node_ids
sequencelengths
4
1.4k
edge_index
sequencelengths
1
2.22k
text
sequencelengths
4
1.4k
source
stringlengths
14
427k
[ 7, 15, 13, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 2, 17, 17, 17, 41, 28, 13, 4, 13, 2, 2, 13, 13, 17, 4, 17, 0, 13, 13, 28, 13, 4, 13, 17, 2, 2, 13, 13, 17, 0, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 13, 13, 12, 13, 0, 13, 2, 2, 18, 13, 2, 13, 13, 4, 13, 18, 13, 13, 2, 13, 17, 13, 4, 13, 18, 13, 13, 2, 13, 17, 13, 29, 2, 13, 13, 23, 13, 23, 13, 0, 13, 17, 28, 13, 4, 13, 2, 13, 13, 0, 13, 2, 2, 4, 13, 13, 2, 13, 17, 4, 13, 2, 2, 13, 13, 17, 2, 2, 13, 13, 17, 13, 4, 13, 2, 13, 13, 10, 2, 13, 10, 4, 13, 10, 4, 13, 10, 17, 13, 10, 13, 13, 10, 4, 13, 10, 12, 13, 10, 2, 13, 10, 4, 13 ]
[ [ 161, 4 ], [ 161, 13 ], [ 161, 14 ], [ 161, 15 ], [ 137, 17 ], [ 26, 25 ], [ 141, 30 ], [ 153, 31 ], [ 149, 36 ], [ 40, 39 ], [ 141, 45 ], [ 153, 46 ], [ 52, 49 ], [ 150, 50 ], [ 39, 51 ], [ 150, 55 ], [ 39, 57 ], [ 39, 59 ], [ 138, 60 ], [ 65, 64 ], [ 150, 68 ], [ 95, 70 ], [ 97, 71 ], [ 150, 75 ], [ 95, 76 ], [ 138, 78 ], [ 138, 80 ], [ 150, 84 ], [ 97, 85 ], [ 138, 87 ], [ 138, 89 ], [ 64, 92 ], [ 95, 92 ], [ 138, 93 ], [ 95, 95 ], [ 97, 97 ], [ 146, 99 ], [ 103, 102 ], [ 141, 106 ], [ 144, 107 ], [ 158, 109 ], [ 156, 113 ], [ 102, 114 ], [ 162, 116 ], [ 156, 119 ], [ 141, 122 ], [ 102, 123 ], [ 153, 127 ], [ 162, 128 ], [ 138, 130 ], [ 159, 134 ], [ 147, 134 ], [ 138, 135 ], [ 137, 138 ], [ 161, 141 ], [ 161, 144 ], [ 146, 147 ], [ 149, 150 ], [ 161, 153 ], [ 158, 159 ], [ 161, 162 ] ]
[ "import math\nH, W, A, B = map(int, input().split())\np = 10 ** 9 + 7\nF = [1 for i in range(H + W + 1)]\nfor i in range(1, H + W + 1):\n F[i] = F[i - 1] * i % p\ndef fac(a, b):\n a = F[a + b] * pow(F[a], p - 2, p) * pow(F[b], p - 2, p)\n return a % p\nans = 0\nfor h in range(H - A):\n ans += fac(h, B - 1) * fac(H - h - 1, W - B - 1) % p\nprint(ans % p)", "import math", "math", "H, W, A, B = map(int, input().split())", "H", "map(int, input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "p = 10 ** 9 + 7", "p", "10 ** 9 + 7", "10 ** 9", "10", "9", "7", "1 for i in range(H + W + 1)", "for i in range(H + W + 1)", "i", "range(H + W + 1)", "range", "H + W + 1", "H + W", "H", "W", "1", "for i in range(H + W + 1)", "1", "F = [1 for i in range(H + W + 1)]", "F", "[1 for i in range(H + W + 1)]", "for i in range(1, H + W + 1):\n F[i] = F[i - 1] * i % p", "i", "range(1, H + W + 1)", "range", "1", "H + W + 1", "H + W", "H", "W", "1", "F[i] = F[i - 1] * i % p", "F[i]", "F", "i", "F[i - 1] * i % p", "F[i - 1] * i", "F[i - 1]", "F", "i - 1", "i", "1", "i", "p", "def fac(a, b):\n a = F[a + b] * pow(F[a], p - 2, p) * pow(F[b], p - 2, p)\n return a % p", "fac", "a = F[a + b] * pow(F[a], p - 2, p) * pow(F[b], p - 2, p)", "a", "F[a + b] * pow(F[a], p - 2, p) * pow(F[b], p - 2, p)", "F[a + b] * pow(F[a], p - 2, p)", "F[a + b]", "F", "a + b", "a", "b", "pow(F[a], p - 2, p)", "pow", "F[a]", "F", "a", "p - 2", "p", "2", "p", "pow(F[b], p - 2, p)", "pow", "F[b]", "F", "b", "p - 2", "p", "2", "p", "return a % p", "a % p", "a", "p", "a", "a", "b", "b", "ans = 0", "ans", "0", "for h in range(H - A):\n ans += fac(h, B - 1) * fac(H - h - 1, W - B - 1) % p", "h", "range(H - A)", "range", "H - A", "H", "A", "ans += fac(h, B - 1) * fac(H - h - 1, W - B - 1) % p", "ans", "fac(h, B - 1) * fac(H - h - 1, W - B - 1) % p", "fac(h, B - 1) * fac(H - h - 1, W - B - 1)", "fac(h, B - 1)", "fac", "h", "B - 1", "B", "1", "fac(H - h - 1, W - B - 1)", "fac", "H - h - 1", "H - h", "H", "h", "1", "W - B - 1", "W - B", "W", "B", "1", "p", "print(ans % p)", "print", "ans % p", "ans", "p", "p = 10 ** 9 + 7", "10 ** 9 + 7", "p", "H, W, A, B = map(int, input().split())", "map(int, input().split())", "H", "A, B = map(int, input().split())", "map(int, input().split())", "A", "ans = 0", "0", "ans", "F = [1 for i in range(H + W + 1)]", "[1 for i in range(H + W + 1)]", "F", "W, A, B = map(int, input().split())", "map(int, input().split())", "W", "def fac(a, b):\n a = F[a + b] * pow(F[a], p - 2, p) * pow(F[b], p - 2, p)\n return a % p", "def fac(a, b):\n a = F[a + b] * pow(F[a], p - 2, p) * pow(F[b], p - 2, p)\n return a % p", "fac", "ans += fac(h, B - 1) * fac(H - h - 1, W - B - 1) % p", "fac(h, B - 1) * fac(H - h - 1, W - B - 1) % p", "ans", "B = map(int, input().split())", "map(int, input().split())", "B" ]
import math H, W, A, B = map(int, input().split()) p = 10 ** 9 + 7 F = [1 for i in range(H + W + 1)] for i in range(1, H + W + 1): F[i] = F[i - 1] * i % p def fac(a, b): a = F[a + b] * pow(F[a], p - 2, p) * pow(F[b], p - 2, p) return a % p ans = 0 for h in range(H - A): ans += fac(h, B - 1) * fac(H - h - 1, W - B - 1) % p print(ans % p)
[ 7, 15, 13, 12, 13, 41, 28, 13, 4, 13, 13, 4, 2, 39, 13, 13, 12, 13, 23, 13, 23, 13, 23, 13, 41, 28, 13, 4, 13, 13, 4, 13, 12, 13, 23, 13, 23, 13, 23, 13, 23, 13, 41, 28, 13, 4, 13, 13, 4, 13, 12, 13, 23, 13, 23, 13, 23, 13, 23, 13, 23, 13, 12, 13, 23, 13, 23, 13, 17, 12, 13, 12, 13, 41, 28, 13, 4, 13, 13, 4, 4, 13, 12, 13, 23, 13, 17, 12, 13, 12, 13, 12, 13, 12, 13, 4, 18, 13, 13, 2, 17, 17, 0, 13, 2, 17, 17, 0, 13, 2, 2, 17, 17, 17, 6, 13, 17, 12, 13, 17, 0, 13, 17, 0, 18, 13, 13, 13, 0, 18, 13, 13, 13, 0, 13, 2, 39, 17, 13, 0, 18, 13, 17, 17, 0, 18, 13, 17, 17, 28, 13, 4, 13, 17, 13, 0, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 13, 13, 0, 13, 2, 39, 17, 13, 0, 18, 13, 2, 13, 17, 4, 13, 18, 13, 2, 13, 17, 2, 13, 17, 13, 28, 13, 4, 13, 2, 13, 17, 17, 17, 0, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 2, 13, 17, 13, 0, 18, 13, 13, 13, 0, 18, 13, 13, 13, 23, 13, 23, 13, 23, 13, 12, 13, 17, 14, 2, 13, 13, 0, 13, 4, 13, 13, 2, 13, 13, 0, 13, 18, 18, 13, 13, 13, 0, 13, 2, 2, 18, 18, 13, 13, 13, 18, 18, 13, 13, 2, 13, 13, 18, 13, 13, 29, 2, 2, 13, 13, 18, 13, 13, 23, 13, 23, 13, 23, 13, 0, 13, 4, 13, 13, 13, 13, 0, 13, 2, 13, 13, 0, 13, 2, 13, 13, 0, 13, 4, 13, 2, 13, 13, 13, 0, 13, 17, 28, 13, 4, 13, 17, 2, 13, 17, 0, 13, 4, 18, 13, 13, 2, 2, 2, 13, 13, 13, 17, 2, 13, 17, 0, 13, 4, 18, 13, 13, 2, 2, 2, 13, 13, 13, 17, 2, 13, 17, 0, 13, 2, 13, 13, 0, 13, 13, 4, 13, 13, 10, 12, 13, 10, 4, 13, 10, 4, 13, 10, 12, 13, 10, 2, 13, 10, 17, 13, 10, 12, 13, 10, 2, 13, 10, 4, 13, 10, 13, 13, 10, 12, 13, 10, 4, 13, 10, 12, 13, 10, 12, 13, 10, 2, 13, 10, 4, 13, 10, 12, 13, 10, 4, 13, 10, 12, 13, 10, 12, 13, 10, 12, 13, 10, 6, 13, 10, 4, 13, 10, 2, 13, 10, 12, 13, 10, 2, 13, 10, 12, 13 ]
[ [ 8, 7 ], [ 19, 19 ], [ 21, 21 ], [ 23, 23 ], [ 27, 26 ], [ 35, 35 ], [ 37, 37 ], [ 39, 39 ], [ 41, 41 ], [ 45, 44 ], [ 53, 53 ], [ 55, 55 ], [ 57, 57 ], [ 59, 59 ], [ 61, 61 ], [ 65, 65 ], [ 68, 67 ], [ 76, 75 ], [ 439, 81 ], [ 86, 85 ], [ 408, 103 ], [ 387, 108 ], [ 122, 121 ], [ 127, 124 ], [ 226, 125 ], [ 121, 126 ], [ 228, 126 ], [ 121, 127 ], [ 228, 127 ], [ 132, 129 ], [ 226, 130 ], [ 230, 131 ], [ 230, 132 ], [ 135, 134 ], [ 121, 138 ], [ 228, 138 ], [ 148, 140 ], [ 134, 141 ], [ 148, 145 ], [ 134, 146 ], [ 151, 150 ], [ 121, 154 ], [ 228, 154 ], [ 159, 156 ], [ 134, 157 ], [ 150, 158 ], [ 134, 162 ], [ 150, 164 ], [ 150, 166 ], [ 230, 167 ], [ 170, 169 ], [ 121, 173 ], [ 228, 173 ], [ 180, 175 ], [ 169, 176 ], [ 121, 178 ], [ 228, 178 ], [ 134, 183 ], [ 121, 185 ], [ 228, 185 ], [ 230, 188 ], [ 230, 190 ], [ 193, 192 ], [ 121, 196 ], [ 228, 196 ], [ 204, 201 ], [ 169, 202 ], [ 192, 203 ], [ 169, 207 ], [ 192, 209 ], [ 192, 212 ], [ 230, 214 ], [ 219, 216 ], [ 226, 217 ], [ 134, 219 ], [ 224, 221 ], [ 226, 222 ], [ 169, 224 ], [ 226, 226 ], [ 228, 228 ], [ 230, 230 ], [ 283, 236 ], [ 285, 237 ], [ 240, 239 ], [ 285, 242 ], [ 283, 244 ], [ 285, 245 ], [ 248, 247 ], [ 281, 250 ], [ 283, 252 ], [ 255, 254 ], [ 281, 259 ], [ 239, 261 ], [ 285, 261 ], [ 281, 264 ], [ 283, 267 ], [ 239, 268 ], [ 285, 268 ], [ 281, 270 ], [ 388, 271 ], [ 247, 275 ], [ 254, 276 ], [ 281, 278 ], [ 388, 279 ], [ 281, 281 ], [ 283, 283 ], [ 285, 285 ], [ 417, 287 ], [ 421, 289 ], [ 417, 290 ], [ 417, 291 ], [ 417, 292 ], [ 441, 294 ], [ 418, 296 ], [ 400, 297 ], [ 435, 299 ], [ 391, 301 ], [ 373, 302 ], [ 369, 304 ], [ 418, 308 ], [ 391, 309 ], [ 388, 310 ], [ 381, 312 ], [ 316, 315 ], [ 436, 320 ], [ 411, 323 ], [ 370, 326 ], [ 232, 327 ], [ 442, 331 ], [ 373, 332 ], [ 315, 333 ], [ 442, 336 ], [ 432, 339 ], [ 370, 342 ], [ 232, 343 ], [ 400, 347 ], [ 436, 348 ], [ 315, 349 ], [ 400, 352 ], [ 378, 355 ], [ 412, 357 ], [ 433, 358 ], [ 393, 360 ], [ 388, 361 ], [ 394, 364 ], [ 379, 364 ], [ 382, 364 ], [ 369, 370 ], [ 417, 373 ], [ 378, 379 ], [ 381, 382 ], [ 387, 388 ], [ 417, 391 ], [ 388, 393 ], [ 393, 394 ], [ 417, 400 ], [ 408, 409 ], [ 411, 412 ], [ 417, 418 ], [ 432, 433 ], [ 435, 436 ], [ 441, 442 ] ]
[ "# -*- coding: utf-8 -*-\n\nimport sys\n\ndef input(): return sys.stdin.readline().strip()\ndef list2d(a, b, c): return [[c] * b for i in range(a)]\ndef list3d(a, b, c, d): return [[[d] * c for j in range(b)] for i in range(a)]\ndef list4d(a, b, c, d, e): return [[[[e] * d for j in range(c)] for j in range(b)] for i in range(a)]\ndef ceil(x, y=1): return int(-(-x // y))\ndef INT(): return int(input())\ndef MAP(): return map(int, input().split())\ndef LIST(N=None): return list(MAP()) if N is None else [INT() for i in range(N)]\ndef Yes(): print('Yes')\ndef No(): print('No')\ndef YES(): print('YES')\ndef NO(): print('NO')\nsys.setrecursionlimit(10 ** 9)\nINF = 10 ** 18\nMOD = 10 ** 9 + 7\n\nclass ModTools:\n \"\"\" 階乗たくさん使う時用のテーブル準備 \"\"\"\n\n def __init__(self, MAX, MOD):\n \"\"\" MAX:階乗に使う数値の最大以上まで作る \"\"\"\n \n MAX += 1\n self.MAX = MAX\n self.MOD = MOD\n # 階乗テーブル\n factorial = [1] * MAX\n factorial[0] = factorial[1] = 1\n for i in range(2, MAX):\n factorial[i] = factorial[i-1] * i % MOD\n # 階乗の逆元テーブル\n inverse = [1] * MAX\n # powに第三引数入れると冪乗のmod付計算を高速にやってくれる\n inverse[MAX-1] = pow(factorial[MAX-1], MOD-2, MOD)\n for i in range(MAX-2, 0, -1):\n # 最後から戻っていくこのループならMAX回powするより処理が速い\n inverse[i] = inverse[i+1] * (i+1) % MOD\n self.fact = factorial\n self.inv = inverse\n \n def nCr(self, n, r):\n \"\"\" 組み合わせの数 (必要な階乗と逆元のテーブルを事前に作っておく) \"\"\"\n\n if n < r: return 0\n # 10C7 = 10C3\n r = min(r, n-r)\n # 分子の計算\n numerator = self.fact[n]\n # 分母の計算\n denominator = self.inv[r] * self.inv[n-r] % self.MOD\n return numerator * denominator % self.MOD\n\nH, W, Y2, X1 = MAP()\n\nY1 = H - Y2\nX2 = W - X1\nmt = ModTools(H+W, MOD)\nans = 0\nfor x in range(1, X2+1):\n # 上の方の通り数\n cnt1 = mt.nCr(Y1+X1+x-2, Y1-1)\n # 下の方の通り数\n cnt2 = mt.nCr(Y2+X2-x-1, Y2-1)\n ans += cnt1 * cnt2\n ans %= MOD\nprint(ans)", "import sys", "sys", "def input(): return sys.stdin.readline().strip()", "input", "[c] * b for i in range(a)", "for i in range(a)", "i", "range(a)", "range", "a", "for i in range(a)", "[c] * b", "[c]", "c", "b", "def list2d(a, b, c): return [[c] * b for i in range(a)]", "list2d", "a", "a", "b", "b", "c", "c", "[[d] * c for j in range(b)] for i in range(a)", "for i in range(a)", "i", "range(a)", "range", "a", "for i in range(a)", "[[d] * c for j in range(b)]", "def list3d(a, b, c, d): return [[[d] * c for j in range(b)] for i in range(a)]", "list3d", "a", "a", "b", "b", "c", "c", "d", "d", "[[[e] * d for j in range(c)] for j in range(b)] for i in range(a)", "for i in range(a)", "i", "range(a)", "range", "a", "for i in range(a)", "[[[e] * d for j in range(c)] for j in range(b)]", "def list4d(a, b, c, d, e): return [[[[e] * d for j in range(c)] for j in range(b)] for i in range(a)]", "list4d", "a", "a", "b", "b", "c", "c", "d", "d", "e", "e", "def ceil(x, y=1): return int(-(-x // y))", "ceil", "x", "x", "y=1", "y", "1", "def INT(): return int(input())", "INT", "def MAP(): return map(int, input().split())", "MAP", "INT() for i in range(N)", "for i in range(N)", "i", "range(N)", "range", "N", "for i in range(N)", "INT()", "INT", "def LIST(N=None): return list(MAP()) if N is None else [INT() for i in range(N)]", "LIST", "N=None", "N", "None", "def Yes(): print('Yes')", "Yes", "def No(): print('No')", "No", "def YES(): print('YES')", "YES", "def NO(): print('NO')", "NO", "sys.setrecursionlimit(10 ** 9)", "sys.setrecursionlimit", "sys", "setrecursionlimit", "10 ** 9", "10", "9", "INF = 10 ** 18", "INF", "10 ** 18", "10", "18", "MOD = 10 ** 9 + 7", "MOD", "10 ** 9 + 7", "10 ** 9", "10", "9", "7", "class ModTools:\n \"\"\" 階乗たくさん使う時用のテーブル準備 \"\"\"\n\n def __init__(self, MAX, MOD):\n \"\"\" MAX:階乗に使う数値の最大以上まで作る \"\"\"\n \n MAX += 1\n self.MAX = MAX\n self.MOD = MOD\n # 階乗テーブル\n factorial = [1] * MAX\n factorial[0] = factorial[1] = 1\n for i in range(2, MAX):\n factorial[i] = factorial[i-1] * i % MOD\n # 階乗の逆元テーブル\n inverse = [1] * MAX\n # powに第三引数入れると冪乗のmod付計算を高速にやってくれる\n inverse[MAX-1] = pow(factorial[MAX-1], MOD-2, MOD)\n for i in range(MAX-2, 0, -1):\n # 最後から戻っていくこのループならMAX回powするより処理が速い\n inverse[i] = inverse[i+1] * (i+1) % MOD\n self.fact = factorial\n self.inv = inverse\n \n def nCr(self, n, r):\n \"\"\" 組み合わせの数 (必要な階乗と逆元のテーブルを事前に作っておく) \"\"\"\n\n if n < r: return 0\n # 10C7 = 10C3\n r = min(r, n-r)\n # 分子の計算\n numerator = self.fact[n]\n # 分母の計算\n denominator = self.inv[r] * self.inv[n-r] % self.MOD\n return numerator * denominator % self.MOD", "ModTools", "\"\"\" 階乗たくさん使う時用のテーブル準備 \"\"\"", "def __init__(self, MAX, MOD):\n \"\"\" MAX:階乗に使う数値の最大以上まで作る \"\"\"\n \n MAX += 1\n self.MAX = MAX\n self.MOD = MOD\n # 階乗テーブル\n factorial = [1] * MAX\n factorial[0] = factorial[1] = 1\n for i in range(2, MAX):\n factorial[i] = factorial[i-1] * i % MOD\n # 階乗の逆元テーブル\n inverse = [1] * MAX\n # powに第三引数入れると冪乗のmod付計算を高速にやってくれる\n inverse[MAX-1] = pow(factorial[MAX-1], MOD-2, MOD)\n for i in range(MAX-2, 0, -1):\n # 最後から戻っていくこのループならMAX回powするより処理が速い\n inverse[i] = inverse[i+1] * (i+1) % MOD\n self.fact = factorial\n self.inv = inverse\n \n ", "__init__", "\"\"\" MAX:階乗に使う数値の最大以上まで作る \"\"\"", "MAX += 1", "MAX", "1", "self.MAX = MAX", "self.MAX", "self", "MAX", "MAX", "self.MOD = MOD", "self.MOD", "self", "MOD", "MOD", "factorial = [1] * MAX", "factorial", "[1] * MAX", "[1]", "1", "MAX", "factorial[0] = factorial[1] = 1", "factorial[0]", "factorial", "0", "1", "= factorial[1] = 1", "factorial[1]", "factorial", "1", "1", "for i in range(2, MAX):\n factorial[i] = factorial[i-1] * i % MOD\n # 階乗の逆元テーブル\n ", "i", "range(2, MAX)", "range", "2", "MAX", "factorial[i] = factorial[i-1] * i % MOD", "factorial[i]", "factorial", "i", "factorial[i-1] * i % MOD", "factorial[i-1] * i", "factorial[i-1]", "factorial", "i-1", "i", "1", "i", "MOD", "inverse = [1] * MAX", "inverse", "[1] * MAX", "[1]", "1", "MAX", "inverse[MAX-1] = pow(factorial[MAX-1], MOD-2, MOD)", "inverse[MAX-1]", "inverse", "MAX-1", "MAX", "1", "pow(factorial[MAX-1], MOD-2, MOD)", "pow", "factorial[MAX-1]", "factorial", "MAX-1", "MAX", "1", "MOD-2", "MOD", "2", "MOD", "for i in range(MAX-2, 0, -1):\n # 最後から戻っていくこのループならMAX回powするより処理が速い\n inverse[i] = inverse[i+1] * (i+1) % MOD\n ", "i", "range(MAX-2, 0, -1)", "range", "MAX-2", "MAX", "2", "0", "-1", "inverse[i] = inverse[i+1] * (i+1) % MOD", "inverse[i]", "inverse", "i", "inverse[i+1] * (i+1) % MOD", "inverse[i+1] * (i+1)", "inverse[i+1]", "inverse", "i+1", "i", "1", "i+1", "i", "1", "MOD", "self.fact = factorial", "self.fact", "self", "fact", "factorial", "self.inv = inverse", "self.inv", "self", "inv", "inverse", "self", "self", "MAX", "MAX", "MOD", "MOD", "def nCr(self, n, r):\n \"\"\" 組み合わせの数 (必要な階乗と逆元のテーブルを事前に作っておく) \"\"\"\n\n if n < r: return 0\n # 10C7 = 10C3\n r = min(r, n-r)\n # 分子の計算\n numerator = self.fact[n]\n # 分母の計算\n denominator = self.inv[r] * self.inv[n-r] % self.MOD\n return numerator * denominator % self.MOD", "nCr", "\"\"\" 組み合わせの数 (必要な階乗と逆元のテーブルを事前に作っておく) \"\"\"", "if n < r: return 0\n # 10C7 = 10C3\n ", "n < r", "n", "r", "r = min(r, n-r)", "r", "min(r, n-r)", "min", "r", "n-r", "n", "r", "numerator = self.fact[n]", "numerator", "self.fact[n]", "self.fact", "self", "fact", "n", "denominator = self.inv[r] * self.inv[n-r] % self.MOD", "denominator", "self.inv[r] * self.inv[n-r] % self.MOD", "self.inv[r] * self.inv[n-r]", "self.inv[r]", "self.inv", "self", "inv", "r", "self.inv[n-r]", "self.inv", "self", "inv", "n-r", "n", "r", "self.MOD", "self", "MOD", "return numerator * denominator % self.MOD", "numerator * denominator % self.MOD", "numerator * denominator", "numerator", "denominator", "self.MOD", "self", "MOD", "self", "self", "n", "n", "r", "r", "H, W, Y2, X1 = MAP()", "H", "MAP()", "MAP", "W", "Y2", "X1", "Y1 = H - Y2", "Y1", "H - Y2", "H", "Y2", "X2 = W - X1", "X2", "W - X1", "W", "X1", "mt = ModTools(H+W, MOD)", "mt", "ModTools(H+W, MOD)", "ModTools", "H+W", "H", "W", "MOD", "ans = 0", "ans", "0", "for x in range(1, X2+1):\n # 上の方の通り数\n cnt1 = mt.nCr(Y1+X1+x-2, Y1-1)\n # 下の方の通り数\n cnt2 = mt.nCr(Y2+X2-x-1, Y2-1)\n ans += cnt1 * cnt2\n ans %= MOD", "x", "range(1, X2+1)", "range", "1", "X2+1", "X2", "1", "cnt1 = mt.nCr(Y1+X1+x-2, Y1-1)", "cnt1", "mt.nCr(Y1+X1+x-2, Y1-1)", "mt.nCr", "mt", "nCr", "Y1+X1+x-2", "Y1+X1+x", "Y1+X1", "Y1", "X1", "x", "2", "Y1-1", "Y1", "1", "cnt2 = mt.nCr(Y2+X2-x-1, Y2-1)", "cnt2", "mt.nCr(Y2+X2-x-1, Y2-1)", "mt.nCr", "mt", "nCr", "Y2+X2-x-1", "Y2+X2-x", "Y2+X2", "Y2", "X2", "x", "1", "Y2-1", "Y2", "1", "ans += cnt1 * cnt2", "ans", "cnt1 * cnt2", "cnt1", "cnt2", "ans %= MOD", "ans", "MOD", "print(ans)", "print", "ans", "def NO(): print('NO')", "def NO(): print('NO')", "NO", "mt = ModTools(H+W, MOD)", "ModTools(H+W, MOD)", "mt", "X1 = MAP()", "MAP()", "X1", "def ceil(x, y=1): return int(-(-x // y))", "def ceil(x, y=1): return int(-(-x // y))", "ceil", "ans += cnt1 * cnt2", "cnt1 * cnt2", "ans", "ans = 0", "0", "ans", "def LIST(N=None): return list(MAP()) if N is None else [INT() for i in range(N)]", "def LIST(N=None): return list(MAP()) if N is None else [INT() for i in range(N)]", "LIST", "MOD = 10 ** 9 + 7", "10 ** 9 + 7", "MOD", "W, Y2, X1 = MAP()", "MAP()", "W", "ans %= MOD", "MOD", "ans", "def input(): return sys.stdin.readline().strip()", "def input(): return sys.stdin.readline().strip()", "input", "Y2, X1 = MAP()", "MAP()", "Y2", "def list4d(a, b, c, d, e): return [[[[e] * d for j in range(c)] for j in range(b)] for i in range(a)]", "def list4d(a, b, c, d, e): return [[[[e] * d for j in range(c)] for j in range(b)] for i in range(a)]", "list4d", "def list3d(a, b, c, d): return [[[d] * c for j in range(b)] for i in range(a)]", "def list3d(a, b, c, d): return [[[d] * c for j in range(b)] for i in range(a)]", "list3d", "INF = 10 ** 18", "10 ** 18", "INF", "cnt1 = mt.nCr(Y1+X1+x-2, Y1-1)", "mt.nCr(Y1+X1+x-2, Y1-1)", "cnt1", "def No(): print('No')", "def No(): print('No')", "No", "H, W, Y2, X1 = MAP()", "MAP()", "H", "def MAP(): return map(int, input().split())", "def MAP(): return map(int, input().split())", "MAP", "def list2d(a, b, c): return [[c] * b for i in range(a)]", "def list2d(a, b, c): return [[c] * b for i in range(a)]", "list2d", "def YES(): print('YES')", "def YES(): print('YES')", "YES", "class ModTools:\n \"\"\" 階乗たくさん使う時用のテーブル準備 \"\"\"\n\n def __init__(self, MAX, MOD):\n \"\"\" MAX:階乗に使う数値の最大以上まで作る \"\"\"\n \n MAX += 1\n self.MAX = MAX\n self.MOD = MOD\n # 階乗テーブル\n factorial = [1] * MAX\n factorial[0] = factorial[1] = 1\n for i in range(2, MAX):\n factorial[i] = factorial[i-1] * i % MOD\n # 階乗の逆元テーブル\n inverse = [1] * MAX\n # powに第三引数入れると冪乗のmod付計算を高速にやってくれる\n inverse[MAX-1] = pow(factorial[MAX-1], MOD-2, MOD)\n for i in range(MAX-2, 0, -1):\n # 最後から戻っていくこのループならMAX回powするより処理が速い\n inverse[i] = inverse[i+1] * (i+1) % MOD\n self.fact = factorial\n self.inv = inverse\n \n def nCr(self, n, r):\n \"\"\" 組み合わせの数 (必要な階乗と逆元のテーブルを事前に作っておく) \"\"\"\n\n if n < r: return 0\n # 10C7 = 10C3\n r = min(r, n-r)\n # 分子の計算\n numerator = self.fact[n]\n # 分母の計算\n denominator = self.inv[r] * self.inv[n-r] % self.MOD\n return numerator * denominator % self.MOD", "class ModTools:\n \"\"\" 階乗たくさん使う時用のテーブル準備 \"\"\"\n\n def __init__(self, MAX, MOD):\n \"\"\" MAX:階乗に使う数値の最大以上まで作る \"\"\"\n \n MAX += 1\n self.MAX = MAX\n self.MOD = MOD\n # 階乗テーブル\n factorial = [1] * MAX\n factorial[0] = factorial[1] = 1\n for i in range(2, MAX):\n factorial[i] = factorial[i-1] * i % MOD\n # 階乗の逆元テーブル\n inverse = [1] * MAX\n # powに第三引数入れると冪乗のmod付計算を高速にやってくれる\n inverse[MAX-1] = pow(factorial[MAX-1], MOD-2, MOD)\n for i in range(MAX-2, 0, -1):\n # 最後から戻っていくこのループならMAX回powするより処理が速い\n inverse[i] = inverse[i+1] * (i+1) % MOD\n self.fact = factorial\n self.inv = inverse\n \n def nCr(self, n, r):\n \"\"\" 組み合わせの数 (必要な階乗と逆元のテーブルを事前に作っておく) \"\"\"\n\n if n < r: return 0\n # 10C7 = 10C3\n r = min(r, n-r)\n # 分子の計算\n numerator = self.fact[n]\n # 分母の計算\n denominator = self.inv[r] * self.inv[n-r] % self.MOD\n return numerator * denominator % self.MOD", "ModTools", "cnt2 = mt.nCr(Y2+X2-x-1, Y2-1)", "mt.nCr(Y2+X2-x-1, Y2-1)", "cnt2", "X2 = W - X1", "W - X1", "X2", "def INT(): return int(input())", "def INT(): return int(input())", "INT", "Y1 = H - Y2", "H - Y2", "Y1", "def Yes(): print('Yes')", "def Yes(): print('Yes')", "Yes" ]
# -*- coding: utf-8 -*- import sys def input(): return sys.stdin.readline().strip() def list2d(a, b, c): return [[c] * b for i in range(a)] def list3d(a, b, c, d): return [[[d] * c for j in range(b)] for i in range(a)] def list4d(a, b, c, d, e): return [[[[e] * d for j in range(c)] for j in range(b)] for i in range(a)] def ceil(x, y=1): return int(-(-x // y)) def INT(): return int(input()) def MAP(): return map(int, input().split()) def LIST(N=None): return list(MAP()) if N is None else [INT() for i in range(N)] def Yes(): print('Yes') def No(): print('No') def YES(): print('YES') def NO(): print('NO') sys.setrecursionlimit(10 ** 9) INF = 10 ** 18 MOD = 10 ** 9 + 7 class ModTools: """ 階乗たくさん使う時用のテーブル準備 """ def __init__(self, MAX, MOD): """ MAX:階乗に使う数値の最大以上まで作る """ MAX += 1 self.MAX = MAX self.MOD = MOD # 階乗テーブル factorial = [1] * MAX factorial[0] = factorial[1] = 1 for i in range(2, MAX): factorial[i] = factorial[i-1] * i % MOD # 階乗の逆元テーブル inverse = [1] * MAX # powに第三引数入れると冪乗のmod付計算を高速にやってくれる inverse[MAX-1] = pow(factorial[MAX-1], MOD-2, MOD) for i in range(MAX-2, 0, -1): # 最後から戻っていくこのループならMAX回powするより処理が速い inverse[i] = inverse[i+1] * (i+1) % MOD self.fact = factorial self.inv = inverse def nCr(self, n, r): """ 組み合わせの数 (必要な階乗と逆元のテーブルを事前に作っておく) """ if n < r: return 0 # 10C7 = 10C3 r = min(r, n-r) # 分子の計算 numerator = self.fact[n] # 分母の計算 denominator = self.inv[r] * self.inv[n-r] % self.MOD return numerator * denominator % self.MOD H, W, Y2, X1 = MAP() Y1 = H - Y2 X2 = W - X1 mt = ModTools(H+W, MOD) ans = 0 for x in range(1, X2+1): # 上の方の通り数 cnt1 = mt.nCr(Y1+X1+x-2, Y1-1) # 下の方の通り数 cnt2 = mt.nCr(Y2+X2-x-1, Y2-1) ans += cnt1 * cnt2 ans %= MOD print(ans)
[ 7, 6, 13, 12, 13, 0, 18, 13, 13, 2, 39, 17, 2, 13, 17, 0, 18, 13, 13, 2, 39, 17, 2, 13, 17, 0, 18, 18, 13, 13, 17, 17, 0, 18, 18, 13, 13, 17, 17, 0, 18, 13, 13, 13, 0, 13, 2, 18, 13, 13, 17, 28, 13, 4, 13, 13, 0, 18, 18, 13, 13, 2, 13, 17, 2, 2, 18, 18, 13, 13, 13, 2, 13, 17, 18, 13, 13, 0, 18, 18, 13, 13, 2, 13, 17, 2, 2, 18, 18, 13, 13, 13, 4, 13, 2, 13, 17, 13, 18, 13, 13, 18, 13, 13, 23, 13, 23, 13, 23, 13, 2, 2, 17, 17, 17, 12, 13, 14, 2, 2, 13, 17, 2, 13, 17, 29, 17, 14, 2, 2, 13, 13, 2, 13, 17, 29, 17, 0, 13, 2, 2, 18, 18, 13, 13, 2, 13, 13, 18, 18, 13, 13, 13, 18, 13, 13, 29, 2, 2, 13, 18, 18, 13, 13, 13, 18, 13, 13, 23, 13, 23, 13, 23, 13, 12, 13, 14, 2, 2, 13, 17, 2, 13, 17, 29, 17, 14, 2, 2, 13, 13, 2, 13, 17, 29, 17, 29, 2, 2, 18, 18, 13, 13, 13, 18, 18, 13, 13, 2, 13, 13, 18, 13, 13, 23, 13, 23, 13, 23, 13, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 4, 13, 2, 2, 13, 13, 17, 0, 13, 17, 0, 13, 2, 13, 13, 13, 2, 13, 13, 28, 13, 4, 13, 2, 13, 17, 2, 13, 17, 0, 13, 2, 2, 13, 13, 17, 0, 13, 2, 2, 13, 2, 4, 18, 13, 13, 2, 2, 13, 13, 17, 2, 13, 17, 4, 18, 13, 13, 2, 2, 13, 13, 17, 2, 13, 17, 13, 4, 13, 13, 10, 2, 13, 10, 2, 13, 10, 4, 13, 10, 2, 13, 10, 4, 13, 10, 6, 13, 10, 4, 13, 10, 2, 13, 10, 17, 13, 10, 2, 13, 10, 4, 13, 10, 4, 13 ]
