboam's cult (1 Kings 18:3–16). Edward Lipiński argues that the "Baal" worshipped by Ahab and Jezebel was the "YHWH of Samaria", which was opposed as Yahwist heresy by the Judean priests. Others disagree based on archaeological evidence and extrabiblical sources about Jezebel's upbringing.
In terms of foreign policy, Ahab continued Omri's policies against Moab, which was a tributary state of Israel (2 Kings 1:1). According to the Moabite Mesha Stele, Omri and Ahab "oppressed Moab for many days". By marriage, he allied with Jehoshaphat, who was the king of Judah (2 Kings 8:16–18). Aram-Damascus was the only foreign state that Ahab opposed but he made peace with them after their king promised to withdraw from conquered territory. He also allowed Ahab to conquer Aramean territory to compensate (1 Kings 20:34).
's (859–824 BC) Kurkh Monolith names King Ahab.]]
Battle of Qarqar
The Battle of Qarqar is mentioned in extra-biblical records, and occurred at Apamea, where Shalmaneser III of Assyria fought a great confederation of princes from Cilicia, northern Syria, Israel, Ammon, and the tribes of the Syrian desert (853 BCE), including Arabs, Ahab the Israelite (''A-ha-ab-bu <sup>mat</sup>Sir-'a-la-a-a) and Hadadezer (Adad-'idri'').
Ahab's contribution was estimated at 2,000 chariots and 10,000 men. In reality, however, the number of chariots in Ahab's forces was probably closer to a number in the hundreds (based upon archaeological excavations of the area and the foundations of stables that have been found). If, however, the numbers are referring to allies, they could include forces from Tyre, Judah, Edom, and Moab. The Assyrian king claimed victory, but his immediate return and subsequent expeditions in 849 BC and 846 BC against a similar but unspecified coalition implied that the victory had no lasting impact.
Jezreel was identified as Ahab's fortified chariot and cavalry base.Ahab and the prophets
In the Biblical text, Ahab has four important encounters with prophets:
#The first encounter is with Elijah, who predicts a drought because of Ahab's sins. Because of this, Ahab blames Elijah for Israel's misfortunes but Elijah proclaims the supremacy of Yahweh so that Ahab could repent.
#The second encounter is between Ahab and an unnamed prophet, who criticized him for sparing Ben-hadad and told him that Israel would be invaded by the Arameans as punishment.
#The third is with Elijah, who criticized his role in Naboth's unjust execution. Ahab sincerely repents, which Yahweh relays to Elijah.
#The fourth encounter is with Micaiah, who initially tells Ahab that he would re-capture Ramoth-Gilead before revealing that Ahab was deceived by his Yahwistic court prophets who had a lying spirit in their mouths which was sent by Yahweh himself. Instead of victory, he would die in battle.
Death of Ahab
Ahab is mortally wounded by an unaimed arrow after he and Jehoshaphat tried to re-capture Ramoth-Gilead from the Arameans. and internationally.
However, Yahwists commend him for fortifying numerous Israelite cities and building an ivory palace. Christian Frevel argues that Ahab used imperialism to introduce Yahweh to the Kingdom of Judah. To do this, he gave his children theophoric names whilst expanding in northern territories and Judah. he states that Micah, for his inauspicious prophecy, was killed by order of Ahab through being thrown from a precipice, and was buried at Morathi (Maroth?; Mic. i. 12), near the cemetery of Enakim (Ένακεὶμ Septuagint rendering of ; ib. i. 10). According to "Gelilot Ereẓ Yisrael" (quoted in "Seder ha-Dorot," i. 118, Warsaw, 1889), Micah was buried in Chesil, a town in southern Judah (Josh. xv. 30). Naboth's soul was the lying spirit that was permitted to deceive Ahab to his death.
}}
General and cited references
*
*
*
*
*
*
*
*
*
External links
*
Category:850s BC deaths
Category:9th-century BC Kings of Israel
Category:Deaths by arrow wounds
Category:Monarchs killed in action
Category:Omrides
Category:Year of birth unknown
Category:Biblical murderers
Category:Jezebel
Category:Year of death uncertain | https://en.wikipedia.org/wiki/Ahab | 2025-04-05T18:25:39.068692 |
1391 | ASIC (disambiguation) | In the realm of electronic technology, ASIC stands for application-specific integrated circuit, an integrated circuit customized for a specific task.
ASIC may also refer to:
Accreditation Service for International Colleges, an educational accreditation agency in the UK
Acid-sensing ion channels, a protein family
Air and Space Interoperability Council, former name of the Air Force Interoperability Council
Arfoire Syndicate of International Crime, the antagonist group in the video game Hyperdimension Neptunia mk2
ASIC programming language, a dialect of BASIC
Associated Signature Containers (ASiC), specifies the use of container structures to bind together one or more signed objects with either advanced electronic signatures or time-stamp tokens into one single digital container
Association Scientifique Internationale pour le Café, a scientific organization based in France
Australian Securities & Investments Commission, Australia's corporate regulator
Aviation Security Identification Card, an Australian identification card
See also
Asics, an athletic equipment company | https://en.wikipedia.org/wiki/ASIC_(disambiguation) | 2025-04-05T18:25:39.070873 |
1392 | Dasyproctidae | | image = Dasyprocta punctata (Gamboa, Panama).jpg
| image_caption = Central American agouti, D. punctata
| taxon = Dasyproctidae
| authority = Gray 1825
| type_genus = Dasyprocta
| type_genus_authority = Illiger, 1811
| subdivision_ranks = Genera
| subdivision = See text
}}
Dasyproctidae is a family of large South American rodents, comprising the agoutis and acouchis. Their fur is a reddish or dark colour above, with a paler underside. They are herbivorous, often feeding on ripe fruit that falls from trees. They live in burrows, and, like squirrels, will bury some of their food for later use.
Dasyproctids exist in Central and South America, which are the tropical parts of the New World. The fossil record of this family can be traced back to the Late Oligocene (Deseadan in the SALMA classification).
As with all rodents, members of this family have incisors, pre-molars, and molars, but no canines. The cheek teeth are hypsodont and flat-crowned.
Classification
Fossil taxa follow McKenna and Bell, with modifications following Kramarz.
* Family Dasyproctidae
** Genus †Alloiomys
** Genus †Australoprocta
** Genus †Branisamys
** Genus †Incamys
** Genus †Neoreomys
** Genus †Megastus
** Genus †Palmiramys
** Genus Dasyprocta
*** Azara's agouti, D. azarae
*** Coiban agouti, D. coibae
*** Crested agouti, D. cristata
*** Black agouti, D. fuliginosa
*** Orinoco agouti, D. guamara
*** Kalinowski's agouti, D. kalinowskii
*** Red-rumped agouti, D. leporina
*** Mexican agouti, D. mexicana
*** Black-rumped agouti, D. prymnolopha
*** Central American agouti, D. punctata
*** Ruatan Island agouti, D. ruatanica
** Genus Myoprocta
*** Green acouchi, M. pratti
*** Red acouchi, M. acouchy
The pacas (genus Cuniculus) are placed by some authorities in Dasyproctidae, but molecular studies have demonstrated they do not form a monophyletic group.
References
External links
* [http://www.mnh.si.edu/mna/image_info.cfm?species_id=463 Central American agouti at Smithsonian]
* [http://animaldiversity.org/accounts/Dasyproctidae/ Dasyproctidae at Animaldiversity.org]
* [http://www.scielo.br/scielo.php?scriptsci_arttext&pidS1519-69842014000300585 2014 - Figueira et al. - Carrion consumption by Dasyprocta leporina (Rodentia: Dasyproctidae) and a review of meat use by agoutis]
Category:Caviomorpha
Category:Rodent families
Category:Extant Chattian first appearances
Category:Mammals described in 1825 | https://en.wikipedia.org/wiki/Dasyproctidae | 2025-04-05T18:25:39.081727 |
1394 | Algol | |caption = Location of β Persei (circled)
}}
| appmag_v 2.12 (- 3.39)
| constell=Perseus
}}
| b-v−0.05
|dist_footnote
}}
-milliarcsecond resolution in the near-infrared H-band. The elongated appearance of Algol Aa2 (labelled B) and the round appearance of Algol Aa1 (labelled A) are real, but the form of Algol Ab (labelled C) is an artifact.]]
(TESS).]]
An ancient Egyptian calendar of lucky and unlucky days composed some 3,200 years ago is said to be the oldest historical documentation of the discovery of Algol.
The association of Algol with a demon-like creature (Gorgon in the Greek tradition, ghoul in the Arabic tradition) suggests that its variability was known long before the 17th century, but there is still no indisputable evidence for this. The Arabic astronomer al-Sufi said nothing about any variability of the star in his Book of Fixed Stars published c.964.
The variability of Algol was noted in 1667 by Italian astronomer Geminiano Montanari, but the periodic nature of its variations in brightness was not recognized until more than a century later, when the British amateur astronomer John Goodricke also proposed a mechanism for the star's variability. In May 1783, he presented his findings to the Royal Society, suggesting that the periodic variability was caused by a dark body passing in front of the star (or else that the star itself has a darker region that is periodically turned toward the Earth). For his report he was awarded the Copley Medal.
In 1881, the Harvard astronomer Edward Charles Pickering presented evidence that Algol was actually an eclipsing binary. This was confirmed a few years later, in 1889, when the Potsdam astronomer Hermann Carl Vogel found periodic doppler shifts in the spectrum of Algol, inferring variations in the radial velocity of this binary system. Thus, Algol became one of the first known spectroscopic binaries. Joel Stebbins at the University of Illinois Observatory used an early selenium cell photometer to produce the first-ever photoelectric study of a variable star. The light curve revealed the second minimum and the reflection effect between the two stars. Some difficulties in explaining the observed spectroscopic features led to the conjecture that a third star may be present in the system; four decades later this conjecture was found to be correct.
System
in the near-infrared H-band, sorted according to orbital phase. Because some phases are poorly covered, Aa2 jumps at some points along its path.]]
Algol is a multiple-star system with three confirmed and two suspected stellar components. From the point of view of the Earth, Algol Aa1 and Algol Aa2 form an eclipsing binary because their orbital plane contains the line of sight to the Earth. The eclipsing binary pair is separated by only 0.062 astronomical units (au) from each other, whereas the third star in the system (Algol Ab) is at an average distance of 2.69 au from the pair, and the mutual orbital period of the trio is 681 Earth days. The total mass of the system is about 5.8 solar masses, and the mass ratios of Aa1, Aa2, and Ab are about 4.5 to 1 to 2.
The three components of the bright triple star used to be, and still sometimes are, referred to as β Per A, B, and C. The Washington Double Star Catalog lists them as Aa1, Aa2, and Ab, with two very faint stars B and C about one arcmin distant. A further five faint stars are also listed as companions.
The close pair consists of a B8 main sequence star and a much less massive K0 subgiant, which is highly distorted by the more massive star. These two orbit every 2.9 days and undergo the eclipses that cause Algol to vary in brightness. The third star orbits these two every 680 days and is an A or F-type main sequence star. It has been classified as an Am star, but this is now considered doubtful.
Studies of Algol led to the Algol paradox in the theory of stellar evolution: although components of a binary star form at the same time, and massive stars evolve much faster than the less massive stars, the more massive component Algol Aa1 is still in the main sequence, but the less massive Algol Aa2 is a subgiant star at a later evolutionary stage. The paradox can be solved by mass transfer: when the more massive star became a subgiant, it filled its Roche lobe, and most of the mass was transferred to the other star, which is still in the main sequence. In some binaries similar to Algol, a gas flow can be seen. The gas flow between the primary and secondary stars in Algol has been imaged using Doppler Tomography.
