Datasets:

Modalities:
Image
Languages:
English
ArXiv:
Tags:
math
Libraries:
Datasets
License:
Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
image
imagewidth (px)
20
5.51k
label
class label
2 classes
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
0images
End of preview. Expand in Data Studio

Overview

VCBench provides a standardized framework for evaluating vision-language models. This document outlines the procedures for both standard evaluation and GPT-assisted evaluation of your model's outputs.

1. Standard Evaluation

1.1 Output Format Requirements

Models must produce outputs in JSONL format with the following structure:

{"id": <int>, "pred_answer": "<answer_letter>"}
{"id": <int>, "pred_answer": "<answer_letter>"}
...

Example File (submit.jsonl):

{"id": 1, "pred_answer": "A"}
{"id": 2, "pred_answer": "B"}
{"id": 3, "pred_answer": "C"}

1.2 Evaluation Procedure

  1. Ensure your predictions file follows the specified format
  2. Run the evaluation script:
    python evaluate_vcbench.py -p ./path/to/predictions.jsonl -g ./path/to/VCBench_with_answer.json
    

VCBench_with_answer.json is the ground truth file which can be downloaded from here.

2. GPT-Assisted Evaluation

2.1 Output Format Requirements

For natural language responses, use this JSONL format:

{"id": <int>, "pred_answer": "<natural_language_response>"}
{"id": <int>, "pred_answer": "<natural_language_response>"}
...

Example File (nl_predictions.jsonl):

{"id": 1, "pred_answer": "The correct answer is A"}
{"id": 2, "pred_answer": "After careful analysis, option B appears correct"}
{"id": 3, "pred_answer": "C is the right choice"}

2.2 Environment Setup

Set your Dashscope API key:

export DASHSCOPE_KEY="your_api_key_here"

2.3 Evaluation Procedure

python evaluate_vcbench_by_gpt.py -p ./path/to/nl_predictions.jsonl -g ./path/to/VCBench_with_answer.json

3. Expected Output

Both evaluation scripts will provide:

  • Overall accuracy percentage
  • Per-question-type accuracy breakdown
  • Progress updates during evaluation

Citation

BibTeX:

@misc{wong2025vcbench
  author    = {Zhikai Wang and Jiashuo Sun and Wenqi Zhang and Zhiqiang Hu and Xin Li and Fan Wang and Deli Zhao},
  title     = {Benchmarking Multimodal Mathematical Reasoning with Explicit Visual Dependency},
  year      = {2025},
  eprint    = {2504.18589},
  archivePrefix = {arxiv},
  primaryClass  = {cs.CV},
  url       = {https://arxiv.org/abs/2504.18589}
}

Dataset Card Authors

Downloads last month
276