[ [ 9, 6 ], [ 105, 7 ], [ 107, 13 ], [ 19, 16 ], [ 105, 17 ], [ 107, 23 ], [ 31, 26 ], [ 6, 27 ], [ 105, 28 ], [ 38, 33 ], [ 16, 34 ], [ 105, 35 ], [ 43, 40 ], [ 105, 41 ], [ 109, 42 ], [ 109, 43 ], [ 46, 45 ], [ 40, 47 ], [ 105, 48 ], [ 109, 49 ], [ 53, 52 ], [ 107, 55 ], [ 64, 57 ], [ 6, 58 ], [ 105, 59 ], [ 52, 62 ], [ 6, 67 ], [ 105, 68 ], [ 52, 70 ], [ 52, 72 ], [ 40, 74 ], [ 105, 75 ], [ 109, 76 ], [ 85, 78 ], [ 16, 79 ], [ 105, 80 ], [ 52, 83 ], [ 16, 88 ], [ 105, 89 ], [ 52, 91 ], [ 52, 95 ], [ 45, 97 ], [ 40, 98 ], [ 105, 99 ], [ 109, 100 ], [ 40, 101 ], [ 105, 102 ], [ 109, 103 ], [ 105, 105 ], [ 107, 107 ], [ 110, 109 ], [ 171, 120 ], [ 173, 123 ], [ 171, 130 ], [ 173, 131 ], [ 171, 133 ], [ 139, 138 ], [ 169, 143 ], [ 171, 146 ], [ 173, 147 ], [ 169, 150 ], [ 173, 152 ], [ 169, 154 ], [ 138, 159 ], [ 169, 162 ], [ 171, 164 ], [ 169, 166 ], [ 169, 169 ], [ 171, 171 ], [ 173, 173 ], [ 217, 179 ], [ 219, 182 ], [ 217, 189 ], [ 219, 190 ], [ 217, 192 ], [ 215, 201 ], [ 217, 203 ], [ 215, 206 ], [ 217, 209 ], [ 219, 210 ], [ 215, 212 ], [ 215, 215 ], [ 217, 217 ], [ 219, 219 ], [ 346, 221 ], [ 346, 230 ], [ 346, 231 ], [ 346, 232 ], [ 313, 234 ], [ 343, 241 ], [ 347, 246 ], [ 320, 247 ], [ 337, 250 ], [ 334, 253 ], [ 347, 255 ], [ 332, 256 ], [ 316, 257 ], [ 320, 259 ], [ 326, 260 ], [ 263, 262 ], [ 326, 266 ], [ 320, 269 ], [ 322, 272 ], [ 320, 275 ], [ 262, 276 ], [ 340, 279 ], [ 338, 282 ], [ 341, 282 ], [ 344, 286 ], [ 116, 287 ], [ 262, 290 ], [ 335, 291 ], [ 335, 294 ], [ 344, 298 ], [ 116, 299 ], [ 332, 302 ], [ 323, 303 ], [ 317, 303 ], [ 332, 306 ], [ 314, 308 ], [ 341, 311 ], [ 338, 311 ], [ 313, 314 ], [ 316, 317 ], [ 346, 320 ], [ 322, 323 ], [ 346, 326 ], [ 346, 332 ], [ 334, 335 ], [ 337, 338 ], [ 340, 341 ], [ 343, 344 ], [ 346, 347 ] ]
[ "class Factorial:\n def __init__(self, n, mod=10**9+7):\n self.fac = [0] * (n+1)\n self.ifac = [0] * (n+1)\n self.fac[0] = 1\n self.ifac[0] = 1\n self.mod = mod\n modmod = self.mod - 2\n for i in range(n):\n self.fac[i+1] = self.fac[i] * (i+1) % self.mod\n self.ifac[i+1] = self.ifac[i] * pow(i+1, modmod, self.mod) % self.mod\n\n def comb(self, n, r):\n if n == 0 and r == 0:\n return 1\n if n < r or n < 0:\n return 0\n tmp = self.ifac[n-r] * self.ifac[r] % self.mod\n return tmp * self.fac[n] % self.mod\n\n def perm(self, n, r):\n if n == 0 and r == 0:\n return 1\n if n < r or n < 0:\n return 0\n return (self.fac[n] * self.ifac[n-r]) % self.mod\n\nh,w,a,b = map(int, input().split())\nmod = 10**9+7\nfact = Factorial(h+w+1)\nans = 0\nc,d = h-a, w-b\nfor i in range(b+1, w+1):\n d = w-i+1\n# print(i,i+c-2, c-1, fact.comb(i+c-2, c-1), fact.comb(a+d-2, a-1))\n ans = (ans + fact.comb(i+c-2, c-1) * fact.comb(a+d-2, a-1)) % mod\n\nprint(ans)", "class Factorial:\n def __init__(self, n, mod=10**9+7):\n self.fac = [0] * (n+1)\n self.ifac = [0] * (n+1)\n self.fac[0] = 1\n self.ifac[0] = 1\n self.mod = mod\n modmod = self.mod - 2\n for i in range(n):\n self.fac[i+1] = self.fac[i] * (i+1) % self.mod\n self.ifac[i+1] = self.ifac[i] * pow(i+1, modmod, self.mod) % self.mod\n\n def comb(self, n, r):\n if n == 0 and r == 0:\n return 1\n if n < r or n < 0:\n return 0\n tmp = self.ifac[n-r] * self.ifac[r] % self.mod\n return tmp * self.fac[n] % self.mod\n\n def perm(self, n, r):\n if n == 0 and r == 0:\n return 1\n if n < r or n < 0:\n return 0\n return (self.fac[n] * self.ifac[n-r]) % self.mod", "Factorial", "def __init__(self, n, mod=10**9+7):\n self.fac = [0] * (n+1)\n self.ifac = [0] * (n+1)\n self.fac[0] = 1\n self.ifac[0] = 1\n self.mod = mod\n modmod = self.mod - 2\n for i in range(n):\n self.fac[i+1] = self.fac[i] * (i+1) % self.mod\n self.ifac[i+1] = self.ifac[i] * pow(i+1, modmod, self.mod) % self.mod\n\n ", "__init__", "self.fac = [0] * (n+1)", "self.fac", "self", "fac", "[0] * (n+1)", "[0]", "0", "n+1", "n", "1", "self.ifac = [0] * (n+1)", "self.ifac", "self", "ifac", "[0] * (n+1)", "[0]", "0", "n+1", "n", "1", "self.fac[0] = 1", "self.fac[0]", "self.fac", "self", "fac", "0", "1", "self.ifac[0] = 1", "self.ifac[0]", "self.ifac", "self", "ifac", "0", "1", "self.mod = mod", "self.mod", "self", "mod", "mod", "modmod = self.mod - 2", "modmod", "self.mod - 2", "self.mod", "self", "mod", "2", "for i in range(n):\n self.fac[i+1] = self.fac[i] * (i+1) % self.mod\n self.ifac[i+1] = self.ifac[i] * pow(i+1, modmod, self.mod) % self.mod\n\n ", "i", "range(n)", "range", "n", "self.fac[i+1] = self.fac[i] * (i+1) % self.mod", "self.fac[i+1]", "self.fac", "self", "fac", "i+1", "i", "1", "self.fac[i] * (i+1) % self.mod", "self.fac[i] * (i+1)", "self.fac[i]", "self.fac", "self", "fac", "i", "i+1", "i", "1", "self.mod", "self", "mod", "self.ifac[i+1] = self.ifac[i] * pow(i+1, modmod, self.mod) % self.mod", "self.ifac[i+1]", "self.ifac", "self", "ifac", "i+1", "i", "1", "self.ifac[i] * pow(i+1, modmod, self.mod) % self.mod", "self.ifac[i] * pow(i+1, modmod, self.mod)", "self.ifac[i]", "self.ifac", "self", "ifac", "i", "pow(i+1, modmod, self.mod)", "pow", "i+1", "i", "1", "modmod", "self.mod", "self", "mod", "self.mod", "self", "mod", "self", "self", "n", "n", "mod=10**9+7", "mod", "10**9+7", "10**9", "10", "9", "7", "def comb(self, n, r):\n if n == 0 and r == 0:\n return 1\n if n < r or n < 0:\n return 0\n tmp = self.ifac[n-r] * self.ifac[r] % self.mod\n return tmp * self.fac[n] % self.mod\n\n ", "comb", "if n == 0 and r == 0:\n return 1\n ", "n == 0 and r == 0", "n == 0", "n", "0", "r == 0", "r", "0", "return 1", "1", "if n < r or n < 0:\n return 0\n ", "n < r or n < 0", "n < r", "n", "r", "n < 0", "n", "0", "return 0", "0", "tmp = self.ifac[n-r] * self.ifac[r] % self.mod", "tmp", "self.ifac[n-r] * self.ifac[r] % self.mod", "self.ifac[n-r] * self.ifac[r]", "self.ifac[n-r]", "self.ifac", "self", "ifac", "n-r", "n", "r", "self.ifac[r]", "self.ifac", "self", "ifac", "r", "self.mod", "self", "mod", "return tmp * self.fac[n] % self.mod", "tmp * self.fac[n] % self.mod", "tmp * self.fac[n]", "tmp", "self.fac[n]", "self.fac", "self", "fac", "n", "self.mod", "self", "mod", "self", "self", "n", "n", "r", "r", "def perm(self, n, r):\n if n == 0 and r == 0:\n return 1\n if n < r or n < 0:\n return 0\n return (self.fac[n] * self.ifac[n-r]) % self.mod", "perm", "if n == 0 and r == 0:\n return 1\n ", "n == 0 and r == 0", "n == 0", "n", "0", "r == 0", "r", "0", "return 1", "1", "if n < r or n < 0:\n return 0\n ", "n < r or n < 0", "n < r", "n", "r", "n < 0", "n", "0", "return 0", "0", "return (self.fac[n] * self.ifac[n-r]) % self.mod", "(self.fac[n] * self.ifac[n-r]) % self.mod", "self.fac[n] * self.ifac[n-r]", "self.fac[n]", "self.fac", "self", "fac", "n", "self.ifac[n-r]", "self.ifac", "self", "ifac", "n-r", "n", "r", "self.mod", "self", "mod", "self", "self", "n", "n", "r", "r", "h,w,a,b = map(int, input().split())", "h", "map(int, input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "w", "a", "b", "mod = 10**9+7", "mod", "10**9+7", "10**9", "10", "9", "7", "fact = Factorial(h+w+1)", "fact", "Factorial(h+w+1)", "Factorial", "h+w+1", "h+w", "h", "w", "1", "ans = 0", "ans", "0", "c,d = h-a, w-b", "c", "h-a", "h", "a", "d", "w-b", "w", "b", "for i in range(b+1, w+1):\n d = w-i+1\n# print(i,i+c-2, c-1, fact.comb(i+c-2, c-1), fact.comb(a+d-2, a-1))\n ans = (ans + fact.comb(i+c-2, c-1) * fact.comb(a+d-2, a-1)) % mod", "i", "range(b+1, w+1)", "range", "b+1", "b", "1", "w+1", "w", "1", "d = w-i+1", "d", "w-i+1", "w-i", "w", "i", "1", "ans = (ans + fact.comb(i+c-2, c-1) * fact.comb(a+d-2, a-1)) % mod", "ans", "(ans + fact.comb(i+c-2, c-1) * fact.comb(a+d-2, a-1)) % mod", "ans + fact.comb(i+c-2, c-1) * fact.comb(a+d-2, a-1)", "ans", "fact.comb(i+c-2, c-1) * fact.comb(a+d-2, a-1)", "fact.comb(i+c-2, c-1)", "fact.comb", "fact", "comb", "i+c-2", "i+c", "i", "c", "2", "c-1", "c", "1", "fact.comb(a+d-2, a-1)", "fact.comb", "fact", "comb", "a+d-2", "a+d", "a", "d", "2", "a-1", "a", "1", "mod", "print(ans)", "print", "ans", "mod = 10**9+7", "10**9+7", "mod", "d = h-a, w-b", "w-b", "d", "w,a,b = map(int, input().split())", "map(int, input().split())", "w", "d = w-i+1", "w-i+1", "d", "b = map(int, input().split())", "map(int, input().split())", "b", "class Factorial:\n def __init__(self, n, mod=10**9+7):\n self.fac = [0] * (n+1)\n self.ifac = [0] * (n+1)\n self.fac[0] = 1\n self.ifac[0] = 1\n self.mod = mod\n modmod = self.mod - 2\n for i in range(n):\n self.fac[i+1] = self.fac[i] * (i+1) % self.mod\n self.ifac[i+1] = self.ifac[i] * pow(i+1, modmod, self.mod) % self.mod\n\n def comb(self, n, r):\n if n == 0 and r == 0:\n return 1\n if n < r or n < 0:\n return 0\n tmp = self.ifac[n-r] * self.ifac[r] % self.mod\n return tmp * self.fac[n] % self.mod\n\n def perm(self, n, r):\n if n == 0 and r == 0:\n return 1\n if n < r or n < 0:\n return 0\n return (self.fac[n] * self.ifac[n-r]) % self.mod", "class Factorial:\n def __init__(self, n, mod=10**9+7):\n self.fac = [0] * (n+1)\n self.ifac = [0] * (n+1)\n self.fac[0] = 1\n self.ifac[0] = 1\n self.mod = mod\n modmod = self.mod - 2\n for i in range(n):\n self.fac[i+1] = self.fac[i] * (i+1) % self.mod\n self.ifac[i+1] = self.ifac[i] * pow(i+1, modmod, self.mod) % self.mod\n\n def comb(self, n, r):\n if n == 0 and r == 0:\n return 1\n if n < r or n < 0:\n return 0\n tmp = self.ifac[n-r] * self.ifac[r] % self.mod\n return tmp * self.fac[n] % self.mod\n\n def perm(self, n, r):\n if n == 0 and r == 0:\n return 1\n if n < r or n < 0:\n return 0\n return (self.fac[n] * self.ifac[n-r]) % self.mod", "Factorial", "a,b = map(int, input().split())", "map(int, input().split())", "a", "c,d = h-a, w-b", "h-a", "c", "ans = 0", "0", "ans", "ans = (ans + fact.comb(i+c-2, c-1) * fact.comb(a+d-2, a-1)) % mod", "(ans + fact.comb(i+c-2, c-1) * fact.comb(a+d-2, a-1)) % mod", "ans", "fact = Factorial(h+w+1)", "Factorial(h+w+1)", "fact", "h,w,a,b = map(int, input().split())", "map(int, input().split())", "h" ]
class Factorial: def __init__(self, n, mod=10**9+7): self.fac = [0] * (n+1) self.ifac = [0] * (n+1) self.fac[0] = 1 self.ifac[0] = 1 self.mod = mod modmod = self.mod - 2 for i in range(n): self.fac[i+1] = self.fac[i] * (i+1) % self.mod self.ifac[i+1] = self.ifac[i] * pow(i+1, modmod, self.mod) % self.mod def comb(self, n, r): if n == 0 and r == 0: return 1 if n < r or n < 0: return 0 tmp = self.ifac[n-r] * self.ifac[r] % self.mod return tmp * self.fac[n] % self.mod def perm(self, n, r): if n == 0 and r == 0: return 1 if n < r or n < 0: return 0 return (self.fac[n] * self.ifac[n-r]) % self.mod h,w,a,b = map(int, input().split()) mod = 10**9+7 fact = Factorial(h+w+1) ans = 0 c,d = h-a, w-b for i in range(b+1, w+1): d = w-i+1 # print(i,i+c-2, c-1, fact.comb(i+c-2, c-1), fact.comb(a+d-2, a-1)) ans = (ans + fact.comb(i+c-2, c-1) * fact.comb(a+d-2, a-1)) % mod print(ans)
[ 7, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 39, 17, 17, 0, 13, 2, 39, 17, 17, 0, 18, 13, 17, 17, 0, 13, 17, 28, 13, 4, 13, 17, 17, 0, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 13, 17, 0, 18, 13, 17, 4, 13, 18, 13, 17, 17, 17, 28, 13, 4, 13, 17, 17, 17, 0, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 2, 13, 17, 17, 0, 18, 13, 17, 17, 28, 13, 4, 13, 2, 13, 13, 14, 2, 13, 17, 14, 2, 13, 17, 0, 13, 17, 0, 13, 2, 2, 2, 18, 13, 2, 2, 2, 2, 13, 13, 13, 17, 13, 18, 13, 2, 2, 13, 17, 13, 18, 13, 2, 2, 13, 17, 13, 17, 0, 13, 2, 2, 2, 2, 18, 13, 2, 2, 13, 17, 13, 18, 13, 2, 13, 17, 18, 13, 13, 17, 2, 2, 2, 18, 13, 2, 2, 2, 2, 13, 13, 13, 17, 13, 18, 13, 2, 2, 13, 13, 17, 18, 13, 2, 2, 13, 17, 13, 17, 0, 13, 2, 2, 13, 13, 17, 4, 13, 13, 10, 2, 13, 10, 2, 13, 10, 2, 13, 10, 4, 13, 10, 2, 13, 10, 17, 13, 10, 17, 13, 10, 4, 13, 10, 2, 13, 10, 4, 13, 10, 4, 13 ]
[ [ 232, 2 ], [ 232, 11 ], [ 232, 12 ], [ 232, 13 ], [ 208, 15 ], [ 214, 21 ], [ 30, 27 ], [ 209, 28 ], [ 220, 32 ], [ 36, 35 ], [ 44, 41 ], [ 209, 42 ], [ 35, 43 ], [ 209, 47 ], [ 35, 49 ], [ 35, 51 ], [ 57, 54 ], [ 215, 55 ], [ 209, 60 ], [ 66, 65 ], [ 75, 72 ], [ 215, 73 ], [ 65, 74 ], [ 215, 78 ], [ 65, 80 ], [ 65, 83 ], [ 90, 87 ], [ 215, 88 ], [ 93, 92 ], [ 212, 96 ], [ 230, 97 ], [ 92, 100 ], [ 212, 104 ], [ 217, 107 ], [ 202, 110 ], [ 209, 115 ], [ 224, 120 ], [ 233, 121 ], [ 212, 122 ], [ 92, 124 ], [ 215, 126 ], [ 224, 129 ], [ 233, 131 ], [ 215, 133 ], [ 212, 136 ], [ 92, 138 ], [ 205, 141 ], [ 209, 147 ], [ 233, 150 ], [ 92, 152 ], [ 215, 154 ], [ 233, 156 ], [ 72, 158 ], [ 215, 159 ], [ 92, 160 ], [ 209, 166 ], [ 224, 171 ], [ 233, 172 ], [ 212, 173 ], [ 92, 175 ], [ 215, 177 ], [ 224, 180 ], [ 233, 181 ], [ 215, 184 ], [ 212, 187 ], [ 92, 189 ], [ 226, 192 ], [ 221, 195 ], [ 227, 195 ], [ 206, 196 ], [ 203, 196 ], [ 218, 196 ], [ 227, 200 ], [ 221, 200 ], [ 202, 203 ], [ 205, 206 ], [ 208, 209 ], [ 232, 212 ], [ 214, 215 ], [ 217, 218 ], [ 220, 221 ], [ 232, 224 ], [ 226, 227 ], [ 232, 230 ], [ 232, 233 ] ]
[ "h,w,a,b=map(int,input().split())\nfac=[0]*200001#iの階乗mod(1000000007)\ninv=[0]*200001#iの逆元mod(1000000007)\nfac[0]=1\nans=0\nfor i in range(1,200001):\n fac[i]=fac[i-1]*i%1000000007\ninv[200000]=pow(fac[200000],1000000005,1000000007)\nfor i in range(199999,0,-1):\n inv[i]=(inv[i+1]*(i+1))%1000000007\n inv[0]=1\nfor i in range(h-a):\n if i==0:\n if h==1:\n x=1\n else:\n x=(fac[w-b+h-2\n -i]*inv[w-1-b]*inv[h-1-i])%1000000007\n else:\n x=((fac[b-1+i]*inv[b-1]*inv[i])%1000000007)*((fac[w-b+h-2-i]*inv[w-b-1]*inv[h-1-i])%1000000007)\n ans=(ans+x)%1000000007\nprint(ans)", "h,w,a,b=map(int,input().split())", "h", "map(int,input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "w", "a", "b", "fac=[0]*200001", "fac", "[0]*200001", "[0]", "0", "200001", "inv=[0]*200001", "inv", "[0]*200001", "[0]", "0", "200001", "fac[0]=1", "fac[0]", "fac", "0", "1", "ans=0", "ans", "0", "for i in range(1,200001):\n fac[i]=fac[i-1]*i%1000000007", "i", "range(1,200001)", "range", "1", "200001", "fac[i]=fac[i-1]*i%1000000007", "fac[i]", "fac", "i", "fac[i-1]*i%1000000007", "fac[i-1]*i", "fac[i-1]", "fac", "i-1", "i", "1", "i", "1000000007", "inv[200000]=pow(fac[200000],1000000005,1000000007)", "inv[200000]", "inv", "200000", "pow(fac[200000],1000000005,1000000007)", "pow", "fac[200000]", "fac", "200000", "1000000005", "1000000007", "for i in range(199999,0,-1):\n inv[i]=(inv[i+1]*(i+1))%1000000007\n inv[0]=1", "i", "range(199999,0,-1)", "range", "199999", "0", "-1", "inv[i]=(inv[i+1]*(i+1))%1000000007", "inv[i]", "inv", "i", "(inv[i+1]*(i+1))%1000000007", "inv[i+1]*(i+1)", "inv[i+1]", "inv", "i+1", "i", "1", "i+1", "i", "1", "1000000007", "inv[0]=1", "inv[0]", "inv", "0", "1", "for i in range(h-a):\n if i==0:\n if h==1:\n x=1\n else:\n x=(fac[w-b+h-2\n -i]*inv[w-1-b]*inv[h-1-i])%1000000007\n else:\n x=((fac[b-1+i]*inv[b-1]*inv[i])%1000000007)*((fac[w-b+h-2-i]*inv[w-b-1]*inv[h-1-i])%1000000007)\n ans=(ans+x)%1000000007", "i", "range(h-a)", "range", "h-a", "h", "a", "if i==0:\n if h==1:\n x=1\n else:\n x=(fac[w-b+h-2\n -i]*inv[w-1-b]*inv[h-1-i])%1000000007\n else:\n x=((fac[b-1+i]*inv[b-1]*inv[i])%1000000007)*((fac[w-b+h-2-i]*inv[w-b-1]*inv[h-1-i])%1000000007)\n ", "i==0", "i", "0", "if h==1:\n x=1\n else:\n x=(fac[w-b+h-2\n -i]*inv[w-1-b]*inv[h-1-i])%1000000007\n ", "h==1", "h", "1", "x=1", "x", "1", "x=(fac[w-b+h-2\n -i]*inv[w-1-b]*inv[h-1-i])%1000000007", "x", "(fac[w-b+h-2\n -i]*inv[w-1-b]*inv[h-1-i])%1000000007", "fac[w-b+h-2\n -i]*inv[w-1-b]*inv[h-1-i]", "fac[w-b+h-2\n -i]*inv[w-1-b]", "fac[w-b+h-2\n -i]", "fac", "w-b+h-2\n -i", "w-b+h-2", "w-b+h", "w-b", "w", "b", "h", "2", "i", "inv[w-1-b]", "inv", "w-1-b", "w-1", "w", "1", "b", "inv[h-1-i]", "inv", "h-1-i", "h-1", "h", "1", "i", "1000000007", "x=((fac[b-1+i]*inv[b-1]*inv[i])%1000000007)*((fac[w-b+h-2-i]*inv[w-b-1]*inv[h-1-i])%1000000007)", "x", "((fac[b-1+i]*inv[b-1]*inv[i])%1000000007)*((fac[w-b+h-2-i]*inv[w-b-1]*inv[h-1-i])%1000000007)", "(fac[b-1+i]*inv[b-1]*inv[i])%1000000007", "fac[b-1+i]*inv[b-1]*inv[i]", "fac[b-1+i]*inv[b-1]", "fac[b-1+i]", "fac", "b-1+i", "b-1", "b", "1", "i", "inv[b-1]", "inv", "b-1", "b", "1", "inv[i]", "inv", "i", "1000000007", "(fac[w-b+h-2-i]*inv[w-b-1]*inv[h-1-i])%1000000007", "fac[w-b+h-2-i]*inv[w-b-1]*inv[h-1-i]", "fac[w-b+h-2-i]*inv[w-b-1]", "fac[w-b+h-2-i]", "fac", "w-b+h-2-i", "w-b+h-2", "w-b+h", "w-b", "w", "b", "h", "2", "i", "inv[w-b-1]", "inv", "w-b-1", "w-b", "w", "b", "1", "inv[h-1-i]", "inv", "h-1-i", "h-1", "h", "1", "i", "1000000007", "ans=(ans+x)%1000000007", "ans", "(ans+x)%1000000007", "ans+x", "ans", "x", "1000000007", "print(ans)", "print", "ans", "x=(fac[w-b+h-2\n -i]*inv[w-1-b]*inv[h-1-i])%1000000007", "(fac[w-b+h-2\n -i]*inv[w-1-b]*inv[h-1-i])%1000000007", "x", "x=((fac[b-1+i]*inv[b-1]*inv[i])%1000000007)*((fac[w-b+h-2-i]*inv[w-b-1]*inv[h-1-i])%1000000007)", "((fac[b-1+i]*inv[b-1]*inv[i])%1000000007)*((fac[w-b+h-2-i]*inv[w-b-1]*inv[h-1-i])%1000000007)", "x", "fac=[0]*200001", "[0]*200001", "fac", "h,w,a,b=map(int,input().split())", "map(int,input().split())", "h", "inv=[0]*200001", "[0]*200001", "inv", "x=1", "1", "x", "ans=0", "0", "ans", "w,a,b=map(int,input().split())", "map(int,input().split())", "w", "ans=(ans+x)%1000000007", "(ans+x)%1000000007", "ans", "a,b=map(int,input().split())", "map(int,input().split())", "a", "b=map(int,input().split())", "map(int,input().split())", "b" ]
h,w,a,b=map(int,input().split()) fac=[0]*200001#iの階乗mod(1000000007) inv=[0]*200001#iの逆元mod(1000000007) fac[0]=1 ans=0 for i in range(1,200001): fac[i]=fac[i-1]*i%1000000007 inv[200000]=pow(fac[200000],1000000005,1000000007) for i in range(199999,0,-1): inv[i]=(inv[i+1]*(i+1))%1000000007 inv[0]=1 for i in range(h-a): if i==0: if h==1: x=1 else: x=(fac[w-b+h-2 -i]*inv[w-1-b]*inv[h-1-i])%1000000007 else: x=((fac[b-1+i]*inv[b-1]*inv[i])%1000000007)*((fac[w-b+h-2-i]*inv[w-b-1]*inv[h-1-i])%1000000007) ans=(ans+x)%1000000007 print(ans)
[ 7, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 39, 17, 0, 13, 39, 17, 28, 13, 4, 13, 17, 2, 2, 13, 13, 17, 4, 18, 13, 13, 2, 2, 18, 13, 17, 13, 13, 4, 18, 13, 13, 4, 13, 18, 13, 17, 2, 13, 17, 13, 12, 13, 14, 2, 2, 13, 13, 2, 13, 17, 29, 17, 14, 2, 13, 17, 29, 17, 29, 2, 2, 2, 18, 13, 13, 18, 13, 13, 18, 13, 2, 13, 13, 13, 23, 13, 23, 13, 0, 13, 17, 28, 13, 4, 13, 13, 13, 0, 13, 2, 2, 4, 13, 2, 2, 2, 13, 13, 17, 13, 13, 4, 13, 2, 2, 2, 2, 13, 17, 13, 13, 17, 2, 13, 17, 13, 0, 13, 13, 4, 13, 2, 13, 13, 10, 4, 13, 10, 39, 13, 10, 12, 13, 10, 2, 13, 10, 13, 13, 10, 39, 13, 10, 4, 13, 10, 2, 13, 10, 17, 13, 10, 4, 13, 10, 4, 13 ]
[ [ 178, 2 ], [ 178, 11 ], [ 178, 12 ], [ 178, 13 ], [ 169, 15 ], [ 163, 22 ], [ 151, 26 ], [ 31, 30 ], [ 167, 36 ], [ 149, 37 ], [ 164, 41 ], [ 164, 46 ], [ 30, 48 ], [ 170, 49 ], [ 152, 52 ], [ 164, 57 ], [ 170, 60 ], [ 170, 62 ], [ 98, 68 ], [ 100, 69 ], [ 100, 71 ], [ 100, 77 ], [ 164, 86 ], [ 98, 87 ], [ 152, 89 ], [ 100, 90 ], [ 152, 92 ], [ 98, 94 ], [ 100, 95 ], [ 170, 96 ], [ 98, 98 ], [ 100, 100 ], [ 172, 102 ], [ 106, 105 ], [ 176, 108 ], [ 149, 109 ], [ 157, 111 ], [ 155, 115 ], [ 167, 119 ], [ 179, 120 ], [ 105, 122 ], [ 105, 123 ], [ 155, 125 ], [ 179, 130 ], [ 149, 132 ], [ 105, 133 ], [ 179, 136 ], [ 170, 138 ], [ 160, 140 ], [ 170, 141 ], [ 161, 145 ], [ 158, 145 ], [ 173, 145 ], [ 170, 146 ], [ 178, 149 ], [ 151, 152 ], [ 157, 158 ], [ 170, 160 ], [ 160, 161 ], [ 163, 164 ], [ 178, 167 ], [ 169, 170 ], [ 172, 173 ], [ 178, 176 ], [ 178, 179 ] ]
[ "H, W, A, B = map(int, input().split())\nMOD = 10 ** 9 + 7\n\n# 階乗 & 逆元計算\nfactorial = [1]\ninverse = [1]\nfor i in range(1, H + W + 2):\n factorial.append(factorial[-1] * i % MOD)\n inverse.append(pow(factorial[-1], MOD - 2, MOD))\n\n\n# 組み合わせ計算\ndef nCr(n, r):\n if n < r or r < 0:\n return 0\n elif r == 0:\n return 1\n return factorial[n] * inverse[r] * inverse[n - r] % MOD\n\n\nans = 0\nfor w in range(B, W):\n ans += nCr(H - A - 1 + w, w) * nCr(A - 1 + W - w - 1, A - 1) % MOD\n ans %= MOD\nprint(ans % MOD)", "H, W, A, B = map(int, input().split())", "H", "map(int, input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "MOD = 10 ** 9 + 7", "MOD", "10 ** 9 + 7", "10 ** 9", "10", "9", "7", "factorial = [1]", "factorial", "[1]", "1", "inverse = [1]", "inverse", "[1]", "1", "for i in range(1, H + W + 2):\n factorial.append(factorial[-1] * i % MOD)\n inverse.append(pow(factorial[-1], MOD - 2, MOD))\n\n\n# 組み合わせ計算", "i", "range(1, H + W + 2)", "range", "1", "H + W + 2", "H + W", "H", "W", "2", "factorial.append(factorial[-1] * i % MOD)", "factorial.append", "factorial", "append", "factorial[-1] * i % MOD", "factorial[-1] * i", "factorial[-1]", "factorial", "-1", "i", "MOD", "inverse.append(pow(factorial[-1], MOD - 2, MOD))", "inverse.append", "inverse", "append", "pow(factorial[-1], MOD - 2, MOD)", "pow", "factorial[-1]", "factorial", "-1", "MOD - 2", "MOD", "2", "MOD", "def nCr(n, r):\n if n < r or r < 0:\n return 0\n elif r == 0:\n return 1\n return factorial[n] * inverse[r] * inverse[n - r] % MOD", "nCr", "if n < r or r < 0:\n return 0\n elif r == 0:\n return 1\n ", "n < r or r < 0", "n < r", "n", "r", "r < 0", "r", "0", "return 0", "0", "elif r == 0:\n return 1\n ", "r == 0", "r", "0", "return 1", "1", "return factorial[n] * inverse[r] * inverse[n - r] % MOD", "factorial[n] * inverse[r] * inverse[n - r] % MOD", "factorial[n] * inverse[r] * inverse[n - r]", "factorial[n] * inverse[r]", "factorial[n]", "factorial", "n", "inverse[r]", "inverse", "r", "inverse[n - r]", "inverse", "n - r", "n", "r", "MOD", "n", "n", "r", "r", "ans = 0", "ans", "0", "for w in range(B, W):\n ans += nCr(H - A - 1 + w, w) * nCr(A - 1 + W - w - 1, A - 1) % MOD\n ans %= MOD", "w", "range(B, W)", "range", "B", "W", "ans += nCr(H - A - 1 + w, w) * nCr(A - 1 + W - w - 1, A - 1) % MOD", "ans", "nCr(H - A - 1 + w, w) * nCr(A - 1 + W - w - 1, A - 1) % MOD", "nCr(H - A - 1 + w, w) * nCr(A - 1 + W - w - 1, A - 1)", "nCr(H - A - 1 + w, w)", "nCr", "H - A - 1 + w", "H - A - 1", "H - A", "H", "A", "1", "w", "w", "nCr(A - 1 + W - w - 1, A - 1)", "nCr", "A - 1 + W - w - 1", "A - 1 + W - w", "A - 1 + W", "A - 1", "A", "1", "W", "w", "1", "A - 1", "A", "1", "MOD", "ans %= MOD", "ans", "MOD", "print(ans % MOD)", "print", "ans % MOD", "ans", "MOD", "W, A, B = map(int, input().split())", "map(int, input().split())", "W", "inverse = [1]", "[1]", "inverse", "def nCr(n, r):\n if n < r or r < 0:\n return 0\n elif r == 0:\n return 1\n return factorial[n] * inverse[r] * inverse[n - r] % MOD", "def nCr(n, r):\n if n < r or r < 0:\n return 0\n elif r == 0:\n return 1\n return factorial[n] * inverse[r] * inverse[n - r] % MOD", "nCr", "ans += nCr(H - A - 1 + w, w) * nCr(A - 1 + W - w - 1, A - 1) % MOD", "nCr(H - A - 1 + w, w) * nCr(A - 1 + W - w - 1, A - 1) % MOD", "ans", "ans %= MOD", "MOD", "ans", "factorial = [1]", "[1]", "factorial", "H, W, A, B = map(int, input().split())", "map(int, input().split())", "H", "MOD = 10 ** 9 + 7", "10 ** 9 + 7", "MOD", "ans = 0", "0", "ans", "B = map(int, input().split())", "map(int, input().split())", "B", "A, B = map(int, input().split())", "map(int, input().split())", "A" ]
H, W, A, B = map(int, input().split()) MOD = 10 ** 9 + 7 # 階乗 & 逆元計算 factorial = [1] inverse = [1] for i in range(1, H + W + 2): factorial.append(factorial[-1] * i % MOD) inverse.append(pow(factorial[-1], MOD - 2, MOD)) # 組み合わせ計算 def nCr(n, r): if n < r or r < 0: return 0 elif r == 0: return 1 return factorial[n] * inverse[r] * inverse[n - r] % MOD ans = 0 for w in range(B, W): ans += nCr(H - A - 1 + w, w) * nCr(A - 1 + W - w - 1, A - 1) % MOD ans %= MOD print(ans % MOD)
[ 7, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 4, 13, 2, 17, 17, 0, 13, 2, 13, 17, 0, 13, 2, 13, 13, 13, 2, 13, 13, 0, 13, 39, 42, 40, 13, 17, 0, 13, 2, 39, 2, 13, 17, 18, 13, 39, 0, 13, 17, 0, 13, 17, 0, 13, 39, 17, 0, 13, 39, 28, 13, 4, 13, 2, 13, 13, 4, 18, 13, 13, 2, 2, 2, 13, 17, 18, 13, 13, 13, 28, 13, 4, 13, 13, 0, 13, 17, 28, 13, 4, 13, 4, 13, 13, 14, 2, 18, 13, 13, 17, 0, 13, 18, 13, 13, 0, 13, 13, 14, 40, 13, 2, 4, 13, 13, 17, 0, 13, 13, 0, 13, 13, 4, 18, 13, 13, 13, 0, 13, 17, 0, 13, 17, 28, 13, 4, 13, 4, 13, 13, 14, 2, 18, 13, 13, 17, 0, 13, 18, 13, 2, 13, 17, 0, 13, 13, 0, 13, 18, 13, 2, 2, 13, 13, 17, 0, 13, 13, 14, 40, 13, 2, 4, 13, 13, 17, 0, 13, 13, 0, 13, 13, 0, 13, 13, 0, 13, 13, 28, 13, 4, 13, 13, 0, 13, 2, 2, 2, 2, 18, 13, 2, 2, 13, 13, 17, 18, 13, 2, 2, 2, 13, 13, 13, 17, 18, 13, 13, 18, 13, 2, 2, 13, 13, 17, 13, 0, 13, 13, 4, 13, 2, 2, 2, 13, 13, 13, 13, 10, 17, 13, 10, 17, 13, 10, 18, 13, 10, 39, 13, 10, 4, 13, 10, 4, 13, 10, 4, 13, 10, 17, 13, 10, 39, 13, 10, 2, 13, 10, 13, 13, 10, 17, 13, 10, 13, 13, 10, 2, 13, 10, 18, 13, 10, 13, 13, 10, 2, 13, 10, 13, 13, 10, 13, 13, 10, 13, 13, 10, 39, 13, 10, 17, 13, 10, 18, 13, 10, 2, 13, 10, 2, 13, 10, 13, 13, 10, 13, 13, 10, 4, 13, 10, 13, 13, 10, 4, 13, 10, 13, 13 ]