This system also exhibits x-ray and radio wave flares. The x-ray flares are thought to be caused by the magnetic fields of the A and B components interacting with the mass transfer. The radio-wave flares might be created by magnetic cycles similar to those of sunspots, but because the magnetic fields of these stars are up to ten times stronger than the field of the Sun, these radio flares are more powerful and more persistent. The secondary component was identified as the radio emitting source in Algol using Very-long-baseline interferometry by Lestrade and co-authors.
Magnetic activity cycles in the chromospherically active secondary component induce changes in its radius of gyration that have been linked to recurrent orbital period variations on the order of ≈ via the Applegate mechanism. Mass transfer between the components is small in the Algol system but could be a significant source of period change in other Algol-type binaries.
(bottom middle), Algol Aa2 (right) and the blue giant Bellatrix (left).]]
The distance to Algol has been measured using very-long baseline interferometry, giving a value of 94 light-years. and its apparent magnitude was about −2.5, which is considerably brighter than the star Sirius is today. Because the total mass of the Algol system is about 5.8 solar masses, at the closest approach this might have given enough gravity to perturb the Oort cloud of the Solar System somewhat and hence increase the number of comets entering the inner Solar System. However, the actual increase in net cometary collisions is thought to have been quite small.NamesBeta Persei is the star's Bayer designation.The official name AlgolThe name Algol derives from Arabic raʾs al-ghūl : head (raʾs) of the ogre (al-ghūl) (see "ghoul"). The English name Demon Star was taken from the Arabic name. In 2016, the International Astronomical Union organized a Working Group on Star Names (WGSN) to catalog and standardize proper names for stars. The WGSN's first bulletin of July 2016 included a table of the first two batches of names approved by the WGSN; which included Algol for this star. It is so entered on the IAU Catalog of Star Names.
Ghost and demon star
Algol was called Rōsh ha Sāṭān or "Satan's Head" in Hebrew folklore, as stated by Edmund Chilmead, who called it "Divels head" or Rosch hassatan. A Latin name for Algol from the 16th century was Caput Larvae or "the Spectre's Head". Medusa is a gorgon so the star is also called Gorgonea Prima meaning the first star of the gorgon. According to R.H. Allen the star bore the grim name of Tseih She (), meaning "Piled up Corpses"Observing Algol
The Algol system usually has an apparent magnitude of 2.1, similar to those of Mirfak (α Persei) at 1.9 and Almach (γ Andromedae) at 2.2, with whom it forms a right triangle. During eclipses it dims to 3.4, making it as faint as nearby ρ Persei at 3.3.
{| class="wikitable"
|+ Observing Algol's Eclipses in 2025
|-
! Date
! Time
|-
! December 1, 2024
| 18:52
|-
! January 2, 2025
| 07:53
|-
! February 2, 2025
| 20:55
|-
! March 3, 2025
| 13:09
|-
! April 1, 2025
| 05:22
|-
! May 2, 2025
| 18:23
|-
! June 3, 2025
| 07:22
|-
! July 1, 2025
| 23:30
|-
! August 2, 2025
| 12:25
|-
! September 3, 2025
| 17:35
|-
! October 1, 2025
| 01:20
|-
! November 2, 2025
| 06:23
|-
! December 3, 2025
| 19:22
|}
thumb |The constellation Perseus and Algol, the Bright Star in the Gorgon's head (Johannes Hevelius, Uranographia, 1690)
Listed are the first eclipse dates and times of each month, with all times in UT. β Persei Aa2 eclipses β Persei Aa1 every 2.867321 days (2 days 20 hours 49 min). To determine subsequent eclipses, add this interval to each listed date and time. For example, the Jan 2 eclipse at 8h will result in consecutive eclipse times on Jan 5 at 5h, Jan 8 at 1h, Jan 10 at 22h, and so on (all times approximate).
Cultural significance
Historically, the star has received a strong association with bloody violence across a wide variety of cultures. In the Tetrabiblos, the 2nd-century astrological text of the Alexandrian astronomer Ptolemy, Algol is referred to as "the Gorgon of Perseus" and associated with death by decapitation: a theme which mirrors the myth of the hero Perseus's victory over the snake-haired Gorgon Medusa. In the astrology of fixed stars, Algol is considered one of the unluckiest stars in the sky,
See also
* Jaana Toivari-Viitala, egyptologist who contributed to understanding Ancient Egypt and the star
References
External links
*
*
*
*
Category:Algol variables
Persei, Beta
Category:B-type main-sequence stars
Persei, 26
019356
014576
Category:K-type subgiants
Category:Perseus (constellation)
Algol
Category:Triple star systems
Category:Astronomical objects known since antiquity
0936
BD+40 0673
Category:Am stars
Category:F-type main-sequence stars | https://en.wikipedia.org/wiki/Algol | 2025-04-05T18:25:39.105203 |
1395 | Amazing Grace | |end_date}} -->
| published | misc
}}
"Amazing Grace" is a Christian hymn published in 1779, written in 1772 by English Anglican clergyman and poet John Newton (1725–1807). It is possibly the most sung and most recorded hymn in the world, and especially popular in the United States, where it is used for both religious and secular purposes.
Newton wrote the words from personal experience; he grew up without any particular religious conviction, but his life's path was formed by a variety of twists and coincidences that were often put into motion by others' reactions to what they took as his recalcitrant insubordination. He was pressed into service with the Royal Navy, and after leaving the service, he became involved in the Atlantic slave trade. In 1748, a violent storm battered his vessel off the coast of County Donegal, Ireland, so severely that he called out to God for mercy. While this moment marked his spiritual conversion, he continued slave trading until 1754 or 1755, when he ended his seafaring altogether. Newton began studying Christian theology and later became an abolitionist.
Ordained in the Church of England in 1764, Newton became the curate of Olney, Buckinghamshire, where he began to write hymns with poet William Cowper. "Amazing Grace" was written to illustrate a sermon on New Year's Day of 1773. It is unknown if there was any music accompanying the verses; it may have been chanted by the congregation. It debuted in print in 1779 in Newton's and Cowper's Olney Hymns, but settled into relative obscurity in England. In the United States, "Amazing Grace" became a popular song used by Baptist and Methodist preachers as part of their evangelizing, especially in the American South, during the Second Great Awakening of the early 19th century. It has been associated with more than 20 melodies. In 1835, American composer William Walker set it to the tune known as "New Britain" in a shape note format; this is the version most frequently sung today.
With the message that forgiveness and redemption are possible regardless of sins committed and that the soul can be delivered from despair through the mercy of God, "Amazing Grace" is one of the most recognisable songs in the English-speaking world. American historian Gilbert Chase writes that it is "without a doubt the most famous of all the folk hymns" and Jonathan Aitken, a Newton biographer, estimates that the song is performed about 10 million times annually.
}}
According to the Dictionary of American Hymnology, "Amazing Grace" is John Newton's spiritual autobiography in verse.
In 1725, Newton was born in Wapping, a district in London near the Thames. His father was a shipping merchant who was brought up as a Catholic but had Protestant sympathies, and his mother was a devout Independent, unaffiliated with the Anglican Church. She had intended Newton to become a clergyman, but she died of tuberculosis when he was six years old. For the next few years, while his father was at sea Newton was raised by his emotionally distant stepmother. He was also sent to boarding school, where he was mistreated. At the age of eleven, he joined his father on a ship as an apprentice; his seagoing career would be marked by headstrong disobedience.
As a youth, Newton began a pattern of coming very close to death, examining his relationship with God, then relapsing into bad habits. As a sailor, he denounced his faith after being influenced by a shipmate who discussed with him Characteristicks of Men, Manners, Opinions, Times, a book by the Third Earl of Shaftesbury. In a series of letters Newton later wrote, "Like an unwary sailor who quits his port just before a rising storm, I renounced the hopes and comforts of the Gospel at the very time when every other comfort was about to fail me." His disobedience caused him to be pressed into the Royal Navy, and he took advantage of opportunities to overstay his leave.
He deserted the navy to visit Mary "Polly" Catlett, a family friend with whom he had fallen in love. After enduring humiliation for deserting, he was traded as crew to a slave ship.
He began a career in slave trading.
in his later years]]
Newton often openly mocked the captain by creating obscene poems and songs about him, which became so popular that the crew began to join in. His disagreements with several colleagues resulted in his being starved almost to death, imprisoned while at sea, and chained like the slaves they carried. He was himself enslaved by the Sherbro and forced to work on a plantation in Sierra Leone near the Sherbro River. After several months he came to think of Sierra Leone as his home, but his father intervened after Newton sent him a letter describing his circumstances, and crew from another ship happened to find him. Newton claimed the only reason he left Sierra Leone was because of Polly.
While aboard the ship Greyhound, Newton gained notoriety as being one of the most profane men the captain had ever met. In a culture where sailors habitually swore, Newton was admonished several times for not only using the worst words the captain had ever heard, but creating new ones to exceed the limits of verbal debauchery. In March 1748, while the Greyhound was in the North Atlantic, a violent storm came upon the ship that was so rough it swept overboard a crew member who was standing where Newton had been moments before. After hours of the crew emptying water from the ship and expecting to be capsized, Newton and another mate tied themselves to the ship's pump to keep from being washed overboard, working for several hours. Newton rested briefly before returning to the deck to steer for the next eleven hours. During his time at the wheel, he pondered his divine challenge.
About two weeks later, the battered ship and starving crew landed in Lough Swilly, Ireland. For several weeks before the storm, Newton had been reading ''The Christian's Pattern, a summary of the 15th-century The Imitation of Christ'' by Thomas à Kempis. The memory of his own "Lord have mercy upon us!" uttered during a moment of desperation in the storm did not leave him; he began to ask if he was worthy of God's mercy or in any way redeemable. Not only had he neglected his faith but directly opposed it, mocking others who showed theirs, deriding and denouncing God as a myth. He came to believe that God had sent him a profound message and had begun to work through him.
Newton's conversion was not immediate, but he contacted Polly's family and announced his intention to marry her. Her parents were hesitant as he was known to be unreliable and impetuous. They knew he was profane too but allowed him to write to Polly, and he set to begin to submit to authority for her sake. He sought a place on a slave ship bound for Africa, and Newton and his crewmates participated in most of the same activities he had written about before; the only immorality from which he was able to free himself was profanity. After a severe illness his resolve was renewed, yet he retained the same attitude towards slavery as was held by his contemporaries. Newton continued in the slave trade through several voyages where he sailed the coasts of Africa, now as a captain, and procured slaves being offered for sale in larger ports, transporting them to North America.
In between voyages, he married Polly in 1750, and he found it more difficult to leave her at the beginning of each trip. After three shipping voyages in the slave trade, Newton was promised a position as ship's captain with cargo unrelated to slavery. But at the age of thirty, he collapsed and never sailed again.
Olney curate
Working as a customs agent in Liverpool starting in 1756, Newton began to teach himself Latin, Greek, and theology. He and Polly immersed themselves in the church community, and Newton's passion was so impressive that his friends suggested he become a priest in the Church of England. He was turned down by John Gilbert, Archbishop of York, in 1758, ostensibly for having no university degree, although the more likely reasons were his leanings toward evangelism and tendency to socialise with Methodists. Newton continued his devotions, and after being encouraged by a friend, he wrote about his experiences in the slave trade and his conversion. William Legge, 2nd Earl of Dartmouth, impressed with his story, sponsored Newton for ordination by John Green, Bishop of Lincoln, and offered him the curacy of Olney, Buckinghamshire, in 1764.
Olney Hymns
Olney was a village of about 2,500 residents whose main industry was making lace by hand. The people were mostly illiterate and many of them were poor. Newton's preaching was unique in that he shared many of his own experiences from the pulpit; many clergy preached from a distance, not admitting any intimacy with temptation or sin. He was involved in his parishioners' lives and was much loved, although his writing and delivery were sometimes unpolished. But his devotion and conviction were apparent and forceful, and he often said his mission was to "break a hard heart and to heal a broken heart".
