Datasets:
File size: 3,360 Bytes
377cc78 fa99664 377cc78 fa99664 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
---
license: mit
task_categories:
- audio-classification
language:
- zh
- en
tags:
- music
- art
pretty_name: Timbre and Range Dataset
size_categories:
- 1K<n<10K
viewer: false
---
# Dataset Card for Timbre and Range Dataset
## Dataset Summary
The timbre dataset contains acapella singing audio of 9 singers, as well as cut single-note audio, totaling 775 clips (.wav format)
The vocal range dataset includes several up and down chromatic scales audio clips of several vocals, as well as the cut single-note audio clips (.wav format).
### Supported Tasks and Leaderboards
Audio classification
### Languages
Chinese, English
## Dataset Structure
<https://www.modelscope.cn/datasets/ccmusic-database/timbre_range/dataPeview>
### Data Instances
.zip(.wav, .jpg), .csv
### Data Fields
```txt
timbre: song1-32
range: vox1_19-22/26-29/32/33/36-38/41-47/51-55/59-64/69-71/79-81
```
### Data Splits
Train, Validation, Test
## Usage
### Timbre subset
```python
from datasets import load_dataset
ds = load_dataset("ccmusic-database/timbre_range", name="timbre")
for item in ds["train"]:
print(item)
for item in ds["validation"]:
print(item)
for item in ds["test"]:
print(item)
```
### Range subset
```python
from datasets import load_dataset
# default subset
ds = load_dataset("ccmusic-database/timbre_range", name="range")
for item in ds["train"]:
print(item)
for item in ds["validation"]:
print(item)
for item in ds["test"]:
print(item)
```
## Maintenance
```bash
git clone [email protected]:datasets/ccmusic-database/timbre_range
cd timbre_range
```
## Dataset Creation
### Curation Rationale
Promoting the development of music AI industry
### Source Data
#### Initial Data Collection and Normalization
Zijin Li, Zhaorui Liu, Monan Zhou
#### Who are the source language producers?
Composers of the songs in dataset
### Annotations
#### Annotation process
CCMUSIC students collected acapella singing audios of 9 singers, as well as cut single-note audio, totaling 775 clips
#### Who are the annotators?
Students from CCMUSIC
### Personal and Sensitive Information
Due to copyright issues with the original music, only acapella singing audios are provided in the dataset
## Considerations for Using the Data
### Social Impact of Dataset
Promoting the development of AI in the music industry
### Discussion of Biases
Most are Chinese songs
### Other Known Limitations
Samples are not balanced enough
## Mirror
<https://www.modelscope.cn/datasets/ccmusic-database/timbre_range>
## Additional Information
### Dataset Curators
Zijin Li
### Evaluation
[1] [Yiliang, J. et al. (2019) ‘Data Augmentation based Convolutional Neural Network for Auscultation’, Journal of Fudan University(Natural Science), pp. 328–334. doi:10.15943/j.cnki.fdxb-jns.2019.03.004.](https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2019&filename=FDXB201903004&uniplatform=NZKPT&v=VAszHDtjPUYMi3JYVrdSGx4fcqlEtgCeKwRGTacCj98CGEQg5CUFHxakrvuaMzm3)
### Citation Information
```bibtex
@article{2019Data,
title={Data Augmentation based Convolutional Neural Network for Auscultation},
author={ Yiliang, Jiang and Xulong, Zhang and Jin, Deng and Wenqiang, Zhang and Wei, L. I. },
journal={Journal of Fudan University(Natural Science)},
year={2019},
}
```
### Contributions
Provide a dataset for music timbre and range |