[ [ 326, 2 ], [ 326, 11 ], [ 326, 12 ], [ 326, 13 ], [ 332, 15 ], [ 272, 22 ], [ 333, 24 ], [ 284, 27 ], [ 261, 29 ], [ 258, 30 ], [ 317, 31 ], [ 327, 33 ], [ 264, 34 ], [ 269, 36 ], [ 273, 40 ], [ 267, 40 ], [ 293, 43 ], [ 273, 47 ], [ 267, 47 ], [ 270, 50 ], [ 294, 50 ], [ 266, 53 ], [ 308, 56 ], [ 254, 59 ], [ 305, 63 ], [ 67, 66 ], [ 261, 70 ], [ 327, 71 ], [ 255, 74 ], [ 66, 79 ], [ 255, 82 ], [ 66, 83 ], [ 333, 84 ], [ 87, 86 ], [ 261, 89 ], [ 278, 91 ], [ 95, 94 ], [ 294, 99 ], [ 270, 99 ], [ 294, 103 ], [ 270, 103 ], [ 94, 104 ], [ 287, 107 ], [ 255, 109 ], [ 86, 110 ], [ 329, 112 ], [ 333, 113 ], [ 94, 116 ], [ 294, 120 ], [ 270, 120 ], [ 302, 123 ], [ 303, 124 ], [ 330, 124 ], [ 288, 124 ], [ 279, 124 ], [ 336, 124 ], [ 335, 126 ], [ 333, 127 ], [ 306, 130 ], [ 336, 132 ], [ 303, 132 ], [ 330, 132 ], [ 288, 132 ], [ 279, 132 ], [ 248, 134 ], [ 245, 137 ], [ 141, 140 ], [ 294, 145 ], [ 270, 145 ], [ 294, 149 ], [ 270, 149 ], [ 140, 150 ], [ 311, 153 ], [ 255, 155 ], [ 264, 157 ], [ 281, 160 ], [ 333, 161 ], [ 251, 163 ], [ 255, 165 ], [ 327, 168 ], [ 264, 169 ], [ 320, 172 ], [ 333, 173 ], [ 140, 176 ], [ 294, 180 ], [ 270, 180 ], [ 275, 183 ], [ 276, 184 ], [ 282, 184 ], [ 312, 184 ], [ 249, 184 ], [ 297, 184 ], [ 296, 186 ], [ 333, 187 ], [ 299, 189 ], [ 300, 190 ], [ 321, 190 ], [ 252, 190 ], [ 246, 190 ], [ 291, 190 ], [ 290, 192 ], [ 333, 193 ], [ 196, 195 ], [ 285, 198 ], [ 314, 200 ], [ 255, 206 ], [ 195, 209 ], [ 264, 210 ], [ 255, 213 ], [ 261, 217 ], [ 318, 218 ], [ 195, 219 ], [ 306, 222 ], [ 195, 223 ], [ 306, 225 ], [ 261, 228 ], [ 195, 229 ], [ 333, 231 ], [ 323, 233 ], [ 333, 234 ], [ 324, 240 ], [ 315, 240 ], [ 309, 240 ], [ 297, 241 ], [ 276, 241 ], [ 282, 241 ], [ 312, 241 ], [ 249, 241 ], [ 291, 242 ], [ 300, 242 ], [ 321, 242 ], [ 252, 242 ], [ 246, 242 ], [ 333, 243 ], [ 245, 246 ], [ 248, 249 ], [ 251, 252 ], [ 254, 255 ], [ 326, 258 ], [ 326, 261 ], [ 326, 264 ], [ 266, 267 ], [ 269, 270 ], [ 272, 273 ], [ 276, 275 ], [ 282, 275 ], [ 312, 275 ], [ 249, 275 ], [ 297, 275 ], [ 275, 276 ], [ 278, 279 ], [ 333, 281 ], [ 281, 282 ], [ 284, 285 ], [ 287, 288 ], [ 333, 290 ], [ 290, 291 ], [ 293, 294 ], [ 333, 296 ], [ 296, 297 ], [ 300, 299 ], [ 321, 299 ], [ 252, 299 ], [ 246, 299 ], [ 291, 299 ], [ 299, 300 ], [ 303, 302 ], [ 330, 302 ], [ 288, 302 ], [ 279, 302 ], [ 336, 302 ], [ 302, 303 ], [ 305, 306 ], [ 308, 309 ], [ 311, 312 ], [ 314, 315 ], [ 317, 318 ], [ 333, 320 ], [ 320, 321 ], [ 333, 323 ], [ 323, 324 ], [ 326, 327 ], [ 333, 329 ], [ 329, 330 ], [ 332, 333 ], [ 333, 335 ], [ 335, 336 ] ]
[ "H, W, A, B = map(int, input().split())\nmod = int(1e+9 + 7)\np = mod - 2\nX, Y = H-A, W-B\nL = []\nwhile p != 0:\n L = [p%2] + L[:]\n p //= 2\nS = 0\nfL = [1]\ninvfL = []\nfor i in range(H+W):\n fL.append(((i+1)*fL[i])%mod)\nfor i in range(H):\n invi = 1\n for j in range(len(L)):\n if L[j] == 1:\n invi *= fL[i]\n invi %= mod\n if j != len(L)-1:\n invi *= invi\n invi %= mod\n invfL.append(invi)\ninvB = 1\ninvW = 1\nfor i in range(len(L)):\n if L[i] == 1:\n invB *= fL[B-1]\n invB %= mod\n invW *= fL[W-B-1]\n invW %= mod\n if i != len(L)-1:\n invB *= invB\n invB %= mod\n invW *= invW\n invW %= mod\nfor i in range(X):\n S += (fL[i+B-1]*fL[H+Y-i-2]*invfL[i]*invfL[H-i-1])%mod\n S %= mod\nprint((S*invB*invW)%mod)", "H, W, A, B = map(int, input().split())", "H", "map(int, input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "mod = int(1e+9 + 7)", "mod", "int(1e+9 + 7)", "int", "1e+9 + 7", "1e+9", "7", "p = mod - 2", "p", "mod - 2", "mod", "2", "X, Y = H-A, W-B", "X", "H-A", "H", "A", "Y", "W-B", "W", "B", "L = []", "L", "[]", "while p != 0:\n L = [p%2] + L[:]\n p //= 2", "p != 0", "p", "0", "L = [p%2] + L[:]", "L", "[p%2] + L[:]", "[p%2]", "p%2", "p", "2", "L[:]", "L", ":", "p //= 2", "p", "2", "S = 0", "S", "0", "fL = [1]", "fL", "[1]", "1", "invfL = []", "invfL", "[]", "for i in range(H+W):\n fL.append(((i+1)*fL[i])%mod)", "i", "range(H+W)", "range", "H+W", "H", "W", "fL.append(((i+1)*fL[i])%mod)", "fL.append", "fL", "append", "((i+1)*fL[i])%mod", "(i+1)*fL[i]", "i+1", "i", "1", "fL[i]", "fL", "i", "mod", "for i in range(H):\n invi = 1\n for j in range(len(L)):\n if L[j] == 1:\n invi *= fL[i]\n invi %= mod\n if j != len(L)-1:\n invi *= invi\n invi %= mod\n invfL.append(invi)", "i", "range(H)", "range", "H", "invi = 1", "invi", "1", "for j in range(len(L)):\n if L[j] == 1:\n invi *= fL[i]\n invi %= mod\n if j != len(L)-1:\n invi *= invi\n invi %= mod\n ", "j", "range(len(L))", "range", "len(L)", "len", "L", "if L[j] == 1:\n invi *= fL[i]\n invi %= mod\n ", "L[j] == 1", "L[j]", "L", "j", "1", "invi *= fL[i]", "invi", "fL[i]", "fL", "i", "invi %= mod", "invi", "mod", "if j != len(L)-1:\n invi *= invi\n invi %= mod\n ", "j != len(L)-1", "j", "len(L)-1", "len(L)", "len", "L", "1", "invi *= invi", "invi", "invi", "invi %= mod", "invi", "mod", "invfL.append(invi)", "invfL.append", "invfL", "append", "invi", "invB = 1", "invB", "1", "invW = 1", "invW", "1", "for i in range(len(L)):\n if L[i] == 1:\n invB *= fL[B-1]\n invB %= mod\n invW *= fL[W-B-1]\n invW %= mod\n if i != len(L)-1:\n invB *= invB\n invB %= mod\n invW *= invW\n invW %= mod", "i", "range(len(L))", "range", "len(L)", "len", "L", "if L[i] == 1:\n invB *= fL[B-1]\n invB %= mod\n invW *= fL[W-B-1]\n invW %= mod\n ", "L[i] == 1", "L[i]", "L", "i", "1", "invB *= fL[B-1]", "invB", "fL[B-1]", "fL", "B-1", "B", "1", "invB %= mod", "invB", "mod", "invW *= fL[W-B-1]", "invW", "fL[W-B-1]", "fL", "W-B-1", "W-B", "W", "B", "1", "invW %= mod", "invW", "mod", "if i != len(L)-1:\n invB *= invB\n invB %= mod\n invW *= invW\n invW %= mod", "i != len(L)-1", "i", "len(L)-1", "len(L)", "len", "L", "1", "invB *= invB", "invB", "invB", "invB %= mod", "invB", "mod", "invW *= invW", "invW", "invW", "invW %= mod", "invW", "mod", "for i in range(X):\n S += (fL[i+B-1]*fL[H+Y-i-2]*invfL[i]*invfL[H-i-1])%mod\n S %= mod", "i", "range(X)", "range", "X", "S += (fL[i+B-1]*fL[H+Y-i-2]*invfL[i]*invfL[H-i-1])%mod", "S", "(fL[i+B-1]*fL[H+Y-i-2]*invfL[i]*invfL[H-i-1])%mod", "fL[i+B-1]*fL[H+Y-i-2]*invfL[i]*invfL[H-i-1]", "fL[i+B-1]*fL[H+Y-i-2]*invfL[i]", "fL[i+B-1]*fL[H+Y-i-2]", "fL[i+B-1]", "fL", "i+B-1", "i+B", "i", "B", "1", "fL[H+Y-i-2]", "fL", "H+Y-i-2", "H+Y-i", "H+Y", "H", "Y", "i", "2", "invfL[i]", "invfL", "i", "invfL[H-i-1]", "invfL", "H-i-1", "H-i", "H", "i", "1", "mod", "S %= mod", "S", "mod", "print((S*invB*invW)%mod)", "print", "(S*invB*invW)%mod", "S*invB*invW", "S*invB", "S", "invB", "invW", "mod", "invW = 1", "1", "invW", "invB = 1", "1", "invB", "invW *= fL[W-B-1]", "fL[W-B-1]", "invW", "fL = [1]", "[1]", "fL", "A, B = map(int, input().split())", "map(int, input().split())", "A", "H, W, A, B = map(int, input().split())", "map(int, input().split())", "H", "B = map(int, input().split())", "map(int, input().split())", "B", "p //= 2", "2", "p", "L = []", "[]", "L", "p = mod - 2", "mod - 2", "p", "invB *= invB", "invB", "invB", "invi = 1", "1", "invi", "invB %= mod", "mod", "invB", "X, Y = H-A, W-B", "H-A", "X", "invi *= fL[i]", "fL[i]", "invi", "invW %= mod", "mod", "invW", "L = [p%2] + L[:]", "[p%2] + L[:]", "L", "invB %= mod", "mod", "invB", "invW *= invW", "invW", "invW", "invi *= invi", "invi", "invi", "invfL = []", "[]", "invfL", "S = 0", "0", "S", "invB *= fL[B-1]", "fL[B-1]", "invB", "S += (fL[i+B-1]*fL[H+Y-i-2]*invfL[i]*invfL[H-i-1])%mod", "(fL[i+B-1]*fL[H+Y-i-2]*invfL[i]*invfL[H-i-1])%mod", "S", "Y = H-A, W-B", "W-B", "Y", "invW %= mod", "mod", "invW", "S %= mod", "mod", "S", "W, A, B = map(int, input().split())", "map(int, input().split())", "W", "invi %= mod", "mod", "invi", "mod = int(1e+9 + 7)", "int(1e+9 + 7)", "mod", "invi %= mod", "mod", "invi" ]
H, W, A, B = map(int, input().split()) mod = int(1e+9 + 7) p = mod - 2 X, Y = H-A, W-B L = [] while p != 0: L = [p%2] + L[:] p //= 2 S = 0 fL = [1] invfL = [] for i in range(H+W): fL.append(((i+1)*fL[i])%mod) for i in range(H): invi = 1 for j in range(len(L)): if L[j] == 1: invi *= fL[i] invi %= mod if j != len(L)-1: invi *= invi invi %= mod invfL.append(invi) invB = 1 invW = 1 for i in range(len(L)): if L[i] == 1: invB *= fL[B-1] invB %= mod invW *= fL[W-B-1] invW %= mod if i != len(L)-1: invB *= invB invB %= mod invW *= invW invW %= mod for i in range(X): S += (fL[i+B-1]*fL[H+Y-i-2]*invfL[i]*invfL[H-i-1])%mod S %= mod print((S*invB*invW)%mod)
[ 7, 15, 13, 15, 13, 15, 15, 13, 15, 0, 13, 18, 13, 13, 4, 13, 2, 17, 17, 12, 13, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 2, 17, 2, 17, 17, 0, 13, 39, 17, 17, 0, 13, 39, 17, 17, 0, 13, 39, 17, 17, 12, 13, 14, 2, 2, 13, 17, 2, 13, 13, 29, 17, 0, 13, 4, 13, 13, 2, 13, 13, 29, 2, 2, 2, 18, 13, 13, 18, 13, 13, 18, 13, 2, 13, 13, 13, 23, 13, 23, 13, 23, 13, 28, 13, 4, 13, 17, 2, 13, 17, 4, 18, 13, 13, 2, 2, 18, 13, 17, 13, 13, 4, 18, 13, 13, 2, 2, 40, 18, 13, 2, 13, 13, 2, 13, 13, 13, 4, 18, 13, 13, 2, 2, 18, 13, 17, 18, 13, 17, 13, 0, 13, 4, 13, 2, 2, 13, 13, 17, 2, 13, 17, 13, 28, 13, 4, 13, 4, 13, 13, 13, 0, 13, 2, 2, 13, 2, 2, 4, 13, 2, 2, 2, 13, 13, 13, 17, 2, 2, 13, 17, 13, 13, 4, 13, 2, 2, 2, 13, 13, 13, 17, 2, 2, 13, 17, 13, 13, 13, 13, 4, 13, 13, 29, 14, 2, 13, 17, 4, 13, 10, 18, 13, 10, 12, 13 ]
[ [ 224, 10 ], [ 23, 22 ], [ 225, 29 ], [ 23, 31 ], [ 23, 32 ], [ 23, 33 ], [ 36, 35 ], [ 43, 42 ], [ 50, 49 ], [ 55, 54 ], [ 60, 59 ], [ 102, 68 ], [ 102, 71 ], [ 100, 72 ], [ 77, 76 ], [ 102, 79 ], [ 100, 81 ], [ 102, 82 ], [ 49, 88 ], [ 100, 89 ], [ 54, 91 ], [ 76, 92 ], [ 102, 92 ], [ 54, 94 ], [ 100, 96 ], [ 76, 97 ], [ 102, 97 ], [ 104, 98 ], [ 100, 100 ], [ 102, 102 ], [ 104, 104 ], [ 107, 106 ], [ 42, 111 ], [ 49, 115 ], [ 49, 120 ], [ 106, 122 ], [ 35, 123 ], [ 59, 126 ], [ 59, 132 ], [ 35, 134 ], [ 106, 135 ], [ 35, 137 ], [ 106, 138 ], [ 35, 139 ], [ 54, 142 ], [ 54, 147 ], [ 59, 150 ], [ 35, 152 ], [ 155, 154 ], [ 64, 156 ], [ 22, 159 ], [ 31, 160 ], [ 22, 163 ], [ 35, 165 ], [ 168, 167 ], [ 32, 172 ], [ 33, 173 ], [ 176, 175 ], [ 154, 178 ], [ 175, 178 ], [ 64, 182 ], [ 33, 186 ], [ 22, 187 ], [ 32, 188 ], [ 33, 192 ], [ 167, 194 ], [ 35, 195 ], [ 64, 197 ], [ 32, 201 ], [ 31, 202 ], [ 33, 203 ], [ 32, 207 ], [ 167, 209 ], [ 35, 210 ], [ 35, 211 ], [ 35, 212 ], [ 175, 215 ], [ 154, 215 ], [ 228, 222 ], [ 224, 225 ] ]
[ "import math\n#import numpy as np\nimport queue\nfrom collections import deque,defaultdict\nimport heapq\nfrom sys import stdin,setrecursionlimit\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\nipt = stdin.readline\nsetrecursionlimit(10**7)\n\ndef main():\n h,w,a,b = map(int,ipt().split())\n mod = 10**9+7\n\n #nCrをmodで割った余りを求める。Nに最大値を入れて使用。\n N = 2*10**5\n g1 = [1, 1] # 元テーブル\n g2 = [1, 1] #逆元テーブル\n inverse = [0, 1] #逆元テーブル計算用テーブル\n def cmb(n,r,mod):\n if r<0 or r>n :\n return 0\n r = min(r,n-r)\n return g1[n]*g2[r]*g2[n-r]%mod\n for i in range(2,N+1):\n g1.append((g1[-1]*i)%mod)\n inverse.append((-inverse[mod % i]*(mod//i))%mod)\n g2.append((g2[-1]*inverse[-1])%mod)\n\n ans = cmb(h+w-2,h-1,mod)\n for i in range(max(a,b)):\n ans = (ans-cmb(b+h-a-1,b-1-i,mod)*cmb(a+w-b-1,a-1-i,mod)%mod)%mod\n print(ans)\n\n\n\n return\n\nif __name__ == '__main__':\n main()", "import math", "math", "import queue", "queue", "from collections import deque,defaultdict", "import heapq", "heapq", "from sys import stdin,setrecursionlimit", "ipt = stdin.readline", "ipt", "stdin.readline", "stdin", "readline", "setrecursionlimit(10**7)", "setrecursionlimit", "10**7", "10", "7", "def main():\n h,w,a,b = map(int,ipt().split())\n mod = 10**9+7\n\n #nCrをmodで割った余りを求める。Nに最大値を入れて使用。\n N = 2*10**5\n g1 = [1, 1] # 元テーブル\n g2 = [1, 1] #逆元テーブル\n inverse = [0, 1] #逆元テーブル計算用テーブル\n def cmb(n,r,mod):\n if r<0 or r>n :\n return 0\n r = min(r,n-r)\n return g1[n]*g2[r]*g2[n-r]%mod\n for i in range(2,N+1):\n g1.append((g1[-1]*i)%mod)\n inverse.append((-inverse[mod % i]*(mod//i))%mod)\n g2.append((g2[-1]*inverse[-1])%mod)\n\n ans = cmb(h+w-2,h-1,mod)\n for i in range(max(a,b)):\n ans = (ans-cmb(b+h-a-1,b-1-i,mod)*cmb(a+w-b-1,a-1-i,mod)%mod)%mod\n print(ans)\n\n\n\n return", "main", "h,w,a,b = map(int,ipt().split())", "h", "map(int,ipt().split())", "map", "int", "ipt().split()", "().split", "()", "ipt", "split", "w", "a", "b", "mod = 10**9+7", "mod", "10**9+7", "10**9", "10", "9", "7", "N = 2*10**5", "N", "2*10**5", "2", "10**5", "10", "5", "g1 = [1, 1]", "g1", "[1, 1]", "1", "1", "g2 = [1, 1]", "g2", "[1, 1]", "1", "1", "inverse = [0, 1]", "inverse", "[0, 1]", "0", "1", "def cmb(n,r,mod):\n if r<0 or r>n :\n return 0\n r = min(r,n-r)\n return g1[n]*g2[r]*g2[n-r]%mod\n ", "cmb", "if r<0 or r>n :\n return 0\n ", "r<0 or r>n", "r<0", "r", "0", "r>n", "r", "n", "return 0", "0", "r = min(r,n-r)", "r", "min(r,n-r)", "min", "r", "n-r", "n", "r", "return g1[n]*g2[r]*g2[n-r]%mod", "g1[n]*g2[r]*g2[n-r]%mod", "g1[n]*g2[r]*g2[n-r]", "g1[n]*g2[r]", "g1[n]", "g1", "n", "g2[r]", "g2", "r", "g2[n-r]", "g2", "n-r", "n", "r", "mod", "n", "n", "r", "r", "mod", "mod", "for i in range(2,N+1):\n g1.append((g1[-1]*i)%mod)\n inverse.append((-inverse[mod % i]*(mod//i))%mod)\n g2.append((g2[-1]*inverse[-1])%mod)\n\n ", "i", "range(2,N+1)", "range", "2", "N+1", "N", "1", "g1.append((g1[-1]*i)%mod)", "g1.append", "g1", "append", "(g1[-1]*i)%mod", "g1[-1]*i", "g1[-1]", "g1", "-1", "i", "mod", "inverse.append((-inverse[mod % i]*(mod//i))%mod)", "inverse.append", "inverse", "append", "(-inverse[mod % i]*(mod//i))%mod", "-inverse[mod % i]*(mod//i)", "-inverse[mod % i]", "inverse[mod % i]", "inverse", "mod % i", "mod", "i", "mod//i", "mod", "i", "mod", "g2.append((g2[-1]*inverse[-1])%mod)", "g2.append", "g2", "append", "(g2[-1]*inverse[-1])%mod", "g2[-1]*inverse[-1]", "g2[-1]", "g2", "-1", "inverse[-1]", "inverse", "-1", "mod", "ans = cmb(h+w-2,h-1,mod)", "ans", "cmb(h+w-2,h-1,mod)", "cmb", "h+w-2", "h+w", "h", "w", "2", "h-1", "h", "1", "mod", "for i in range(max(a,b)):\n ans = (ans-cmb(b+h-a-1,b-1-i,mod)*cmb(a+w-b-1,a-1-i,mod)%mod)%mod\n ", "i", "range(max(a,b))", "range", "max(a,b)", "max", "a", "b", "ans = (ans-cmb(b+h-a-1,b-1-i,mod)*cmb(a+w-b-1,a-1-i,mod)%mod)%mod", "ans", "(ans-cmb(b+h-a-1,b-1-i,mod)*cmb(a+w-b-1,a-1-i,mod)%mod)%mod", "ans-cmb(b+h-a-1,b-1-i,mod)*cmb(a+w-b-1,a-1-i,mod)%mod", "ans", "cmb(b+h-a-1,b-1-i,mod)*cmb(a+w-b-1,a-1-i,mod)%mod", "cmb(b+h-a-1,b-1-i,mod)*cmb(a+w-b-1,a-1-i,mod)", "cmb(b+h-a-1,b-1-i,mod)", "cmb", "b+h-a-1", "b+h-a", "b+h", "b", "h", "a", "1", "b-1-i", "b-1", "b", "1", "i", "mod", "cmb(a+w-b-1,a-1-i,mod)", "cmb", "a+w-b-1", "a+w-b", "a+w", "a", "w", "b", "1", "a-1-i", "a-1", "a", "1", "i", "mod", "mod", "mod", "print(ans)", "print", "ans", "return", "if __name__ == '__main__':\n main()", "__name__ == '__main__'", "__name__", "'__main__'", "main()", "main", "ipt = stdin.readline", "stdin.readline", "ipt", "def main():\n h,w,a,b = map(int,ipt().split())\n mod = 10**9+7\n\n #nCrをmodで割った余りを求める。Nに最大値を入れて使用。\n N = 2*10**5\n g1 = [1, 1] # 元テーブル\n g2 = [1, 1] #逆元テーブル\n inverse = [0, 1] #逆元テーブル計算用テーブル\n def cmb(n,r,mod):\n if r<0 or r>n :\n return 0\n r = min(r,n-r)\n return g1[n]*g2[r]*g2[n-r]%mod\n for i in range(2,N+1):\n g1.append((g1[-1]*i)%mod)\n inverse.append((-inverse[mod % i]*(mod//i))%mod)\n g2.append((g2[-1]*inverse[-1])%mod)\n\n ans = cmb(h+w-2,h-1,mod)\n for i in range(max(a,b)):\n ans = (ans-cmb(b+h-a-1,b-1-i,mod)*cmb(a+w-b-1,a-1-i,mod)%mod)%mod\n print(ans)\n\n\n\n return", "def main():\n h,w,a,b = map(int,ipt().split())\n mod = 10**9+7\n\n #nCrをmodで割った余りを求める。Nに最大値を入れて使用。\n N = 2*10**5\n g1 = [1, 1] # 元テーブル\n g2 = [1, 1] #逆元テーブル\n inverse = [0, 1] #逆元テーブル計算用テーブル\n def cmb(n,r,mod):\n if r<0 or r>n :\n return 0\n r = min(r,n-r)\n return g1[n]*g2[r]*g2[n-r]%mod\n for i in range(2,N+1):\n g1.append((g1[-1]*i)%mod)\n inverse.append((-inverse[mod % i]*(mod//i))%mod)\n g2.append((g2[-1]*inverse[-1])%mod)\n\n ans = cmb(h+w-2,h-1,mod)\n for i in range(max(a,b)):\n ans = (ans-cmb(b+h-a-1,b-1-i,mod)*cmb(a+w-b-1,a-1-i,mod)%mod)%mod\n print(ans)\n\n\n\n return", "main" ]
import math #import numpy as np import queue from collections import deque,defaultdict import heapq from sys import stdin,setrecursionlimit #from scipy.sparse.csgraph import dijkstra #from scipy.sparse import csr_matrix ipt = stdin.readline setrecursionlimit(10**7) def main(): h,w,a,b = map(int,ipt().split()) mod = 10**9+7 #nCrをmodで割った余りを求める。Nに最大値を入れて使用。 N = 2*10**5 g1 = [1, 1] # 元テーブル g2 = [1, 1] #逆元テーブル inverse = [0, 1] #逆元テーブル計算用テーブル def cmb(n,r,mod): if r<0 or r>n : return 0 r = min(r,n-r) return g1[n]*g2[r]*g2[n-r]%mod for i in range(2,N+1): g1.append((g1[-1]*i)%mod) inverse.append((-inverse[mod % i]*(mod//i))%mod) g2.append((g2[-1]*inverse[-1])%mod) ans = cmb(h+w-2,h-1,mod) for i in range(max(a,b)): ans = (ans-cmb(b+h-a-1,b-1-i,mod)*cmb(a+w-b-1,a-1-i,mod)%mod)%mod print(ans) return if __name__ == '__main__': main()
[ 7, 15, 13, 0, 13, 2, 4, 13, 17, 17, 17, 4, 18, 13, 13, 4, 13, 17, 17, 12, 13, 14, 2, 13, 17, 14, 2, 13, 17, 14, 2, 2, 13, 17, 17, 23, 13, 23, 13, 12, 13, 29, 2, 2, 2, 13, 13, 2, 13, 13, 13, 23, 13, 23, 13, 12, 13, 29, 4, 13, 13, 4, 13, 13, 2, 13, 17, 23, 13, 23, 13, 12, 13, 29, 4, 13, 13, 4, 13, 13, 23, 13, 23, 13, 12, 13, 0, 13, 13, 13, 17, 13, 17, 42, 13, 0, 13, 2, 13, 13, 0, 13, 2, 13, 2, 13, 13, 13, 2, 13, 2, 13, 13, 0, 13, 13, 13, 13, 13, 13, 13, 13, 0, 13, 13, 29, 13, 23, 13, 12, 13, 14, 2, 2, 13, 17, 2, 13, 13, 29, 17, 0, 13, 4, 13, 13, 2, 13, 13, 29, 2, 2, 2, 18, 13, 13, 18, 13, 13, 18, 13, 2, 13, 13, 13, 23, 13, 23, 13, 0, 13, 2, 17, 17, 0, 13, 39, 17, 17, 0, 13, 39, 17, 17, 0, 13, 39, 17, 17, 28, 13, 4, 13, 17, 2, 13, 17, 4, 18, 13, 13, 2, 2, 18, 13, 17, 13, 13, 4, 18, 13, 13, 2, 2, 40, 18, 13, 2, 13, 13, 2, 13, 13, 13, 4, 18, 13, 13, 2, 2, 18, 13, 17, 18, 13, 17, 13, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 17, 28, 13, 4, 13, 2, 13, 13, 0, 13, 2, 2, 13, 4, 13, 4, 13, 2, 2, 13, 13, 17, 13, 4, 13, 2, 2, 2, 2, 2, 13, 17, 13, 13, 17, 13, 2, 2, 13, 17, 13, 13, 4, 13, 13, 10, 39, 13, 10, 12, 13, 10, 12, 13, 10, 4, 13, 10, 12, 13, 10, 39, 13, 10, 12, 13, 10, 39, 13, 10, 4, 13, 10, 2, 13, 10, 12, 13, 10, 4, 13, 10, 12, 13, 10, 17, 13, 10, 2, 13, 10, 2, 13, 10, 4, 13 ]
[ [ 343, 4 ], [ 38, 23 ], [ 38, 27 ], [ 38, 32 ], [ 36, 36 ], [ 38, 38 ], [ 52, 45 ], [ 344, 46 ], [ 54, 48 ], [ 344, 49 ], [ 344, 50 ], [ 52, 52 ], [ 54, 54 ], [ 305, 59 ], [ 68, 60 ], [ 311, 62 ], [ 70, 63 ], [ 344, 65 ], [ 68, 68 ], [ 70, 70 ], [ 305, 75 ], [ 81, 76 ], [ 83, 79 ], [ 81, 81 ], [ 83, 83 ], [ 88, 87 ], [ 344, 88 ], [ 90, 89 ], [ 92, 91 ], [ 97, 96 ], [ 128, 98 ], [ 114, 98 ], [ 101, 98 ], [ 87, 99 ], [ 116, 99 ], [ 102, 101 ], [ 128, 103 ], [ 114, 103 ], [ 101, 103 ], [ 96, 105 ], [ 87, 106 ], [ 116, 106 ], [ 108, 107 ], [ 89, 109 ], [ 118, 109 ], [ 107, 109 ], [ 96, 111 ], [ 91, 112 ], [ 120, 112 ], [ 115, 114 ], [ 87, 115 ], [ 116, 115 ], [ 117, 116 ], [ 114, 117 ], [ 101, 117 ], [ 128, 117 ], [ 119, 118 ], [ 91, 119 ], [ 120, 119 ], [ 121, 120 ], [ 118, 121 ], [ 107, 121 ], [ 89, 121 ], [ 124, 123 ], [ 344, 124 ], [ 123, 126 ], [ 118, 126 ], [ 107, 126 ], [ 89, 126 ], [ 128, 128 ], [ 168, 134 ], [ 168, 137 ], [ 166, 138 ], [ 143, 142 ], [ 168, 145 ], [ 166, 147 ], [ 168, 148 ], [ 166, 155 ], [ 142, 158 ], [ 168, 158 ], [ 166, 162 ], [ 142, 163 ], [ 168, 163 ], [ 344, 164 ], [ 166, 166 ], [ 168, 168 ], [ 340, 170 ], [ 319, 175 ], [ 313, 180 ], [ 298, 185 ], [ 191, 190 ], [ 341, 195 ], [ 320, 199 ], [ 320, 204 ], [ 190, 206 ], [ 344, 207 ], [ 299, 210 ], [ 299, 216 ], [ 344, 218 ], [ 190, 219 ], [ 344, 221 ], [ 190, 222 ], [ 344, 223 ], [ 314, 226 ], [ 314, 231 ], [ 299, 234 ], [ 344, 236 ], [ 346, 238 ], [ 346, 247 ], [ 346, 248 ], [ 346, 249 ], [ 337, 251 ], [ 255, 254 ], [ 308, 258 ], [ 332, 259 ], [ 325, 261 ], [ 338, 264 ], [ 326, 264 ], [ 305, 266 ], [ 302, 268 ], [ 254, 271 ], [ 323, 272 ], [ 254, 274 ], [ 302, 276 ], [ 308, 282 ], [ 254, 284 ], [ 347, 285 ], [ 323, 287 ], [ 308, 290 ], [ 254, 292 ], [ 344, 293 ], [ 326, 296 ], [ 338, 296 ], [ 298, 299 ], [ 346, 308 ], [ 313, 314 ], [ 319, 320 ], [ 346, 323 ], [ 325, 326 ], [ 346, 332 ], [ 337, 338 ], [ 340, 341 ], [ 343, 344 ], [ 346, 347 ] ]
[ "import sys\nmod = pow(10, 9) + 7\nsys.setrecursionlimit(pow(10, 8))\n\ndef power(x, y):\n if y == 0: return 1\n elif y == 1 : return x % mod\n elif y % 2 == 0 : return power(x, y//2)**2 % mod\n else: return power(x, (y-1)//2)**2 * x % mod\n \ndef mul(a, b):\n return ((a % mod) * (b % mod)) % mod\n\ndef div(a, b):\n return mul(a, power(b, mod-2))\ndef div2(a, b):\n return mul(a, modinv(b))\n\ndef modinv(a):\n b, u, v = mod, 1, 0\n while b:\n t = a//b\n a, u = a-t*b, u-t*v\n a, b, u, v = b, a, v, u\n u %= mod\n return u\n\ndef cmb(n, r):\n if ( r<0 or r>n ):\n return 0\n r = min(r, n-r)\n return g1[n] * g2[r] * g2[n-r] % mod\n\nNNN = (10**6)\ng1 = [1, 1]\ng2 = [1, 1]\ninverse = [0, 1]\n\nfor i in range( 2, NNN + 1 ):\n g1.append( ( g1[-1] * i ) % mod )\n inverse.append( ( -inverse[mod % i] * (mod//i) ) % mod )\n g2.append( (g2[-1] * inverse[-1]) % mod )\nH, W, A, B = map(int, input().split())\n\nr = 0\nfor i in range(H-A):\n# (0, 0) -> (i, B-1)\n# (i, B) -> (H-1, W-1)\n r = (r + mul(cmb(i+B-1, i), cmb(H-1-i+W-1-B, H-1-i)))%mod\nprint(r)\n", "import sys", "sys", "mod = pow(10, 9) + 7", "mod", "pow(10, 9) + 7", "pow(10, 9)", "pow", "10", "9", "7", "sys.setrecursionlimit(pow(10, 8))", "sys.setrecursionlimit", "sys", "setrecursionlimit", "pow(10, 8)", "pow", "10", "8", "def power(x, y):\n if y == 0: return 1\n elif y == 1 : return x % mod\n elif y % 2 == 0 : return power(x, y//2)**2 % mod\n else: return power(x, (y-1)//2)**2 * x % mod\n ", "power", "if y == 0: return 1\n elif y == 1 : return x % mod\n elif y % 2 == 0 : return power(x, y//2)**2 % mod\n else: return power(x, (y-1)//2)**2 * x % mod\n ", "y == 0", "y", "0", "elif y == 1 : return x % mod\n ", "y == 1", "y", "1", "elif y % 2 == 0 : return power(x, y//2)**2 % mod\n ", "y % 2 == 0", "y % 2", "y", "2", "0", "x", "x", "y", "y", "def mul(a, b):\n return ((a % mod) * (b % mod)) % mod", "mul", "return ((a % mod) * (b % mod)) % mod", "((a % mod) * (b % mod)) % mod", "(a % mod) * (b % mod)", "a % mod", "a", "mod", "b % mod", "b", "mod", "mod", "a", "a", "b", "b", "def div(a, b):\n return mul(a, power(b, mod-2))", "div", "return mul(a, power(b, mod-2))", "mul(a, power(b, mod-2))", "mul", "a", "power(b, mod-2)", "power", "b", "mod-2", "mod", "2", "a", "a", "b", "b", "def div2(a, b):\n return mul(a, modinv(b))", "div2", "return mul(a, modinv(b))", "mul(a, modinv(b))", "mul", "a", "modinv(b)", "modinv", "b", "a", "a", "b", "b", "def modinv(a):\n b, u, v = mod, 1, 0\n while b:\n t = a//b\n a, u = a-t*b, u-t*v\n a, b, u, v = b, a, v, u\n u %= mod\n return u", "modinv", "b, u, v = mod, 1, 0", "b", "mod", "u", "1", "v", "0", "while b:\n t = a//b\n a, u = a-t*b, u-t*v\n a, b, u, v = b, a, v, u\n ", "b", "t = a//b", "t", "a//b", "a", "b", "a, u = a-t*b, u-t*v", "a", "a-t*b", "a", "t*b", "t", "b", "u", "u-t*v", "u", "t*v", "t", "v", "a, b, u, v = b, a, v, u", "a", "b", "b", "a", "u", "v", "v", "u", "u %= mod", "u", "mod", "return u", "u", "a", "a", "def cmb(n, r):\n if ( r<0 or r>n ):\n return 0\n r = min(r, n-r)\n return g1[n] * g2[r] * g2[n-r] % mod", "cmb", "if ( r<0 or r>n ):\n return 0\n ", "r<0 or r>n", "r<0", "r", "0", "r>n", "r", "n", "return 0", "0", "r = min(r, n-r)", "r", "min(r, n-r)", "min", "r", "n-r", "n", "r", "return g1[n] * g2[r] * g2[n-r] % mod", "g1[n] * g2[r] * g2[n-r] % mod", "g1[n] * g2[r] * g2[n-r]", "g1[n] * g2[r]", "g1[n]", "g1", "n", "g2[r]", "g2", "r", "g2[n-r]", "g2", "n-r", "n", "r", "mod", "n", "n", "r", "r", "NNN = (10**6)", "NNN", "10**6", "10", "6", "g1 = [1, 1]", "g1", "[1, 1]", "1", "1", "g2 = [1, 1]", "g2", "[1, 1]", "1", "1", "inverse = [0, 1]", "inverse", "[0, 1]", "0", "1", "for i in range( 2, NNN + 1 ):\n g1.append( ( g1[-1] * i ) % mod )\n inverse.append( ( -inverse[mod % i] * (mod//i) ) % mod )\n g2.append( (g2[-1] * inverse[-1]) % mod )", "i", "range( 2, NNN + 1 )", "range", "2", "NNN + 1", "NNN", "1", "g1.append( ( g1[-1] * i ) % mod )", "g1.append", "g1", "append", "( g1[-1] * i ) % mod", "g1[-1] * i", "g1[-1]", "g1", "-1", "i", "mod", "inverse.append( ( -inverse[mod % i] * (mod//i) ) % mod )", "inverse.append", "inverse", "append", "( -inverse[mod % i] * (mod//i) ) % mod", "-inverse[mod % i] * (mod//i)", "-inverse[mod % i]", "inverse[mod % i]", "inverse", "mod % i", "mod", "i", "mod//i", "mod", "i", "mod", "g2.append( (g2[-1] * inverse[-1]) % mod )", "g2.append", "g2", "append", "(g2[-1] * inverse[-1]) % mod", "g2[-1] * inverse[-1]", "g2[-1]", "g2", "-1", "inverse[-1]", "inverse", "-1", "mod", "H, W, A, B = map(int, input().split())", "H", "map(int, input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "r = 0", "r", "0", "for i in range(H-A):\n# (0, 0) -> (i, B-1)\n# (i, B) -> (H-1, W-1)\n r = (r + mul(cmb(i+B-1, i), cmb(H-1-i+W-1-B, H-1-i)))%mod", "i", "range(H-A)", "range", "H-A", "H", "A", "r = (r + mul(cmb(i+B-1, i), cmb(H-1-i+W-1-B, H-1-i)))%mod", "r", "(r + mul(cmb(i+B-1, i), cmb(H-1-i+W-1-B, H-1-i)))%mod", "r + mul(cmb(i+B-1, i), cmb(H-1-i+W-1-B, H-1-i))", "r", "mul(cmb(i+B-1, i), cmb(H-1-i+W-1-B, H-1-i))", "mul", "cmb(i+B-1, i)", "cmb", "i+B-1", "i+B", "i", "B", "1", "i", "cmb(H-1-i+W-1-B, H-1-i)", "cmb", "H-1-i+W-1-B", "H-1-i+W-1", "H-1-i+W", "H-1-i", "H-1", "H", "1", "i", "W", "1", "B", "H-1-i", "H-1", "H", "1", "i", "mod", "print(r)", "print", "r", "inverse = [0, 1]", "[0, 1]", "inverse", "def cmb(n, r):\n if ( r<0 or r>n ):\n return 0\n r = min(r, n-r)\n return g1[n] * g2[r] * g2[n-r] % mod", "def cmb(n, r):\n if ( r<0 or r>n ):\n return 0\n r = min(r, n-r)\n return g1[n] * g2[r] * g2[n-r] % mod", "cmb", "def mul(a, b):\n return ((a % mod) * (b % mod)) % mod", "def mul(a, b):\n return ((a % mod) * (b % mod)) % mod", "mul", "H, W, A, B = map(int, input().split())", "map(int, input().split())", "H", "def power(x, y):\n if y == 0: return 1\n elif y == 1 : return x % mod\n elif y % 2 == 0 : return power(x, y//2)**2 % mod\n else: return power(x, (y-1)//2)**2 * x % mod\n ", "def power(x, y):\n if y == 0: return 1\n elif y == 1 : return x % mod\n elif y % 2 == 0 : return power(x, y//2)**2 % mod\n else: return power(x, (y-1)//2)**2 * x % mod\n ", "power", "g2 = [1, 1]", "[1, 1]", "g2", "def div(a, b):\n return mul(a, power(b, mod-2))", "def div(a, b):\n return mul(a, power(b, mod-2))", "div", "g1 = [1, 1]", "[1, 1]", "g1", "B = map(int, input().split())", "map(int, input().split())", "B", "r = (r + mul(cmb(i+B-1, i), cmb(H-1-i+W-1-B, H-1-i)))%mod", "(r + mul(cmb(i+B-1, i), cmb(H-1-i+W-1-B, H-1-i)))%mod", "r", "def div2(a, b):\n return mul(a, modinv(b))", "def div2(a, b):\n return mul(a, modinv(b))", "div2", "A, B = map(int, input().split())", "map(int, input().split())", "A", "def modinv(a):\n b, u, v = mod, 1, 0\n while b:\n t = a//b\n a, u = a-t*b, u-t*v\n a, b, u, v = b, a, v, u\n u %= mod\n return u", "def modinv(a):\n b, u, v = mod, 1, 0\n while b:\n t = a//b\n a, u = a-t*b, u-t*v\n a, b, u, v = b, a, v, u\n u %= mod\n return u", "modinv", "r = 0", "0", "r", "NNN = (10**6)", "10**6", "NNN", "mod = pow(10, 9) + 7", "pow(10, 9) + 7", "mod", "W, A, B = map(int, input().split())", "map(int, input().split())", "W" ]