Partly from Cowper's literary influence, and partly because learned vicars were expected to write verses, Newton began to try his hand at hymns, which had become popular through the language, made plain for common people to understand. Several prolific hymn writers were at their most productive in the 18th century, including Isaac Watts whose hymns Newton had grown up hearing and Charles Wesley, with whom Newton was familiar. Wesley's brother John, the eventual founder of the Methodist Church, had encouraged Newton to go into the clergy. Watts was a pioneer in English hymn writing, basing his work after the Psalms. The most prevalent hymns by Watts and others were written in the common meter in 8.6.8.6: the first line is eight syllables and the second is six.
Newton and Cowper attempted to present a poem or hymn for each prayer meeting. The lyrics to "Amazing Grace" were written in late 1772 and probably used in a prayer meeting for the first time on 1 January 1773. As a reflection of Newton's connection to his parishioners, he wrote many of the hymns in first person, admitting his own experience with sin. Bruce Hindmarsh in Sing Them Over Again To Me: Hymns and Hymnbooks in America considers "Amazing Grace" an excellent example of Newton's testimonial style afforded by the use of this perspective. Several of Newton's hymns were recognised as great work ("Amazing Grace" was not among them), while others seem to have been included to fill in when Cowper was unable to write. Jonathan Aitken calls Newton, specifically referring to "Amazing Grace", an "unashamedly middlebrow lyricist writing for a lowbrow congregation", noting that only twenty-one of the nearly 150 words used in all six verses have more than one syllable.
William Phipps in the Anglican Theological Review and author James Basker have interpreted the first stanza of "Amazing Grace" as evidence of Newton's realisation that his participation in the slave trade was his wretchedness, perhaps representing a wider common understanding of Newton's motivations.
The lyrics in Olney Hymns were arranged by their association to the Biblical verses that would be used by Newton and Cowper in their prayer meetings, and did not address any political objective. For Newton, the beginning of the year was a time to reflect on one's spiritual progress. At the same time he completed a diary which has since been lost that he had begun 17 years before, two years after he quit sailing. The last entry of 1772 was a recounting of how much he had changed since then.
, and said, Who am I, O God, and what is mine house, that thou hast brought me hitherto? And yet this was a small thing in thine eyes, O God; for thou hast also spoken of thy servant's house for a great while to come, and hast regarded me according to the estate of a man of high degree, O God.
| source = 1 Chronicles 17:16–17, King James Version
}}
The title ascribed to the hymn, "1 Chronicles 17:16–17", refers to David's reaction to the prophet Nathan telling him that God intends to maintain his family line forever. Some Christians interpret this as a prediction that Jesus Christ, as a descendant of David, was promised by God as the salvation for all people. Newton's sermon on that January day in 1773 focused on the necessity to express one's gratitude for God's guidance, that God is involved in the daily lives of Christians though they may not be aware of it, and that patience for deliverance from the daily trials of life is warranted when the glories of eternity await. Newton saw himself a sinner like David who had been chosen, perhaps undeservedly, The effect of the lyrical arrangement, according to Bruce Hindmarsh, allows an instant release of energy in the exclamation "Amazing grace!", to be followed by a qualifying reply in "how sweet the sound". In An Annotated Anthology of Hymns, Newton's use of an exclamation at the beginning of his verse is called "crude but effective" in an overall composition that "suggest(s) a forceful, if simple, statement of faith". Grace is recalled three times in the following verse, culminating in Newton's most personal story of his conversion, underscoring the use of his personal testimony with his parishioners.
Dissemination
'', showing the title "New Britain" and shape note music.]]
More than 60 of Newton and Cowper's hymns were republished in other British hymnals and magazines, but "Amazing Grace" was not, appearing only once in a 1780 hymnal sponsored by the Countess of Huntingdon. Scholar John Julian commented in his 1892 A Dictionary of Hymnology that outside of the United States, the song was unknown and it was "far from being a good example of Newton's finest work". Between 1789 and 1799, four variations of Newton's hymn were published in the US in Baptist, Dutch Reformed, and Congregationalist hymnodies;<!-- Hide information until it can be discussed in 1831 it was published in Winchester, VA. as part of The Virginia Harmony, compiled by Methodist lay preacher James P. Carrell and Presbyterian elder David S. Clayton. -->
Although it had its roots in England, "Amazing Grace" became an integral part of the Christian tapestry in the United States. The greatest influences in the 19th century that propelled "Amazing Grace" to spread across the US and become a staple of religious services in many denominations and regions were the Second Great Awakening and the development of shape note singing communities. A tremendous religious movement swept the US in the early 19th century, marked by the growth and popularity of churches and religious revivals that got their start on the frontier in Kentucky and Tennessee. Unprecedented gatherings of thousands of people attended camp meetings where they came to experience salvation; preaching was fiery and focused on saving the sinner from temptation and backsliding. Religion was stripped of ornament and ceremony, and made as plain and simple as possible; sermons and songs often used repetition to get across to a rural population of poor and mostly uneducated people the necessity of turning away from sin. Witnessing and testifying became an integral component to these meetings, where a congregation member or stranger would rise and recount his turn from a sinful life to one of piety and peace.
"New Britain" tune
, the American composer who first set John Newton's verses to the "New Britain" tune, creating the version of the song known as "Amazing Grace"]]
When originally used in Olney, it is unknown what music, if any, accompanied the verses written by John Newton. Contemporary hymnbooks did not contain music and were simply small books of religious poetry. The first known instance of Newton's lines joined to music was in ''A Companion to the Countess of Huntingdon's Hymns'' (London, 1808), where it is set to the tune "Hephzibah" by English composer John Jenkins Husband. Common meter hymns were interchangeable with a variety of tunes; more than twenty musical settings of "Amazing Grace" circulated with varying popularity until 1835, when American composer William Walker assigned Newton's words to a traditional song named "New Britain". This was an amalgamation of two melodies ("Gallaher" and "St. Mary"), first published in the Columbian Harmony by Charles H. Spilman and Benjamin Shaw (Cincinnati, 1829). Spilman and Shaw, both students at Kentucky's Centre College, compiled their tunebook both for public worship and revivals, to satisfy "the wants of the Church in her triumphal march". Most of the tunes had been previously published, but "Gallaher" and "St. Mary" had not. As neither tune is attributed and both show elements of oral transmission, scholars can only speculate that they are possibly of British origin. A manuscript from 1828 by Lucius Chapin, a famous hymn writer of that time, contains a tune very close to "St. Mary", but that does not mean that he wrote it.
"Amazing Grace", with the words written by Newton and joined with "New Britain", the melody most currently associated with it, appeared for the first time in Walker's shape note tunebook Southern Harmony in 1847. It was, according to author Steve Turner, a "marriage made in heaven ... The music behind 'amazing' had a sense of awe to it. The music behind 'grace' sounded graceful. There was a rise at the point of confession, as though the author was stepping out into the open and making a bold declaration, but a corresponding fall when admitting his blindness." Walker's collection was enormously popular, selling about 600,000 copies all over the US when the total population was just over 20 million. Another shape note tunebook named The Sacred Harp (1844) by Georgia residents Benjamin Franklin White and Elisha J. King became widely influential and continues to be used.
Another verse was first recorded in Harriet Beecher Stowe's immensely influential 1852 anti-slavery novel ''Uncle Tom's Cabin. Three verses were emblematically sung by Tom in his hour of deepest crisis. He sings the sixth and fifth verses in that order, and Stowe included another verse, not written by Newton, that had been passed down orally in African-American communities for at least 50 years. It was one of between 50 and 70 verses of a song titled "Jerusalem, My Happy Home", which was first published in a 1790 book called A Collection of Sacred Ballads'':
"Amazing Grace" came to be an emblem of a Christian movement and a symbol of the US itself as the country was involved in a great political experiment, attempting to employ democracy as a means of government. Shape-note singing communities, with all the members sitting around an open center, each song employing a different song leader, illustrated this in practice. Simultaneously, the US began to expand westward into previously unexplored territory that was often wilderness. The "dangers, toils, and snares" of Newton's lyrics had both literal and figurative meanings for Americans. The hymn was translated into other languages as well: while on the Trail of Tears, the Cherokee sang Christian hymns as a way of coping with the ongoing tragedy, and a version of the song by Samuel Worcester that had been translated into the Cherokee language became very popular. Urban revival
Although "Amazing Grace" set to "New Britain" was popular, other versions existed regionally. Primitive Baptists in the Appalachian region often used "New Britain" with other hymns, and sometimes sing the words of "Amazing Grace" to other folk songs, including titles such as "In the Pines", "Pisgah", "Primrose", and "Evan", as all are able to be sung in common meter, of which the majority of their repertoire consists. In the late 19th century, Newton's verses were sung to a tune named "Arlington" as frequently as to "New Britain" for a time.
Two musical arrangers named Dwight Moody and Ira Sankey heralded another religious revival in the cities of the US and Europe, giving the song international exposure. Moody's preaching and Sankey's musical gifts were significant; their arrangements were the forerunners of gospel music, and churches all over the US were eager to acquire them. Moody and Sankey began publishing their compositions in 1875, and "Amazing Grace" appeared three times with three different melodies, but they were the first to give it its title; hymns were typically published using the incipits (first line of the lyrics), or the name of the tune such as "New Britain". Publisher Edwin Othello Excell gave the version of "Amazing Grace" set to "New Britain" immense popularity by publishing it in a series of hymnals that were used in urban churches. Excell altered some of Walker's music, making it more contemporary and European, giving "New Britain" some distance from its rural folk-music origins. Excell's version was more palatable for a growing urban middle class and arranged for larger church choirs. Several editions featuring Newton's first three stanzas and the verse previously included by Harriet Beecher Stowe in ''Uncle Tom's Cabin were published by Excell between 1900 and 1910. His version of "Amazing Grace" became the standard form of the song in American churches.
Recorded versions
With the advent of recorded music and radio, "Amazing Grace" began to cross over from primarily a gospel standard to secular audiences. The ability to record combined with the marketing of records to specific audiences allowed "Amazing Grace" to take on thousands of different forms in the 20th century. Where Edwin Othello Excell sought to make the singing of "Amazing Grace" uniform throughout thousands of churches, records allowed artists to improvise with the words and music specific to each audience. AllMusic lists over 1,000 recordings – including re-releases and compilations – as of 2019.
Its first recording is an a cappella version from 1922 by the Sacred Harp Choir.
It was included from 1926 to 1930 in Okeh Records' catalogue, which typically concentrated strongly on blues and jazz. Demand was high for black gospel recordings of the song by H. R. Tomlin and J. M. Gates. A poignant sense of nostalgia accompanied the recordings of several gospel and blues singers in the 1940s and 1950s who used the song to remember their grandparents, traditions, and family roots. It was recorded with musical accompaniment for the first time in 1930 by Fiddlin' John Carson, although to another folk hymn named "At the Cross", not to "New Britain".
Mahalia Jackson's 1947 version received significant radio airplay, and as her popularity grew throughout the 1950s and 1960s, she often sang it at public events such as concerts at Carnegie Hall. Author James Basker states that the song has been employed by African Americans as the "paradigmatic Negro spiritual" because it expresses the joy felt at being delivered from slavery and worldly miseries. Anthony Heilbut, author of The Gospel Sound, states that the "dangers, toils, and snares" of Newton's words are a "universal testimony" of the African American experience.
During the civil rights movement and opposition to the Vietnam War, the song took on a political tone. Mahalia Jackson employed "Amazing Grace" for Civil Rights marchers, writing that she used it "to give magical protection a charm to ward off danger, an incantation to the angels of heaven to descend ... I was not sure the magic worked outside the church walls ... in the open air of Mississippi. But I wasn't taking any chances." Folk singer Judy Collins, who knew the song before she could remember learning it, witnessed Fannie Lou Hamer leading marchers in Mississippi in 1964, singing "Amazing Grace". Collins also considered it a talisman of sorts, and saw its equal emotional impact on the marchers, witnesses, and law enforcement who opposed the civil rights demonstrators. It even made an appearance at the Woodstock Music Festival in 1969 during Arlo Guthrie's performance.