import sys mod = pow(10, 9) + 7 sys.setrecursionlimit(pow(10, 8)) def power(x, y): if y == 0: return 1 elif y == 1 : return x % mod elif y % 2 == 0 : return power(x, y//2)**2 % mod else: return power(x, (y-1)//2)**2 * x % mod def mul(a, b): return ((a % mod) * (b % mod)) % mod def div(a, b): return mul(a, power(b, mod-2)) def div2(a, b): return mul(a, modinv(b)) def modinv(a): b, u, v = mod, 1, 0 while b: t = a//b a, u = a-t*b, u-t*v a, b, u, v = b, a, v, u u %= mod return u def cmb(n, r): if ( r<0 or r>n ): return 0 r = min(r, n-r) return g1[n] * g2[r] * g2[n-r] % mod NNN = (10**6) g1 = [1, 1] g2 = [1, 1] inverse = [0, 1] for i in range( 2, NNN + 1 ): g1.append( ( g1[-1] * i ) % mod ) inverse.append( ( -inverse[mod % i] * (mod//i) ) % mod ) g2.append( (g2[-1] * inverse[-1]) % mod ) H, W, A, B = map(int, input().split()) r = 0 for i in range(H-A): # (0, 0) -> (i, B-1) # (i, B) -> (H-1, W-1) r = (r + mul(cmb(i+B-1, i), cmb(H-1-i+W-1-B, H-1-i)))%mod print(r)
[ 7, 0, 13, 2, 2, 17, 17, 17, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 39, 17, 2, 2, 13, 13, 17, 13, 2, 39, 17, 2, 2, 13, 13, 17, 12, 13, 29, 4, 13, 13, 2, 13, 17, 13, 23, 13, 0, 18, 13, 17, 17, 18, 13, 17, 17, 18, 13, 17, 17, 18, 13, 17, 17, 28, 13, 4, 13, 17, 2, 2, 13, 13, 17, 0, 18, 13, 13, 2, 2, 13, 18, 13, 2, 13, 17, 13, 0, 18, 13, 13, 4, 13, 18, 13, 13, 12, 13, 29, 2, 2, 2, 18, 13, 2, 13, 13, 18, 13, 13, 18, 13, 13, 13, 23, 13, 23, 13, 0, 13, 17, 28, 13, 4, 13, 2, 13, 17, 2, 13, 17, 0, 13, 2, 2, 4, 13, 2, 2, 13, 13, 17, 2, 13, 17, 4, 13, 2, 13, 17, 2, 13, 13, 13, 4, 13, 2, 13, 13, 10, 2, 13, 10, 12, 13, 10, 2, 13, 10, 17, 13, 10, 2, 13, 10, 4, 13, 10, 4, 13, 10, 12, 13, 10, 2, 13, 10, 4, 13, 10, 4, 13 ]
[ [ 165, 2 ], [ 195, 9 ], [ 195, 18 ], [ 195, 19 ], [ 195, 20 ], [ 189, 22 ], [ 193, 28 ], [ 196, 29 ], [ 177, 31 ], [ 193, 37 ], [ 196, 38 ], [ 51, 45 ], [ 166, 47 ], [ 166, 49 ], [ 51, 51 ], [ 56, 53 ], [ 190, 54 ], [ 60, 57 ], [ 190, 58 ], [ 64, 61 ], [ 178, 62 ], [ 68, 65 ], [ 178, 66 ], [ 71, 70 ], [ 193, 76 ], [ 196, 77 ], [ 83, 80 ], [ 190, 81 ], [ 70, 82 ], [ 70, 85 ], [ 190, 87 ], [ 70, 89 ], [ 166, 91 ], [ 96, 93 ], [ 178, 94 ], [ 70, 95 ], [ 169, 97 ], [ 80, 98 ], [ 190, 99 ], [ 70, 100 ], [ 190, 108 ], [ 120, 110 ], [ 122, 111 ], [ 178, 113 ], [ 120, 114 ], [ 178, 116 ], [ 122, 117 ], [ 166, 118 ], [ 120, 120 ], [ 122, 122 ], [ 174, 124 ], [ 128, 127 ], [ 181, 131 ], [ 196, 134 ], [ 171, 137 ], [ 187, 141 ], [ 193, 144 ], [ 184, 145 ], [ 127, 148 ], [ 187, 151 ], [ 184, 153 ], [ 196, 156 ], [ 127, 157 ], [ 166, 158 ], [ 172, 162 ], [ 175, 162 ], [ 166, 163 ], [ 165, 166 ], [ 171, 172 ], [ 174, 175 ], [ 177, 178 ], [ 195, 181 ], [ 195, 184 ], [ 189, 190 ], [ 195, 193 ], [ 195, 196 ] ]
[ "mod=10**9+7\nh,w,a,b=map(int,input().split())\nF,I=[0]*(h+w+2),[0]*(h+w+2)\ndef inv(n):\n return pow(n,mod-2,mod)\nF[0],F[1],I[0],I[1]=1,1,1,1\nfor i in range(2,h+w+2):\n F[i]=i*F[i-1]%mod\n I[i]=inv(F[i])\ndef c(a,b):\n return F[a+b]*I[a]*I[b]%mod\nans=0\nfor i in range(b+1,w+1):\n ans+=(c(h-a-1,i-1)*c(a-1,w-i))%mod\nprint(ans%mod)", "mod=10**9+7", "mod", "10**9+7", "10**9", "10", "9", "7", "h,w,a,b=map(int,input().split())", "h", "map(int,input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "w", "a", "b", "F,I=[0]*(h+w+2),[0]*(h+w+2)", "F", "[0]*(h+w+2)", "[0]", "0", "h+w+2", "h+w", "h", "w", "2", "I", "[0]*(h+w+2)", "[0]", "0", "h+w+2", "h+w", "h", "w", "2", "def inv(n):\n return pow(n,mod-2,mod)", "inv", "return pow(n,mod-2,mod)", "pow(n,mod-2,mod)", "pow", "n", "mod-2", "mod", "2", "mod", "n", "n", "F[0],F[1],I[0],I[1]=1,1,1,1", "F[0]", "F", "0", "1", "F[1]", "F", "1", "1", "I[0]", "I", "0", "1", "I[1]", "I", "1", "1", "for i in range(2,h+w+2):\n F[i]=i*F[i-1]%mod\n I[i]=inv(F[i])", "i", "range(2,h+w+2)", "range", "2", "h+w+2", "h+w", "h", "w", "2", "F[i]=i*F[i-1]%mod", "F[i]", "F", "i", "i*F[i-1]%mod", "i*F[i-1]", "i", "F[i-1]", "F", "i-1", "i", "1", "mod", "I[i]=inv(F[i])", "I[i]", "I", "i", "inv(F[i])", "inv", "F[i]", "F", "i", "def c(a,b):\n return F[a+b]*I[a]*I[b]%mod", "c", "return F[a+b]*I[a]*I[b]%mod", "F[a+b]*I[a]*I[b]%mod", "F[a+b]*I[a]*I[b]", "F[a+b]*I[a]", "F[a+b]", "F", "a+b", "a", "b", "I[a]", "I", "a", "I[b]", "I", "b", "mod", "a", "a", "b", "b", "ans=0", "ans", "0", "for i in range(b+1,w+1):\n ans+=(c(h-a-1,i-1)*c(a-1,w-i))%mod", "i", "range(b+1,w+1)", "range", "b+1", "b", "1", "w+1", "w", "1", "ans+=(c(h-a-1,i-1)*c(a-1,w-i))%mod", "ans", "(c(h-a-1,i-1)*c(a-1,w-i))%mod", "c(h-a-1,i-1)*c(a-1,w-i)", "c(h-a-1,i-1)", "c", "h-a-1", "h-a", "h", "a", "1", "i-1", "i", "1", "c(a-1,w-i)", "c", "a-1", "a", "1", "w-i", "w", "i", "mod", "print(ans%mod)", "print", "ans%mod", "ans", "mod", "mod=10**9+7", "10**9+7", "mod", "def inv(n):\n return pow(n,mod-2,mod)", "def inv(n):\n return pow(n,mod-2,mod)", "inv", "ans+=(c(h-a-1,i-1)*c(a-1,w-i))%mod", "(c(h-a-1,i-1)*c(a-1,w-i))%mod", "ans", "ans=0", "0", "ans", "I=[0]*(h+w+2),[0]*(h+w+2)", "[0]*(h+w+2)", "I", "b=map(int,input().split())", "map(int,input().split())", "b", "a,b=map(int,input().split())", "map(int,input().split())", "a", "def c(a,b):\n return F[a+b]*I[a]*I[b]%mod", "def c(a,b):\n return F[a+b]*I[a]*I[b]%mod", "c", "F,I=[0]*(h+w+2),[0]*(h+w+2)", "[0]*(h+w+2)", "F", "h,w,a,b=map(int,input().split())", "map(int,input().split())", "h", "w,a,b=map(int,input().split())", "map(int,input().split())", "w" ]
mod=10**9+7 h,w,a,b=map(int,input().split()) F,I=[0]*(h+w+2),[0]*(h+w+2) def inv(n): return pow(n,mod-2,mod) F[0],F[1],I[0],I[1]=1,1,1,1 for i in range(2,h+w+2): F[i]=i*F[i-1]%mod I[i]=inv(F[i]) def c(a,b): return F[a+b]*I[a]*I[b]%mod ans=0 for i in range(b+1,w+1): ans+=(c(h-a-1,i-1)*c(a-1,w-i))%mod print(ans%mod)
[ 7, 15, 15, 15, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 17, 0, 13, 2, 2, 17, 17, 17, 4, 13, 0, 13, 17, 12, 13, 29, 2, 2, 2, 18, 13, 2, 13, 13, 18, 13, 13, 18, 13, 13, 13, 23, 13, 23, 13, 0, 13, 2, 39, 17, 2, 13, 13, 28, 13, 4, 13, 17, 2, 13, 13, 0, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 13, 13, 41, 28, 13, 13, 4, 4, 13, 13, 2, 13, 17, 13, 0, 13, 13, 14, 40, 2, 13, 13, 2, 13, 13, 28, 13, 4, 13, 17, 2, 13, 13, 0, 13, 2, 2, 4, 13, 13, 2, 13, 17, 4, 13, 2, 2, 13, 17, 13, 2, 2, 13, 17, 13, 13, 28, 13, 4, 13, 13, 13, 0, 13, 2, 2, 4, 13, 13, 2, 2, 13, 17, 13, 4, 13, 2, 2, 13, 17, 13, 2, 13, 17, 13, 4, 13, 2, 13, 13, 10, 2, 13, 10, 2, 13, 10, 2, 13, 10, 4, 13, 10, 13, 13, 10, 4, 13, 10, 17, 13, 10, 4, 13, 10, 4, 13, 10, 12, 13, 10, 2, 13 ]
[ [ 196, 5 ], [ 196, 14 ], [ 196, 15 ], [ 196, 16 ], [ 190, 18 ], [ 175, 21 ], [ 31, 30 ], [ 51, 41 ], [ 53, 42 ], [ 51, 45 ], [ 53, 48 ], [ 176, 49 ], [ 51, 51 ], [ 53, 53 ], [ 202, 55 ], [ 194, 60 ], [ 197, 61 ], [ 64, 63 ], [ 194, 68 ], [ 197, 69 ], [ 74, 71 ], [ 203, 72 ], [ 63, 73 ], [ 203, 77 ], [ 63, 79 ], [ 63, 81 ], [ 176, 82 ], [ 86, 85 ], [ 203, 85 ], [ 85, 90 ], [ 176, 92 ], [ 176, 94 ], [ 184, 96 ], [ 194, 101 ], [ 188, 102 ], [ 197, 104 ], [ 182, 105 ], [ 108, 107 ], [ 194, 112 ], [ 188, 113 ], [ 172, 115 ], [ 200, 119 ], [ 107, 120 ], [ 182, 122 ], [ 200, 125 ], [ 194, 128 ], [ 107, 130 ], [ 197, 133 ], [ 182, 135 ], [ 176, 136 ], [ 139, 138 ], [ 182, 141 ], [ 197, 142 ], [ 178, 144 ], [ 200, 148 ], [ 138, 149 ], [ 194, 152 ], [ 188, 154 ], [ 200, 156 ], [ 197, 159 ], [ 138, 161 ], [ 188, 163 ], [ 176, 165 ], [ 179, 169 ], [ 173, 169 ], [ 191, 169 ], [ 176, 170 ], [ 172, 173 ], [ 175, 176 ], [ 178, 179 ], [ 196, 182 ], [ 184, 185 ], [ 196, 188 ], [ 190, 191 ], [ 196, 194 ], [ 196, 197 ], [ 202, 203 ] ]
[ "from operator import mul\nfrom functools import reduce\nfrom functools import lru_cache\n\n\nH,W,A,B = map(int,input().split())\nans = 0\nmod = 10**9+7\n\nlru_cache(maxsize=None)\ndef cmb(c, r):\n return fc[c + r] * ic[c] * ic[r] % mod\n \nfc = [1] * (H + W)\nfor i in range(2, H+W):\n fc[i] = fc[i - 1] * i % mod\nic = [pow(x, mod-2, mod) for x in fc]\n \nif H-A <= W-B:\n for i in range(0,H-A):\n ans += cmb(i, B-1) * cmb(H - 1 - i,W - 1 -B ) % mod\nelse:\n for i in range(B, W):\n ans += cmb(i, H - 1 - A) * cmb(W - 1 - i, A - 1) % mod\n \nprint(ans%(mod))", "from operator import mul", "from functools import reduce", "from functools import lru_cache", "H,W,A,B = map(int,input().split())", "H", "map(int,input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "ans = 0", "ans", "0", "mod = 10**9+7", "mod", "10**9+7", "10**9", "10", "9", "7", "lru_cache(maxsize=None)", "lru_cache", "maxsize=None", "maxsize", "None", "def cmb(c, r):\n return fc[c + r] * ic[c] * ic[r] % mod\n ", "cmb", "return fc[c + r] * ic[c] * ic[r] % mod", "fc[c + r] * ic[c] * ic[r] % mod", "fc[c + r] * ic[c] * ic[r]", "fc[c + r] * ic[c]", "fc[c + r]", "fc", "c + r", "c", "r", "ic[c]", "ic", "c", "ic[r]", "ic", "r", "mod", "c", "c", "r", "r", "fc = [1] * (H + W)", "fc", "[1] * (H + W)", "[1]", "1", "H + W", "H", "W", "for i in range(2, H+W):\n fc[i] = fc[i - 1] * i % mod", "i", "range(2, H+W)", "range", "2", "H+W", "H", "W", "fc[i] = fc[i - 1] * i % mod", "fc[i]", "fc", "i", "fc[i - 1] * i % mod", "fc[i - 1] * i", "fc[i - 1]", "fc", "i - 1", "i", "1", "i", "mod", "pow(x, mod-2, mod) for x in fc", "for x in fc", "x", "fc", "for x in fc", "pow(x, mod-2, mod)", "pow", "x", "mod-2", "mod", "2", "mod", "ic = [pow(x, mod-2, mod) for x in fc]", "ic", "[pow(x, mod-2, mod) for x in fc]", "if H-A <= W-B:\n for i in range(0,H-A):\n ans += cmb(i, B-1) * cmb(H - 1 - i,W - 1 -B ) % mod\nelse:\n for i in range(B, W):\n ans += cmb(i, H - 1 - A) * cmb(W - 1 - i, A - 1) % mod\n ", "H-A <= W-B", "H-A", "H", "A", "W-B", "W", "B", "for i in range(0,H-A):\n ans += cmb(i, B-1) * cmb(H - 1 - i,W - 1 -B ) % mod", "i", "range(0,H-A)", "range", "0", "H-A", "H", "A", "ans += cmb(i, B-1) * cmb(H - 1 - i,W - 1 -B ) % mod", "ans", "cmb(i, B-1) * cmb(H - 1 - i,W - 1 -B ) % mod", "cmb(i, B-1) * cmb(H - 1 - i,W - 1 -B )", "cmb(i, B-1)", "cmb", "i", "B-1", "B", "1", "cmb(H - 1 - i,W - 1 -B )", "cmb", "H - 1 - i", "H - 1", "H", "1", "i", "W - 1 -B", "W - 1", "W", "1", "B", "mod", "for i in range(B, W):\n ans += cmb(i, H - 1 - A) * cmb(W - 1 - i, A - 1) % mod\n ", "i", "range(B, W)", "range", "B", "W", "ans += cmb(i, H - 1 - A) * cmb(W - 1 - i, A - 1) % mod", "ans", "cmb(i, H - 1 - A) * cmb(W - 1 - i, A - 1) % mod", "cmb(i, H - 1 - A) * cmb(W - 1 - i, A - 1)", "cmb(i, H - 1 - A)", "cmb", "i", "H - 1 - A", "H - 1", "H", "1", "A", "cmb(W - 1 - i, A - 1)", "cmb", "W - 1 - i", "W - 1", "W", "1", "i", "A - 1", "A", "1", "mod", "print(ans%(mod))", "print", "ans%(mod)", "ans", "mod", "ans += cmb(i, B-1) * cmb(H - 1 - i,W - 1 -B ) % mod", "cmb(i, B-1) * cmb(H - 1 - i,W - 1 -B ) % mod", "ans", "mod = 10**9+7", "10**9+7", "mod", "ans += cmb(i, H - 1 - A) * cmb(W - 1 - i, A - 1) % mod", "cmb(i, H - 1 - A) * cmb(W - 1 - i, A - 1) % mod", "ans", "B = map(int,input().split())", "map(int,input().split())", "B", "ic = [pow(x, mod-2, mod) for x in fc]", "[pow(x, mod-2, mod) for x in fc]", "ic", "A,B = map(int,input().split())", "map(int,input().split())", "A", "ans = 0", "0", "ans", "H,W,A,B = map(int,input().split())", "map(int,input().split())", "H", "W,A,B = map(int,input().split())", "map(int,input().split())", "W", "def cmb(c, r):\n return fc[c + r] * ic[c] * ic[r] % mod\n ", "def cmb(c, r):\n return fc[c + r] * ic[c] * ic[r] % mod\n ", "cmb", "fc = [1] * (H + W)", "[1] * (H + W)", "fc" ]
from operator import mul from functools import reduce from functools import lru_cache H,W,A,B = map(int,input().split()) ans = 0 mod = 10**9+7 lru_cache(maxsize=None) def cmb(c, r): return fc[c + r] * ic[c] * ic[r] % mod fc = [1] * (H + W) for i in range(2, H+W): fc[i] = fc[i - 1] * i % mod ic = [pow(x, mod-2, mod) for x in fc] if H-A <= W-B: for i in range(0,H-A): ans += cmb(i, B-1) * cmb(H - 1 - i,W - 1 -B ) % mod else: for i in range(B, W): ans += cmb(i, H - 1 - A) * cmb(W - 1 - i, A - 1) % mod print(ans%(mod))
[ 7, 15, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 17, 0, 13, 2, 13, 17, 0, 13, 17, 0, 13, 2, 2, 2, 2, 13, 13, 17, 13, 17, 0, 13, 2, 13, 17, 0, 13, 17, 0, 13, 39, 17, 0, 13, 17, 28, 13, 4, 13, 17, 17, 0, 13, 13, 0, 13, 13, 4, 18, 13, 13, 13, 12, 13, 29, 2, 2, 2, 2, 18, 13, 13, 4, 13, 18, 13, 13, 2, 13, 17, 13, 13, 4, 13, 18, 13, 2, 13, 13, 2, 13, 17, 13, 13, 23, 13, 23, 13, 23, 13, 28, 13, 4, 13, 2, 13, 13, 0, 13, 4, 13, 13, 13, 17, 0, 13, 4, 13, 13, 13, 17, 0, 13, 2, 2, 13, 2, 13, 13, 17, 0, 13, 17, 0, 13, 17, 0, 13, 17, 0, 13, 17, 4, 13, 13, 10, 17, 13, 10, 17, 13, 10, 17, 13, 10, 12, 13, 10, 13, 13, 10, 2, 13, 10, 17, 13, 10, 17, 13, 10, 4, 13, 10, 4, 13, 10, 2, 13, 10, 17, 13, 10, 4, 13, 10, 13, 13, 10, 4, 13, 10, 2, 13, 10, 4, 13, 10, 17, 13, 10, 17, 13, 10, 39, 13, 10, 4, 13, 10, 2, 13 ]
[ [ 213, 3 ], [ 213, 12 ], [ 213, 13 ], [ 213, 14 ], [ 159, 16 ], [ 198, 19 ], [ 178, 21 ], [ 186, 24 ], [ 216, 27 ], [ 181, 32 ], [ 178, 33 ], [ 214, 35 ], [ 168, 38 ], [ 214, 40 ], [ 171, 43 ], [ 210, 46 ], [ 174, 50 ], [ 54, 53 ], [ 192, 59 ], [ 53, 60 ], [ 165, 62 ], [ 172, 63 ], [ 211, 66 ], [ 166, 68 ], [ 193, 68 ], [ 175, 68 ], [ 211, 77 ], [ 102, 78 ], [ 211, 82 ], [ 104, 83 ], [ 106, 85 ], [ 106, 87 ], [ 106, 88 ], [ 211, 92 ], [ 102, 94 ], [ 104, 95 ], [ 106, 97 ], [ 106, 99 ], [ 106, 100 ], [ 102, 102 ], [ 104, 104 ], [ 106, 106 ], [ 109, 108 ], [ 214, 112 ], [ 190, 113 ], [ 201, 115 ], [ 163, 117 ], [ 199, 118 ], [ 208, 118 ], [ 187, 119 ], [ 154, 119 ], [ 195, 122 ], [ 163, 124 ], [ 217, 125 ], [ 157, 125 ], [ 169, 126 ], [ 205, 126 ], [ 183, 129 ], [ 160, 132 ], [ 184, 132 ], [ 202, 134 ], [ 196, 135 ], [ 207, 138 ], [ 153, 141 ], [ 204, 144 ], [ 156, 147 ], [ 184, 151 ], [ 160, 151 ], [ 153, 154 ], [ 156, 157 ], [ 159, 160 ], [ 172, 165 ], [ 165, 166 ], [ 168, 169 ], [ 171, 172 ], [ 174, 175 ], [ 213, 178 ], [ 213, 181 ], [ 183, 184 ], [ 186, 187 ], [ 213, 190 ], [ 53, 192 ], [ 192, 193 ], [ 195, 196 ], [ 198, 199 ], [ 201, 202 ], [ 204, 205 ], [ 207, 208 ], [ 210, 211 ], [ 213, 214 ], [ 216, 217 ] ]
[ "from math import comb\nh,w,a,b = map(int,input().split())\ns = 0\nnC = b-1\nkC = 0\nnD = w-b-1+h-1\nkD = h-1\np = 1000000007\nfac = [1]\nff = 1\nfor i in range(1,200001):\n ff *= i\n ff %= p\n fac.append(ff)\ndef ncr(n, r, p): \n return (fac[n] * pow(fac[r], p-2, p) % p * pow(fac[n-r], p-2, p) % p);\n\nfor i in range(h-a):\n C = ncr(nC, kC, 1000000007)\n D = ncr(nD, kD, 1000000007)\n s = (s + C * D) % 1000000007\n nC += 1\n kC += 1\n kD -= 1\n nD -= 1\nprint(s)", "from math import comb", "h,w,a,b = map(int,input().split())", "h", "map(int,input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "w", "a", "b", "s = 0", "s", "0", "nC = b-1", "nC", "b-1", "b", "1", "kC = 0", "kC", "0", "nD = w-b-1+h-1", "nD", "w-b-1+h-1", "w-b-1+h", "w-b-1", "w-b", "w", "b", "1", "h", "1", "kD = h-1", "kD", "h-1", "h", "1", "p = 1000000007", "p", "1000000007", "fac = [1]", "fac", "[1]", "1", "ff = 1", "ff", "1", "for i in range(1,200001):\n ff *= i\n ff %= p\n fac.append(ff)", "i", "range(1,200001)", "range", "1", "200001", "ff *= i", "ff", "i", "ff %= p", "ff", "p", "fac.append(ff)", "fac.append", "fac", "append", "ff", "def ncr(n, r, p): \n return (fac[n] * pow(fac[r], p-2, p) % p * pow(fac[n-r], p-2, p) % p);", "ncr", "return (fac[n] * pow(fac[r], p-2, p) % p * pow(fac[n-r], p-2, p) % p)", "fac[n] * pow(fac[r], p-2, p) % p * pow(fac[n-r], p-2, p) % p", "fac[n] * pow(fac[r], p-2, p) % p * pow(fac[n-r], p-2, p)", "fac[n] * pow(fac[r], p-2, p) % p", "fac[n] * pow(fac[r], p-2, p)", "fac[n]", "fac", "n", "pow(fac[r], p-2, p)", "pow", "fac[r]", "fac", "r", "p-2", "p", "2", "p", "p", "pow(fac[n-r], p-2, p)", "pow", "fac[n-r]", "fac", "n-r", "n", "r", "p-2", "p", "2", "p", "p", "n", "n", "r", "r", "p", "p", "for i in range(h-a):\n C = ncr(nC, kC, 1000000007)\n D = ncr(nD, kD, 1000000007)\n s = (s + C * D) % 1000000007\n nC += 1\n kC += 1\n kD -= 1\n nD -= 1", "i", "range(h-a)", "range", "h-a", "h", "a", "C = ncr(nC, kC, 1000000007)", "C", "ncr(nC, kC, 1000000007)", "ncr", "nC", "kC", "1000000007", "D = ncr(nD, kD, 1000000007)", "D", "ncr(nD, kD, 1000000007)", "ncr", "nD", "kD", "1000000007", "s = (s + C * D) % 1000000007", "s", "(s + C * D) % 1000000007", "s + C * D", "s", "C * D", "C", "D", "1000000007", "nC += 1", "nC", "1", "kC += 1", "kC", "1", "kD -= 1", "kD", "1", "nD -= 1", "nD", "1", "print(s)", "print", "s", "kC += 1", "1", "kC", "nD -= 1", "1", "nD", "s = 0", "0", "s", "def ncr(n, r, p): \n return (fac[n] * pow(fac[r], p-2, p) % p * pow(fac[n-r], p-2, p) % p);", "def ncr(n, r, p): \n return (fac[n] * pow(fac[r], p-2, p) % p * pow(fac[n-r], p-2, p) % p);", "ncr", "ff %= p", "p", "ff", "kD = h-1", "h-1", "kD", "p = 1000000007", "1000000007", "p", "ff = 1", "1", "ff", "b = map(int,input().split())", "map(int,input().split())", "b", "w,a,b = map(int,input().split())", "map(int,input().split())", "w", "s = (s + C * D) % 1000000007", "(s + C * D) % 1000000007", "s", "kC = 0", "0", "kC", "a,b = map(int,input().split())", "map(int,input().split())", "a", "ff *= i", "i", "ff", "D = ncr(nD, kD, 1000000007)", "ncr(nD, kD, 1000000007)", "D", "nC = b-1", "b-1", "nC", "C = ncr(nC, kC, 1000000007)", "ncr(nC, kC, 1000000007)", "C", "kD -= 1", "1", "kD", "nC += 1", "1", "nC", "fac = [1]", "[1]", "fac", "h,w,a,b = map(int,input().split())", "map(int,input().split())", "h", "nD = w-b-1+h-1", "w-b-1+h-1", "nD" ]
from math import comb h,w,a,b = map(int,input().split()) s = 0 nC = b-1 kC = 0 nD = w-b-1+h-1 kD = h-1 p = 1000000007 fac = [1] ff = 1 for i in range(1,200001): ff *= i ff %= p fac.append(ff) def ncr(n, r, p): return (fac[n] * pow(fac[r], p-2, p) % p * pow(fac[n-r], p-2, p) % p); for i in range(h-a): C = ncr(nC, kC, 1000000007) D = ncr(nD, kD, 1000000007) s = (s + C * D) % 1000000007 nC += 1 kC += 1 kD -= 1 nD -= 1 print(s)
[ 7, 12, 13, 29, 4, 13, 4, 18, 4, 13, 13, 12, 13, 29, 4, 13, 4, 13, 13, 4, 18, 4, 18, 4, 13, 13, 13, 17, 0, 13, 39, 17, 0, 13, 2, 2, 17, 17, 17, 0, 13, 39, 17, 12, 13, 14, 2, 13, 17, 29, 17, 0, 13, 4, 13, 13, 2, 13, 17, 0, 13, 2, 2, 13, 13, 13, 14, 2, 2, 13, 17, 17, 29, 13, 29, 2, 2, 13, 13, 13, 23, 13, 23, 13, 12, 13, 0, 13, 17, 42, 13, 14, 2, 2, 13, 17, 17, 0, 13, 2, 2, 13, 13, 13, 0, 13, 2, 2, 13, 13, 13, 0, 13, 17, 29, 13, 23, 13, 23, 13, 12, 13, 14, 2, 2, 13, 17, 2, 13, 13, 29, 17, 29, 2, 2, 2, 2, 18, 13, 13, 18, 13, 2, 13, 13, 13, 18, 13, 13, 13, 23, 13, 23, 13, 12, 13, 17, 0, 13, 4, 13, 13, 13, 13, 28, 13, 4, 13, 17, 2, 13, 13, 0, 13, 2, 2, 18, 13, 17, 13, 13, 4, 18, 13, 13, 13, 0, 13, 4, 13, 13, 2, 13, 17, 4, 18, 13, 13, 13, 0, 13, 17, 28, 13, 4, 13, 13, 13, 0, 13, 13, 0, 13, 2, 2, 13, 13, 17, 0, 13, 2, 2, 13, 13, 17, 0, 13, 2, 13, 17, 0, 13, 2, 2, 13, 2, 2, 4, 13, 2, 13, 13, 13, 4, 13, 2, 13, 13, 13, 13, 13, 29, 13, 14, 2, 13, 17, 4, 13, 4, 13, 10, 39, 13, 10, 12, 13, 10, 12, 13, 10, 39, 13, 10, 2, 13, 10, 12, 13, 10, 12, 13, 10, 12, 13, 10, 12, 13 ]
[ [ 271, 29 ], [ 274, 33 ], [ 262, 40 ], [ 83, 47 ], [ 53, 52 ], [ 81, 55 ], [ 83, 57 ], [ 61, 60 ], [ 52, 63 ], [ 52, 64 ], [ 275, 65 ], [ 83, 69 ], [ 60, 73 ], [ 60, 77 ], [ 81, 78 ], [ 275, 79 ], [ 81, 81 ], [ 83, 83 ], [ 88, 87 ], [ 119, 94 ], [ 112, 94 ], [ 99, 98 ], [ 87, 101 ], [ 98, 101 ], [ 117, 102 ], [ 105, 102 ], [ 275, 103 ], [ 106, 105 ], [ 117, 108 ], [ 105, 108 ], [ 117, 109 ], [ 105, 109 ], [ 275, 110 ], [ 113, 112 ], [ 98, 115 ], [ 87, 115 ], [ 117, 117 ], [ 119, 119 ], [ 153, 125 ], [ 153, 128 ], [ 151, 129 ], [ 272, 138 ], [ 151, 139 ], [ 263, 141 ], [ 151, 143 ], [ 153, 144 ], [ 275, 145 ], [ 263, 147 ], [ 153, 148 ], [ 275, 149 ], [ 151, 151 ], [ 153, 153 ], [ 159, 158 ], [ 269, 160 ], [ 159, 161 ], [ 159, 162 ], [ 159, 163 ], [ 166, 165 ], [ 158, 170 ], [ 161, 171 ], [ 174, 173 ], [ 272, 177 ], [ 165, 179 ], [ 275, 180 ], [ 272, 183 ], [ 173, 185 ], [ 188, 187 ], [ 284, 189 ], [ 173, 190 ], [ 275, 192 ], [ 263, 196 ], [ 187, 198 ], [ 201, 200 ], [ 204, 203 ], [ 163, 206 ], [ 161, 207 ], [ 210, 209 ], [ 203, 210 ], [ 213, 212 ], [ 158, 215 ], [ 162, 216 ], [ 220, 219 ], [ 161, 222 ], [ 203, 223 ], [ 227, 226 ], [ 162, 228 ], [ 232, 231 ], [ 200, 234 ], [ 231, 234 ], [ 266, 238 ], [ 212, 240 ], [ 209, 241 ], [ 212, 242 ], [ 266, 244 ], [ 226, 246 ], [ 219, 247 ], [ 226, 248 ], [ 275, 249 ], [ 275, 250 ], [ 231, 252 ], [ 200, 252 ], [ 287, 260 ], [ 262, 263 ], [ 271, 272 ], [ 274, 275 ] ]
[ "\n\ndef read_int():\n return int(input().strip())\n\n\ndef read_ints():\n return list(map(int, input().strip().split(' ')))\n\n\nfactorial = [1]\nmodulo = 10**9+7\ninverse_factorial = [0]\n\n\ndef pow1(a, p):\n if p == 0:\n return 1\n half = pow1(a, p//2)\n total = (half*half)%modulo\n if p%2 == 0:\n return total\n return (total*a)%modulo\n\n\ndef modpow(a, p):\n ans = 1\n while p:\n if p&1 == 1:\n ans = (ans*a)%modulo\n a = (a*a)%modulo\n p >>= 1\n return ans\n\n\ndef nCr(n, r):\n if r == 0 or r == n:\n return 1\n return (((factorial[n]*inverse_factorial[n-r])%modulo)*inverse_factorial[r])%modulo\n\n\ndef solve():\n \"\"\"\n 2 3 1 1\n ...\n x.. A\n\n B\n\n C(2, 1)*C(3, 2)\n\n m 0 n 1 C(m, n) 1\n m 1 n 2 C(m, n) 2\n m 0 n 2 C(m, n) 4\n m 1 n 3 C(m, n) 12\n \"\"\"\n H, W, A, B = read_ints()\n for i in range(1, H+W):\n f = (factorial[-1]*i)%modulo\n factorial.append(f)\n inv_f = modpow(f, modulo-2)\n inverse_factorial.append(inv_f)\n T = 0\n for d in range(B, W):\n # d = 0, 1\n y0 = d\n x0 = H-A-1\n y1 = W-d-1\n x1 = A-1\n T = (T+(nCr(x0+y0, x0)*nCr(x1+y1, x1))%modulo)%modulo\n return T\n\n\nif __name__ == '__main__':\n print(solve())", "def read_int():\n return int(input().strip())", "read_int", "return int(input().strip())", "int(input().strip())", "int", "input().strip()", "().strip", "()", "input", "strip", "def read_ints():\n return list(map(int, input().strip().split(' ')))", "read_ints", "return list(map(int, input().strip().split(' ')))", "list(map(int, input().strip().split(' ')))", "list", "map(int, input().strip().split(' '))", "map", "int", "input().strip().split(' ')", "().strip().split", "().strip()", "().strip", "()", "input", "strip", "split", "' '", "factorial = [1]", "factorial", "[1]", "1", "modulo = 10**9+7", "modulo", "10**9+7", "10**9", "10", "9", "7", "inverse_factorial = [0]", "inverse_factorial", "[0]", "0", "def pow1(a, p):\n if p == 0:\n return 1\n half = pow1(a, p//2)\n total = (half*half)%modulo\n if p%2 == 0:\n return total\n return (total*a)%modulo", "pow1", "if p == 0:\n return 1\n ", "p == 0", "p", "0", "return 1", "1", "half = pow1(a, p//2)", "half", "pow1(a, p//2)", "pow1", "a", "p//2", "p", "2", "total = (half*half)%modulo", "total", "(half*half)%modulo", "half*half", "half", "half", "modulo", "if p%2 == 0:\n return total\n ", "p%2 == 0", "p%2", "p", "2", "0", "return total", "total", "return (total*a)%modulo", "(total*a)%modulo", "total*a", "total", "a", "modulo", "a", "a", "p", "p", "def modpow(a, p):\n ans = 1\n while p:\n if p&1 == 1:\n ans = (ans*a)%modulo\n a = (a*a)%modulo\n p >>= 1\n return ans", "modpow", "ans = 1", "ans", "1", "while p:\n if p&1 == 1:\n ans = (ans*a)%modulo\n a = (a*a)%modulo\n p >>= 1\n ", "p", "if p&1 == 1:\n ans = (ans*a)%modulo\n ", "p&1 == 1", "p&1", "p", "1", "1", "ans = (ans*a)%modulo", "ans", "(ans*a)%modulo", "ans*a", "ans", "a", "modulo", "a = (a*a)%modulo", "a", "(a*a)%modulo", "a*a", "a", "a", "modulo", "p >>= 1", "p", "1", "return ans", "ans", "a", "a", "p", "p", "def nCr(n, r):\n if r == 0 or r == n:\n return 1\n return (((factorial[n]*inverse_factorial[n-r])%modulo)*inverse_factorial[r])%modulo", "nCr", "if r == 0 or r == n:\n return 1\n ", "r == 0 or r == n", "r == 0", "r", "0", "r == n", "r", "n", "return 1", "1", "return (((factorial[n]*inverse_factorial[n-r])%modulo)*inverse_factorial[r])%modulo", "(((factorial[n]*inverse_factorial[n-r])%modulo)*inverse_factorial[r])%modulo", "((factorial[n]*inverse_factorial[n-r])%modulo)*inverse_factorial[r]", "(factorial[n]*inverse_factorial[n-r])%modulo", "factorial[n]*inverse_factorial[n-r]", "factorial[n]", "factorial", "n", "inverse_factorial[n-r]", "inverse_factorial", "n-r", "n", "r", "modulo", "inverse_factorial[r]", "inverse_factorial", "r", "modulo", "n", "n", "r", "r", "def solve():\n \"\"\"\n 2 3 1 1\n ...\n x.. A\n\n B\n\n C(2, 1)*C(3, 2)\n\n m 0 n 1 C(m, n) 1\n m 1 n 2 C(m, n) 2\n m 0 n 2 C(m, n) 4\n m 1 n 3 C(m, n) 12\n \"\"\"\n H, W, A, B = read_ints()\n for i in range(1, H+W):\n f = (factorial[-1]*i)%modulo\n factorial.append(f)\n inv_f = modpow(f, modulo-2)\n inverse_factorial.append(inv_f)\n T = 0\n for d in range(B, W):\n # d = 0, 1\n y0 = d\n x0 = H-A-1\n y1 = W-d-1\n x1 = A-1\n T = (T+(nCr(x0+y0, x0)*nCr(x1+y1, x1))%modulo)%modulo\n return T", "solve", "\"\"\"\n 2 3 1 1\n ...\n x.. A\n\n B\n\n C(2, 1)*C(3, 2)\n\n m 0 n 1 C(m, n) 1\n m 1 n 2 C(m, n) 2\n m 0 n 2 C(m, n) 4\n m 1 n 3 C(m, n) 12\n \"\"\"", "H, W, A, B = read_ints()", "H", "read_ints()", "read_ints", "W", "A", "B", "for i in range(1, H+W):\n f = (factorial[-1]*i)%modulo\n factorial.append(f)\n inv_f = modpow(f, modulo-2)\n inverse_factorial.append(inv_f)\n ", "i", "range(1, H+W)", "range", "1", "H+W", "H", "W", "f = (factorial[-1]*i)%modulo", "f", "(factorial[-1]*i)%modulo", "factorial[-1]*i", "factorial[-1]", "factorial", "-1", "i", "modulo", "factorial.append(f)", "factorial.append", "factorial", "append", "f", "inv_f = modpow(f, modulo-2)", "inv_f", "modpow(f, modulo-2)", "modpow", "f", "modulo-2", "modulo", "2", "inverse_factorial.append(inv_f)", "inverse_factorial.append", "inverse_factorial", "append", "inv_f", "T = 0", "T", "0", "for d in range(B, W):\n # d = 0, 1\n y0 = d\n x0 = H-A-1\n y1 = W-d-1\n x1 = A-1\n T = (T+(nCr(x0+y0, x0)*nCr(x1+y1, x1))%modulo)%modulo\n ", "d", "range(B, W)", "range", "B", "W", "y0 = d", "y0", "d", "x0 = H-A-1", "x0", "H-A-1", "H-A", "H", "A", "1", "y1 = W-d-1", "y1", "W-d-1", "W-d", "W", "d", "1", "x1 = A-1", "x1", "A-1", "A", "1", "T = (T+(nCr(x0+y0, x0)*nCr(x1+y1, x1))%modulo)%modulo", "T", "(T+(nCr(x0+y0, x0)*nCr(x1+y1, x1))%modulo)%modulo", "T+(nCr(x0+y0, x0)*nCr(x1+y1, x1))%modulo", "T", "(nCr(x0+y0, x0)*nCr(x1+y1, x1))%modulo", "nCr(x0+y0, x0)*nCr(x1+y1, x1)", "nCr(x0+y0, x0)", "nCr", "x0+y0", "x0", "y0", "x0", "nCr(x1+y1, x1)", "nCr", "x1+y1", "x1", "y1", "x1", "modulo", "modulo", "return T", "T", "if __name__ == '__main__':\n print(solve())", "__name__ == '__main__'", "__name__", "'__main__'", "print(solve())", "print", "solve()", "solve", "inverse_factorial = [0]", "[0]", "inverse_factorial", "def nCr(n, r):\n if r == 0 or r == n:\n return 1\n return (((factorial[n]*inverse_factorial[n-r])%modulo)*inverse_factorial[r])%modulo", "def nCr(n, r):\n if r == 0 or r == n:\n return 1\n return (((factorial[n]*inverse_factorial[n-r])%modulo)*inverse_factorial[r])%modulo", "nCr", "def read_ints():\n return list(map(int, input().strip().split(' ')))", "def read_ints():\n return list(map(int, input().strip().split(' ')))", "read_ints", "factorial = [1]", "[1]", "factorial", "modulo = 10**9+7", "10**9+7", "modulo", "def read_int():\n return int(input().strip())", "def read_int():\n return int(input().strip())", "read_int", "def pow1(a, p):\n if p == 0:\n return 1\n half = pow1(a, p//2)\n total = (half*half)%modulo\n if p%2 == 0:\n return total\n return (total*a)%modulo", "def pow1(a, p):\n if p == 0:\n return 1\n half = pow1(a, p//2)\n total = (half*half)%modulo\n if p%2 == 0:\n return total\n return (total*a)%modulo", "pow1", "def modpow(a, p):\n ans = 1\n while p:\n if p&1 == 1:\n ans = (ans*a)%modulo\n a = (a*a)%modulo\n p >>= 1\n return ans", "def modpow(a, p):\n ans = 1\n while p:\n if p&1 == 1:\n ans = (ans*a)%modulo\n a = (a*a)%modulo\n p >>= 1\n return ans", "modpow", "def solve():\n \"\"\"\n 2 3 1 1\n ...\n x.. A\n\n B\n\n C(2, 1)*C(3, 2)\n\n m 0 n 1 C(m, n) 1\n m 1 n 2 C(m, n) 2\n m 0 n 2 C(m, n) 4\n m 1 n 3 C(m, n) 12\n \"\"\"\n H, W, A, B = read_ints()\n for i in range(1, H+W):\n f = (factorial[-1]*i)%modulo\n factorial.append(f)\n inv_f = modpow(f, modulo-2)\n inverse_factorial.append(inv_f)\n T = 0\n for d in range(B, W):\n # d = 0, 1\n y0 = d\n x0 = H-A-1\n y1 = W-d-1\n x1 = A-1\n T = (T+(nCr(x0+y0, x0)*nCr(x1+y1, x1))%modulo)%modulo\n return T", "def solve():\n \"\"\"\n 2 3 1 1\n ...\n x.. A\n\n B\n\n C(2, 1)*C(3, 2)\n\n m 0 n 1 C(m, n) 1\n m 1 n 2 C(m, n) 2\n m 0 n 2 C(m, n) 4\n m 1 n 3 C(m, n) 12\n \"\"\"\n H, W, A, B = read_ints()\n for i in range(1, H+W):\n f = (factorial[-1]*i)%modulo\n factorial.append(f)\n inv_f = modpow(f, modulo-2)\n inverse_factorial.append(inv_f)\n T = 0\n for d in range(B, W):\n # d = 0, 1\n y0 = d\n x0 = H-A-1\n y1 = W-d-1\n x1 = A-1\n T = (T+(nCr(x0+y0, x0)*nCr(x1+y1, x1))%modulo)%modulo\n return T", "solve" ]
def read_int(): return int(input().strip()) def read_ints(): return list(map(int, input().strip().split(' '))) factorial = [1] modulo = 10**9+7 inverse_factorial = [0] def pow1(a, p): if p == 0: return 1 half = pow1(a, p//2) total = (half*half)%modulo if p%2 == 0: return total return (total*a)%modulo def modpow(a, p): ans = 1 while p: if p&1 == 1: ans = (ans*a)%modulo a = (a*a)%modulo p >>= 1 return ans def nCr(n, r): if r == 0 or r == n: return 1 return (((factorial[n]*inverse_factorial[n-r])%modulo)*inverse_factorial[r])%modulo def solve(): """ 2 3 1 1 ... x.. A B C(2, 1)*C(3, 2) m 0 n 1 C(m, n) 1 m 1 n 2 C(m, n) 2 m 0 n 2 C(m, n) 4 m 1 n 3 C(m, n) 12 """ H, W, A, B = read_ints() for i in range(1, H+W): f = (factorial[-1]*i)%modulo factorial.append(f) inv_f = modpow(f, modulo-2) inverse_factorial.append(inv_f) T = 0 for d in range(B, W): # d = 0, 1 y0 = d x0 = H-A-1 y1 = W-d-1 x1 = A-1 T = (T+(nCr(x0+y0, x0)*nCr(x1+y1, x1))%modulo)%modulo return T if __name__ == '__main__': print(solve())
[ 7, 15, 13, 0, 13, 4, 13, 13, 4, 18, 4, 18, 4, 18, 18, 13, 13, 13, 13, 13, 13, 13, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 39, 17, 28, 13, 4, 13, 17, 2, 2, 13, 13, 17, 4, 18, 13, 13, 2, 2, 18, 13, 17, 13, 13, 0, 13, 17, 28, 13, 4, 13, 13, 0, 13, 2, 2, 18, 13, 2, 2, 2, 13, 13, 17, 13, 4, 13, 18, 13, 13, 2, 13, 17, 13, 4, 13, 18, 13, 2, 2, 13, 13, 17, 2, 13, 17, 13, 0, 13, 13, 0, 13, 2, 2, 18, 13, 2, 2, 2, 13, 13, 17, 13, 4, 13, 18, 13, 2, 13, 17, 2, 13, 17, 13, 4, 13, 18, 13, 2, 2, 13, 17, 13, 2, 13, 17, 13, 0, 13, 13, 0, 13, 13, 0, 13, 13, 0, 13, 2, 2, 18, 13, 2, 2, 13, 13, 17, 4, 13, 18, 13, 2, 13, 17, 2, 13, 17, 13, 4, 13, 18, 13, 2, 13, 17, 2, 13, 17, 13, 0, 13, 13, 4, 13, 2, 2, 13, 13, 13, 10, 13, 13, 10, 4, 13, 10, 4, 13, 10, 2, 13, 10, 39, 13, 10, 2, 13, 10, 4, 13, 10, 17, 13, 10, 13, 13, 10, 4, 13, 10, 13, 13, 10, 2, 13, 10, 13, 13, 10, 2, 13, 10, 13, 13 ]
[ [ 218, 4 ], [ 218, 20 ], [ 218, 21 ], [ 218, 22 ], [ 224, 24 ], [ 203, 31 ], [ 36, 35 ], [ 195, 41 ], [ 198, 42 ], [ 204, 46 ], [ 204, 51 ], [ 35, 53 ], [ 225, 54 ], [ 212, 56 ], [ 60, 59 ], [ 219, 62 ], [ 200, 64 ], [ 204, 68 ], [ 195, 72 ], [ 210, 73 ], [ 59, 75 ], [ 204, 79 ], [ 59, 80 ], [ 225, 82 ], [ 225, 84 ], [ 204, 88 ], [ 195, 91 ], [ 210, 92 ], [ 225, 95 ], [ 225, 97 ], [ 191, 99 ], [ 225, 100 ], [ 206, 102 ], [ 204, 106 ], [ 198, 110 ], [ 210, 111 ], [ 59, 113 ], [ 204, 117 ], [ 210, 119 ], [ 225, 122 ], [ 225, 124 ], [ 204, 128 ], [ 198, 131 ], [ 59, 133 ], [ 225, 135 ], [ 225, 137 ], [ 233, 139 ], [ 225, 140 ], [ 221, 142 ], [ 234, 143 ], [ 207, 143 ], [ 192, 143 ], [ 201, 143 ], [ 227, 145 ], [ 225, 146 ], [ 230, 148 ], [ 204, 152 ], [ 195, 155 ], [ 198, 156 ], [ 204, 161 ], [ 195, 163 ], [ 225, 166 ], [ 225, 168 ], [ 204, 172 ], [ 198, 174 ], [ 225, 177 ], [ 225, 179 ], [ 215, 181 ], [ 225, 182 ], [ 216, 187 ], [ 231, 187 ], [ 228, 188 ], [ 222, 188 ], [ 213, 188 ], [ 225, 189 ], [ 225, 191 ], [ 191, 192 ], [ 218, 195 ], [ 218, 198 ], [ 200, 201 ], [ 203, 204 ], [ 206, 207 ], [ 218, 210 ], [ 212, 213 ], [ 225, 215 ], [ 215, 216 ], [ 218, 219 ], [ 234, 221 ], [ 207, 221 ], [ 192, 221 ], [ 201, 221 ], [ 221, 222 ], [ 224, 225 ], [ 225, 227 ], [ 227, 228 ], [ 230, 231 ], [ 225, 233 ], [ 233, 234 ] ]
[ "import sys\nH,W,A,B = map(int,sys.stdin.readline().rstrip().split())\nmod = 10**9+7\n\nkaijou = [1]\nfor i in range(1,H+W-1):\n kaijou.append((kaijou[-1]*i) % mod)\n\na = 0\nfor i in range(B):\n b = kaijou[(H-A-1)+i]*pow(kaijou[i],mod-2,mod)*pow(kaijou[H-A-1],mod-2,mod)\n b %= mod\n b *= kaijou[(W+A-2)-i]*pow(kaijou[A-1],mod-2,mod)*pow(kaijou[W-1-i],mod-2,mod)\n b %= mod\n a += b\n a %= mod\n\nc = kaijou[H+W-2]*pow(kaijou[H-1],mod-2,mod)*pow(kaijou[W-1],mod-2,mod)\nc %= mod\n\nprint((c-a) % mod)", "import sys", "sys", "H,W,A,B = map(int,sys.stdin.readline().rstrip().split())", "H", "map(int,sys.stdin.readline().rstrip().split())", "map", "int", "sys.stdin.readline().rstrip().split()", "sys.stdin.readline().rstrip().split", "sys.stdin.readline().rstrip()", "sys.stdin.readline().rstrip", "sys.stdin.readline()", "sys.stdin.readline", "sys.stdin", "sys", "stdin", "readline", "rstrip", "split", "W", "A", "B", "mod = 10**9+7", "mod", "10**9+7", "10**9", "10", "9", "7", "kaijou = [1]", "kaijou", "[1]", "1", "for i in range(1,H+W-1):\n kaijou.append((kaijou[-1]*i) % mod)", "i", "range(1,H+W-1)", "range", "1", "H+W-1", "H+W", "H", "W", "1", "kaijou.append((kaijou[-1]*i) % mod)", "kaijou.append", "kaijou", "append", "(kaijou[-1]*i) % mod", "kaijou[-1]*i", "kaijou[-1]", "kaijou", "-1", "i", "mod", "a = 0", "a", "0", "for i in range(B):\n b = kaijou[(H-A-1)+i]*pow(kaijou[i],mod-2,mod)*pow(kaijou[H-A-1],mod-2,mod)\n b %= mod\n b *= kaijou[(W+A-2)-i]*pow(kaijou[A-1],mod-2,mod)*pow(kaijou[W-1-i],mod-2,mod)\n b %= mod\n a += b\n a %= mod", "i", "range(B)", "range", "B", "b = kaijou[(H-A-1)+i]*pow(kaijou[i],mod-2,mod)*pow(kaijou[H-A-1],mod-2,mod)", "b", "kaijou[(H-A-1)+i]*pow(kaijou[i],mod-2,mod)*pow(kaijou[H-A-1],mod-2,mod)", "kaijou[(H-A-1)+i]*pow(kaijou[i],mod-2,mod)", "kaijou[(H-A-1)+i]", "kaijou", "(H-A-1)+i", "H-A-1", "H-A", "H", "A", "1", "i", "pow(kaijou[i],mod-2,mod)", "pow", "kaijou[i]", "kaijou", "i", "mod-2", "mod", "2", "mod", "pow(kaijou[H-A-1],mod-2,mod)", "pow", "kaijou[H-A-1]", "kaijou", "H-A-1", "H-A", "H", "A", "1", "mod-2", "mod", "2", "mod", "b %= mod", "b", "mod", "b *= kaijou[(W+A-2)-i]*pow(kaijou[A-1],mod-2,mod)*pow(kaijou[W-1-i],mod-2,mod)", "b", "kaijou[(W+A-2)-i]*pow(kaijou[A-1],mod-2,mod)*pow(kaijou[W-1-i],mod-2,mod)", "kaijou[(W+A-2)-i]*pow(kaijou[A-1],mod-2,mod)", "kaijou[(W+A-2)-i]", "kaijou", "(W+A-2)-i", "W+A-2", "W+A", "W", "A", "2", "i", "pow(kaijou[A-1],mod-2,mod)", "pow", "kaijou[A-1]", "kaijou", "A-1", "A", "1", "mod-2", "mod", "2", "mod", "pow(kaijou[W-1-i],mod-2,mod)", "pow", "kaijou[W-1-i]", "kaijou", "W-1-i", "W-1", "W", "1", "i", "mod-2", "mod", "2", "mod", "b %= mod", "b", "mod", "a += b", "a", "b", "a %= mod", "a", "mod", "c = kaijou[H+W-2]*pow(kaijou[H-1],mod-2,mod)*pow(kaijou[W-1],mod-2,mod)", "c", "kaijou[H+W-2]*pow(kaijou[H-1],mod-2,mod)*pow(kaijou[W-1],mod-2,mod)", "kaijou[H+W-2]*pow(kaijou[H-1],mod-2,mod)", "kaijou[H+W-2]", "kaijou", "H+W-2", "H+W", "H", "W", "2", "pow(kaijou[H-1],mod-2,mod)", "pow", "kaijou[H-1]", "kaijou", "H-1", "H", "1", "mod-2", "mod", "2", "mod", "pow(kaijou[W-1],mod-2,mod)", "pow", "kaijou[W-1]", "kaijou", "W-1", "W", "1", "mod-2", "mod", "2", "mod", "c %= mod", "c", "mod", "print((c-a) % mod)", "print", "(c-a) % mod", "c-a", "c", "a", "mod", "b %= mod", "mod", "b", "H,W,A,B = map(int,sys.stdin.readline().rstrip().split())", "map(int,sys.stdin.readline().rstrip().split())", "H", "W,A,B = map(int,sys.stdin.readline().rstrip().split())", "map(int,sys.stdin.readline().rstrip().split())", "W", "b = kaijou[(H-A-1)+i]*pow(kaijou[i],mod-2,mod)*pow(kaijou[H-A-1],mod-2,mod)", "kaijou[(H-A-1)+i]*pow(kaijou[i],mod-2,mod)*pow(kaijou[H-A-1],mod-2,mod)", "b", "kaijou = [1]", "[1]", "kaijou", "b *= kaijou[(W+A-2)-i]*pow(kaijou[A-1],mod-2,mod)*pow(kaijou[W-1-i],mod-2,mod)", "kaijou[(W+A-2)-i]*pow(kaijou[A-1],mod-2,mod)*pow(kaijou[W-1-i],mod-2,mod)", "b", "A,B = map(int,sys.stdin.readline().rstrip().split())", "map(int,sys.stdin.readline().rstrip().split())", "A", "a = 0", "0", "a", "c %= mod", "mod", "c", "B = map(int,sys.stdin.readline().rstrip().split())", "map(int,sys.stdin.readline().rstrip().split())", "B", "a += b", "b", "a", "mod = 10**9+7", "10**9+7", "mod", "a %= mod", "mod", "a", "c = kaijou[H+W-2]*pow(kaijou[H-1],mod-2,mod)*pow(kaijou[W-1],mod-2,mod)", "kaijou[H+W-2]*pow(kaijou[H-1],mod-2,mod)*pow(kaijou[W-1],mod-2,mod)", "c", "b %= mod", "mod", "b" ]
import sys H,W,A,B = map(int,sys.stdin.readline().rstrip().split()) mod = 10**9+7 kaijou = [1] for i in range(1,H+W-1): kaijou.append((kaijou[-1]*i) % mod) a = 0 for i in range(B): b = kaijou[(H-A-1)+i]*pow(kaijou[i],mod-2,mod)*pow(kaijou[H-A-1],mod-2,mod) b %= mod b *= kaijou[(W+A-2)-i]*pow(kaijou[A-1],mod-2,mod)*pow(kaijou[W-1-i],mod-2,mod) b %= mod a += b a %= mod c = kaijou[H+W-2]*pow(kaijou[H-1],mod-2,mod)*pow(kaijou[W-1],mod-2,mod) c %= mod print((c-a) % mod)
[ 7, 0, 13, 2, 2, 17, 17, 17, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 12, 13, 14, 2, 13, 13, 14, 2, 2, 13, 17, 2, 13, 17, 29, 2, 2, 2, 2, 18, 13, 13, 18, 13, 13, 13, 18, 13, 2, 13, 13, 13, 23, 13, 23, 13, 0, 13, 2, 39, 17, 2, 2, 13, 13, 17, 0, 13, 2, 39, 17, 2, 2, 13, 13, 17, 28, 13, 4, 13, 17, 2, 2, 13, 13, 17, 0, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 13, 13, 0, 18, 13, 13, 4, 13, 18, 13, 13, 2, 13, 17, 13, 0, 13, 17, 28, 13, 4, 13, 2, 13, 13, 0, 13, 2, 4, 13, 2, 2, 13, 13, 17, 2, 13, 17, 4, 13, 2, 2, 2, 2, 13, 13, 13, 13, 17, 2, 2, 13, 13, 17, 0, 13, 13, 4, 13, 2, 13, 13, 10, 12, 13, 10, 2, 13, 10, 4, 13, 10, 4, 13, 10, 4, 13, 10, 2, 13, 10, 13, 13, 10, 2, 13, 10, 4, 13, 10, 2, 13, 10, 17, 13 ]
[ [ 164, 2 ], [ 185, 9 ], [ 185, 18 ], [ 185, 19 ], [ 185, 20 ], [ 54, 25 ], [ 56, 26 ], [ 54, 30 ], [ 56, 33 ], [ 54, 42 ], [ 56, 45 ], [ 165, 46 ], [ 54, 50 ], [ 56, 51 ], [ 165, 52 ], [ 54, 54 ], [ 56, 56 ], [ 176, 58 ], [ 186, 64 ], [ 171, 65 ], [ 182, 68 ], [ 186, 74 ], [ 171, 75 ], [ 79, 78 ], [ 186, 84 ], [ 171, 85 ], [ 91, 88 ], [ 177, 89 ], [ 78, 90 ], [ 177, 94 ], [ 78, 96 ], [ 78, 98 ], [ 165, 99 ], [ 104, 101 ], [ 183, 102 ], [ 78, 103 ], [ 88, 106 ], [ 177, 107 ], [ 78, 108 ], [ 165, 110 ], [ 165, 112 ], [ 191, 114 ], [ 118, 117 ], [ 186, 121 ], [ 174, 122 ], [ 188, 124 ], [ 162, 127 ], [ 168, 130 ], [ 117, 131 ], [ 168, 134 ], [ 162, 137 ], [ 186, 142 ], [ 171, 143 ], [ 168, 144 ], [ 117, 145 ], [ 171, 149 ], [ 168, 150 ], [ 179, 153 ], [ 165, 154 ], [ 180, 158 ], [ 189, 158 ], [ 192, 158 ], [ 165, 159 ], [ 164, 165 ], [ 185, 168 ], [ 185, 171 ], [ 185, 174 ], [ 176, 177 ], [ 165, 179 ], [ 179, 180 ], [ 182, 183 ], [ 185, 186 ], [ 188, 189 ], [ 191, 192 ] ]
[ "mod = 10 ** 9 + 7\nh, w, a, b = map(int, input().split())\ndef comb(n, r):\n if n < r:return 0\n if n < 0 or r < 0:return 0\n return fa[n] * fi[r] % mod * fi[n - r] % mod\nfa = [1] * (h + w + 1)\nfi = [1] * (h + w + 1)\nfor i in range(1, h + w + 1):\n fa[i] = fa[i - 1] * i % mod\n fi[i] = pow(fa[i], mod - 2, mod)\nans = 0\nfor i in range(h - a):\n ans += comb(b + i - 1, b - 1) * comb(h + w - b - i - 2, w - b - 1)\n ans %= mod\nprint(ans % mod)", "mod = 10 ** 9 + 7", "mod", "10 ** 9 + 7", "10 ** 9", "10", "9", "7", "h, w, a, b = map(int, input().split())", "h", "map(int, input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "w", "a", "b", "def comb(n, r):\n if n < r:return 0\n if n < 0 or r < 0:return 0\n return fa[n] * fi[r] % mod * fi[n - r] % mod", "comb", "if n < r:return 0\n ", "n < r", "n", "r", "if n < 0 or r < 0:return 0\n ", "n < 0 or r < 0", "n < 0", "n", "0", "r < 0", "r", "0", "return fa[n] * fi[r] % mod * fi[n - r] % mod", "fa[n] * fi[r] % mod * fi[n - r] % mod", "fa[n] * fi[r] % mod * fi[n - r]", "fa[n] * fi[r] % mod", "fa[n] * fi[r]", "fa[n]", "fa", "n", "fi[r]", "fi", "r", "mod", "fi[n - r]", "fi", "n - r", "n", "r", "mod", "n", "n", "r", "r", "fa = [1] * (h + w + 1)", "fa", "[1] * (h + w + 1)", "[1]", "1", "h + w + 1", "h + w", "h", "w", "1", "fi = [1] * (h + w + 1)", "fi", "[1] * (h + w + 1)", "[1]", "1", "h + w + 1", "h + w", "h", "w", "1", "for i in range(1, h + w + 1):\n fa[i] = fa[i - 1] * i % mod\n fi[i] = pow(fa[i], mod - 2, mod)", "i", "range(1, h + w + 1)", "range", "1", "h + w + 1", "h + w", "h", "w", "1", "fa[i] = fa[i - 1] * i % mod", "fa[i]", "fa", "i", "fa[i - 1] * i % mod", "fa[i - 1] * i", "fa[i - 1]", "fa", "i - 1", "i", "1", "i", "mod", "fi[i] = pow(fa[i], mod - 2, mod)", "fi[i]", "fi", "i", "pow(fa[i], mod - 2, mod)", "pow", "fa[i]", "fa", "i", "mod - 2", "mod", "2", "mod", "ans = 0", "ans", "0", "for i in range(h - a):\n ans += comb(b + i - 1, b - 1) * comb(h + w - b - i - 2, w - b - 1)\n ans %= mod", "i", "range(h - a)", "range", "h - a", "h", "a", "ans += comb(b + i - 1, b - 1) * comb(h + w - b - i - 2, w - b - 1)", "ans", "comb(b + i - 1, b - 1) * comb(h + w - b - i - 2, w - b - 1)", "comb(b + i - 1, b - 1)", "comb", "b + i - 1", "b + i", "b", "i", "1", "b - 1", "b", "1", "comb(h + w - b - i - 2, w - b - 1)", "comb", "h + w - b - i - 2", "h + w - b - i", "h + w - b", "h + w", "h", "w", "b", "i", "2", "w - b - 1", "w - b", "w", "b", "1", "ans %= mod", "ans", "mod", "print(ans % mod)", "print", "ans % mod", "ans", "mod", "def comb(n, r):\n if n < r:return 0\n if n < 0 or r < 0:return 0\n return fa[n] * fi[r] % mod * fi[n - r] % mod", "def comb(n, r):\n if n < r:return 0\n if n < 0 or r < 0:return 0\n return fa[n] * fi[r] % mod * fi[n - r] % mod", "comb", "mod = 10 ** 9 + 7", "10 ** 9 + 7", "mod", "b = map(int, input().split())", "map(int, input().split())", "b", "w, a, b = map(int, input().split())", "map(int, input().split())", "w", "a, b = map(int, input().split())", "map(int, input().split())", "a", "fa = [1] * (h + w + 1)", "[1] * (h + w + 1)", "fa", "ans %= mod", "mod", "ans", "fi = [1] * (h + w + 1)", "[1] * (h + w + 1)", "fi", "h, w, a, b = map(int, input().split())", "map(int, input().split())", "h", "ans += comb(b + i - 1, b - 1) * comb(h + w - b - i - 2, w - b - 1)", "comb(b + i - 1, b - 1) * comb(h + w - b - i - 2, w - b - 1)", "ans", "ans = 0", "0", "ans" ]
mod = 10 ** 9 + 7 h, w, a, b = map(int, input().split()) def comb(n, r): if n < r:return 0 if n < 0 or r < 0:return 0 return fa[n] * fi[r] % mod * fi[n - r] % mod fa = [1] * (h + w + 1) fi = [1] * (h + w + 1) for i in range(1, h + w + 1): fa[i] = fa[i - 1] * i % mod fi[i] = pow(fa[i], mod - 2, mod) ans = 0 for i in range(h - a): ans += comb(b + i - 1, b - 1) * comb(h + w - b - i - 2, w - b - 1) ans %= mod print(ans % mod)
[ 7, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 2, 17, 17, 17, 12, 13, 0, 13, 39, 17, 0, 13, 17, 28, 13, 4, 13, 13, 0, 13, 2, 2, 13, 2, 13, 17, 13, 4, 18, 13, 13, 13, 29, 13, 23, 13, 12, 13, 0, 13, 39, 17, 28, 13, 4, 13, 13, 4, 18, 13, 13, 4, 13, 18, 13, 2, 13, 17, 2, 13, 17, 13, 29, 13, 23, 13, 23, 13, 12, 13, 29, 2, 2, 2, 18, 13, 13, 18, 13, 13, 18, 13, 2, 13, 13, 13, 23, 13, 23, 13, 23, 13, 23, 13, 0, 13, 2, 13, 13, 0, 13, 2, 13, 13, 0, 13, 17, 0, 13, 4, 13, 2, 13, 13, 0, 13, 4, 13, 2, 13, 13, 13, 42, 2, 2, 13, 17, 2, 13, 17, 0, 13, 17, 0, 13, 17, 0, 13, 2, 2, 4, 13, 2, 2, 2, 13, 13, 13, 17, 13, 13, 13, 4, 13, 2, 2, 2, 13, 13, 13, 17, 13, 13, 13, 13, 4, 13, 2, 13, 13, 10, 2, 13, 10, 4, 13, 10, 2, 13, 10, 12, 13, 10, 4, 13, 10, 4, 13, 10, 12, 13, 10, 17, 13, 10, 12, 13, 10, 2, 13, 10, 4, 13, 10, 2, 13, 10, 4, 13, 10, 17, 13, 10, 17, 13, 10, 4, 13 ]
[ [ 233, 2 ], [ 233, 11 ], [ 233, 12 ], [ 233, 13 ], [ 194, 15 ], [ 25, 24 ], [ 29, 28 ], [ 32, 31 ], [ 52, 34 ], [ 37, 36 ], [ 28, 39 ], [ 36, 39 ], [ 31, 41 ], [ 195, 43 ], [ 24, 46 ], [ 36, 48 ], [ 28, 48 ], [ 24, 50 ], [ 52, 52 ], [ 57, 56 ], [ 61, 60 ], [ 82, 63 ], [ 56, 66 ], [ 84, 71 ], [ 60, 73 ], [ 195, 76 ], [ 195, 78 ], [ 56, 80 ], [ 82, 82 ], [ 84, 84 ], [ 108, 92 ], [ 104, 93 ], [ 110, 95 ], [ 106, 96 ], [ 110, 98 ], [ 104, 100 ], [ 106, 101 ], [ 195, 102 ], [ 104, 104 ], [ 106, 106 ], [ 108, 108 ], [ 110, 110 ], [ 215, 112 ], [ 225, 114 ], [ 234, 115 ], [ 188, 117 ], [ 201, 119 ], [ 192, 120 ], [ 227, 122 ], [ 218, 125 ], [ 198, 127 ], [ 225, 129 ], [ 201, 130 ], [ 203, 132 ], [ 213, 134 ], [ 225, 136 ], [ 201, 137 ], [ 219, 138 ], [ 216, 142 ], [ 210, 142 ], [ 189, 145 ], [ 231, 145 ], [ 209, 148 ], [ 230, 151 ], [ 221, 154 ], [ 207, 158 ], [ 225, 162 ], [ 234, 163 ], [ 192, 164 ], [ 210, 166 ], [ 216, 166 ], [ 219, 167 ], [ 204, 168 ], [ 207, 170 ], [ 201, 174 ], [ 234, 175 ], [ 192, 176 ], [ 231, 178 ], [ 189, 178 ], [ 219, 179 ], [ 204, 180 ], [ 195, 181 ], [ 222, 185 ], [ 228, 185 ], [ 195, 186 ], [ 188, 189 ], [ 233, 192 ], [ 194, 195 ], [ 233, 201 ], [ 203, 204 ], [ 209, 210 ], [ 215, 216 ], [ 218, 219 ], [ 221, 222 ], [ 233, 225 ], [ 227, 228 ], [ 230, 231 ], [ 233, 234 ] ]