Collins decided to record it in the late 1960s amid an atmosphere of counterculture introspection; she was part of an encounter group that ended a contentious meeting by singing "Amazing Grace" as it was the only song to which all the members knew the words. Her producer was present and suggested she include a version of it on her 1970 album Whales & Nightingales. Collins, who had a history of alcohol abuse, claimed that the song was able to "pull her through" to recovery. Gradually and unexpectedly, the song began to be played on the radio, and then be requested. It rose to number 15 on the Billboard Hot 100, remaining on the charts for 15 weeks, as if, she wrote, her fans had been "waiting to embrace it". In the UK, it charted 8 times between 1970 and 1972, peaking at number 5 and spending a total of 75 weeks on popular music charts. Her rendition also reached number 5 in New Zealand and number 12 in Ireland in 1971.
In 1972, the Royal Scots Dragoon Guards, the senior Scottish regiment of the British Army, recorded an instrumental version featuring a bagpipe soloist accompanied by a pipe band. The tempo of their arrangement was slowed to allow for the bagpipes, but it was based on Collins's: it began with a bagpipe solo introduction similar to her lone voice, then it was accompanied by the band of bagpipes and horns, whereas in her version she is backed up by a chorus. It became an international hit, spending five weeks at number-one in the UK Singles Chart, topping the RPM national singles chart in Canada for three weeks, and also peaking at number 11 on the Billboard Hot 100 in the US. It is also a controversial instrumental, as it combined pipes with a military band. The Pipe Major of the Royal Scots Dragoon Guards was summoned to Edinburgh Castle and chastised for demeaning the bagpipes.
Aretha Franklin and Rod Stewart also recorded "Amazing Grace" around the same time, and both of their renditions were popular. All four versions were marketed to distinct types of audiences, thereby assuring its place as a pop song. Johnny Cash recorded it on his 1975 album Sings Precious Memories, dedicating it to his older brother Jack, who had been killed in a mill accident when they were boys in Dyess, Arkansas. Cash and his family sang it to themselves while they worked in the cotton fields following Jack's death. Cash often included the song when he toured prisons, saying "For the three minutes that song is going on, everybody is free. It just frees the spirit and frees the person." In American popular culture
"Amazing Grace" is an icon in American culture that has been used for a variety of secular purposes and marketing campaigns. It is referenced in the 2006 film Amazing Grace, which highlights Newton's influence on the leading British abolitionist William Wilberforce, in the film biography of Newton, ''Newton's Grace, and the 2014 film Freedom'' which tells the story of Newton's composition of the hymn.
Since 1954, when an organ instrumental of "New Britain" became a best-seller, "Amazing Grace" has been associated with funerals and memorial services. The hymn has become a song that inspires hope in the wake of tragedy, becoming a sort of "spiritual national anthem" according to authors Mary Rourke and Emily Gwathmey. For example, President Barack Obama recited and later sang the hymn at the memorial service for Clementa Pinckney, who was one of the nine victims of the Charleston church shooting in 2015. Modern interpretations
In recent years, the words of the hymn have been changed in some religious publications to downplay a sense of imposed self-loathing by its singers. The second line, "That saved a wretch like me!" has been rewritten as "That saved and strengthened me", "save a soul like me", or "that saved and set me free". Kathleen Norris in her book Amazing Grace: A Vocabulary of Faith characterises this transformation of the original words as "wretched English" making the line that replaces the original "laughably bland". Part of the reason for this change has been the altered interpretations of what wretchedness and grace means. Newton's Calvinistic view of redemption and divine grace formed his perspective that he considered himself a sinner so vile that he was unable to change his life or be redeemed without God's help. Yet his lyrical subtlety, in Steve Turner's opinion, leaves the hymn's meaning open to a variety of Christian and non-Christian interpretations. "Wretch" also represents a period in Newton's life when he saw himself outcast and miserable, as he was when he was enslaved in Sierra Leone; his own arrogance was matched by how far he had fallen in his life.
playing "Amazing Grace" during a memorial service, 29 October 2009, at Forward Operating Base Wilson, Afghanistan]]
Due to its immense popularity and iconic nature, the meaning behind the words of "Amazing Grace" has become as individual as the singer or listener. Bruce Hindmarsh suggests that the secular popularity of "Amazing Grace" is due to the absence of any mention of God in the lyrics until the fourth verse (by Excell's version, the fourth verse begins "When we've been there ten thousand years"), and that the song represents the ability of humanity to transform itself instead of a transformation taking place at the hands of God. "Grace", however, had a clearer meaning to John Newton, as he used the word to represent God or the power of God.
The transformative power of the song was investigated by journalist Bill Moyers in a documentary released in 1990. Moyers was inspired to focus on the song's power after watching a performance at Lincoln Center, where the audience consisted of Christians and non-Christians, and he noticed that it had an equal impact on everybody in attendance, unifying them. James Basker also acknowledged this force when he explained why he chose "Amazing Grace" to represent a collection of anti-slavery poetry: "there is a transformative power that is applicable ... : the transformation of sin and sorrow into grace, of suffering into beauty, of alienation into empathy and connection, of the unspeakable into imaginative literature."
Moyers interviewed Collins, Cash, opera singer Jessye Norman, Appalachian folk musician Jean Ritchie and her family, white Sacred Harp singers in Georgia, black Sacred Harp singers in Alabama, and a prison choir at the Texas State Penitentiary at Huntsville. Collins, Cash, and Norman were unable to discern if the power of the song came from the music or the lyrics. Norman, who once notably sang it at the end of a large outdoor rock concert for Nelson Mandela's 70th birthday, stated, "I don't know whether it's the text I don't know whether we're talking about the lyrics when we say that it touches so many people or whether it's that tune that everybody knows." A prisoner interviewed by Moyers explained his literal interpretation of the second verse: "'Twas grace that taught my heart to fear, and grace my fears relieved" by saying that the fear became immediately real to him when he realised he may never get his life in order, compounded by the loneliness and restriction in prison. Gospel singer Marion Williams summed up its effect: "That's a song that gets to everybody".
Explanatory notes
References
Citations
Sources
* Aitken, Jonathan (2007). John Newton: From Disgrace to Amazing Grace, Crossway Books.
* Basker, James (2002). Amazing Grace: An Anthology of Poems About Slavery, 1660–1810, Yale University Press.
* Benson, Louis (1915). The English Hymn: Its Development and Use in Worship, The Presbyterian Board of Publication, Philadelphia.
* Bradley, Ian (ed.)(1989). The Book of Hymns, The Overlook Press.
* Brown, Tony; Kutner, Jon; Warwick, Neil (2000). Complete Book of the British Charts: Singles & Albums, Omnibus.
* Bruner, Kurt; Ware, Jim (2007). Finding God in the Story of Amazing Grace, Tyndale House Publishers, Inc.
* Chase, Gilbert (1987). ''America's Music, From the Pilgrims to the Present, McGraw-Hill.
* Collins, Judy (1998). Singing Lessons: A Memoir of Love, Loss, Hope, and Healing , Pocket Books.
* Duvall, Deborah (2000). Tahlequah and the Cherokee Nation, Arcadia Publishing.
* Julian, John (ed.)(1892). A Dictionary of Hymnology'', Charles Scribner's Sons, New York.
* Martin, Bernard (1950). John Newton: A Biography, William Heineman, Ltd., London.
* Martin, Bernard and Spurrell, Mark, (eds.)(1962). The Journal of a Slave Trader (John Newton), The Epworth Press, London.
* Newton, John (1811). Thoughts Upon the African Slave Trade, Samuel Whiting and Co., London.
* Newton, John (1824). The Works of the Rev. John Newton Late Rector of the United Parishes of St. Mary Woolnoth and St. Mary Woolchurch Haw, London: Volume 1, Nathan Whiting, London.
* Noll, Mark A.; Blumhofer, Edith L. (eds.) (2006). Sing Them Over Again to Me: Hymns and Hymnbooks in America, University of Alabama Press.
* Norris, Kathleen (1999). Amazing Grace: A Vocabulary of Faith, Riverhead.
* Patterson, Beverly Bush (1995). The Sound of the Dove: Singing in Appalachian Primitive Baptist Churches, University of Illinois Press.
* Porter, Jennifer; McLaren, Darcee (eds.)(1999). Star Trek and Sacred Ground: Explorations of Star Trek, Religion, and American Culture, State University of New York Press,
* Rourke, Mary; Gwathmey, Emily (1996). Amazing Grace in America: Our Spiritual National Anthem, Angel City Press.
* Stowe, Harriet Beecher (1899). ''Uncle Tom's Cabin, or Life Among the Lowly, R. F. Fenno & Company, New York City.
* Swiderski, Richard (1996). The Metamorphosis of English: Versions of Other Languages, Greenwood Publishing Group.
* Turner, Steve (2002). Amazing Grace: The Story of America's Most Beloved Song, HarperCollins.
* Watson, J. R. (ed.)(2002). An Annotated Anthology of Hymns, Oxford University Press.
* Whitburn, Joel (2003). Joel Whitburn's Top Pop Singles, 1955–2002, Record Research, Inc.
External links
* [http://www.hymnary.org/text/amazing_grace_how_sweet_the_sound Amazing Grace] at Hymnary.org
* [https://web.archive.org/web/20150419181334/http://www.estudobiblico.org/en/biblical-comment/873-the-amazing-grace The Amazing Grace]
* [http://memory.loc.gov/diglib/ihas/html/grace/grace-home.html U.S. Library of Congress Amazing Grace collection]
* [http://www.cowperandnewtonmuseum.org.uk Cowper & Newton Museum] in Olney, England
* [http://www.markrhoads.com/amazingsite/index.htm Amazing Grace: Some Early Tunes Anthology of the American Hymn-Tune Repertory]
* [http://www.amazinggrace.ie Amazing Grace: The story behind the song and its connection to Lough Swilly]
Further reading
Walvin, James. Amazing Grace: A Cultural History of the Beloved Hymn.'' Oakland, California: University of California Press, 2023.
Category:1772 songs
Category:18th-century hymns
Category:1970 singles
Category:1971 singles
Category:1972 singles
Category:2007 singles
Category:Elvis Presley songs
Category:English Christian hymns
Category:English patriotic songs
Category:Funerary and memorial compositions
Category:Gospel songs
Category:Hymns by John Newton
Category:Irish Singles Chart number-one singles
Category:Joan Baez songs
Category:Number-one singles in Australia
Category:Number-one singles in South Africa
Category:Okeh Records singles
Category:RPM Top Singles number-one singles
Category:UK singles chart number-one singles
Category:United States National Recording Registry recordings
Category:Atlantic slave trade | https://en.wikipedia.org/wiki/Amazing_Grace | 2025-04-05T18:25:39.127495 |
1397 | AOL | | type = Subsidiary
| traded_as =
| foundation = (as Control Video Corporation)| (as AOL Inc.)}}
| founders =
| hq_location = 770 Broadway
| hq_location_city = New York City
| hq_location_country = U.S.
| area_served = Worldwide
| key_people | services Web portal and online services
| num_employees = 5,600
| owner | parent
| homepage =
}}
AOL (formerly a company known as AOL Inc. and originally known as America Online) is an American web portal and online service provider based in New York City, and a brand marketed by Yahoo! Inc.
The service traces its history to an online service known as PlayNET. PlayNET licensed its software to Quantum Link (Q-Link), which went online in November 1985. A new IBM PC client was launched in 1988, and eventually renamed as America Online in 1989. AOL grew to become the largest online service, displacing established players like CompuServe and The Source. By 1995, AOL had about three million active users.