[ "H, W, A, B = map(int, input().split())\n\nMOD = 10 ** 9 + 7\n\n\ndef get_fact_list(n: int) -> list:\n result_list = [1]\n tmp = 1\n for i in range(n):\n tmp = (tmp * (i + 1)) % MOD\n result_list.append(tmp)\n\n return result_list\n\n\ndef get_inv_list(n: int, fact_lit: list) -> list:\n result_list = [1]\n\n for i in range(n):\n result_list.append(pow(fact_lit[i + 1], MOD - 2, MOD))\n\n return result_list\n\n\ndef comb(n: int, m: int, fact_list: list, inv_list: list) -> int:\n return (fact_list[n] * inv_list[m] * inv_list[n - m]) % MOD\n\n\nh = H - A\nw = W - B\nways = 0\nfact = get_fact_list(H + W)\ninv = get_inv_list(H + W, fact)\n\nwhile h > 0 and w > 0:\n h -= 1\n w -= 1\n ways += (comb(H - A + B - 1, h, fact, inv) * comb(W + A - B - 1, w, fact, inv)) % MOD\n\nprint(ways % MOD)", "H, W, A, B = map(int, input().split())", "H", "map(int, input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "MOD = 10 ** 9 + 7", "MOD", "10 ** 9 + 7", "10 ** 9", "10", "9", "7", "def get_fact_list(n: int) -> list:\n result_list = [1]\n tmp = 1\n for i in range(n):\n tmp = (tmp * (i + 1)) % MOD\n result_list.append(tmp)\n\n return result_list", "get_fact_list", "result_list = [1]", "result_list", "[1]", "1", "tmp = 1", "tmp", "1", "for i in range(n):\n tmp = (tmp * (i + 1)) % MOD\n result_list.append(tmp)\n\n ", "i", "range(n)", "range", "n", "tmp = (tmp * (i + 1)) % MOD", "tmp", "(tmp * (i + 1)) % MOD", "tmp * (i + 1)", "tmp", "i + 1", "i", "1", "MOD", "result_list.append(tmp)", "result_list.append", "result_list", "append", "tmp", "return result_list", "result_list", "n: int", "n", "def get_inv_list(n: int, fact_lit: list) -> list:\n result_list = [1]\n\n for i in range(n):\n result_list.append(pow(fact_lit[i + 1], MOD - 2, MOD))\n\n return result_list", "get_inv_list", "result_list = [1]", "result_list", "[1]", "1", "for i in range(n):\n result_list.append(pow(fact_lit[i + 1], MOD - 2, MOD))\n\n ", "i", "range(n)", "range", "n", "result_list.append(pow(fact_lit[i + 1], MOD - 2, MOD))", "result_list.append", "result_list", "append", "pow(fact_lit[i + 1], MOD - 2, MOD)", "pow", "fact_lit[i + 1]", "fact_lit", "i + 1", "i", "1", "MOD - 2", "MOD", "2", "MOD", "return result_list", "result_list", "n: int", "n", "fact_lit: list", "fact_lit", "def comb(n: int, m: int, fact_list: list, inv_list: list) -> int:\n return (fact_list[n] * inv_list[m] * inv_list[n - m]) % MOD", "comb", "return (fact_list[n] * inv_list[m] * inv_list[n - m]) % MOD", "(fact_list[n] * inv_list[m] * inv_list[n - m]) % MOD", "fact_list[n] * inv_list[m] * inv_list[n - m]", "fact_list[n] * inv_list[m]", "fact_list[n]", "fact_list", "n", "inv_list[m]", "inv_list", "m", "inv_list[n - m]", "inv_list", "n - m", "n", "m", "MOD", "n: int", "n", "m: int", "m", "fact_list: list", "fact_list", "inv_list: list", "inv_list", "h = H - A", "h", "H - A", "H", "A", "w = W - B", "w", "W - B", "W", "B", "ways = 0", "ways", "0", "fact = get_fact_list(H + W)", "fact", "get_fact_list(H + W)", "get_fact_list", "H + W", "H", "W", "inv = get_inv_list(H + W, fact)", "inv", "get_inv_list(H + W, fact)", "get_inv_list", "H + W", "H", "W", "fact", "while h > 0 and w > 0:\n h -= 1\n w -= 1\n ways += (comb(H - A + B - 1, h, fact, inv) * comb(W + A - B - 1, w, fact, inv)) % MOD", "h > 0 and w > 0", "h > 0", "h", "0", "w > 0", "w", "0", "h -= 1", "h", "1", "w -= 1", "w", "1", "ways += (comb(H - A + B - 1, h, fact, inv) * comb(W + A - B - 1, w, fact, inv)) % MOD", "ways", "(comb(H - A + B - 1, h, fact, inv) * comb(W + A - B - 1, w, fact, inv)) % MOD", "comb(H - A + B - 1, h, fact, inv) * comb(W + A - B - 1, w, fact, inv)", "comb(H - A + B - 1, h, fact, inv)", "comb", "H - A + B - 1", "H - A + B", "H - A", "H", "A", "B", "1", "h", "fact", "inv", "comb(W + A - B - 1, w, fact, inv)", "comb", "W + A - B - 1", "W + A - B", "W + A", "W", "A", "B", "1", "w", "fact", "inv", "MOD", "print(ways % MOD)", "print", "ways % MOD", "ways", "MOD", "w = W - B", "W - B", "w", "B = map(int, input().split())", "map(int, input().split())", "B", "MOD = 10 ** 9 + 7", "10 ** 9 + 7", "MOD", "def get_fact_list(n: int) -> list:\n result_list = [1]\n tmp = 1\n for i in range(n):\n tmp = (tmp * (i + 1)) % MOD\n result_list.append(tmp)\n\n return result_list", "def get_fact_list(n: int) -> list:\n result_list = [1]\n tmp = 1\n for i in range(n):\n tmp = (tmp * (i + 1)) % MOD\n result_list.append(tmp)\n\n return result_list", "get_fact_list", "W, A, B = map(int, input().split())", "map(int, input().split())", "W", "inv = get_inv_list(H + W, fact)", "get_inv_list(H + W, fact)", "inv", "def comb(n: int, m: int, fact_list: list, inv_list: list) -> int:\n return (fact_list[n] * inv_list[m] * inv_list[n - m]) % MOD", "def comb(n: int, m: int, fact_list: list, inv_list: list) -> int:\n return (fact_list[n] * inv_list[m] * inv_list[n - m]) % MOD", "comb", "h -= 1", "1", "h", "def get_inv_list(n: int, fact_lit: list) -> list:\n result_list = [1]\n\n for i in range(n):\n result_list.append(pow(fact_lit[i + 1], MOD - 2, MOD))\n\n return result_list", "def get_inv_list(n: int, fact_lit: list) -> list:\n result_list = [1]\n\n for i in range(n):\n result_list.append(pow(fact_lit[i + 1], MOD - 2, MOD))\n\n return result_list", "get_inv_list", "h = H - A", "H - A", "h", "fact = get_fact_list(H + W)", "get_fact_list(H + W)", "fact", "ways += (comb(H - A + B - 1, h, fact, inv) * comb(W + A - B - 1, w, fact, inv)) % MOD", "(comb(H - A + B - 1, h, fact, inv) * comb(W + A - B - 1, w, fact, inv)) % MOD", "ways", "H, W, A, B = map(int, input().split())", "map(int, input().split())", "H", "ways = 0", "0", "ways", "w -= 1", "1", "w", "A, B = map(int, input().split())", "map(int, input().split())", "A" ]
H, W, A, B = map(int, input().split()) MOD = 10 ** 9 + 7 def get_fact_list(n: int) -> list: result_list = [1] tmp = 1 for i in range(n): tmp = (tmp * (i + 1)) % MOD result_list.append(tmp) return result_list def get_inv_list(n: int, fact_lit: list) -> list: result_list = [1] for i in range(n): result_list.append(pow(fact_lit[i + 1], MOD - 2, MOD)) return result_list def comb(n: int, m: int, fact_list: list, inv_list: list) -> int: return (fact_list[n] * inv_list[m] * inv_list[n - m]) % MOD h = H - A w = W - B ways = 0 fact = get_fact_list(H + W) inv = get_inv_list(H + W, fact) while h > 0 and w > 0: h -= 1 w -= 1 ways += (comb(H - A + B - 1, h, fact, inv) * comb(W + A - B - 1, w, fact, inv)) % MOD print(ways % MOD)
[ 7, 12, 13, 29, 2, 2, 13, 13, 13, 23, 13, 23, 13, 23, 13, 12, 13, 29, 2, 2, 13, 4, 13, 13, 2, 13, 17, 13, 23, 13, 23, 13, 23, 13, 12, 13, 29, 4, 13, 13, 2, 13, 17, 23, 13, 23, 13, 12, 13, 0, 13, 17, 0, 13, 39, 17, 28, 13, 4, 13, 17, 2, 13, 17, 0, 13, 13, 0, 13, 13, 4, 18, 13, 13, 13, 0, 13, 4, 13, 13, 2, 13, 17, 13, 0, 13, 2, 39, 17, 2, 13, 17, 0, 18, 13, 13, 13, 28, 13, 4, 13, 13, 17, 17, 0, 13, 13, 0, 13, 13, 0, 18, 13, 2, 13, 17, 13, 29, 39, 13, 13, 23, 13, 23, 13, 12, 13, 29, 2, 2, 2, 18, 13, 13, 18, 13, 2, 13, 13, 18, 13, 13, 13, 23, 13, 23, 13, 23, 13, 23, 13, 23, 13, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 17, 0, 13, 4, 13, 2, 13, 13, 13, 13, 28, 13, 4, 13, 2, 13, 13, 0, 13, 4, 13, 2, 2, 13, 13, 17, 13, 13, 13, 13, 0, 13, 4, 13, 2, 2, 2, 2, 13, 13, 13, 13, 17, 2, 2, 13, 13, 17, 13, 13, 13, 0, 13, 13, 0, 13, 13, 4, 13, 13, 10, 17, 13, 10, 4, 13, 10, 4, 13, 10, 13, 13, 10, 4, 13, 10, 4, 13, 10, 12, 13, 10, 12, 13, 10, 4, 13, 10, 12, 13, 10, 12, 13, 10, 2, 13, 10, 4, 13, 10, 12, 13, 10, 4, 13, 10, 4, 13, 10, 13, 13 ]
[ [ 10, 6 ], [ 12, 7 ], [ 14, 8 ], [ 10, 10 ], [ 12, 12 ], [ 14, 14 ], [ 29, 20 ], [ 31, 23 ], [ 33, 25 ], [ 33, 27 ], [ 29, 29 ], [ 31, 31 ], [ 33, 33 ], [ 44, 39 ], [ 46, 41 ], [ 44, 44 ], [ 46, 46 ], [ 51, 50 ], [ 54, 53 ], [ 58, 57 ], [ 122, 62 ], [ 66, 65 ], [ 57, 66 ], [ 69, 68 ], [ 124, 69 ], [ 53, 72 ], [ 68, 74 ], [ 65, 74 ], [ 50, 74 ], [ 77, 76 ], [ 68, 79 ], [ 65, 79 ], [ 50, 79 ], [ 124, 81 ], [ 124, 83 ], [ 86, 85 ], [ 122, 90 ], [ 96, 93 ], [ 85, 94 ], [ 122, 95 ], [ 76, 96 ], [ 99, 98 ], [ 122, 101 ], [ 106, 105 ], [ 98, 106 ], [ 109, 108 ], [ 124, 109 ], [ 116, 111 ], [ 85, 112 ], [ 98, 114 ], [ 108, 116 ], [ 105, 116 ], [ 76, 116 ], [ 122, 122 ], [ 124, 124 ], [ 150, 132 ], [ 144, 133 ], [ 152, 135 ], [ 144, 137 ], [ 146, 138 ], [ 152, 140 ], [ 146, 141 ], [ 148, 142 ], [ 144, 144 ], [ 146, 146 ], [ 148, 148 ], [ 150, 150 ], [ 152, 152 ], [ 281, 154 ], [ 281, 163 ], [ 281, 164 ], [ 281, 165 ], [ 269, 167 ], [ 236, 174 ], [ 272, 177 ], [ 258, 179 ], [ 282, 181 ], [ 252, 182 ], [ 270, 183 ], [ 272, 184 ], [ 187, 186 ], [ 282, 190 ], [ 243, 191 ], [ 239, 193 ], [ 264, 195 ], [ 186, 198 ], [ 279, 199 ], [ 186, 201 ], [ 270, 202 ], [ 273, 203 ], [ 261, 204 ], [ 248, 206 ], [ 264, 208 ], [ 282, 213 ], [ 252, 214 ], [ 186, 215 ], [ 279, 216 ], [ 252, 220 ], [ 279, 221 ], [ 270, 223 ], [ 273, 224 ], [ 261, 225 ], [ 284, 227 ], [ 249, 228 ], [ 240, 228 ], [ 245, 230 ], [ 270, 231 ], [ 246, 234 ], [ 285, 234 ], [ 237, 234 ], [ 236, 237 ], [ 239, 240 ], [ 281, 243 ], [ 270, 245 ], [ 245, 246 ], [ 248, 249 ], [ 281, 252 ], [ 272, 261 ], [ 269, 270 ], [ 272, 273 ], [ 281, 279 ], [ 281, 282 ], [ 249, 284 ], [ 240, 284 ], [ 284, 285 ] ]
[ "\n#modの掛け算\n \ndef modmal(a,b,mod): #a*bをmodを法にして求める\n \n return a * b % mod\n \n \n#modの割り算\n \ndef moddiv(a,b,mod): #a/bをmodを法にして求める\n \n return (a * pow(b,mod-2)) % mod\n \n \n#逆元\n \ndef inverse(a,mod): #aのmodを法にした逆元を返す\n return pow(a,mod-2)\n \n \n \n#modのn!と、n!の逆元を格納したリストを返す(拾いもの)\n#factorialsには[1, 1!%mod , 2!%mod , 6!%mod… , n!%mod] が入っている\n#invsには↑の逆元が入っている\n \ndef modfac(n, MOD):\n \n f = 1\n factorials = [1]\n for m in range(1, n + 1):\n f *= m\n f %= MOD\n factorials.append(f)\n inv = pow(f, MOD - 2, MOD)\n invs = [1] * (n + 1)\n invs[n] = inv\n for m in range(n, 1, -1):\n inv *= m\n inv %= MOD\n invs[m - 1] = inv\n return factorials, invs\n \n \ndef modnCr(n,r,mod,fac,inv): #上で求めたfacとinvsを引数に入れるべし\n \n return fac[n] * inv[n-r] * inv[r] % mod\n\n\nH,W,A,B = map(int,input().split())\n\nmod = 10 ** 9 + 7\nans = 0\n\nfac,inv = modfac(H+W,mod)\n\nfor i in range(H-A):\n\n now = modnCr(i + B-1, i,mod,fac,inv)\n now *= modnCr(H+W-i-B-2,W-B-1,mod,fac,inv)\n\n ans += now\n ans %= mod\n\nprint (ans)", "def modmal(a,b,mod): #a*bをmodを法にして求める\n \n return a * b % mod\n \n \n#modの割り算\n ", "modmal", "return a * b % mod", "a * b % mod", "a * b", "a", "b", "mod", "a", "a", "b", "b", "mod", "mod", "def moddiv(a,b,mod): #a/bをmodを法にして求める\n \n return (a * pow(b,mod-2)) % mod\n \n \n#逆元\n ", "moddiv", "return (a * pow(b,mod-2)) % mod", "(a * pow(b,mod-2)) % mod", "a * pow(b,mod-2)", "a", "pow(b,mod-2)", "pow", "b", "mod-2", "mod", "2", "mod", "a", "a", "b", "b", "mod", "mod", "def inverse(a,mod): #aのmodを法にした逆元を返す\n return pow(a,mod-2)\n \n \n \n#modのn!と、n!の逆元を格納したリストを返す(拾いもの)\n#factorialsには[1, 1!%mod , 2!%mod , 6!%mod… , n!%mod] が入っている\n#invsには↑の逆元が入っている\n ", "inverse", "return pow(a,mod-2)", "pow(a,mod-2)", "pow", "a", "mod-2", "mod", "2", "a", "a", "mod", "mod", "def modfac(n, MOD):\n \n f = 1\n factorials = [1]\n for m in range(1, n + 1):\n f *= m\n f %= MOD\n factorials.append(f)\n inv = pow(f, MOD - 2, MOD)\n invs = [1] * (n + 1)\n invs[n] = inv\n for m in range(n, 1, -1):\n inv *= m\n inv %= MOD\n invs[m - 1] = inv\n return factorials, invs\n \n ", "modfac", "f = 1", "f", "1", "factorials = [1]", "factorials", "[1]", "1", "for m in range(1, n + 1):\n f *= m\n f %= MOD\n factorials.append(f)\n ", "m", "range(1, n + 1)", "range", "1", "n + 1", "n", "1", "f *= m", "f", "m", "f %= MOD", "f", "MOD", "factorials.append(f)", "factorials.append", "factorials", "append", "f", "inv = pow(f, MOD - 2, MOD)", "inv", "pow(f, MOD - 2, MOD)", "pow", "f", "MOD - 2", "MOD", "2", "MOD", "invs = [1] * (n + 1)", "invs", "[1] * (n + 1)", "[1]", "1", "n + 1", "n", "1", "invs[n] = inv", "invs[n]", "invs", "n", "inv", "for m in range(n, 1, -1):\n inv *= m\n inv %= MOD\n invs[m - 1] = inv\n ", "m", "range(n, 1, -1)", "range", "n", "1", "-1", "inv *= m", "inv", "m", "inv %= MOD", "inv", "MOD", "invs[m - 1] = inv", "invs[m - 1]", "invs", "m - 1", "m", "1", "inv", "return factorials, invs", "return factorials, invs", "factorials", "invs", "n", "n", "MOD", "MOD", "def modnCr(n,r,mod,fac,inv): #上で求めたfacとinvsを引数に入れるべし\n \n return fac[n] * inv[n-r] * inv[r] % mod", "modnCr", "return fac[n] * inv[n-r] * inv[r] % mod", "fac[n] * inv[n-r] * inv[r] % mod", "fac[n] * inv[n-r] * inv[r]", "fac[n] * inv[n-r]", "fac[n]", "fac", "n", "inv[n-r]", "inv", "n-r", "n", "r", "inv[r]", "inv", "r", "mod", "n", "n", "r", "r", "mod", "mod", "fac", "fac", "inv", "inv", "H,W,A,B = map(int,input().split())", "H", "map(int,input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "mod = 10 ** 9 + 7", "mod", "10 ** 9 + 7", "10 ** 9", "10", "9", "7", "ans = 0", "ans", "0", "fac,inv = modfac(H+W,mod)", "fac", "modfac(H+W,mod)", "modfac", "H+W", "H", "W", "mod", "inv", "for i in range(H-A):\n\n now = modnCr(i + B-1, i,mod,fac,inv)\n now *= modnCr(H+W-i-B-2,W-B-1,mod,fac,inv)\n\n ans += now\n ans %= mod", "i", "range(H-A)", "range", "H-A", "H", "A", "now = modnCr(i + B-1, i,mod,fac,inv)", "now", "modnCr(i + B-1, i,mod,fac,inv)", "modnCr", "i + B-1", "i + B", "i", "B", "1", "i", "mod", "fac", "inv", "now *= modnCr(H+W-i-B-2,W-B-1,mod,fac,inv)", "now", "modnCr(H+W-i-B-2,W-B-1,mod,fac,inv)", "modnCr", "H+W-i-B-2", "H+W-i-B", "H+W-i", "H+W", "H", "W", "i", "B", "2", "W-B-1", "W-B", "W", "B", "1", "mod", "fac", "inv", "ans += now", "ans", "now", "ans %= mod", "ans", "mod", "print (ans)", "print", "ans", "ans = 0", "0", "ans", "now = modnCr(i + B-1, i,mod,fac,inv)", "modnCr(i + B-1, i,mod,fac,inv)", "now", "A,B = map(int,input().split())", "map(int,input().split())", "A", "ans %= mod", "mod", "ans", "now *= modnCr(H+W-i-B-2,W-B-1,mod,fac,inv)", "modnCr(H+W-i-B-2,W-B-1,mod,fac,inv)", "now", "W,A,B = map(int,input().split())", "map(int,input().split())", "W", "def modmal(a,b,mod): #a*bをmodを法にして求める\n \n return a * b % mod\n \n \n#modの割り算\n ", "def modmal(a,b,mod): #a*bをmodを法にして求める\n \n return a * b % mod\n \n \n#modの割り算\n ", "modmal", "def modfac(n, MOD):\n \n f = 1\n factorials = [1]\n for m in range(1, n + 1):\n f *= m\n f %= MOD\n factorials.append(f)\n inv = pow(f, MOD - 2, MOD)\n invs = [1] * (n + 1)\n invs[n] = inv\n for m in range(n, 1, -1):\n inv *= m\n inv %= MOD\n invs[m - 1] = inv\n return factorials, invs\n \n ", "def modfac(n, MOD):\n \n f = 1\n factorials = [1]\n for m in range(1, n + 1):\n f *= m\n f %= MOD\n factorials.append(f)\n inv = pow(f, MOD - 2, MOD)\n invs = [1] * (n + 1)\n invs[n] = inv\n for m in range(n, 1, -1):\n inv *= m\n inv %= MOD\n invs[m - 1] = inv\n return factorials, invs\n \n ", "modfac", "inv = modfac(H+W,mod)", "modfac(H+W,mod)", "inv", "def modnCr(n,r,mod,fac,inv): #上で求めたfacとinvsを引数に入れるべし\n \n return fac[n] * inv[n-r] * inv[r] % mod", "def modnCr(n,r,mod,fac,inv): #上で求めたfacとinvsを引数に入れるべし\n \n return fac[n] * inv[n-r] * inv[r] % mod", "modnCr", "def moddiv(a,b,mod): #a/bをmodを法にして求める\n \n return (a * pow(b,mod-2)) % mod\n \n \n#逆元\n ", "def moddiv(a,b,mod): #a/bをmodを法にして求める\n \n return (a * pow(b,mod-2)) % mod\n \n \n#逆元\n ", "moddiv", "mod = 10 ** 9 + 7", "10 ** 9 + 7", "mod", "fac,inv = modfac(H+W,mod)", "modfac(H+W,mod)", "fac", "def inverse(a,mod): #aのmodを法にした逆元を返す\n return pow(a,mod-2)\n \n \n \n#modのn!と、n!の逆元を格納したリストを返す(拾いもの)\n#factorialsには[1, 1!%mod , 2!%mod , 6!%mod… , n!%mod] が入っている\n#invsには↑の逆元が入っている\n ", "def inverse(a,mod): #aのmodを法にした逆元を返す\n return pow(a,mod-2)\n \n \n \n#modのn!と、n!の逆元を格納したリストを返す(拾いもの)\n#factorialsには[1, 1!%mod , 2!%mod , 6!%mod… , n!%mod] が入っている\n#invsには↑の逆元が入っている\n ", "inverse", "B = map(int,input().split())", "map(int,input().split())", "B", "H,W,A,B = map(int,input().split())", "map(int,input().split())", "H", "ans += now", "now", "ans" ]
#modの掛け算 def modmal(a,b,mod): #a*bをmodを法にして求める return a * b % mod #modの割り算 def moddiv(a,b,mod): #a/bをmodを法にして求める return (a * pow(b,mod-2)) % mod #逆元 def inverse(a,mod): #aのmodを法にした逆元を返す return pow(a,mod-2) #modのn!と、n!の逆元を格納したリストを返す(拾いもの) #factorialsには[1, 1!%mod , 2!%mod , 6!%mod… , n!%mod] が入っている #invsには↑の逆元が入っている def modfac(n, MOD): f = 1 factorials = [1] for m in range(1, n + 1): f *= m f %= MOD factorials.append(f) inv = pow(f, MOD - 2, MOD) invs = [1] * (n + 1) invs[n] = inv for m in range(n, 1, -1): inv *= m inv %= MOD invs[m - 1] = inv return factorials, invs def modnCr(n,r,mod,fac,inv): #上で求めたfacとinvsを引数に入れるべし return fac[n] * inv[n-r] * inv[r] % mod H,W,A,B = map(int,input().split()) mod = 10 ** 9 + 7 ans = 0 fac,inv = modfac(H+W,mod) for i in range(H-A): now = modnCr(i + B-1, i,mod,fac,inv) now *= modnCr(H+W-i-B-2,W-B-1,mod,fac,inv) ans += now ans %= mod print (ans)
[ 7, 12, 13, 14, 2, 13, 17, 29, 39, 17, 17, 13, 0, 13, 4, 13, 13, 2, 13, 13, 13, 13, 0, 13, 2, 2, 13, 13, 13, 29, 39, 13, 13, 13, 23, 13, 23, 13, 12, 13, 0, 13, 4, 13, 13, 13, 13, 13, 29, 2, 13, 13, 23, 13, 23, 13, 12, 13, 41, 28, 13, 4, 13, 2, 13, 13, 4, 17, 0, 13, 13, 0, 13, 17, 28, 13, 4, 13, 2, 13, 13, 0, 18, 13, 13, 13, 0, 13, 2, 13, 13, 0, 13, 18, 13, 2, 13, 17, 0, 13, 13, 29, 13, 23, 13, 23, 13, 23, 13, 23, 13, 23, 13, 23, 13, 12, 13, 41, 28, 13, 4, 13, 2, 13, 13, 4, 17, 0, 13, 13, 0, 13, 17, 28, 13, 4, 13, 17, 2, 13, 17, 0, 13, 2, 2, 2, 13, 13, 13, 17, 0, 13, 18, 13, 13, 0, 13, 13, 28, 13, 4, 13, 2, 2, 13, 13, 17, 17, 17, 0, 18, 13, 13, 13, 0, 13, 2, 2, 2, 2, 13, 13, 13, 13, 17, 0, 13, 18, 13, 2, 13, 13, 0, 13, 13, 29, 13, 23, 13, 23, 13, 23, 13, 23, 13, 23, 13, 23, 13, 12, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 4, 13, 4, 13, 13, 4, 18, 4, 13, 13, 17, 13, 13, 13, 41, 28, 13, 4, 13, 17, 2, 13, 17, 4, 4, 13, 13, 13, 0, 13, 2, 39, 17, 13, 0, 13, 4, 13, 13, 13, 13, 13, 13, 13, 0, 13, 4, 13, 13, 13, 13, 13, 13, 13, 0, 13, 17, 28, 13, 13, 4, 13, 13, 13, 0, 13, 2, 13, 13, 0, 13, 13, 4, 13, 13, 14, 2, 13, 17, 4, 13, 10, 12, 13, 10, 12, 13, 10, 12, 13, 10, 12, 13, 10, 12, 13 ]
[ [ 37, 5 ], [ 14, 13 ], [ 37, 16 ], [ 35, 18 ], [ 37, 19 ], [ 14, 20 ], [ 14, 21 ], [ 24, 23 ], [ 35, 26 ], [ 37, 27 ], [ 20, 28 ], [ 35, 35 ], [ 37, 37 ], [ 42, 41 ], [ 315, 43 ], [ 53, 44 ], [ 55, 45 ], [ 42, 46 ], [ 42, 47 ], [ 41, 50 ], [ 55, 51 ], [ 53, 53 ], [ 55, 55 ], [ 61, 60 ], [ 104, 64 ], [ 108, 65 ], [ 70, 69 ], [ 73, 72 ], [ 76, 75 ], [ 104, 79 ], [ 108, 80 ], [ 85, 82 ], [ 69, 83 ], [ 75, 84 ], [ 72, 85 ], [ 99, 85 ], [ 92, 85 ], [ 87, 85 ], [ 88, 87 ], [ 75, 89 ], [ 110, 90 ], [ 93, 92 ], [ 114, 94 ], [ 75, 96 ], [ 100, 99 ], [ 112, 100 ], [ 69, 102 ], [ 104, 104 ], [ 106, 106 ], [ 108, 108 ], [ 110, 110 ], [ 112, 112 ], [ 114, 114 ], [ 120, 119 ], [ 198, 123 ], [ 202, 124 ], [ 129, 128 ], [ 132, 131 ], [ 135, 134 ], [ 202, 139 ], [ 143, 142 ], [ 134, 146 ], [ 200, 147 ], [ 204, 148 ], [ 152, 151 ], [ 208, 153 ], [ 134, 154 ], [ 157, 156 ], [ 206, 157 ], [ 160, 159 ], [ 198, 164 ], [ 202, 165 ], [ 173, 170 ], [ 128, 171 ], [ 159, 172 ], [ 156, 173 ], [ 151, 173 ], [ 142, 173 ], [ 131, 173 ], [ 193, 173 ], [ 186, 173 ], [ 175, 173 ], [ 176, 175 ], [ 198, 180 ], [ 159, 181 ], [ 200, 182 ], [ 204, 183 ], [ 187, 186 ], [ 208, 188 ], [ 198, 190 ], [ 159, 191 ], [ 194, 193 ], [ 206, 194 ], [ 128, 196 ], [ 198, 198 ], [ 200, 200 ], [ 202, 202 ], [ 204, 204 ], [ 206, 206 ], [ 208, 208 ], [ 213, 212 ], [ 220, 219 ], [ 220, 231 ], [ 220, 232 ], [ 220, 233 ], [ 237, 236 ], [ 219, 241 ], [ 309, 245 ], [ 236, 246 ], [ 212, 247 ], [ 250, 249 ], [ 256, 255 ], [ 312, 257 ], [ 219, 258 ], [ 231, 259 ], [ 232, 260 ], [ 233, 261 ], [ 212, 262 ], [ 249, 263 ], [ 266, 265 ], [ 303, 267 ], [ 219, 268 ], [ 231, 269 ], [ 232, 270 ], [ 233, 271 ], [ 212, 272 ], [ 249, 273 ], [ 276, 275 ], [ 255, 282 ], [ 265, 283 ], [ 286, 285 ], [ 291, 290 ], [ 212, 291 ], [ 290, 294 ], [ 285, 294 ], [ 275, 294 ], [ 306, 300 ] ]
[ "def ext_euclid(a, b):\n # return (x, y, gcd(a, b)) such that a * x + b * y = gcd(a, b)\n if b == 0:\n return 1, 0, a\n y, x, v = ext_euclid(b, a % b)\n y -= (a // b) * x\n return x, y, v\n\n\ndef mod_inv(a, mod):\n x, _, _ = ext_euclid(a, mod)\n return x % mod\n\n\ndef comb_list_1(H, W, A, B, mod, modinv_list):\n # (h+B-1)_C_(B-1) (h in {0, ..., H-A-1})\n ret = [0 for _ in range(H - A)]\n c = 1\n for h in range(H - A):\n ret[h] = c\n c *= h + B\n c *= modinv_list[h + 1]\n c %= mod\n return ret\n\n\ndef comb_list_2(H, W, A, B, mod, modinv_list):\n # (-h+H+W-B-2)_C_(W-B-1) (h in {0, ..., H-A-1})\n ret = [0 for _ in range(H - A)]\n # initial value -> (A+W-B-1)_C_(W-B-1) (h = H-A-1)\n c = 1\n for a in range(1, A + 1):\n c *= (a + W - B - 1)\n c *= modinv_list[a]\n c %= mod\n # fill elements of result list from the back\n for h in range(H - A - 1, -1, -1):\n ret[h] = c\n c *= H - h + W - B - 1\n c *= modinv_list[H - h]\n c %= mod\n return ret\n\n\ndef main():\n MOD = 10 ** 9 + 7\n H, W, A, B = list(map(int, input().split(' ')))\n modinv_list = [None] + [mod_inv(h, MOD) for h in range(1, H + 1)] # modinv doesn't exist on h = 0\n combs_1 = comb_list_1(H, W, A, B, MOD, modinv_list)\n combs_2 = comb_list_2(H, W, A, B, MOD, modinv_list)\n ans = 0\n for c1, c2 in zip(combs_1, combs_2):\n ans += c1 * c2\n ans %= MOD\n print(ans)\n\n\nif __name__ == '__main__':\n main()", "def ext_euclid(a, b):\n # return (x, y, gcd(a, b)) such that a * x + b * y = gcd(a, b)\n if b == 0:\n return 1, 0, a\n y, x, v = ext_euclid(b, a % b)\n y -= (a // b) * x\n return x, y, v", "ext_euclid", "if b == 0:\n return 1, 0, a\n ", "b == 0", "b", "0", "return 1, 0, a", "return 1, 0, a", "1", "0", "a", "y, x, v = ext_euclid(b, a % b)", "y", "ext_euclid(b, a % b)", "ext_euclid", "b", "a % b", "a", "b", "x", "v", "y -= (a // b) * x", "y", "(a // b) * x", "a // b", "a", "b", "x", "return x, y, v", "return x, y, v", "x", "y", "v", "a", "a", "b", "b", "def mod_inv(a, mod):\n x, _, _ = ext_euclid(a, mod)\n return x % mod", "mod_inv", "x, _, _ = ext_euclid(a, mod)", "x", "ext_euclid(a, mod)", "ext_euclid", "a", "mod", "_", "_", "return x % mod", "x % mod", "x", "mod", "a", "a", "mod", "mod", "def comb_list_1(H, W, A, B, mod, modinv_list):\n # (h+B-1)_C_(B-1) (h in {0, ..., H-A-1})\n ret = [0 for _ in range(H - A)]\n c = 1\n for h in range(H - A):\n ret[h] = c\n c *= h + B\n c *= modinv_list[h + 1]\n c %= mod\n return ret", "comb_list_1", "0 for _ in range(H - A)", "for _ in range(H - A)", "_", "range(H - A)", "range", "H - A", "H", "A", "for _ in range(H - A)", "0", "ret = [0 for _ in range(H - A)]", "ret", "[0 for _ in range(H - A)]", "c = 1", "c", "1", "for h in range(H - A):\n ret[h] = c\n c *= h + B\n c *= modinv_list[h + 1]\n c %= mod\n ", "h", "range(H - A)", "range", "H - A", "H", "A", "ret[h] = c", "ret[h]", "ret", "h", "c", "c *= h + B", "c", "h + B", "h", "B", "c *= modinv_list[h + 1]", "c", "modinv_list[h + 1]", "modinv_list", "h + 1", "h", "1", "c %= mod", "c", "mod", "return ret", "ret", "H", "H", "W", "W", "A", "A", "B", "B", "mod", "mod", "modinv_list", "modinv_list", "def comb_list_2(H, W, A, B, mod, modinv_list):\n # (-h+H+W-B-2)_C_(W-B-1) (h in {0, ..., H-A-1})\n ret = [0 for _ in range(H - A)]\n # initial value -> (A+W-B-1)_C_(W-B-1) (h = H-A-1)\n c = 1\n for a in range(1, A + 1):\n c *= (a + W - B - 1)\n c *= modinv_list[a]\n c %= mod\n # fill elements of result list from the back\n for h in range(H - A - 1, -1, -1):\n ret[h] = c\n c *= H - h + W - B - 1\n c *= modinv_list[H - h]\n c %= mod\n return ret", "comb_list_2", "0 for _ in range(H - A)", "for _ in range(H - A)", "_", "range(H - A)", "range", "H - A", "H", "A", "for _ in range(H - A)", "0", "ret = [0 for _ in range(H - A)]", "ret", "[0 for _ in range(H - A)]", "c = 1", "c", "1", "for a in range(1, A + 1):\n c *= (a + W - B - 1)\n c *= modinv_list[a]\n c %= mod\n # fill elements of result list from the back\n ", "a", "range(1, A + 1)", "range", "1", "A + 1", "A", "1", "c *= (a + W - B - 1)", "c", "a + W - B - 1", "a + W - B", "a + W", "a", "W", "B", "1", "c *= modinv_list[a]", "c", "modinv_list[a]", "modinv_list", "a", "c %= mod", "c", "mod", "for h in range(H - A - 1, -1, -1):\n ret[h] = c\n c *= H - h + W - B - 1\n c *= modinv_list[H - h]\n c %= mod\n ", "h", "range(H - A - 1, -1, -1)", "range", "H - A - 1", "H - A", "H", "A", "1", "-1", "-1", "ret[h] = c", "ret[h]", "ret", "h", "c", "c *= H - h + W - B - 1", "c", "H - h + W - B - 1", "H - h + W - B", "H - h + W", "H - h", "H", "h", "W", "B", "1", "c *= modinv_list[H - h]", "c", "modinv_list[H - h]", "modinv_list", "H - h", "H", "h", "c %= mod", "c", "mod", "return ret", "ret", "H", "H", "W", "W", "A", "A", "B", "B", "mod", "mod", "modinv_list", "modinv_list", "def main():\n MOD = 10 ** 9 + 7\n H, W, A, B = list(map(int, input().split(' ')))\n modinv_list = [None] + [mod_inv(h, MOD) for h in range(1, H + 1)] # modinv doesn't exist on h = 0\n combs_1 = comb_list_1(H, W, A, B, MOD, modinv_list)\n combs_2 = comb_list_2(H, W, A, B, MOD, modinv_list)\n ans = 0\n for c1, c2 in zip(combs_1, combs_2):\n ans += c1 * c2\n ans %= MOD\n print(ans)", "main", "MOD = 10 ** 9 + 7", "MOD", "10 ** 9 + 7", "10 ** 9", "10", "9", "7", "H, W, A, B = list(map(int, input().split(' ')))", "H", "list(map(int, input().split(' ')))", "list", "map(int, input().split(' '))", "map", "int", "input().split(' ')", "().split", "()", "input", "split", "' '", "W", "A", "B", "mod_inv(h, MOD) for h in range(1, H + 1)", "for h in range(1, H + 1)", "h", "range(1, H + 1)", "range", "1", "H + 1", "H", "1", "for h in range(1, H + 1)", "mod_inv(h, MOD)", "mod_inv", "h", "MOD", "modinv_list = [None] + [mod_inv(h, MOD) for h in range(1, H + 1)]", "modinv_list", "[None] + [mod_inv(h, MOD) for h in range(1, H + 1)]", "[None]", "None", "[mod_inv(h, MOD) for h in range(1, H + 1)]", "combs_1 = comb_list_1(H, W, A, B, MOD, modinv_list)", "combs_1", "comb_list_1(H, W, A, B, MOD, modinv_list)", "comb_list_1", "H", "W", "A", "B", "MOD", "modinv_list", "combs_2 = comb_list_2(H, W, A, B, MOD, modinv_list)", "combs_2", "comb_list_2(H, W, A, B, MOD, modinv_list)", "comb_list_2", "H", "W", "A", "B", "MOD", "modinv_list", "ans = 0", "ans", "0", "for c1, c2 in zip(combs_1, combs_2):\n ans += c1 * c2\n ans %= MOD\n ", "c1", "c2", "zip(combs_1, combs_2)", "zip", "combs_1", "combs_2", "ans += c1 * c2", "ans", "c1 * c2", "c1", "c2", "ans %= MOD", "ans", "MOD", "print(ans)", "print", "ans", "if __name__ == '__main__':\n main()", "__name__ == '__main__'", "__name__", "'__main__'", "main()", "main", "def comb_list_2(H, W, A, B, mod, modinv_list):\n # (-h+H+W-B-2)_C_(W-B-1) (h in {0, ..., H-A-1})\n ret = [0 for _ in range(H - A)]\n # initial value -> (A+W-B-1)_C_(W-B-1) (h = H-A-1)\n c = 1\n for a in range(1, A + 1):\n c *= (a + W - B - 1)\n c *= modinv_list[a]\n c %= mod\n # fill elements of result list from the back\n for h in range(H - A - 1, -1, -1):\n ret[h] = c\n c *= H - h + W - B - 1\n c *= modinv_list[H - h]\n c %= mod\n return ret", "def comb_list_2(H, W, A, B, mod, modinv_list):\n # (-h+H+W-B-2)_C_(W-B-1) (h in {0, ..., H-A-1})\n ret = [0 for _ in range(H - A)]\n # initial value -> (A+W-B-1)_C_(W-B-1) (h = H-A-1)\n c = 1\n for a in range(1, A + 1):\n c *= (a + W - B - 1)\n c *= modinv_list[a]\n c %= mod\n # fill elements of result list from the back\n for h in range(H - A - 1, -1, -1):\n ret[h] = c\n c *= H - h + W - B - 1\n c *= modinv_list[H - h]\n c %= mod\n return ret", "comb_list_2", "def main():\n MOD = 10 ** 9 + 7\n H, W, A, B = list(map(int, input().split(' ')))\n modinv_list = [None] + [mod_inv(h, MOD) for h in range(1, H + 1)] # modinv doesn't exist on h = 0\n combs_1 = comb_list_1(H, W, A, B, MOD, modinv_list)\n combs_2 = comb_list_2(H, W, A, B, MOD, modinv_list)\n ans = 0\n for c1, c2 in zip(combs_1, combs_2):\n ans += c1 * c2\n ans %= MOD\n print(ans)", "def main():\n MOD = 10 ** 9 + 7\n H, W, A, B = list(map(int, input().split(' ')))\n modinv_list = [None] + [mod_inv(h, MOD) for h in range(1, H + 1)] # modinv doesn't exist on h = 0\n combs_1 = comb_list_1(H, W, A, B, MOD, modinv_list)\n combs_2 = comb_list_2(H, W, A, B, MOD, modinv_list)\n ans = 0\n for c1, c2 in zip(combs_1, combs_2):\n ans += c1 * c2\n ans %= MOD\n print(ans)", "main", "def mod_inv(a, mod):\n x, _, _ = ext_euclid(a, mod)\n return x % mod", "def mod_inv(a, mod):\n x, _, _ = ext_euclid(a, mod)\n return x % mod", "mod_inv", "def comb_list_1(H, W, A, B, mod, modinv_list):\n # (h+B-1)_C_(B-1) (h in {0, ..., H-A-1})\n ret = [0 for _ in range(H - A)]\n c = 1\n for h in range(H - A):\n ret[h] = c\n c *= h + B\n c *= modinv_list[h + 1]\n c %= mod\n return ret", "def comb_list_1(H, W, A, B, mod, modinv_list):\n # (h+B-1)_C_(B-1) (h in {0, ..., H-A-1})\n ret = [0 for _ in range(H - A)]\n c = 1\n for h in range(H - A):\n ret[h] = c\n c *= h + B\n c *= modinv_list[h + 1]\n c %= mod\n return ret", "comb_list_1", "def ext_euclid(a, b):\n # return (x, y, gcd(a, b)) such that a * x + b * y = gcd(a, b)\n if b == 0:\n return 1, 0, a\n y, x, v = ext_euclid(b, a % b)\n y -= (a // b) * x\n return x, y, v", "def ext_euclid(a, b):\n # return (x, y, gcd(a, b)) such that a * x + b * y = gcd(a, b)\n if b == 0:\n return 1, 0, a\n y, x, v = ext_euclid(b, a % b)\n y -= (a // b) * x\n return x, y, v", "ext_euclid" ]