AOL was at one point the most recognized brand on the Web in the United States. AOL once provided a dial-up Internet service to millions of Americans and pioneered instant messaging and chat rooms with AOL Instant Messenger (AIM). In 1998, AOL purchased Netscape for US$4.2 billion. By 2000, AOL was providing internet service to over 20 million consumers, dominating the market of Internet service providers (ISPs). In 2001, at the height of its popularity, it purchased the media conglomerate Time Warner in the largest merger in US history. AOL shrank rapidly thereafter, partly due to the decline of dial-up and rise of broadband. AOL was eventually spun off from Time Warner in 2009, with Tim Armstrong appointed the new CEO. Under his leadership, the company invested in media brands and advertising technologies.
On June 23, 2015, AOL was acquired by Verizon Communications for $4.4 billion. On May 3, 2021, Verizon announced it would sell Yahoo and AOL to private equity firm Apollo Global Management for $5 billion. On September 1, 2021, AOL became part of the new Yahoo! Inc.
History
1983–1991: early years
AOL began in 1983, as a short-lived venture called Control Video Corporation (CVC), founded by William von Meister. Its sole product was an online service called GameLine for the Atari 2600 video game console, after von Meister's idea of buying music on demand was rejected by Warner Bros. Subscribers bought a modem from the company for $49.95 and paid a one-time $15 setup fee. GameLine permitted subscribers to temporarily download games and keep track of high scores, at a cost of $1 per game. The telephone disconnected and the downloaded game would remain in GameLine's Master Module, playable until the user turned off the console or downloaded another game.
In January 1983, Steve Case was hired as a marketing consultant for Control Video on the recommendation of his brother, investment banker Dan Case. In May 1983, Jim Kimsey became a manufacturing consultant for Control Video, which was near bankruptcy. Kimsey was brought in by his West Point friend Frank Caufield, an investor in the company.
On May 24, 1985, Quantum Computer Services, an online services company, was founded by Kimsey from the remnants of Control Video, with Kimsey as chief executive officer and Marc Seriff as chief technology officer. The technical team consisted of Seriff, Tom Ralston, Ray Heinrich, Steve Trus, Ken Huntsman, Janet Hunter, Dave Brown, Craig Dykstra, Doug Coward, and Mike Ficco. In 1987, Case was promoted again to executive vice-president. Kimsey soon began to groom Case to take over the role of CEO, which he did when Kimsey retired in 1991. and Macintosh computers. In August 1988, Quantum launched PC Link, a service for IBM-compatible PCs developed in a joint venture with the Tandy Corporation. After the company parted ways with Apple in October 1989, Quantum changed the service's name to America Online. Case promoted and sold AOL as the online service for people unfamiliar with computers, in contrast to CompuServe, which was well established in the technical community. AOL discontinued Q-Link and PC Link in late 1994. In September 1993, AOL added Usenet access to its features. This is commonly referred to as the "Eternal September", as Usenet's cycle of new users was previously dominated by smaller numbers of college and university freshmen gaining access in September and taking a few weeks to acclimate. This also coincided with a new "carpet bombing" marketing campaign by CMO Jan Brandt to distribute as many free trial AOL trial disks as possible through nonconventional distribution partners. At one point, 50% of the CDs produced worldwide had an AOL logo. AOL quickly surpassed GEnie, and by the mid-1990s, it passed Prodigy (which for several years allowed AOL advertising) and CompuServe. In 1996, AOL replaced Booklink with a browser based on Internet Explorer, reportedly in exchange for inclusion of AOL in Windows.
AOL launched services with the National Education Association, the American Federation of Teachers, National Geographic, the Smithsonian Institution, the Library of Congress, Pearson, Scholastic, ASCD, NSBA, NCTE, Discovery Networks, Turner Education Services (CNN Newsroom), NPR, The Princeton Review, Stanley Kaplan, Barron's, Highlights for Kids, the US Department of Education, and many other education providers. AOL offered the first real-time homework help service (the Teacher Pager—1990; prior to this, AOL provided homework help bulletin boards), the first service by children, for children (Kids Only Online, 1991), the first online service for parents (the Parents Information Network, 1991), the first online courses (1988), the first omnibus service for teachers (the Teachers' Information Network, 1990), the first online exhibit (Library of Congress, 1991), the first parental controls, and many other online education firsts.
AOL purchased search engine WebCrawler in 1995, but sold it to Excite the following year; the deal made Excite the sole search and directory service on AOL. After the deal closed in March 1997, AOL launched its own branded search engine, based on Excite, called NetFind. This was renamed to AOL Search in 1999.
AOL charged its users an hourly fee until December 1996, when the company changed to a flat monthly rate of $19.95. near the Town of Vienna.
AOL was quickly running out of room in October 1996 for its network at the Fairfax County campus. In mid-1996, AOL moved to 22000 AOL Way in Dulles, unincorporated Loudoun County, Virginia to provide room for future growth. In a five-year landmark agreement with the most popular operating system, AOL was bundled with Windows software.
On March 31, 1996, the short-lived eWorld was purchased by AOL. In 1997, about half of all US homes with Internet access had it through AOL. During this time, AOL's content channels, under Jason Seiken, including News, Sports, and Entertainment, experienced their greatest growth as AOL become the dominant online service internationally with more than 34 million subscribers.
In February 1998, AOL acquired CompuServe Interactive Services (CIS) via WorldCom (later Verizon), which kept Compuware's networking business.
In November 1998, AOL announced it would acquire Netscape, best known for their web browser, in a major $4.2 billion deal.
In January 2000, as new broadband technologies were being rolled out around the New York City metropolitan area and elsewhere across the US, AOL and Time Warner Entertainment announced plans to merge, forming AOL Time Warner, Inc. The terms of the deal called for AOL shareholders to own 55% of the new, combined company. The deal closed on January 11, 2001. The new company was led by executives from AOL, SBI, and Time Warner. Gerald Levin, who had served as CEO of Time Warner, was CEO of the new company. Steve Case served as chairman, J. Michael Kelly (from AOL) was the chief financial officer, Robert W. Pittman (from AOL) and Dick Parsons (from Time Warner) served as co-chief operating officers. In 2002, Jonathan Miller became CEO of AOL. The following year, AOL Time Warner dropped the "AOL" from its name. It was the largest merger in history when completed with the combined value of the companies at $360 billion. This value fell sharply, to as low as $120 billion, as markets repriced AOL's valuation as a pure internet firm more modestly when combined with the traditional media and cable business. This status did not last long, and the company's value rose again within three months. By the end of that year, the tide had turned against "pure" internet companies, with many collapsing under falling stock prices, and even the strongest companies in the field losing up to 75% of their market value. The decline continued though 2001, but even with the losses, AOL was among the internet giants that continued to outperform brick and mortar companies.
In 2004, along with the launch of AOL 9.0 Optimized, AOL also made available the option of personalized greetings which would enable the user to hear his or her name while accessing basic functions and mail alerts, or while logging in or out. In 2005, AOL broadcast the Live 8 concert live over the Internet, and thousands of users downloaded clips of the concert over the following months. In late 2005, AOL released AOL Safety & Security Center, a bundle of McAfee Antivirus, CA anti-spyware, and proprietary firewall and phishing protection software. News reports in late 2005 identified companies such as Yahoo!, Microsoft, and Google as candidates for turning AOL into a joint venture. Those plans were abandoned when it was revealed on December 20, 2005, that Google would purchase a 5% share of AOL for $1 billion.
2006–2009: rebranding and decline
On April 3, 2006, AOL announced that it would retire the full name America Online. The official name of the service became AOL, and the full name of the Time Warner subdivision became AOL LLC. On June 8, 2006, AOL offered a new program called AOL Active Security Monitor, a diagnostic tool to monitor and rate PC security status, and recommended additional security software from AOL or Download.com. Two months later, AOL released AOL Active Virus Shield, a free product developed by Kaspersky Lab, that did not require an AOL account, only an internet email address. The ISP side of AOL UK was bought by Carphone Warehouse in October 2006 to take advantage of its 100,000 LLU customers, making Carphone Warehouse the largest LLU provider in the UK.
In August 2006, AOL announced that it would offer email accounts and software previously available only to its paying customers, provided that users accessed AOL or AOL.com through an access method not owned by AOL (otherwise known as "third party transit", "bring your own access" or "BYOA"). The move was designed to reduce costs associated with the "walled garden" business model by reducing usage of AOL-owned access points and shifting members with high-speed internet access from client-based usage to the more lucrative advertising provider AOL.com. The change from paid to free access was also designed to slow the rate at which members canceled their accounts and defected to Microsoft Hotmail, Yahoo! or other free email providers. The other free services included:
* AIM (AOL Instant Messenger)
* AOL Video, which featured professional content and allowed users to upload videos.
* AOL Local, comprising its CityGuide, Yellow Pages and Local Search services to help users find local information like restaurants, local events, and directory listings.
* AOL News
* AOL My eAddress, a custom domain name for email addresses. These email accounts could be accessed in a manner similar to those of other AOL and AIM email accounts.
* Xdrive, which allowed users to back up files over the Internet. It was acquired by AOL on August 4, 2005, and closed on December 31, 2008. It offered a free 5 GB account (free online file storage) to anyone with an AOL screenname. However, AOL subsequently began offering unlimited dial-up access for $9.95 a month.
On November 16, 2006, Randy Falco succeeded Jonathan Miller as CEO. In December 2006, AOL closed its last remaining call center in the United States, "taking the America out of America Online," according to industry pundits. Service centers based in India and the Philippines continue to provide customer support and technical assistance to subscribers.
in New York City]]
On September 17, 2007, AOL announced the relocation of one of its corporate headquarters from Dulles, Virginia to New York City and the combination of its advertising units into a new subsidiary called Platform A. This action followed several advertising acquisitions, most notably Advertising.com, and highlighted the company's new focus on advertising-driven business models. AOL management stressed that "significant operations" would remain in Dulles, which included the company's access services and modem banks.
In October 2007, AOL announced the relocation of its other headquarters from Loudoun County, Virginia to New York City, while continuing to operate its Virginia offices. As part of the move to New York and the restructuring of responsibilities at the Dulles headquarters complex after the Reston move, Falco announced on October 15, 2007, plans to lay off 2,000 employees worldwide by the end of 2007, beginning "immediately". The result was a layoff of approximately 40% of AOL's employees. Most compensation packages associated with the October 2007 layoffs included a minimum of 120 days of severance pay, 60 of which were offered in lieu of the 60-day advance notice requirement by provisions of the 1988 federal WARN Act. slightly more than the number of subscribers of Comcast and AT&T Yahoo!. According to Falco, as of December 2007, the conversion rate of accounts from paid access to free access was more than 80%.
On January 3, 2008, AOL announced the closing of its Reston, Virginia, data center, which was sold to CRG West. On February 6, Time Warner CEO Jeff Bewkes announced that Time Warner would divide AOL's internet-access and advertising businesses, with the possibility of later selling the internet-access division.
On March 13, 2008, AOL purchased the social networking site Bebo for $850 million (£417 million). On July 25, AOL announced that it was shuttering Xdrive, AOL Pictures and BlueString to save on costs and focus on its core advertising business. 2009–2015: As a digital media company On March 12, 2009, Tim Armstrong, formerly with Google, was named chairman and CEO of AOL. On May 28, Time Warner announced that it would position AOL as an independent company after Google's shares ceased at the end of the fiscal year. On November 23, AOL unveiled a new brand identity with the wordmark "Aol." superimposed onto canvases created by commissioned artists. The new identity, designed by Wolff Olins, was integrated with all of AOL's services on December 10, the date upon which AOL traded independently for the first time since the Time Warner merger on the New York Stock Exchange under the symbol AOL.
On April 6, 2010, AOL announced plans to shutter or sell Bebo. On June 16, the property was sold to Criterion Capital Partners for an undisclosed amount, believed to be approximately $10 million. In December, AIM eliminated access to AOL chat rooms, noting a marked decline in usage in recent months.
Under Armstrong's leadership, AOL followed a new business direction marked by a series of acquisitions. It announced the acquisition of Patch Media, a network of community-specific news and information sites focused on towns and communities. On September 28, 2010, at the San Francisco TechCrunch Disrupt Conference, AOL signed an agreement to acquire TechCrunch. On December 12, 2010, AOL acquired about.me, a personal profile and identity platform, four days after the platform's public launch.
On January 31, 2011, AOL announced the acquisition of European video distribution network goviral. In March 2011, AOL acquired HuffPost for $315 million. Shortly after the acquisition was announced, Huffington Post co-founder Arianna Huffington replaced AOL content chief David Eun, assuming the role of president and editor-in-chief of the AOL Huffington Post Media Group. On March 10, AOL announced that it would cut approximately 900 workers following the HuffPost acquisition.
On September 14, 2011, AOL formed a strategic ad-selling partnership with two of its largest competitors, Yahoo and Microsoft. The three companies would begin selling inventory on each other's sites. The strategy was designed to help the companies compete with Google and advertising networks.
On February 28, 2012, AOL partnered with PBS to launch MAKERS, a digital documentary series focusing on high-achieving women in industries perceived as male-dominated such as war, comedy, space, business, Hollywood and politics. Subjects for MAKERS episodes have included Oprah Winfrey, Hillary Clinton, Sheryl Sandberg, Martha Stewart, Indra Nooyi, Lena Dunham and Ellen DeGeneres.
On March 15, 2012, AOL announced the acquisition of Hipster, a mobile photo-sharing app, for an undisclosed amount. On April 9, 2012, AOL announced a deal to sell 800 patents to Microsoft for $1.056 billion. The deal included a perpetual license for AOL to use the patents.
In April, AOL took several steps to expand its ability to generate revenue through online video advertising. The company announced that it would offer gross rating point (GRP) guarantee for online video, mirroring the television-ratings system and guaranteeing audience delivery for online-video advertising campaigns bought across its properties. This announcement came just days before the Digital Content NewFront (DCNF) a two-week event held by AOL, Google, Hulu, Microsoft, Vevo and Yahoo to showcase the participating sites' digital video offerings. The DCNF was conducted in advance of the traditional television upfronts in the hope of diverting more advertising money into the digital space. On April 24, the company launched the AOL On network, a single website for its video output.
In February 2013, AOL reported its fourth quarter revenue of $599.5 million, its first growth in quarterly revenue in eight years.
In August 2013, Armstrong announced that Patch Media would scale back or sell hundreds of its local news sites. Not long afterward, layoffs began, with up to 500 out of 1,100 positions initially impacted. On January 15, 2014, Patch Media was spun off, and majority ownership was held by Hale Global. By the end of 2014, AOL controlled 0.74% of the global advertising market, well behind industry leader Google's 31.4%. The deal, which included approximately 40 Gravity employees and the company's personalization technology, was Armstrong's fourth-largest deal since taking command in 2009. Later that year, AOL acquired Vidible, a company that developed technology to help websites run video content from other publishers, and help video publishers sell their content to these websites. The deal, which was announced December 1, 2014, was reportedly worth roughly $50 million.
On July 16, 2014, AOL earned an Emmy nomination for the AOL original series The Future Starts Here in the News and Documentary category. This came days after AOL earned its first Primetime Emmy Award nomination and win for Park Bench with Steve Buscemi in the Outstanding Short Form Variety Series. Created and hosted by Tiffany Shlain, the series focused on humans' relationship with technology and featured episodes such as "The Future of Our Species", "Why We Love Robots" and "A Case for Optimism". 2015–2021: division of Verizon On May 12, 2015, Verizon announced plans to buy AOL for $50 per share in a deal valued at $4.4 billion. The transaction was completed on June 23. Armstrong, who continued to lead the firm following regulatory approval, called the deal the logical next step for AOL. "If you look forward five years, you're going to be in a space where there are going to be massive, global-scale networks, and there's no better partner for us to go forward with than Verizon." he said. "It's really not about selling the company today. It's about setting up for the next five to 10 years." However, Craig Moffett said it was unlikely the deal would make a big difference to Verizon's bottom line. Later that year, on September 15, AOL expanded the product with ONE by AOL: Creative, which is geared towards creative and media agencies to similarly connect marketing and ad distribution efforts.
On May 8, 2015, AOL reported its first-quarter revenue of $625.1 million, $483.5 million of which came from advertising and related operations, marking a 7% increase from Q1 2014. Over that year, the AOL Platforms division saw a 21% increase in revenue, but a drop in adjusted OIBDA due to increased investments in the company's video and programmatic platforms.
On June 29, 2015, AOL announced a deal with Microsoft to take over the majority of its digital advertising business. Under the pact, as many as 1,200 Microsoft employees involved with the business will be transferred to AOL, and the company will take over the sale of display, video, and mobile ads on various Microsoft platforms in nine countries, including Brazil, Canada, the United States, and the United Kingdom. Additionally, Google Search will be replaced on AOL properties with Bing—which will display advertising sold by Microsoft. Both advertising deals are subject to affiliate marketing revenue sharing.
On July 22, 2015, AOL received two News and Documentary Emmy nominations, one for MAKERS in the Outstanding Historical Programming category, and the other for True Trans With Laura Jane Grace, which documented the story of Laura Jane Grace, a transgender musician best known as the founder, lead singer, songwriter and guitarist of the punk rock band Against Me!, and her decision to come out publicly and overall transition experience.
On September 3, 2015, AOL agreed to buy Millennial Media for $238 million. On October 23, 2015, AOL completed the acquisition.
On October 1, 2015, Go90, a free ad-supported mobile video service aimed at young adult and teen viewers that Verizon owns and AOL oversees and operates, launched its content publicly after months of beta testing. The initial launch line-up included content from Comedy Central, HuffPost, Nerdist News, Univision News, Vice, ESPN and MTV.
In July 2016, Verizon Communications announced its intent to purchase the core internet business of Yahoo!. Verizon merged AOL with Yahoo into a new company called "Oath Inc.", which in January 2019 rebranded itself as Verizon Media.
In April 2018, Oath Inc. sold Moviefone to MoviePass Parent Helios and Matheson Analytics.
In November 2020 the Huffington Post was sold to BuzzFeed in a stock deal.
2021–present: Apollo Global Management
On May 3, 2021, Verizon announced it would sell 90 percent of its Verizon Media division to Apollo Global Management for $5 billion. The division became the second incarnation of Yahoo! Inc.
* Engadget
* Autoblog
* TechCrunch
AOL's content contributors consists of over 20,000 bloggers, including politicians, celebrities, academics, and policy experts, who contribute on a wide range of topics making news.
In addition to mobile-optimized web experiences, AOL produces mobile applications for existing AOL properties like Autoblog, Engadget, The Huffington Post, TechCrunch, and products such as Alto, Pip, and Vivv.
Advertising
AOL has a global portfolio of media brands and advertising services across mobile, desktop, and TV. Services include brand integration and sponsorships through its in-house branded content arm, Partner Studio by AOL, as well as data and programmatic offerings through ad technology stack, ONE by AOL.
AOL acquired a number of businesses and technologies help to form ONE by AOL. These acquisitions included AdapTV in 2013 and Convertro, Precision Demand, and Vidible in 2014. ONE by AOL is further broken down into ONE by AOL for Publishers (formerly Vidible, AOL On Network and Be On for Publishers) and ONE by AOL for Advertisers, each of which have several sub-platforms.
On September 10, 2018, AOL's parent company Oath consolidated BrightRoll, One by AOL and Yahoo Gemini to 'simplify' adtech service by launching a single advertising proposition dubbed Oath Ad Platforms, now Yahoo! Ad Tech. Membership
AOL offers a range of integrated products and properties including communication tools, mobile apps and services and subscription packages.
In 2017, before the discontinuation of AIM, "billions of messages" were sent "daily" on it and AOL's other chat services. only a few thousand were still subscribed as of 2021.
* AOL Mail – AOL Mail is AOL's proprietary email client. It is fully integrated with AIM and links to news headlines on AOL content sites.
* AOL Instant Messenger (AIM) – was AOL's proprietary instant-messaging tool. It was released in 1997. It lost market share to competition in the instant messenger market such as Google Chat, Facebook Messenger, and Skype. It also included a video-chat service, AV by AIM. On December 15, 2017, AOL discontinued AIM.
* AOL Plans – AOL Plans offers three online safety and assistance tools: ID protection, data security and a general online technical assistance service. AOL Desktop
| latest release version 9.8(Windows)<br />1.7 (macOS)
| latest release date = August 10, 2015
| latest preview version = 11.0.3418
| latest preview date November 11, 2021.
| programming language = C++
| operating system = Microsoft Windows XP or later, Mac OS X 10.4.8 or later
| genre = Internet Suite
| license = Proprietary
| website =
}}
AOL Desktop is an internet suite produced by AOL from 2007 that integrates a web browser, a media player and an instant messenger client. it is an upgrade from such. The macOS version is based on WebKit.
AOL Desktop version 10.X was different from previous AOL browsers and AOL Desktop versions. Its features are focused on web browsing as well as email. For instance, one does not have to sign into AOL in order to use it as a regular browser. In addition, non-AOL email accounts can be accessed through it. Primary buttons include "MAIL", "IM", and several shortcuts to various web pages. The first two require users to sign in, but the shortcuts to web pages can be used without authentication. AOL Desktop version 10.X was later marked as unsupported in favor of supporting the AOL Desktop 9.X versions.
Version 9.8 was released, replacing the Internet Explorer components of the web browser with CEF After the shutdown of AIM in 2017, AOL's original chat rooms continued to be accessible through AOL Desktop Gold, and some rooms remained active during peak hours. That chat system was shut down on December 15, 2020.
In addition to AOL Desktop, the company also offered a browser toolbar Mozilla plug-in, AOL Toolbar, for several web browsers that provided quick access to AOL services. The toolbar was available from 2007 until 2018.
Criticism
In its earlier incarnation as a "walled garden" community and service provider, AOL received criticism for its community policies, terms of service, and customer service. Prior to 2006, AOL was known for its direct mailing of CD-ROMs and 3.5-inch floppy disks containing its software. The disks were distributed in large numbers; at one point, half of the CDs manufactured worldwide had AOL logos on them.Community leadersAOL used a system of volunteers to moderate its chat rooms, forums and user communities. The program dated back to AOL's early days, when it charged by the hour for access and one of its highest billing services was chat. AOL provided free access to community leaders in exchange for moderating the chat rooms, and this effectively made chat very cheap to operate, and more lucrative than AOL's other services of the era. There were 33,000 community leaders in 1996. All community leaders received hours of training and underwent a probationary period. While most community leaders moderated chat rooms, some ran AOL communities and controlled their layout and design, with as much as 90% of AOL's content being created or overseen by community managers until 1996.
By 1996, ISPs were beginning to charge flat rates for unlimited access, which they could do at a profit because they only provided internet access. Even though AOL would lose money with such a pricing scheme, it was forced by market conditions to offer unlimited access in October 1996. In order to return to profitability, AOL rapidly shifted its focus from content creation to advertising, resulting in less of a need to carefully moderate every forum and chat room to keep users willing to pay by the minute to remain connected.
After unlimited access, AOL considered scrapping the program entirely, but continued it with a reduced number of community leaders, with scaled-back roles in creating content.
In May 1999, two former volunteers filed a class-action lawsuit alleging AOL violated the Fair Labor Standards Act by treating volunteers like employees. Volunteers had to apply for the position, commit to working for at least three to four hours a week, fill out timecards and sign a non-disclosure agreement. On July 22, AOL ended its youth corps, which consisted of 350 underage community leaders. The community leader program was described as an example of co-production in a 2009 article in International Journal of Cultural Studies. AOL claimed this was to account for sign on/sign off time, but because this practice was not made known to its customers, the plaintiffs won (some also pointed out that signing on and off did not always take 15 seconds, especially when connecting via another ISP). AOL disclosed its connection-time calculation methods to all of its customers and credited them with extra free hours. In addition, the AOL software would notify the user of exactly how long they were connected and how many minutes they were being charged.