def ext_euclid(a, b): # return (x, y, gcd(a, b)) such that a * x + b * y = gcd(a, b) if b == 0: return 1, 0, a y, x, v = ext_euclid(b, a % b) y -= (a // b) * x return x, y, v def mod_inv(a, mod): x, _, _ = ext_euclid(a, mod) return x % mod def comb_list_1(H, W, A, B, mod, modinv_list): # (h+B-1)_C_(B-1) (h in {0, ..., H-A-1}) ret = [0 for _ in range(H - A)] c = 1 for h in range(H - A): ret[h] = c c *= h + B c *= modinv_list[h + 1] c %= mod return ret def comb_list_2(H, W, A, B, mod, modinv_list): # (-h+H+W-B-2)_C_(W-B-1) (h in {0, ..., H-A-1}) ret = [0 for _ in range(H - A)] # initial value -> (A+W-B-1)_C_(W-B-1) (h = H-A-1) c = 1 for a in range(1, A + 1): c *= (a + W - B - 1) c *= modinv_list[a] c %= mod # fill elements of result list from the back for h in range(H - A - 1, -1, -1): ret[h] = c c *= H - h + W - B - 1 c *= modinv_list[H - h] c %= mod return ret def main(): MOD = 10 ** 9 + 7 H, W, A, B = list(map(int, input().split(' '))) modinv_list = [None] + [mod_inv(h, MOD) for h in range(1, H + 1)] # modinv doesn't exist on h = 0 combs_1 = comb_list_1(H, W, A, B, MOD, modinv_list) combs_2 = comb_list_2(H, W, A, B, MOD, modinv_list) ans = 0 for c1, c2 in zip(combs_1, combs_2): ans += c1 * c2 ans %= MOD print(ans) if __name__ == '__main__': main()
[ 7, 15, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 39, 17, 28, 13, 4, 13, 17, 2, 2, 13, 13, 17, 4, 18, 13, 13, 2, 2, 18, 13, 17, 13, 13, 0, 13, 39, 4, 13, 18, 13, 17, 2, 13, 17, 13, 28, 13, 4, 13, 2, 2, 13, 13, 17, 17, 17, 4, 18, 13, 13, 2, 2, 18, 13, 17, 13, 13, 0, 13, 4, 13, 4, 13, 13, 12, 13, 29, 2, 2, 18, 13, 13, 18, 13, 13, 18, 13, 2, 13, 13, 23, 13, 23, 13, 0, 13, 17, 28, 13, 4, 13, 13, 13, 0, 13, 2, 2, 4, 13, 2, 2, 2, 13, 13, 17, 13, 13, 4, 13, 2, 2, 2, 2, 13, 17, 13, 13, 17, 2, 13, 17, 13, 0, 13, 13, 4, 13, 13, 10, 2, 13, 10, 13, 13, 10, 2, 13, 10, 39, 13, 10, 12, 13, 10, 39, 13, 10, 4, 13, 10, 4, 13, 10, 4, 13, 10, 4, 13, 10, 17, 13, 10, 4, 13 ]
[ [ 186, 3 ], [ 186, 12 ], [ 186, 13 ], [ 186, 14 ], [ 159, 16 ], [ 168, 23 ], [ 28, 27 ], [ 187, 33 ], [ 181, 34 ], [ 169, 38 ], [ 169, 43 ], [ 27, 45 ], [ 160, 46 ], [ 162, 48 ], [ 169, 53 ], [ 160, 56 ], [ 160, 58 ], [ 61, 60 ], [ 187, 65 ], [ 181, 66 ], [ 163, 72 ], [ 163, 77 ], [ 60, 79 ], [ 160, 80 ], [ 171, 82 ], [ 163, 87 ], [ 169, 94 ], [ 105, 95 ], [ 172, 97 ], [ 107, 98 ], [ 172, 100 ], [ 105, 102 ], [ 107, 103 ], [ 105, 105 ], [ 107, 107 ], [ 183, 109 ], [ 113, 112 ], [ 175, 115 ], [ 181, 116 ], [ 153, 118 ], [ 166, 122 ], [ 187, 126 ], [ 178, 127 ], [ 112, 129 ], [ 112, 130 ], [ 166, 132 ], [ 178, 137 ], [ 181, 139 ], [ 112, 140 ], [ 178, 143 ], [ 160, 145 ], [ 156, 147 ], [ 160, 148 ], [ 157, 151 ], [ 154, 151 ], [ 184, 151 ], [ 153, 154 ], [ 160, 156 ], [ 156, 157 ], [ 159, 160 ], [ 162, 163 ], [ 168, 169 ], [ 171, 172 ], [ 186, 175 ], [ 186, 178 ], [ 186, 181 ], [ 183, 184 ], [ 186, 187 ] ]
[ "from math import factorial\n\nh, w, a, b = map(int, input().split())\nMOD = 10**9+7\n\nfact = [1]\n\n# 累積乗を作る\nfor i in range(1, h+w-1):\n fact.append(fact[-1] * i % MOD)\n\n# 累積乗の逆元\ninv_fact = [pow(fact[-1], MOD-2, MOD)] # x^(-1) = x^(10^9+5) % (10^9+7), フェルマーの小定理\nfor i in range(h+w-2, 0, -1): # xが最大の場合を求め、後ろ向きに計算していく\n inv_fact.append(inv_fact[-1] * i % MOD)\ninv = list(reversed(inv_fact)) # 逆順に取得\n\n#print(fact, inv_fact, inv)\ndef comb(x, y):\n return (fact[x] * inv[y] * inv[x-y])\n\nans = 0\nfor x in range(b, w):\n ans += ((comb((h-a-1 + x), x)) * (comb((a-1 + w-x-1), a-1)) % MOD)\n ans %= MOD\n\nprint(ans)", "from math import factorial", "h, w, a, b = map(int, input().split())", "h", "map(int, input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "w", "a", "b", "MOD = 10**9+7", "MOD", "10**9+7", "10**9", "10", "9", "7", "fact = [1]", "fact", "[1]", "1", "for i in range(1, h+w-1):\n fact.append(fact[-1] * i % MOD)\n\n# 累積乗の逆元", "i", "range(1, h+w-1)", "range", "1", "h+w-1", "h+w", "h", "w", "1", "fact.append(fact[-1] * i % MOD)", "fact.append", "fact", "append", "fact[-1] * i % MOD", "fact[-1] * i", "fact[-1]", "fact", "-1", "i", "MOD", "inv_fact = [pow(fact[-1], MOD-2, MOD)]", "inv_fact", "[pow(fact[-1], MOD-2, MOD)]", "pow(fact[-1], MOD-2, MOD)", "pow", "fact[-1]", "fact", "-1", "MOD-2", "MOD", "2", "MOD", "for i in range(h+w-2, 0, -1): # xが最大の場合を求め、後ろ向きに計算していく\n inv_fact.append(inv_fact[-1] * i % MOD)", "i", "range(h+w-2, 0, -1)", "range", "h+w-2", "h+w", "h", "w", "2", "0", "-1", "inv_fact.append(inv_fact[-1] * i % MOD)", "inv_fact.append", "inv_fact", "append", "inv_fact[-1] * i % MOD", "inv_fact[-1] * i", "inv_fact[-1]", "inv_fact", "-1", "i", "MOD", "inv = list(reversed(inv_fact))", "inv", "list(reversed(inv_fact))", "list", "reversed(inv_fact)", "reversed", "inv_fact", "def comb(x, y):\n return (fact[x] * inv[y] * inv[x-y])", "comb", "return (fact[x] * inv[y] * inv[x-y])", "fact[x] * inv[y] * inv[x-y]", "fact[x] * inv[y]", "fact[x]", "fact", "x", "inv[y]", "inv", "y", "inv[x-y]", "inv", "x-y", "x", "y", "x", "x", "y", "y", "ans = 0", "ans", "0", "for x in range(b, w):\n ans += ((comb((h-a-1 + x), x)) * (comb((a-1 + w-x-1), a-1)) % MOD)\n ans %= MOD", "x", "range(b, w)", "range", "b", "w", "ans += ((comb((h-a-1 + x), x)) * (comb((a-1 + w-x-1), a-1)) % MOD)", "ans", "(comb((h-a-1 + x), x)) * (comb((a-1 + w-x-1), a-1)) % MOD", "(comb((h-a-1 + x), x)) * (comb((a-1 + w-x-1), a-1))", "comb((h-a-1 + x), x)", "comb", "h-a-1 + x", "h-a-1", "h-a", "h", "a", "1", "x", "x", "comb((a-1 + w-x-1), a-1)", "comb", "a-1 + w-x-1", "a-1 + w-x", "a-1 + w", "a-1", "a", "1", "w", "x", "1", "a-1", "a", "1", "MOD", "ans %= MOD", "ans", "MOD", "print(ans)", "print", "ans", "ans += ((comb((h-a-1 + x), x)) * (comb((a-1 + w-x-1), a-1)) % MOD)", "(comb((h-a-1 + x), x)) * (comb((a-1 + w-x-1), a-1)) % MOD", "ans", "ans %= MOD", "MOD", "ans", "MOD = 10**9+7", "10**9+7", "MOD", "inv_fact = [pow(fact[-1], MOD-2, MOD)]", "[pow(fact[-1], MOD-2, MOD)]", "inv_fact", "def comb(x, y):\n return (fact[x] * inv[y] * inv[x-y])", "def comb(x, y):\n return (fact[x] * inv[y] * inv[x-y])", "comb", "fact = [1]", "[1]", "fact", "inv = list(reversed(inv_fact))", "list(reversed(inv_fact))", "inv", "b = map(int, input().split())", "map(int, input().split())", "b", "a, b = map(int, input().split())", "map(int, input().split())", "a", "w, a, b = map(int, input().split())", "map(int, input().split())", "w", "ans = 0", "0", "ans", "h, w, a, b = map(int, input().split())", "map(int, input().split())", "h" ]
from math import factorial h, w, a, b = map(int, input().split()) MOD = 10**9+7 fact = [1] # 累積乗を作る for i in range(1, h+w-1): fact.append(fact[-1] * i % MOD) # 累積乗の逆元 inv_fact = [pow(fact[-1], MOD-2, MOD)] # x^(-1) = x^(10^9+5) % (10^9+7), フェルマーの小定理 for i in range(h+w-2, 0, -1): # xが最大の場合を求め、後ろ向きに計算していく inv_fact.append(inv_fact[-1] * i % MOD) inv = list(reversed(inv_fact)) # 逆順に取得 #print(fact, inv_fact, inv) def comb(x, y): return (fact[x] * inv[y] * inv[x-y]) ans = 0 for x in range(b, w): ans += ((comb((h-a-1 + x), x)) * (comb((a-1 + w-x-1), a-1)) % MOD) ans %= MOD print(ans)
[ 7, 0, 13, 2, 2, 17, 17, 17, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 12, 13, 29, 4, 13, 13, 2, 13, 17, 13, 23, 13, 12, 13, 29, 2, 2, 18, 13, 13, 18, 13, 13, 18, 13, 2, 13, 13, 23, 13, 23, 13, 0, 13, 21, 22, 17, 17, 0, 13, 21, 22, 17, 17, 0, 13, 17, 28, 13, 4, 13, 17, 2, 2, 13, 13, 17, 0, 13, 2, 2, 13, 13, 13, 0, 18, 13, 13, 13, 0, 18, 13, 13, 4, 13, 13, 0, 13, 17, 14, 40, 2, 13, 13, 2, 13, 13, 28, 13, 4, 13, 13, 13, 0, 13, 2, 4, 13, 2, 2, 2, 13, 13, 13, 17, 13, 4, 13, 2, 2, 2, 13, 13, 13, 17, 2, 2, 13, 17, 13, 0, 13, 13, 28, 13, 4, 13, 2, 13, 13, 0, 13, 2, 4, 13, 2, 2, 2, 13, 13, 13, 17, 2, 13, 13, 4, 13, 2, 2, 2, 13, 13, 13, 17, 2, 2, 2, 13, 13, 17, 13, 0, 13, 13, 4, 13, 13, 10, 4, 13, 10, 17, 13, 10, 12, 13, 10, 2, 13, 10, 2, 13, 10, 4, 13, 10, 4, 13, 10, 17, 13, 10, 2, 13, 10, 13, 13, 10, 21, 13, 10, 13, 13, 10, 2, 13, 10, 4, 13, 10, 12, 13, 10, 21, 13 ]
[ [ 225, 2 ], [ 228, 9 ], [ 228, 18 ], [ 228, 19 ], [ 228, 20 ], [ 32, 26 ], [ 226, 28 ], [ 226, 30 ], [ 32, 32 ], [ 50, 40 ], [ 52, 43 ], [ 50, 47 ], [ 52, 48 ], [ 50, 50 ], [ 52, 52 ], [ 219, 54 ], [ 234, 60 ], [ 192, 66 ], [ 70, 69 ], [ 190, 75 ], [ 208, 76 ], [ 198, 79 ], [ 193, 82 ], [ 199, 82 ], [ 69, 83 ], [ 226, 84 ], [ 89, 86 ], [ 220, 87 ], [ 69, 88 ], [ 199, 89 ], [ 193, 89 ], [ 94, 91 ], [ 235, 92 ], [ 69, 93 ], [ 232, 95 ], [ 199, 96 ], [ 193, 96 ], [ 210, 98 ], [ 190, 103 ], [ 229, 104 ], [ 208, 106 ], [ 205, 107 ], [ 110, 109 ], [ 205, 112 ], [ 208, 113 ], [ 201, 115 ], [ 196, 118 ], [ 190, 122 ], [ 229, 123 ], [ 205, 124 ], [ 109, 126 ], [ 196, 128 ], [ 208, 132 ], [ 229, 133 ], [ 205, 134 ], [ 208, 138 ], [ 109, 140 ], [ 222, 142 ], [ 226, 143 ], [ 146, 145 ], [ 190, 149 ], [ 229, 150 ], [ 213, 152 ], [ 196, 155 ], [ 190, 159 ], [ 229, 160 ], [ 205, 161 ], [ 205, 164 ], [ 145, 165 ], [ 196, 167 ], [ 208, 171 ], [ 229, 172 ], [ 205, 173 ], [ 208, 178 ], [ 205, 179 ], [ 145, 181 ], [ 216, 183 ], [ 226, 184 ], [ 217, 187 ], [ 214, 187 ], [ 223, 187 ], [ 202, 187 ], [ 211, 187 ], [ 228, 190 ], [ 192, 193 ], [ 198, 199 ], [ 201, 202 ], [ 228, 205 ], [ 228, 208 ], [ 210, 211 ], [ 213, 214 ], [ 226, 216 ], [ 216, 217 ], [ 219, 220 ], [ 226, 222 ], [ 222, 223 ], [ 225, 226 ], [ 228, 229 ], [ 234, 235 ] ]
[ "MOD=10**9+7\nH,W,A,B=map(int,input().split())\n\ndef invmod(a):\n return pow(a,MOD-2,MOD)\ndef comb_mod(n,r):\n return fact_dic[n]*fact_inv_dic[r]*fact_inv_dic[n-r]\n\nfact_dic={0:1}\nfact_inv_dic={0:1}\nfact_mod=1\nfor i in range(1,H+W-1):\n fact_mod=(fact_mod*i)%MOD\n fact_dic[i]=fact_mod\n fact_inv_dic[i]=invmod(fact_mod)\n \nanswer=0\nif H-A>=W-B:\n for i in range(B,W):\n answer+=comb_mod(H-A+B-1,i)*comb_mod(W+A-B-1,W-1-i)\n answer%=MOD\nelse:\n for j in range(H-A):\n answer+=comb_mod(H-A+B-1,B+j)*comb_mod(W+A-B-1,W-B-1-j)\n answer%=MOD\n \nprint(answer)", "MOD=10**9+7", "MOD", "10**9+7", "10**9", "10", "9", "7", "H,W,A,B=map(int,input().split())", "H", "map(int,input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "def invmod(a):\n return pow(a,MOD-2,MOD)", "invmod", "return pow(a,MOD-2,MOD)", "pow(a,MOD-2,MOD)", "pow", "a", "MOD-2", "MOD", "2", "MOD", "a", "a", "def comb_mod(n,r):\n return fact_dic[n]*fact_inv_dic[r]*fact_inv_dic[n-r]", "comb_mod", "return fact_dic[n]*fact_inv_dic[r]*fact_inv_dic[n-r]", "fact_dic[n]*fact_inv_dic[r]*fact_inv_dic[n-r]", "fact_dic[n]*fact_inv_dic[r]", "fact_dic[n]", "fact_dic", "n", "fact_inv_dic[r]", "fact_inv_dic", "r", "fact_inv_dic[n-r]", "fact_inv_dic", "n-r", "n", "r", "n", "n", "r", "r", "fact_dic={0:1}", "fact_dic", "{0:1}", "0", "0", "1", "fact_inv_dic={0:1}", "fact_inv_dic", "{0:1}", "0", "0", "1", "fact_mod=1", "fact_mod", "1", "for i in range(1,H+W-1):\n fact_mod=(fact_mod*i)%MOD\n fact_dic[i]=fact_mod\n fact_inv_dic[i]=invmod(fact_mod)\n ", "i", "range(1,H+W-1)", "range", "1", "H+W-1", "H+W", "H", "W", "1", "fact_mod=(fact_mod*i)%MOD", "fact_mod", "(fact_mod*i)%MOD", "fact_mod*i", "fact_mod", "i", "MOD", "fact_dic[i]=fact_mod", "fact_dic[i]", "fact_dic", "i", "fact_mod", "fact_inv_dic[i]=invmod(fact_mod)", "fact_inv_dic[i]", "fact_inv_dic", "i", "invmod(fact_mod)", "invmod", "fact_mod", "answer=0", "answer", "0", "if H-A>=W-B:\n for i in range(B,W):\n answer+=comb_mod(H-A+B-1,i)*comb_mod(W+A-B-1,W-1-i)\n answer%=MOD\nelse:\n for j in range(H-A):\n answer+=comb_mod(H-A+B-1,B+j)*comb_mod(W+A-B-1,W-B-1-j)\n answer%=MOD\n ", "H-A>=W-B", "H-A", "H", "A", "W-B", "W", "B", "for i in range(B,W):\n answer+=comb_mod(H-A+B-1,i)*comb_mod(W+A-B-1,W-1-i)\n answer%=MOD", "i", "range(B,W)", "range", "B", "W", "answer+=comb_mod(H-A+B-1,i)*comb_mod(W+A-B-1,W-1-i)", "answer", "comb_mod(H-A+B-1,i)*comb_mod(W+A-B-1,W-1-i)", "comb_mod(H-A+B-1,i)", "comb_mod", "H-A+B-1", "H-A+B", "H-A", "H", "A", "B", "1", "i", "comb_mod(W+A-B-1,W-1-i)", "comb_mod", "W+A-B-1", "W+A-B", "W+A", "W", "A", "B", "1", "W-1-i", "W-1", "W", "1", "i", "answer%=MOD", "answer", "MOD", "for j in range(H-A):\n answer+=comb_mod(H-A+B-1,B+j)*comb_mod(W+A-B-1,W-B-1-j)\n answer%=MOD\n ", "j", "range(H-A)", "range", "H-A", "H", "A", "answer+=comb_mod(H-A+B-1,B+j)*comb_mod(W+A-B-1,W-B-1-j)", "answer", "comb_mod(H-A+B-1,B+j)*comb_mod(W+A-B-1,W-B-1-j)", "comb_mod(H-A+B-1,B+j)", "comb_mod", "H-A+B-1", "H-A+B", "H-A", "H", "A", "B", "1", "B+j", "B", "j", "comb_mod(W+A-B-1,W-B-1-j)", "comb_mod", "W+A-B-1", "W+A-B", "W+A", "W", "A", "B", "1", "W-B-1-j", "W-B-1", "W-B", "W", "B", "1", "j", "answer%=MOD", "answer", "MOD", "print(answer)", "print", "answer", "H,W,A,B=map(int,input().split())", "map(int,input().split())", "H", "fact_mod=1", "1", "fact_mod", "def comb_mod(n,r):\n return fact_dic[n]*fact_inv_dic[r]*fact_inv_dic[n-r]", "def comb_mod(n,r):\n return fact_dic[n]*fact_inv_dic[r]*fact_inv_dic[n-r]", "comb_mod", "fact_mod=(fact_mod*i)%MOD", "(fact_mod*i)%MOD", "fact_mod", "answer+=comb_mod(H-A+B-1,i)*comb_mod(W+A-B-1,W-1-i)", "comb_mod(H-A+B-1,i)*comb_mod(W+A-B-1,W-1-i)", "answer", "B=map(int,input().split())", "map(int,input().split())", "B", "W,A,B=map(int,input().split())", "map(int,input().split())", "W", "answer=0", "0", "answer", "answer+=comb_mod(H-A+B-1,B+j)*comb_mod(W+A-B-1,W-B-1-j)", "comb_mod(H-A+B-1,B+j)*comb_mod(W+A-B-1,W-B-1-j)", "answer", "answer%=MOD", "MOD", "answer", "fact_dic={0:1}", "{0:1}", "fact_dic", "answer%=MOD", "MOD", "answer", "MOD=10**9+7", "10**9+7", "MOD", "A,B=map(int,input().split())", "map(int,input().split())", "A", "def invmod(a):\n return pow(a,MOD-2,MOD)", "def invmod(a):\n return pow(a,MOD-2,MOD)", "invmod", "fact_inv_dic={0:1}", "{0:1}", "fact_inv_dic" ]
MOD=10**9+7 H,W,A,B=map(int,input().split()) def invmod(a): return pow(a,MOD-2,MOD) def comb_mod(n,r): return fact_dic[n]*fact_inv_dic[r]*fact_inv_dic[n-r] fact_dic={0:1} fact_inv_dic={0:1} fact_mod=1 for i in range(1,H+W-1): fact_mod=(fact_mod*i)%MOD fact_dic[i]=fact_mod fact_inv_dic[i]=invmod(fact_mod) answer=0 if H-A>=W-B: for i in range(B,W): answer+=comb_mod(H-A+B-1,i)*comb_mod(W+A-B-1,W-1-i) answer%=MOD else: for j in range(H-A): answer+=comb_mod(H-A+B-1,B+j)*comb_mod(W+A-B-1,W-B-1-j) answer%=MOD print(answer)
[ 7, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 12, 13, 14, 2, 2, 13, 17, 2, 13, 13, 29, 17, 0, 13, 4, 13, 13, 2, 13, 13, 29, 2, 2, 2, 18, 13, 13, 18, 13, 13, 18, 13, 2, 13, 13, 13, 23, 13, 23, 13, 23, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 2, 17, 17, 0, 13, 39, 17, 17, 0, 13, 39, 17, 17, 0, 13, 39, 17, 17, 28, 13, 4, 13, 17, 2, 13, 17, 4, 18, 13, 13, 2, 2, 18, 13, 17, 13, 13, 4, 18, 13, 13, 2, 2, 40, 18, 13, 2, 13, 13, 2, 13, 13, 13, 4, 18, 13, 13, 2, 2, 18, 13, 17, 18, 13, 17, 13, 0, 13, 4, 13, 2, 2, 13, 13, 17, 2, 13, 17, 13, 28, 13, 4, 13, 2, 2, 13, 13, 17, 2, 13, 17, 0, 13, 2, 4, 13, 2, 2, 13, 13, 17, 2, 13, 17, 13, 4, 13, 2, 2, 2, 2, 13, 13, 13, 13, 17, 2, 2, 13, 13, 17, 13, 0, 13, 13, 4, 13, 13, 10, 39, 13, 10, 2, 13, 10, 2, 13, 10, 39, 13, 10, 2, 13, 10, 4, 13, 10, 12, 13, 10, 39, 13, 10, 4, 13, 10, 4, 13, 10, 4, 13, 10, 13, 13, 10, 4, 13 ]
[ [ 224, 2 ], [ 224, 11 ], [ 224, 12 ], [ 224, 13 ], [ 53, 19 ], [ 53, 22 ], [ 51, 23 ], [ 28, 27 ], [ 53, 30 ], [ 51, 32 ], [ 53, 33 ], [ 51, 40 ], [ 27, 43 ], [ 53, 43 ], [ 51, 47 ], [ 27, 48 ], [ 53, 48 ], [ 55, 49 ], [ 51, 51 ], [ 53, 53 ], [ 55, 55 ], [ 206, 57 ], [ 200, 64 ], [ 215, 69 ], [ 203, 74 ], [ 194, 79 ], [ 85, 84 ], [ 201, 89 ], [ 216, 93 ], [ 216, 98 ], [ 84, 100 ], [ 207, 101 ], [ 195, 104 ], [ 195, 110 ], [ 207, 112 ], [ 84, 113 ], [ 207, 115 ], [ 84, 116 ], [ 207, 117 ], [ 204, 120 ], [ 204, 125 ], [ 195, 128 ], [ 207, 130 ], [ 230, 132 ], [ 213, 134 ], [ 222, 137 ], [ 219, 138 ], [ 222, 141 ], [ 207, 143 ], [ 146, 145 ], [ 222, 150 ], [ 225, 151 ], [ 222, 154 ], [ 197, 157 ], [ 213, 160 ], [ 145, 163 ], [ 210, 164 ], [ 145, 167 ], [ 207, 169 ], [ 213, 171 ], [ 222, 176 ], [ 145, 177 ], [ 219, 178 ], [ 210, 179 ], [ 219, 183 ], [ 210, 184 ], [ 207, 186 ], [ 227, 188 ], [ 207, 189 ], [ 228, 192 ], [ 198, 192 ], [ 231, 192 ], [ 194, 195 ], [ 197, 198 ], [ 200, 201 ], [ 203, 204 ], [ 206, 207 ], [ 224, 210 ], [ 215, 216 ], [ 224, 219 ], [ 224, 222 ], [ 224, 225 ], [ 207, 227 ], [ 227, 228 ], [ 230, 231 ] ]
[ "h,w,a,b=map(int,input().split())\n#コンビネーション逆元\ndef cmb(n, r, mod):\n if ( r<0 or r>n ):\n return 0\n r = min(r, n-r)\n return g1[n] * g2[r] * g2[n-r] % mod\n\n\nmod = 10**9+7 #出力の制限\nN = 10**6\ng1 = [1, 1] # 元テーブル\ng2 = [1, 1] #逆元テーブル\ninverse = [0, 1] #逆元テーブル計算用テーブル\n\n\nfor i in range( 2, N + 1 ):\n g1.append( ( g1[-1] * i ) % mod )\n inverse.append( ( -inverse[mod % i] * (mod//i) ) % mod )\n g2.append( (g2[-1] * inverse[-1]) % mod )\nans=cmb(h+w-2,h-1,mod)\nfor i in range(h-a+1,h+1):\n ans-=cmb(i+b-2,i-1,mod)*cmb(h-i+w-b-1,w-b-1,mod)\n ans%=mod\nprint(ans)", "h,w,a,b=map(int,input().split())", "h", "map(int,input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "w", "a", "b", "def cmb(n, r, mod):\n if ( r<0 or r>n ):\n return 0\n r = min(r, n-r)\n return g1[n] * g2[r] * g2[n-r] % mod", "cmb", "if ( r<0 or r>n ):\n return 0\n ", "r<0 or r>n", "r<0", "r", "0", "r>n", "r", "n", "return 0", "0", "r = min(r, n-r)", "r", "min(r, n-r)", "min", "r", "n-r", "n", "r", "return g1[n] * g2[r] * g2[n-r] % mod", "g1[n] * g2[r] * g2[n-r] % mod", "g1[n] * g2[r] * g2[n-r]", "g1[n] * g2[r]", "g1[n]", "g1", "n", "g2[r]", "g2", "r", "g2[n-r]", "g2", "n-r", "n", "r", "mod", "n", "n", "r", "r", "mod", "mod", "mod = 10**9+7", "mod", "10**9+7", "10**9", "10", "9", "7", "N = 10**6", "N", "10**6", "10", "6", "g1 = [1, 1]", "g1", "[1, 1]", "1", "1", "g2 = [1, 1]", "g2", "[1, 1]", "1", "1", "inverse = [0, 1]", "inverse", "[0, 1]", "0", "1", "for i in range( 2, N + 1 ):\n g1.append( ( g1[-1] * i ) % mod )\n inverse.append( ( -inverse[mod % i] * (mod//i) ) % mod )\n g2.append( (g2[-1] * inverse[-1]) % mod )", "i", "range( 2, N + 1 )", "range", "2", "N + 1", "N", "1", "g1.append( ( g1[-1] * i ) % mod )", "g1.append", "g1", "append", "( g1[-1] * i ) % mod", "g1[-1] * i", "g1[-1]", "g1", "-1", "i", "mod", "inverse.append( ( -inverse[mod % i] * (mod//i) ) % mod )", "inverse.append", "inverse", "append", "( -inverse[mod % i] * (mod//i) ) % mod", "-inverse[mod % i] * (mod//i)", "-inverse[mod % i]", "inverse[mod % i]", "inverse", "mod % i", "mod", "i", "mod//i", "mod", "i", "mod", "g2.append( (g2[-1] * inverse[-1]) % mod )", "g2.append", "g2", "append", "(g2[-1] * inverse[-1]) % mod", "g2[-1] * inverse[-1]", "g2[-1]", "g2", "-1", "inverse[-1]", "inverse", "-1", "mod", "ans=cmb(h+w-2,h-1,mod)", "ans", "cmb(h+w-2,h-1,mod)", "cmb", "h+w-2", "h+w", "h", "w", "2", "h-1", "h", "1", "mod", "for i in range(h-a+1,h+1):\n ans-=cmb(i+b-2,i-1,mod)*cmb(h-i+w-b-1,w-b-1,mod)\n ans%=mod", "i", "range(h-a+1,h+1)", "range", "h-a+1", "h-a", "h", "a", "1", "h+1", "h", "1", "ans-=cmb(i+b-2,i-1,mod)*cmb(h-i+w-b-1,w-b-1,mod)", "ans", "cmb(i+b-2,i-1,mod)*cmb(h-i+w-b-1,w-b-1,mod)", "cmb(i+b-2,i-1,mod)", "cmb", "i+b-2", "i+b", "i", "b", "2", "i-1", "i", "1", "mod", "cmb(h-i+w-b-1,w-b-1,mod)", "cmb", "h-i+w-b-1", "h-i+w-b", "h-i+w", "h-i", "h", "i", "w", "b", "1", "w-b-1", "w-b", "w", "b", "1", "mod", "ans%=mod", "ans", "mod", "print(ans)", "print", "ans", "inverse = [0, 1]", "[0, 1]", "inverse", "ans-=cmb(i+b-2,i-1,mod)*cmb(h-i+w-b-1,w-b-1,mod)", "cmb(i+b-2,i-1,mod)*cmb(h-i+w-b-1,w-b-1,mod)", "ans", "N = 10**6", "10**6", "N", "g2 = [1, 1]", "[1, 1]", "g2", "mod = 10**9+7", "10**9+7", "mod", "b=map(int,input().split())", "map(int,input().split())", "b", "def cmb(n, r, mod):\n if ( r<0 or r>n ):\n return 0\n r = min(r, n-r)\n return g1[n] * g2[r] * g2[n-r] % mod", "def cmb(n, r, mod):\n if ( r<0 or r>n ):\n return 0\n r = min(r, n-r)\n return g1[n] * g2[r] * g2[n-r] % mod", "cmb", "g1 = [1, 1]", "[1, 1]", "g1", "w,a,b=map(int,input().split())", "map(int,input().split())", "w", "h,w,a,b=map(int,input().split())", "map(int,input().split())", "h", "a,b=map(int,input().split())", "map(int,input().split())", "a", "ans%=mod", "mod", "ans", "ans=cmb(h+w-2,h-1,mod)", "cmb(h+w-2,h-1,mod)", "ans" ]
h,w,a,b=map(int,input().split()) #コンビネーション逆元 def cmb(n, r, mod): if ( r<0 or r>n ): return 0 r = min(r, n-r) return g1[n] * g2[r] * g2[n-r] % mod mod = 10**9+7 #出力の制限 N = 10**6 g1 = [1, 1] # 元テーブル g2 = [1, 1] #逆元テーブル inverse = [0, 1] #逆元テーブル計算用テーブル for i in range( 2, N + 1 ): g1.append( ( g1[-1] * i ) % mod ) inverse.append( ( -inverse[mod % i] * (mod//i) ) % mod ) g2.append( (g2[-1] * inverse[-1]) % mod ) ans=cmb(h+w-2,h-1,mod) for i in range(h-a+1,h+1): ans-=cmb(i+b-2,i-1,mod)*cmb(h-i+w-b-1,w-b-1,mod) ans%=mod print(ans)
[ 7, 15, 15, 15, 15, 13, 15, 13, 15, 13, 41, 28, 13, 4, 18, 4, 18, 18, 18, 13, 13, 13, 13, 13, 4, 4, 13, 13, 12, 13, 12, 13, 41, 28, 13, 4, 18, 4, 18, 18, 13, 13, 13, 13, 4, 4, 13, 13, 12, 13, 12, 13, 0, 13, 4, 13, 4, 18, 18, 13, 13, 13, 14, 2, 18, 13, 17, 17, 29, 18, 13, 39, 17, 29, 13, 12, 13, 41, 28, 13, 4, 13, 13, 4, 4, 13, 29, 13, 23, 13, 12, 13, 41, 28, 13, 4, 13, 13, 4, 4, 13, 29, 13, 23, 13, 12, 13, 41, 28, 13, 4, 13, 13, 4, 4, 13, 29, 13, 23, 13, 12, 13, 41, 28, 13, 4, 13, 13, 4, 4, 13, 29, 13, 23, 13, 4, 18, 13, 13, 17, 0, 13, 17, 12, 13, 0, 13, 39, 17, 0, 13, 17, 28, 13, 4, 13, 17, 2, 13, 17, 4, 18, 13, 13, 2, 2, 18, 13, 17, 13, 13, 0, 13, 2, 39, 17, 2, 13, 17, 0, 18, 13, 13, 4, 13, 18, 13, 13, 2, 13, 17, 13, 28, 13, 18, 4, 13, 13, 39, 17, 0, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 2, 13, 17, 13, 12, 13, 29, 2, 2, 2, 18, 13, 13, 18, 13, 13, 18, 13, 2, 13, 13, 13, 23, 13, 23, 13, 0, 13, 4, 13, 13, 13, 13, 0, 13, 17, 0, 13, 2, 13, 13, 0, 13, 2, 13, 17, 42, 2, 40, 13, 13, 13, 0, 13, 2, 2, 4, 13, 2, 2, 13, 13, 17, 2, 13, 17, 4, 13, 2, 2, 2, 13, 13, 13, 13, 2, 13, 13, 13, 0, 13, 17, 0, 13, 17, 4, 13, 2, 13, 13, 29, 14, 2, 13, 17, 4, 13, 10, 12, 13, 10, 17, 13, 10, 12, 13, 10, 12, 13, 10, 12, 13, 10, 12, 13, 10, 12, 13, 10, 12, 13, 10, 12, 13, 10, 12, 13 ]