AOL was sued by the Ohio Attorney General in October 2003 for improper billing practices. The case was settled on June 8, 2005. AOL agreed to resolve any consumer complaints filed with the Ohio AG's office. In December 2006, AOL agreed to provide restitution to Florida consumers to settle the case filed against them by the Florida Attorney General.
Account cancellation
Many customers complained that AOL personnel ignored their demands to cancel service and stop billing. In response to approximately 300 consumer complaints, the New York Attorney General's office began an inquiry of AOL's customer service policies. The investigation revealed that the company had an elaborate scheme for rewarding employees who purported to retain or "save" subscribers who had called to cancel their Internet service. In many instances, such retention was done against subscribers' wishes, or without their consent. Under the scheme, customer service personnel received bonuses worth tens of thousands of dollars if they could successfully dissuade or "save" half of the people who called to cancel service. For several years, AOL had instituted minimum retention or "save" percentages, which consumer representatives were expected to meet. These bonuses, and the minimum "save" rates accompanying them, had the effect of employees not honoring cancellations, or otherwise making cancellation unduly difficult for consumers.
On August 24, 2005, America Online agreed to pay $1.25 million to the state of New York and reformed its customer service procedures. Under the agreement, AOL would no longer require its customer service representatives to meet a minimum quota for customer retention in order to receive a bonus.
On June 13, 2006, Vincent Ferrari documented his account cancellation phone call in a blog post, stating he had switched to broadband years earlier. In the recorded phone call, the AOL representative refused to cancel the account unless the 30-year-old Ferrari explained why AOL hours were still being recorded on it. Ferrari insisted that AOL software was not even installed on the computer. When Ferrari demanded that the account be canceled regardless, the AOL representative asked to speak with Ferrari's father, for whom the account had been set up. The conversation was aired on CNBC. When CNBC reporters tried to have an account on AOL cancelled, they were hung up on immediately and it ultimately took more than 45 minutes to cancel the account.
On July 19, 2006, AOL's entire retention manual was released on the Internet. On August 3, 2006, Time Warner announced that the company would be dissolving AOL's retention centers due to its profits hinging on $1 billion in cost cuts. The company estimated that it would lose more than six million subscribers over the following year.
Direct marketing of disks
s distributed in Canada]]
Prior to 2006, AOL often sent unsolicited mass direct mail of 3" floppy disks and CD-ROMs containing their software. They were the most frequent user of this marketing tactic, and received criticism for the environmental cost of the campaign. According to PC World, in the 1990s "you couldn't open a magazine (PC World included) or your mailbox without an AOL disk falling out of it". to collect one million disks with the intent to return the disks to AOL.
Software
In 2000, AOL was served with an $8 billion lawsuit alleging that its AOL 5.0 software caused significant difficulties for users attempting to use third-party Internet service providers. The lawsuit sought damages of up to $1000 for each user that had downloaded the software cited at the time of the lawsuit. AOL later agreed to a settlement of $15 million, without admission of wrongdoing. The AOL software then was given a feature called AOL Dialer, or AOL Connect on . This feature allowed users to connect to the ISP without running the full interface. This allowed users to use only the applications they wish to use, especially if they do not favor the AOL Browser.
AOL 9.0 was once identified by Stopbadware as being under investigation for installing additional software without disclosure, and modifying browser preferences, toolbars, and icons. However, as of the release of AOL 9.0 VR (Vista Ready) on January 26, 2007, it was no longer considered badware due to changes AOL made in the software. Usenet newsgroups When AOL gave clients access to Usenet in 1993, they hid at least one newsgroup in standard list view: alt.aol-sucks. AOL did list the newsgroup in the alternative description view, but changed the description to "Flames and complaints about America Online". With AOL clients swarming Usenet newsgroups, the old, existing user base started to develop a strong distaste for both AOL and its clients, referring to the new state of affairs as Eternal September.
AOL discontinued access to Usenet on June 25, 2005. No official details were provided as to the cause of decommissioning Usenet access, except providing users the suggestion to access Usenet services from a third-party, Google Groups. AOL then provided community-based message boards in lieu of Usenet.
Terms of Service (TOS)
AOL has a detailed set of guidelines and expectations for users on their service, known as the Terms of Service (TOS, also known as Conditions of Service (COS) in the UK). It is separated into three different sections: Member Agreement, Community Guidelines and Privacy Policy. All three agreements are presented to users at time of registration and digital acceptance is achieved when they access the AOL service. During the period when volunteer chat room hosts and board monitors were used, chat room hosts were given a brief online training session and test on Terms of Service violations.
There have been many complaints over rules that govern an AOL user's conduct. Some users disagree with the TOS, citing the guidelines are too strict to follow coupled with the fact the TOS may change without users being made aware. A considerable cause for this was likely due to alleged censorship of user-generated content during the earlier years of growth for AOL. Certified email
In early 2005, AOL stated its intention to implement a certified email system called Goodmail, which will allow companies to send email to users with whom they have pre-existing business relationships, with a visual indication that the email is from a trusted source and without the risk that the email messages might be blocked or stripped by spam filters.
This decision drew fire from MoveOn, which characterized the program as an "email tax", and the Electronic Frontier Foundation (EFF), which characterized it as a shakedown of non-profits. A website called Dearaol.com was launched, with an online petition and a blog that garnered hundreds of signatures from people and organizations expressing their opposition to AOL's use of Goodmail.
Esther Dyson defended the move in an editorial in The New York Times, saying "I hope Goodmail succeeds, and that it has lots of competition. I also think it and its competitors will eventually transform into services that more directly serve the interests of mail recipients. Instead of the fees going to Goodmail and AOL, they will also be shared with the individual recipients."
Tim Lee of the Technology Liberation Front posted an article that questioned the Electronic Frontier Foundation's adopting a confrontational posture when dealing with private companies. Lee's article cited a series of discussions on Declan McCullagh's Politechbot mailing list on this subject between the EFF's Danny O'Brien and antispammer Suresh Ramasubramanian, who has also compared the EFF's tactics in opposing Goodmail to tactics used by Republican political strategist Karl Rove. SpamAssassin developer Justin Mason posted some criticism of the EFF's and Moveon's "going overboard" in their opposition to the scheme.
The dearaol.com campaign lost momentum and disappeared, with the last post to the now defunct dearaol.com blog—"AOL starts the shakedown" being made on May 9, 2006.
Comcast, who also used the service, announced on its website that Goodmail had ceased operations and as of February 4, 2011, they no longer used the service.
Search data
On August 4, 2006, AOL released a compressed text file on one of its websites containing 20 million search keywords for over 650,000 users over a three-month period between March 1 and May 31, 2006, intended for research purposes. AOL pulled the file from public access by August 7, but not before its wide distribution on the Internet by others. Derivative research, titled A Picture of Search was published by authors Pass, Chowdhury and Torgeson for The First International Conference on Scalable Information Systems.
The data were used by websites such as AOLstalker for entertainment purposes, where users of AOLstalker are encouraged to judge AOL clients based on the humorousness of personal details revealed by search behavior.
User list exposure
In 2003, Jason Smathers, an AOL employee, was convicted of stealing America Online's 92 million screen names and selling them to a known spammer. Smathers pled guilty to conspiracy charges in 2005. Smathers pled guilty to violations of the US CAN-SPAM Act of 2003. He was sentenced in August 2005 to 15 months in prison; the sentencing judge also recommended Smathers be forced to pay $84,000 in restitution, triple the $28,000 that he sold the addresses for. Both AOL, Inc. and Support.com, Inc. settled on May 30, 2013, for $8.5 million. This included $25.00 to each valid class member and $100,000 each to Consumer Watchdog and the Electronic Frontier Foundation. Judge Jacqueline Scott Corley wrote: "Distributing a portion of the [funds] to Consumer Watchdog will meet the interests of the silent class members because the organization will use the funds to help protect consumers across the nation from being subject to the types of fraudulent and misleading conduct that is alleged here," and "EFF's mission includes a strong consumer protection component, especially in regards to online protection."
NSA PRISM program
Following media reports about PRISM, NSA's massive electronic surveillance program, in June 2013, several technology companies were identified as participants, including AOL. According to leaks of said program, AOL joined the PRISM program in 2011. Hosting of user profiles changed, then discontinued
At one time, most AOL users had an online "profile" hosted by the AOL Hometown service. When AOL Hometown was discontinued, users had to create a new profile on Bebo. This was an unsuccessful attempt to create a social network that would compete with Facebook. When the value of Bebo decreased to a tiny fraction of the $850 million AOL paid for it, users were forced to recreate their profiles yet again, on a new service called AOL Lifestream.
AOL decided to shut down Lifestream on February 24, 2017, and gave users one month's notice to save photos and videos that had been uploaded to Lifestream. Following the shutdown, AOL no longer provides any option for hosting user profiles.
During the Hometown/Bebo/Lifestream era, another user's profile could be displayed by clicking the "Buddy Info" button in the AOL Desktop software. After the shutdown of Lifestream, this was no longer supported, but opened to the AIM home page (www.aim.com), which also became defunct, redirecting to AOL's home page.
See also
* Adrian Lamo – Inside-AOL.com
* AOHell
* Comparison of webmail providers
* David Shing
* Dot-com bubble
* Elwood Edwards
* List of acquisitions by AOL
* List of S&P 400 companies
* Live365
* Truveo
References
External links
<!-- Per WP:ELMINOFFICIAL, choose one official website only -->
*
Category:1983 establishments in the United States
Category:2001 mergers and acquisitions
Category:2015 mergers and acquisitions
Category:Companies based in Dulles, Virginia
Category:Companies based in New York City
Category:Companies formerly listed on the New York Stock Exchange
Category:Companies in the PRISM network
Category:Former Time Warner subsidiaries
Category:Internet properties established in 1983
Category:Internet properties established in 2009
Category:Internet service providers of the United States
Category:Internet services supporting OpenID
Category:Pre–World Wide Web online services
Category:Telecommunications companies established in 1983
Category:Telecommunications companies established in 2009
Category:Verizon acquisitions
Category:Yahoo!
Category:Web portals
Category:Web service providers | https://en.wikipedia.org/wiki/AOL | 2025-04-05T18:25:39.202438 |
1400 | Anno Domini | , Austria]]
The terms (AD) and before Christ (BC) are used when designating years in the Gregorian and Julian calendars. The term is Medieval Latin and means "in the year of the Lord" but is often presented using "our Lord" instead of "the Lord", taken from the full original phrase "", which translates to "in the year of our Lord Jesus Christ". The form "BC" is specific to English, and equivalent abbreviations are used in other languages: the Latin form, rarely used in English, is (ACN) or (AC).
This calendar era takes as its epoch the traditionally reckoned year of the conception or birth of Jesus. Years AD are counted forward since that epoch and years BC are counted backward from the epoch. There is no year zero in this scheme; thus the year AD 1 immediately follows the year 1 BC. This dating system was devised in 525 by Dionysius Exiguus but was not widely used until the 9th century. (Modern scholars believe that the actual date of birth of Jesus was about 5 BC.)
Terminology that is viewed by some as being more neutral and inclusive of non-Christian people is to call this the Common Era (abbreviated as CE), with the preceding years referred to as Before the Common Era (BCE). Astronomical year numbering and ISO 8601 do not use words or abbreviations related to Christianity, but use the same numbers for AD years (but not for BC years since the astronomical year 0 is 1 BC).
Usage
Traditionally, English follows Latin usage by placing the "AD" abbreviation before the year number, though it is also found after the year. In contrast, "BC" is always placed after the year number (for example: 70 BC but AD 70), which preserves syntactic order. The abbreviation "AD" is also widely used after the number of a century or millennium, as in "fourth century AD" or "second millennium AD" (although conservative usage formerly rejected such expressions). Since "BC" is the English abbreviation for Before Christ, it is sometimes incorrectly concluded that AD means After Death (i.e., after the death of Jesus), which would mean that the approximately 33 years commonly associated with the life of Jesus would be included in neither the BC nor the AD time scales. History
The anno Domini dating system was devised in 525 by Dionysius Exiguus to enumerate years in his Easter table. His system was to replace the Diocletian era that had been used in older Easter tables, as he did not wish to continue the memory of a tyrant who persecuted Christians. The last year of the old table, Diocletian Anno Martyrium 247, was immediately followed by the first year of his table, anno Domini 532. When Dionysius devised his table, Julian calendar years were identified by naming the consuls who held office that year— Dionysius himself stated that the "present year" was "the consulship of Probus Junior", which was 525 years "since the incarnation of our Lord Jesus Christ". Thus, Dionysius implied that Jesus' incarnation occurred 525 years earlier, without stating the specific year during which his birth or conception occurred. "However, nowhere in his exposition of his table does Dionysius relate his epoch to any other dating system, whether consulate, Olympiad, year of the world, or regnal year of Augustus; much less does he explain or justify the underlying date."
Bonnie J. Blackburn and Leofranc Holford-Strevens briefly present arguments for 2 BC, 1 BC, or AD 1 as the year Dionysius intended for the Nativity or incarnation. Among the sources of confusion are:
* In modern times, incarnation is synonymous with the conception, but some ancient writers, such as Bede, considered incarnation to be synonymous with the Nativity.
* The civil or consular year began on 1 January, but the Diocletian year began on 29 August (30 August in the year before a Julian leap year).
* There were inaccuracies in the lists of consuls.
* There were confused summations of emperors' regnal years.
It is not known how Dionysius established the year of Jesus's birth. One major theory is that Dionysius based his calculation on the Gospel of Luke, which states that Jesus was "about thirty years old" shortly after "the fifteenth year of the reign of Tiberius Caesar", and hence subtracted thirty years from that date, or that Dionysius counted back 532 years from the first year of his new table. This method was probably the one used by ancient historians such as Tertullian, Eusebius or Epiphanius, all of whom agree that Jesus was born in 2 BC, probably following this statement of Jesus' age (i.e. subtracting thirty years from AD 29). Alternatively, Dionysius may have used an earlier unknown source. The Chronograph of 354 states that Jesus was born during the consulship of Caesar and Paullus (AD 1), but the logic behind this is also unknown.
It has also been speculated by Georges Declercq that Dionysius' desire to replace Diocletian years with a calendar based on the incarnation of Christ was intended to prevent people from believing the imminent end of the world. At the time, it was believed by some that the resurrection of the dead and end of the world would occur 500 years after the birth of Jesus. The old Anno Mundi calendar theoretically commenced with the creation of the world based on information in the Old Testament. It was believed that, based on the Anno Mundi calendar, Jesus was born in the year 5500 (5500 years after the world was created) with the year 6000 of the Anno Mundi calendar marking the end of the world.
The date of birth of Jesus of Nazareth is not stated in the gospels or in any secular text, but most scholars assume a date of birth between 6 BC and 4 BC. The historical evidence is too fragmentary to allow a definitive dating, but the date is estimated through two different approaches—one by analyzing references to known historical events mentioned in the Nativity accounts in the Gospels of Luke and Matthew and the second by working backwards from the estimation of the start of the ministry of Jesus. Popularization The Anglo-Saxon historian Bede, who was familiar with the work of Dionysius Exiguus, used anno Domini dating in his Ecclesiastical History of the English People, which he completed in AD 731. In the History he also used the Latin phrase ante [...] incarnationis dominicae tempus anno sexagesimo ("in the sixtieth year before the time of the Lord's incarnation"), which is equivalent to the English "before Christ", to identify years before the first year of this era. Both Dionysius and Bede regarded anno Domini as beginning at the incarnation of Jesus Christ, but "the distinction between Incarnation and Nativity was not drawn until the late 9th century, when in some places the Incarnation epoch was identified with Christ's conception, i. e., the Annunciation on March 25" ("Annunciation style" dating).
by Agostino Cornacchini (1725), at St. Peter's Basilica, Vatican City. Charlemagne promoted the usage of the anno Domini epoch throughout the Carolingian Empire.]]
On the continent of Europe, anno Domini was introduced as the era of choice of the Carolingian Renaissance by the English cleric and scholar Alcuin in the late eighth century. Its endorsement by Emperor Charlemagne and his successors popularizing the use of the epoch and spreading it throughout the Carolingian Empire ultimately lies at the core of the system's prevalence. According to the Catholic Encyclopedia, popes continued to date documents according to regnal years for some time, but usage of AD gradually became more common in Catholic countries from the 11th to the 14th centuries. In 1422, Portugal became the last Western European country to switch to the system begun by Dionysius. Eastern Orthodox countries only began to adopt AD instead of the Byzantine calendar in 1700 when Russia did so, with others adopting it in the 19th and 20th centuries.
Although anno Domini was in widespread use by the 9th century, the term "Before Christ" (or its equivalent) did not become common until much later. Bede used the expression "anno [...] ante incarnationem Dominicam" (in the year before the incarnation of the Lord) twice. "Anno ante Christi nativitatem" (in the year before the birth of Christ) is found in 1474 in a work by a German monk. In 1627, the French Jesuit theologian Denis Pétau (Dionysius Petavius in Latin), with his work De doctrina temporum, popularized the usage ante Christum (Latin for "Before Christ") to mark years prior to AD.
New year
When the reckoning from Jesus' incarnation began replacing the previous dating systems in western Europe, various people chose different Christian feast days to begin the year: Christmas, Annunciation, or Easter. Thus, depending on the time and place, the year number changed on different days in the year, which created slightly different styles in chronology:
* From 25 March 753 AUC (1 BC), i.e., notionally from the incarnation of Jesus. That first "Annunciation style" appeared in Arles at the end of the 9th century then spread to Burgundy and northern Italy. It was not commonly used and was called calculus pisanus since it was adopted in Pisa and survived there until 1750.
* From 25 December 753 AUC (1 BC), i.e., notionally from the birth of Jesus. It was called "Nativity style" and had been spread by Bede together with the anno Domini in the early Middle Ages. That reckoning of the Year of Grace from Christmas was used in France, England and most of western Europe (except Spain) until the 12th century (when it was replaced by Annunciation style) and in Germany until the second quarter of the 13th century.
* From 25 March 754 AUC (AD 1). That second "Annunciation style" may have originated in Fleury Abbey in the early 11th century, but it was spread by the Cistercians. Florence adopted that style in opposition to that of Pisa, so it got the name of calculus florentinus. It soon spread in France and also in England where it became common in the late 12th century and lasted until 1752.
* From Easter. That mos gallicanus (French custom) bound to a moveable feast was introduced in France by king Philip Augustus (r. 1180–1223), maybe to establish a new style in the provinces reconquered from England. However, it never spread beyond the ruling élite.
With these various styles, the same day could, in some cases, be dated in 1099, 1100 or 1101.
Other Christian and European eras
During the first six centuries of what would come to be known as the Christian era, European countries used various systems to count years. Systems in use included consular dating, imperial regnal year dating, and Creation dating.
Although the last non-imperial consul, Basilius, was appointed in 541 by Emperor Justinian I, later emperors through to Constans II (641–668) were appointed consuls on the first of January after their accession. All of these emperors, except Justinian, used imperial post-consular years for the years of their reign, along with their regnal years. Long unused, this practice was not formally abolished until Novell XCIV of the law code of Leo VI did so in 888.
Another calculation had been developed by the Alexandrian monk Annianus around the year AD 400, placing the Annunciation on 25 March AD 9 (Julian)—eight to ten years after the date that Dionysius was to imply. Although this incarnation was popular during the early centuries of the Byzantine Empire, years numbered from it, an Era of Incarnation, were exclusively used and are still used in Ethiopia. This accounts for the seven- or eight-year discrepancy between the Gregorian and Ethiopian calendars.
Byzantine chroniclers like Maximus the Confessor, George Syncellus, and Theophanes dated their years from Annianus' creation of the world. This era, called Anno Mundi, "year of the world" (abbreviated AM), by modern scholars, began its first year on 25 March 5492 BC. Later Byzantine chroniclers used Anno Mundi years from 1 September 5509 BC, the Byzantine Era. No single Anno Mundi epoch was dominant throughout the Christian world. Eusebius of Caesarea in his Chronicle used an era beginning with the birth of Abraham, dated in 2016 BC (AD 1 = 2017 Anno Abrahami).
Spain and Portugal continued to date by the Spanish Era (also called Era of the Caesars), which began counting from 38 BC, well into the Middle Ages. In 1422, Portugal became the last Catholic country to adopt the anno Domini system.
"Vulgar Era" (in English, as early as 1635),
"Christian Era" (in English, in 1652),
"Common Era" (in English, 1708),
and "Current Era".
Since 1856, the alternative abbreviations CE and BCE (sometimes written C.E. and B.C.E.) are sometimes used in place of AD and BC.
The "Common/Current Era" ("CE") terminology is often preferred by those who desire a term that does not explicitly make religious references but still uses the same epoch as the anno Domini notation.
For example, Cunningham and Starr (1998) write that "B.C.E./C.E. […] do not presuppose faith in Christ and hence are more appropriate for interfaith dialog than the conventional B.C./A.D." Upon its foundation, the Republic of China adopted the Minguo Era but used the Western calendar for international purposes. The translated term was (). Later, in 1949, the People's Republic of China adopted () for all purposes domestic and foreign.
No year zero: start and end of a century
In the AD year numbering system, whether applied to the Julian or Gregorian calendars, AD 1 is immediately preceded by 1 BC, with nothing in between them (there was no year zero). There are debates as to whether a new decade, century, or millennium begins on a year ending in zero or one.}} In common usage, ancient dates are expressed in the Julian calendar, but ISO 8601 uses the Gregorian calendar and astronomers may use a variety of time scales depending on the application. Thus dates using the year 0 or negative years may require further investigation before being converted to BC or AD. See also
* Before Present
* Holocene calendar
Notes
References
Citations
Sources
*
* Bede. (731). [http://www.thelatinlibrary.com/bede/bede1.shtml Historiam ecclesiasticam gentis Anglorum] . Retrieved 2007-12-07.
*
*
* Corrected reprinting of original 1999 edition.
*
* (despite beginning with 2, it is English)
* Declercq, G. "Dionysius Exiguus and the Introduction of the Christian Era". Sacris Erudiri 41 (2002): 165–246. An annotated version of part of Anno Domini.
* Doggett. (1992). [http://eclipse.gsfc.nasa.gov/SEhelp/calendars.html "Calendars"] (Ch. 12), in P. Kenneth Seidelmann (Ed.) Explanatory supplement to the astronomical almanac. Sausalito, CA: University Science Books. .
*
* Patrick, J. (1908). [http://www.newadvent.org/cathen/03738a.htm "General Chronology"] . In The Catholic Encyclopedia. New York: Robert Appleton Company. Retrieved 2008-07-16 from New Advent: [http://www.newadvent.org/cathen/03738a.htm Catholic Encyclopedia: General Chronology]
*
*
*
External links
* [https://www.fourmilab.ch/documents/calendar/ Calendar Converter]
Category:6th-century Christianity
Category:Calendar eras
Category:Christian terminology
Category:Chronology
Category:Latin religious words and phrases
Category:Timelines of Christianity | https://en.wikipedia.org/wiki/Anno_Domini | 2025-04-05T18:25:39.223930 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.