[ [ 13, 12 ], [ 12, 27 ], [ 35, 34 ], [ 34, 47 ], [ 54, 53 ], [ 53, 65 ], [ 53, 70 ], [ 53, 74 ], [ 80, 79 ], [ 89, 82 ], [ 331, 85 ], [ 89, 89 ], [ 95, 94 ], [ 104, 97 ], [ 325, 100 ], [ 104, 104 ], [ 110, 109 ], [ 119, 112 ], [ 319, 115 ], [ 119, 119 ], [ 125, 124 ], [ 134, 127 ], [ 316, 130 ], [ 134, 134 ], [ 312, 141 ], [ 147, 146 ], [ 151, 150 ], [ 154, 153 ], [ 150, 158 ], [ 146, 162 ], [ 146, 167 ], [ 153, 169 ], [ 313, 170 ], [ 173, 172 ], [ 150, 177 ], [ 183, 180 ], [ 172, 181 ], [ 150, 182 ], [ 146, 186 ], [ 150, 187 ], [ 313, 189 ], [ 313, 191 ], [ 194, 193 ], [ 150, 197 ], [ 204, 201 ], [ 172, 202 ], [ 193, 203 ], [ 172, 207 ], [ 193, 209 ], [ 193, 212 ], [ 313, 214 ], [ 146, 222 ], [ 234, 223 ], [ 172, 225 ], [ 236, 226 ], [ 172, 228 ], [ 234, 230 ], [ 236, 231 ], [ 313, 232 ], [ 234, 234 ], [ 236, 236 ], [ 239, 238 ], [ 325, 240 ], [ 239, 241 ], [ 239, 242 ], [ 239, 243 ], [ 246, 245 ], [ 249, 248 ], [ 238, 250 ], [ 242, 251 ], [ 254, 253 ], [ 243, 255 ], [ 253, 260 ], [ 294, 260 ], [ 241, 261 ], [ 248, 262 ], [ 291, 262 ], [ 265, 264 ], [ 216, 268 ], [ 253, 271 ], [ 294, 271 ], [ 248, 272 ], [ 291, 272 ], [ 253, 275 ], [ 294, 275 ], [ 216, 278 ], [ 238, 282 ], [ 248, 283 ], [ 291, 283 ], [ 241, 284 ], [ 253, 285 ], [ 294, 285 ], [ 241, 287 ], [ 253, 288 ], [ 294, 288 ], [ 313, 289 ], [ 292, 291 ], [ 295, 294 ], [ 264, 299 ], [ 245, 299 ], [ 313, 300 ], [ 328, 307 ], [ 312, 313 ] ]
[ "#!usr/bin/env python3\nfrom collections import defaultdict, deque\nfrom heapq import heappush, heappop\nfrom itertools import permutations, accumulate\nimport sys\nimport math\nimport bisect\ndef LI(): return [int(x) for x in sys.stdin.buffer.readline().split()]\ndef I(): return int(sys.stdin.buffer.readline())\ndef LS():return [list(x) for x in sys.stdin.readline().split()]\ndef S():\n res = list(sys.stdin.readline())\n if res[-1] == \"\\n\":\n return res[:-1]\n return res\ndef IR(n):\n return [I() for i in range(n)]\ndef LIR(n):\n return [LI() for i in range(n)]\ndef SR(n):\n return [S() for i in range(n)]\ndef LSR(n):\n return [LS() for i in range(n)]\n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\ndef solve():\n f = [1]\n N = 1000000\n for i in range(1,N+1):\n f.append(f[-1]*i%mod)\n inv = [None]*(N+1)\n inv[N] = pow(f[N],mod-2,mod)\n for i in range(N)[::-1]:\n inv[i] = inv[i+1]*(i+1)%mod\n def comb(a,b):\n return f[a]*inv[b]*inv[a-b]%mod\n h,w,a,b = LI()\n ans = 0\n y = h-a\n x = b+1\n while x <= w and y:\n ans += comb(x+y-2,x-1)*comb(h-y+w-x,w-x)%mod\n y -= 1\n x += 1\n print(ans%mod)\n return\n\n#Solve\nif __name__ == \"__main__\":\n solve()", "from collections import defaultdict, deque", "from heapq import heappush, heappop", "from itertools import permutations, accumulate", "import sys", "sys", "import math", "math", "import bisect", "bisect", "int(x) for x in sys.stdin.buffer.readline().split()", "for x in sys.stdin.buffer.readline().split()", "x", "sys.stdin.buffer.readline().split()", "sys.stdin.buffer.readline().split", "sys.stdin.buffer.readline()", "sys.stdin.buffer.readline", "sys.stdin.buffer", "sys.stdin", "sys", "stdin", "buffer", "readline", "split", "for x in sys.stdin.buffer.readline().split()", "int(x)", "int", "x", "def LI(): return [int(x) for x in sys.stdin.buffer.readline().split()]", "LI", "def I(): return int(sys.stdin.buffer.readline())", "I", "list(x) for x in sys.stdin.readline().split()", "for x in sys.stdin.readline().split()", "x", "sys.stdin.readline().split()", "sys.stdin.readline().split", "sys.stdin.readline()", "sys.stdin.readline", "sys.stdin", "sys", "stdin", "readline", "split", "for x in sys.stdin.readline().split()", "list(x)", "list", "x", "def LS():return [list(x) for x in sys.stdin.readline().split()]", "LS", "def S():\n res = list(sys.stdin.readline())\n if res[-1] == \"\\n\":\n return res[:-1]\n return res", "S", "res = list(sys.stdin.readline())", "res", "list(sys.stdin.readline())", "list", "sys.stdin.readline()", "sys.stdin.readline", "sys.stdin", "sys", "stdin", "readline", "if res[-1] == \"\\n\":\n return res[:-1]\n ", "res[-1] == \"\\n\"", "res[-1]", "res", "-1", "\"\\n\"", "return res[:-1]", "res[:-1]", "res", ":-1", "-1", "return res", "res", "def IR(n):\n return [I() for i in range(n)]", "IR", "I() for i in range(n)", "for i in range(n)", "i", "range(n)", "range", "n", "for i in range(n)", "I()", "I", "return [I() for i in range(n)]", "[I() for i in range(n)]", "n", "n", "def LIR(n):\n return [LI() for i in range(n)]", "LIR", "LI() for i in range(n)", "for i in range(n)", "i", "range(n)", "range", "n", "for i in range(n)", "LI()", "LI", "return [LI() for i in range(n)]", "[LI() for i in range(n)]", "n", "n", "def SR(n):\n return [S() for i in range(n)]", "SR", "S() for i in range(n)", "for i in range(n)", "i", "range(n)", "range", "n", "for i in range(n)", "S()", "S", "return [S() for i in range(n)]", "[S() for i in range(n)]", "n", "n", "def LSR(n):\n return [LS() for i in range(n)]", "LSR", "LS() for i in range(n)", "for i in range(n)", "i", "range(n)", "range", "n", "for i in range(n)", "LS()", "LS", "return [LS() for i in range(n)]", "[LS() for i in range(n)]", "n", "n", "sys.setrecursionlimit(1000000)", "sys.setrecursionlimit", "sys", "setrecursionlimit", "1000000", "mod = 1000000007", "mod", "1000000007", "def solve():\n f = [1]\n N = 1000000\n for i in range(1,N+1):\n f.append(f[-1]*i%mod)\n inv = [None]*(N+1)\n inv[N] = pow(f[N],mod-2,mod)\n for i in range(N)[::-1]:\n inv[i] = inv[i+1]*(i+1)%mod\n def comb(a,b):\n return f[a]*inv[b]*inv[a-b]%mod\n h,w,a,b = LI()\n ans = 0\n y = h-a\n x = b+1\n while x <= w and y:\n ans += comb(x+y-2,x-1)*comb(h-y+w-x,w-x)%mod\n y -= 1\n x += 1\n print(ans%mod)\n return\n\n#Solve", "solve", "f = [1]", "f", "[1]", "1", "N = 1000000", "N", "1000000", "for i in range(1,N+1):\n f.append(f[-1]*i%mod)\n ", "i", "range(1,N+1)", "range", "1", "N+1", "N", "1", "f.append(f[-1]*i%mod)", "f.append", "f", "append", "f[-1]*i%mod", "f[-1]*i", "f[-1]", "f", "-1", "i", "mod", "inv = [None]*(N+1)", "inv", "[None]*(N+1)", "[None]", "None", "N+1", "N", "1", "inv[N] = pow(f[N],mod-2,mod)", "inv[N]", "inv", "N", "pow(f[N],mod-2,mod)", "pow", "f[N]", "f", "N", "mod-2", "mod", "2", "mod", "for i in range(N)[::-1]:\n inv[i] = inv[i+1]*(i+1)%mod\n ", "i", "range(N)[::-1]", "(N)", "range", "N", "::-1", "-1", "inv[i] = inv[i+1]*(i+1)%mod", "inv[i]", "inv", "i", "inv[i+1]*(i+1)%mod", "inv[i+1]*(i+1)", "inv[i+1]", "inv", "i+1", "i", "1", "i+1", "i", "1", "mod", "def comb(a,b):\n return f[a]*inv[b]*inv[a-b]%mod\n ", "comb", "return f[a]*inv[b]*inv[a-b]%mod", "f[a]*inv[b]*inv[a-b]%mod", "f[a]*inv[b]*inv[a-b]", "f[a]*inv[b]", "f[a]", "f", "a", "inv[b]", "inv", "b", "inv[a-b]", "inv", "a-b", "a", "b", "mod", "a", "a", "b", "b", "h,w,a,b = LI()", "h", "LI()", "LI", "w", "a", "b", "ans = 0", "ans", "0", "y = h-a", "y", "h-a", "h", "a", "x = b+1", "x", "b+1", "b", "1", "while x <= w and y:\n ans += comb(x+y-2,x-1)*comb(h-y+w-x,w-x)%mod\n y -= 1\n x += 1\n ", "x <= w and y", "x <= w", "x", "w", "y", "ans += comb(x+y-2,x-1)*comb(h-y+w-x,w-x)%mod", "ans", "comb(x+y-2,x-1)*comb(h-y+w-x,w-x)%mod", "comb(x+y-2,x-1)*comb(h-y+w-x,w-x)", "comb(x+y-2,x-1)", "comb", "x+y-2", "x+y", "x", "y", "2", "x-1", "x", "1", "comb(h-y+w-x,w-x)", "comb", "h-y+w-x", "h-y+w", "h-y", "h", "y", "w", "x", "w-x", "w", "x", "mod", "y -= 1", "y", "1", "x += 1", "x", "1", "print(ans%mod)", "print", "ans%mod", "ans", "mod", "return", "if __name__ == \"__main__\":\n solve()", "__name__ == \"__main__\"", "__name__", "\"__main__\"", "solve()", "solve", "def IR(n):\n return [I() for i in range(n)]", "def IR(n):\n return [I() for i in range(n)]", "IR", "mod = 1000000007", "1000000007", "mod", "def LS():return [list(x) for x in sys.stdin.readline().split()]", "def LS():return [list(x) for x in sys.stdin.readline().split()]", "LS", "def S():\n res = list(sys.stdin.readline())\n if res[-1] == \"\\n\":\n return res[:-1]\n return res", "def S():\n res = list(sys.stdin.readline())\n if res[-1] == \"\\n\":\n return res[:-1]\n return res", "S", "def SR(n):\n return [S() for i in range(n)]", "def SR(n):\n return [S() for i in range(n)]", "SR", "def LI(): return [int(x) for x in sys.stdin.buffer.readline().split()]", "def LI(): return [int(x) for x in sys.stdin.buffer.readline().split()]", "LI", "def solve():\n f = [1]\n N = 1000000\n for i in range(1,N+1):\n f.append(f[-1]*i%mod)\n inv = [None]*(N+1)\n inv[N] = pow(f[N],mod-2,mod)\n for i in range(N)[::-1]:\n inv[i] = inv[i+1]*(i+1)%mod\n def comb(a,b):\n return f[a]*inv[b]*inv[a-b]%mod\n h,w,a,b = LI()\n ans = 0\n y = h-a\n x = b+1\n while x <= w and y:\n ans += comb(x+y-2,x-1)*comb(h-y+w-x,w-x)%mod\n y -= 1\n x += 1\n print(ans%mod)\n return\n\n#Solve", "def solve():\n f = [1]\n N = 1000000\n for i in range(1,N+1):\n f.append(f[-1]*i%mod)\n inv = [None]*(N+1)\n inv[N] = pow(f[N],mod-2,mod)\n for i in range(N)[::-1]:\n inv[i] = inv[i+1]*(i+1)%mod\n def comb(a,b):\n return f[a]*inv[b]*inv[a-b]%mod\n h,w,a,b = LI()\n ans = 0\n y = h-a\n x = b+1\n while x <= w and y:\n ans += comb(x+y-2,x-1)*comb(h-y+w-x,w-x)%mod\n y -= 1\n x += 1\n print(ans%mod)\n return\n\n#Solve", "solve", "def I(): return int(sys.stdin.buffer.readline())", "def I(): return int(sys.stdin.buffer.readline())", "I", "def LSR(n):\n return [LS() for i in range(n)]", "def LSR(n):\n return [LS() for i in range(n)]", "LSR", "def LIR(n):\n return [LI() for i in range(n)]", "def LIR(n):\n return [LI() for i in range(n)]", "LIR" ]
#!usr/bin/env python3 from collections import defaultdict, deque from heapq import heappush, heappop from itertools import permutations, accumulate import sys import math import bisect def LI(): return [int(x) for x in sys.stdin.buffer.readline().split()] def I(): return int(sys.stdin.buffer.readline()) def LS():return [list(x) for x in sys.stdin.readline().split()] def S(): res = list(sys.stdin.readline()) if res[-1] == "\n": return res[:-1] return res def IR(n): return [I() for i in range(n)] def LIR(n): return [LI() for i in range(n)] def SR(n): return [S() for i in range(n)] def LSR(n): return [LS() for i in range(n)] sys.setrecursionlimit(1000000) mod = 1000000007 def solve(): f = [1] N = 1000000 for i in range(1,N+1): f.append(f[-1]*i%mod) inv = [None]*(N+1) inv[N] = pow(f[N],mod-2,mod) for i in range(N)[::-1]: inv[i] = inv[i+1]*(i+1)%mod def comb(a,b): return f[a]*inv[b]*inv[a-b]%mod h,w,a,b = LI() ans = 0 y = h-a x = b+1 while x <= w and y: ans += comb(x+y-2,x-1)*comb(h-y+w-x,w-x)%mod y -= 1 x += 1 print(ans%mod) return #Solve if __name__ == "__main__": solve()
[ 7, 12, 13, 14, 2, 2, 13, 17, 2, 13, 13, 29, 17, 29, 2, 2, 2, 18, 13, 13, 18, 13, 13, 18, 13, 2, 13, 13, 13, 23, 13, 23, 13, 23, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 2, 17, 17, 0, 13, 39, 17, 17, 0, 13, 39, 17, 17, 0, 13, 39, 17, 17, 28, 13, 4, 13, 17, 2, 13, 17, 4, 18, 13, 13, 2, 2, 18, 13, 17, 13, 13, 4, 18, 13, 13, 2, 2, 40, 18, 13, 2, 13, 13, 2, 13, 13, 13, 4, 18, 13, 13, 2, 2, 18, 13, 17, 18, 13, 17, 13, 41, 28, 13, 4, 18, 4, 13, 13, 4, 4, 13, 13, 0, 13, 13, 13, 13, 13, 0, 13, 17, 28, 13, 4, 13, 13, 13, 0, 13, 2, 4, 13, 2, 2, 2, 13, 13, 17, 13, 13, 13, 4, 13, 2, 2, 2, 13, 13, 17, 13, 2, 2, 13, 17, 13, 13, 4, 13, 2, 13, 13, 10, 2, 13, 10, 13, 13, 10, 2, 13, 10, 13, 13, 10, 39, 13, 10, 17, 13, 10, 2, 13, 10, 39, 13, 10, 13, 13, 10, 12, 13, 10, 39, 13, 10, 13, 13 ]
[ [ 32, 6 ], [ 30, 9 ], [ 32, 10 ], [ 30, 19 ], [ 32, 22 ], [ 30, 26 ], [ 32, 27 ], [ 34, 28 ], [ 30, 30 ], [ 32, 32 ], [ 34, 34 ], [ 172, 36 ], [ 178, 43 ], [ 202, 48 ], [ 193, 53 ], [ 184, 58 ], [ 64, 63 ], [ 179, 68 ], [ 203, 72 ], [ 203, 77 ], [ 63, 79 ], [ 173, 80 ], [ 185, 83 ], [ 185, 89 ], [ 173, 91 ], [ 63, 92 ], [ 173, 94 ], [ 63, 95 ], [ 173, 96 ], [ 194, 99 ], [ 194, 104 ], [ 185, 107 ], [ 173, 109 ], [ 113, 112 ], [ 112, 121 ], [ 205, 123 ], [ 205, 125 ], [ 205, 126 ], [ 205, 127 ], [ 187, 129 ], [ 133, 132 ], [ 197, 135 ], [ 182, 136 ], [ 190, 138 ], [ 200, 141 ], [ 176, 145 ], [ 206, 146 ], [ 132, 148 ], [ 132, 149 ], [ 173, 150 ], [ 200, 152 ], [ 206, 156 ], [ 182, 157 ], [ 132, 159 ], [ 182, 162 ], [ 132, 164 ], [ 173, 165 ], [ 191, 169 ], [ 188, 169 ], [ 173, 170 ], [ 172, 173 ], [ 205, 176 ], [ 178, 179 ], [ 205, 182 ], [ 184, 185 ], [ 187, 188 ], [ 190, 191 ], [ 193, 194 ], [ 205, 197 ], [ 202, 203 ], [ 205, 206 ] ]
[ "def combmod(n, r, p):\n if r < 0 or n < r:\n return 0\n return fact[n] * finv[r] * finv[n-r] % p\n\n\np = 10**9+7\nN = 10**6\nfact = [1, 1]\nfinv = [1, 1]\ninv = [0, 1]\n\nfor i in range(2, N+1):\n fact.append((fact[-1] * i) % p)\n inv.append((-inv[p % i] * (p // i)) % p)\n finv.append((finv[-1] * inv[-1]) % p)\n\nh, w, a, b = (int(x) for x in input().split())\nans = 0\nfor j in range(b, w):\n ans += combmod(h-a-1 + j, j, p) * combmod(a+w-2 - j, w-1 - j, p)\nprint(ans % p)", "def combmod(n, r, p):\n if r < 0 or n < r:\n return 0\n return fact[n] * finv[r] * finv[n-r] % p", "combmod", "if r < 0 or n < r:\n return 0\n ", "r < 0 or n < r", "r < 0", "r", "0", "n < r", "n", "r", "return 0", "0", "return fact[n] * finv[r] * finv[n-r] % p", "fact[n] * finv[r] * finv[n-r] % p", "fact[n] * finv[r] * finv[n-r]", "fact[n] * finv[r]", "fact[n]", "fact", "n", "finv[r]", "finv", "r", "finv[n-r]", "finv", "n-r", "n", "r", "p", "n", "n", "r", "r", "p", "p", "p = 10**9+7", "p", "10**9+7", "10**9", "10", "9", "7", "N = 10**6", "N", "10**6", "10", "6", "fact = [1, 1]", "fact", "[1, 1]", "1", "1", "finv = [1, 1]", "finv", "[1, 1]", "1", "1", "inv = [0, 1]", "inv", "[0, 1]", "0", "1", "for i in range(2, N+1):\n fact.append((fact[-1] * i) % p)\n inv.append((-inv[p % i] * (p // i)) % p)\n finv.append((finv[-1] * inv[-1]) % p)", "i", "range(2, N+1)", "range", "2", "N+1", "N", "1", "fact.append((fact[-1] * i) % p)", "fact.append", "fact", "append", "(fact[-1] * i) % p", "fact[-1] * i", "fact[-1]", "fact", "-1", "i", "p", "inv.append((-inv[p % i] * (p // i)) % p)", "inv.append", "inv", "append", "(-inv[p % i] * (p // i)) % p", "-inv[p % i] * (p // i)", "-inv[p % i]", "inv[p % i]", "inv", "p % i", "p", "i", "p // i", "p", "i", "p", "finv.append((finv[-1] * inv[-1]) % p)", "finv.append", "finv", "append", "(finv[-1] * inv[-1]) % p", "finv[-1] * inv[-1]", "finv[-1]", "finv", "-1", "inv[-1]", "inv", "-1", "p", "int(x) for x in input().split()", "for x in input().split()", "x", "input().split()", "().split", "()", "input", "split", "for x in input().split()", "int(x)", "int", "x", "h, w, a, b = (int(x) for x in input().split())", "h", "(int(x) for x in input().split())", "w", "a", "b", "ans = 0", "ans", "0", "for j in range(b, w):\n ans += combmod(h-a-1 + j, j, p) * combmod(a+w-2 - j, w-1 - j, p)", "j", "range(b, w)", "range", "b", "w", "ans += combmod(h-a-1 + j, j, p) * combmod(a+w-2 - j, w-1 - j, p)", "ans", "combmod(h-a-1 + j, j, p) * combmod(a+w-2 - j, w-1 - j, p)", "combmod(h-a-1 + j, j, p)", "combmod", "h-a-1 + j", "h-a-1", "h-a", "h", "a", "1", "j", "j", "p", "combmod(a+w-2 - j, w-1 - j, p)", "combmod", "a+w-2 - j", "a+w-2", "a+w", "a", "w", "2", "j", "w-1 - j", "w-1", "w", "1", "j", "p", "print(ans % p)", "print", "ans % p", "ans", "p", "p = 10**9+7", "10**9+7", "p", "h, w, a, b = (int(x) for x in input().split())", "(int(x) for x in input().split())", "h", "N = 10**6", "10**6", "N", "w, a, b = (int(x) for x in input().split())", "(int(x) for x in input().split())", "w", "inv = [0, 1]", "[0, 1]", "inv", "ans = 0", "0", "ans", "ans += combmod(h-a-1 + j, j, p) * combmod(a+w-2 - j, w-1 - j, p)", "combmod(h-a-1 + j, j, p) * combmod(a+w-2 - j, w-1 - j, p)", "ans", "finv = [1, 1]", "[1, 1]", "finv", "b = (int(x) for x in input().split())", "(int(x) for x in input().split())", "b", "def combmod(n, r, p):\n if r < 0 or n < r:\n return 0\n return fact[n] * finv[r] * finv[n-r] % p", "def combmod(n, r, p):\n if r < 0 or n < r:\n return 0\n return fact[n] * finv[r] * finv[n-r] % p", "combmod", "fact = [1, 1]", "[1, 1]", "fact", "a, b = (int(x) for x in input().split())", "(int(x) for x in input().split())", "a" ]
def combmod(n, r, p): if r < 0 or n < r: return 0 return fact[n] * finv[r] * finv[n-r] % p p = 10**9+7 N = 10**6 fact = [1, 1] finv = [1, 1] inv = [0, 1] for i in range(2, N+1): fact.append((fact[-1] * i) % p) inv.append((-inv[p % i] * (p // i)) % p) finv.append((finv[-1] * inv[-1]) % p) h, w, a, b = (int(x) for x in input().split()) ans = 0 for j in range(b, w): ans += combmod(h-a-1 + j, j, p) * combmod(a+w-2 - j, w-1 - j, p) print(ans % p)
[ 7, 0, 13, 2, 2, 17, 17, 17, 0, 13, 2, 17, 2, 17, 17, 0, 13, 2, 39, 17, 17, 2, 39, 17, 13, 0, 13, 2, 39, 17, 17, 2, 39, 17, 13, 0, 13, 2, 39, 17, 17, 2, 39, 17, 13, 28, 13, 4, 13, 17, 2, 13, 17, 0, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 13, 13, 0, 18, 13, 13, 2, 2, 40, 18, 13, 2, 13, 13, 2, 13, 13, 13, 0, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 18, 13, 13, 13, 12, 13, 14, 2, 13, 13, 14, 2, 2, 13, 17, 2, 13, 17, 29, 2, 2, 18, 13, 13, 2, 2, 18, 13, 13, 18, 13, 2, 13, 13, 13, 13, 23, 13, 23, 13, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 17, 28, 13, 4, 13, 17, 2, 2, 13, 13, 17, 0, 13, 4, 13, 2, 2, 2, 13, 17, 13, 17, 2, 13, 17, 0, 13, 4, 13, 2, 2, 2, 2, 13, 13, 13, 13, 17, 2, 13, 13, 0, 13, 13, 0, 13, 13, 4, 13, 13, 10, 4, 13, 10, 2, 13, 10, 4, 13, 10, 2, 13, 10, 17, 13, 10, 13, 13, 10, 2, 13, 10, 2, 13, 10, 4, 13, 10, 2, 13, 10, 12, 13, 10, 13, 13, 10, 4, 13, 10, 4, 13, 10, 4, 13 ]
[ [ 226, 2 ], [ 208, 9 ], [ 220, 16 ], [ 209, 24 ], [ 217, 26 ], [ 209, 34 ], [ 202, 36 ], [ 209, 44 ], [ 47, 46 ], [ 209, 51 ], [ 57, 54 ], [ 221, 55 ], [ 46, 56 ], [ 221, 60 ], [ 46, 62 ], [ 46, 64 ], [ 227, 65 ], [ 70, 67 ], [ 203, 68 ], [ 46, 69 ], [ 203, 74 ], [ 227, 76 ], [ 46, 77 ], [ 227, 79 ], [ 46, 80 ], [ 227, 81 ], [ 86, 83 ], [ 218, 84 ], [ 46, 85 ], [ 218, 89 ], [ 46, 91 ], [ 67, 93 ], [ 203, 94 ], [ 46, 95 ], [ 227, 96 ], [ 130, 101 ], [ 132, 102 ], [ 130, 106 ], [ 132, 109 ], [ 221, 115 ], [ 130, 116 ], [ 218, 120 ], [ 132, 121 ], [ 218, 123 ], [ 130, 125 ], [ 132, 126 ], [ 227, 127 ], [ 227, 128 ], [ 130, 130 ], [ 132, 132 ], [ 238, 134 ], [ 238, 143 ], [ 238, 144 ], [ 238, 145 ], [ 211, 147 ], [ 151, 150 ], [ 200, 156 ], [ 239, 157 ], [ 223, 160 ], [ 230, 162 ], [ 150, 166 ], [ 236, 168 ], [ 150, 171 ], [ 241, 174 ], [ 230, 176 ], [ 200, 181 ], [ 150, 182 ], [ 206, 183 ], [ 236, 184 ], [ 200, 187 ], [ 150, 188 ], [ 214, 190 ], [ 242, 191 ], [ 224, 191 ], [ 232, 193 ], [ 227, 194 ], [ 233, 197 ], [ 215, 197 ], [ 212, 197 ], [ 238, 200 ], [ 202, 203 ], [ 238, 206 ], [ 208, 209 ], [ 211, 212 ], [ 242, 214 ], [ 224, 214 ], [ 214, 215 ], [ 217, 218 ], [ 220, 221 ], [ 223, 224 ], [ 226, 227 ], [ 227, 232 ], [ 232, 233 ], [ 238, 236 ], [ 238, 239 ], [ 241, 242 ] ]
[ "# Combination\nMOD = 10**9+7\nMAX = 2*10**5\nfac = [1,1] + [0]*MAX\nfinv = [1,1] + [0]*MAX\ninv = [0,1] + [0]*MAX\nfor i in range(2,MAX+2):\n fac[i] = fac[i-1] * i % MOD\n inv[i] = -inv[MOD%i] * (MOD // i) % MOD\n finv[i] = finv[i-1] * inv[i] % MOD\n\ndef comb(n,r):\n if n < r: return 0\n if n < 0 or r < 0: return 0\n return fac[n] * (finv[r] * finv[n-r] % MOD) % MOD\n\nH, W, A, B = map(int, input().split())\nans = 0\nfor i in range(1, H-A+1):\n cnt = comb(i-1+B-1, i-1)\n #print(i, cnt)\n cnt *= comb(H-i+W-B-1, H-i)\n ans += cnt\n ans %= MOD\nprint(ans)", "MOD = 10**9+7", "MOD", "10**9+7", "10**9", "10", "9", "7", "MAX = 2*10**5", "MAX", "2*10**5", "2", "10**5", "10", "5", "fac = [1,1] + [0]*MAX", "fac", "[1,1] + [0]*MAX", "[1,1]", "1", "1", "[0]*MAX", "[0]", "0", "MAX", "finv = [1,1] + [0]*MAX", "finv", "[1,1] + [0]*MAX", "[1,1]", "1", "1", "[0]*MAX", "[0]", "0", "MAX", "inv = [0,1] + [0]*MAX", "inv", "[0,1] + [0]*MAX", "[0,1]", "0", "1", "[0]*MAX", "[0]", "0", "MAX", "for i in range(2,MAX+2):\n fac[i] = fac[i-1] * i % MOD\n inv[i] = -inv[MOD%i] * (MOD // i) % MOD\n finv[i] = finv[i-1] * inv[i] % MOD", "i", "range(2,MAX+2)", "range", "2", "MAX+2", "MAX", "2", "fac[i] = fac[i-1] * i % MOD", "fac[i]", "fac", "i", "fac[i-1] * i % MOD", "fac[i-1] * i", "fac[i-1]", "fac", "i-1", "i", "1", "i", "MOD", "inv[i] = -inv[MOD%i] * (MOD // i) % MOD", "inv[i]", "inv", "i", "-inv[MOD%i] * (MOD // i) % MOD", "-inv[MOD%i] * (MOD // i)", "-inv[MOD%i]", "inv[MOD%i]", "inv", "MOD%i", "MOD", "i", "MOD // i", "MOD", "i", "MOD", "finv[i] = finv[i-1] * inv[i] % MOD", "finv[i]", "finv", "i", "finv[i-1] * inv[i] % MOD", "finv[i-1] * inv[i]", "finv[i-1]", "finv", "i-1", "i", "1", "inv[i]", "inv", "i", "MOD", "def comb(n,r):\n if n < r: return 0\n if n < 0 or r < 0: return 0\n return fac[n] * (finv[r] * finv[n-r] % MOD) % MOD", "comb", "if n < r: return 0\n ", "n < r", "n", "r", "if n < 0 or r < 0: return 0\n ", "n < 0 or r < 0", "n < 0", "n", "0", "r < 0", "r", "0", "return fac[n] * (finv[r] * finv[n-r] % MOD) % MOD", "fac[n] * (finv[r] * finv[n-r] % MOD) % MOD", "fac[n] * (finv[r] * finv[n-r] % MOD)", "fac[n]", "fac", "n", "finv[r] * finv[n-r] % MOD", "finv[r] * finv[n-r]", "finv[r]", "finv", "r", "finv[n-r]", "finv", "n-r", "n", "r", "MOD", "MOD", "n", "n", "r", "r", "H, W, A, B = map(int, input().split())", "H", "map(int, input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "ans = 0", "ans", "0", "for i in range(1, H-A+1):\n cnt = comb(i-1+B-1, i-1)\n #print(i, cnt)\n cnt *= comb(H-i+W-B-1, H-i)\n ans += cnt\n ans %= MOD", "i", "range(1, H-A+1)", "range", "1", "H-A+1", "H-A", "H", "A", "1", "cnt = comb(i-1+B-1, i-1)", "cnt", "comb(i-1+B-1, i-1)", "comb", "i-1+B-1", "i-1+B", "i-1", "i", "1", "B", "1", "i-1", "i", "1", "cnt *= comb(H-i+W-B-1, H-i)", "cnt", "comb(H-i+W-B-1, H-i)", "comb", "H-i+W-B-1", "H-i+W-B", "H-i+W", "H-i", "H", "i", "W", "B", "1", "H-i", "H", "i", "ans += cnt", "ans", "cnt", "ans %= MOD", "ans", "MOD", "print(ans)", "print", "ans", "H, W, A, B = map(int, input().split())", "map(int, input().split())", "H", "inv = [0,1] + [0]*MAX", "[0,1] + [0]*MAX", "inv", "W, A, B = map(int, input().split())", "map(int, input().split())", "W", "MAX = 2*10**5", "2*10**5", "MAX", "ans = 0", "0", "ans", "ans += cnt", "cnt", "ans", "finv = [1,1] + [0]*MAX", "[1,1] + [0]*MAX", "finv", "fac = [1,1] + [0]*MAX", "[1,1] + [0]*MAX", "fac", "cnt = comb(i-1+B-1, i-1)", "comb(i-1+B-1, i-1)", "cnt", "MOD = 10**9+7", "10**9+7", "MOD", "def comb(n,r):\n if n < r: return 0\n if n < 0 or r < 0: return 0\n return fac[n] * (finv[r] * finv[n-r] % MOD) % MOD", "def comb(n,r):\n if n < r: return 0\n if n < 0 or r < 0: return 0\n return fac[n] * (finv[r] * finv[n-r] % MOD) % MOD", "comb", "ans %= MOD", "MOD", "ans", "B = map(int, input().split())", "map(int, input().split())", "B", "A, B = map(int, input().split())", "map(int, input().split())", "A", "cnt *= comb(H-i+W-B-1, H-i)", "comb(H-i+W-B-1, H-i)", "cnt" ]
# Combination MOD = 10**9+7 MAX = 2*10**5 fac = [1,1] + [0]*MAX finv = [1,1] + [0]*MAX inv = [0,1] + [0]*MAX for i in range(2,MAX+2): fac[i] = fac[i-1] * i % MOD inv[i] = -inv[MOD%i] * (MOD // i) % MOD finv[i] = finv[i-1] * inv[i] % MOD def comb(n,r): if n < r: return 0 if n < 0 or r < 0: return 0 return fac[n] * (finv[r] * finv[n-r] % MOD) % MOD H, W, A, B = map(int, input().split()) ans = 0 for i in range(1, H-A+1): cnt = comb(i-1+B-1, i-1) #print(i, cnt) cnt *= comb(H-i+W-B-1, H-i) ans += cnt ans %= MOD print(ans)
[ 7, 15, 13, 15, 13, 15, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 39, 39, 17, 17, 39, 17, 17, 39, 17, 17, 39, 17, 17, 12, 13, 41, 28, 13, 4, 18, 4, 18, 18, 13, 13, 13, 13, 4, 4, 13, 13, 12, 13, 12, 13, 41, 28, 13, 4, 13, 13, 4, 4, 13, 12, 13, 23, 13, 12, 13, 42, 40, 13, 17, 0, 13, 13, 13, 2, 13, 13, 29, 13, 23, 13, 23, 13, 12, 13, 29, 2, 2, 13, 13, 4, 13, 13, 13, 23, 13, 23, 13, 12, 13, 0, 13, 2, 39, 17, 2, 13, 17, 0, 18, 13, 17, 17, 0, 18, 13, 17, 17, 0, 13, 17, 42, 40, 2, 13, 13, 13, 14, 18, 13, 13, 0, 13, 13, 42, 40, 2, 13, 13, 13, 0, 18, 13, 2, 13, 13, 17, 0, 13, 17, 0, 13, 17, 29, 13, 23, 13, 12, 13, 0, 13, 4, 13, 13, 13, 13, 0, 13, 2, 39, 17, 2, 13, 13, 0, 18, 13, 17, 17, 28, 13, 4, 13, 17, 2, 2, 13, 13, 13, 0, 18, 13, 17, 13, 0, 18, 13, 17, 13, 28, 13, 4, 13, 17, 2, 2, 2, 13, 17, 13, 13, 0, 18, 13, 17, 13, 0, 18, 13, 17, 13, 28, 13, 4, 13, 17, 2, 13, 13, 0, 18, 13, 17, 4, 13, 13, 2, 13, 17, 13, 0, 18, 13, 17, 13, 28, 13, 4, 13, 17, 2, 13, 17, 0, 18, 13, 17, 4, 13, 13, 2, 13, 17, 13, 0, 18, 13, 17, 13, 28, 13, 4, 13, 17, 2, 13, 13, 0, 18, 13, 17, 4, 13, 13, 2, 13, 17, 13, 0, 18, 13, 17, 13, 28, 13, 4, 13, 17, 13, 0, 18, 13, 17, 4, 13, 13, 2, 13, 17, 13, 0, 18, 13, 17, 13, 28, 13, 4, 13, 17, 2, 13, 13, 0, 18, 13, 13, 18, 13, 2, 13, 17, 0, 18, 13, 13, 2, 2, 2, 2, 13, 13, 13, 17, 13, 0, 18, 13, 13, 13, 0, 18, 13, 13, 2, 2, 13, 13, 13, 0, 18, 13, 13, 13, 0, 18, 13, 13, 4, 13, 2, 13, 13, 2, 13, 17, 13, 0, 18, 13, 13, 13, 0, 18, 13, 13, 4, 13, 2, 2, 2, 2, 13, 17, 13, 13, 13, 2, 13, 17, 13, 0, 18, 13, 13, 13, 29, 2, 4, 13, 13, 13, 14, 2, 13, 17, 4, 13, 4, 13, 10, 2, 13, 10, 12, 13, 10, 12, 13, 10, 12, 13, 10, 12, 13, 10, 12, 13, 10, 12, 13, 10, 12, 13, 10, 12, 13, 10, 39, 13 ]
[ [ 421, 8 ], [ 448, 15 ], [ 34, 33 ], [ 33, 46 ], [ 54, 53 ], [ 437, 59 ], [ 63, 63 ], [ 82, 68 ], [ 73, 68 ], [ 72, 71 ], [ 82, 72 ], [ 73, 72 ], [ 74, 73 ], [ 71, 75 ], [ 80, 75 ], [ 82, 76 ], [ 73, 76 ], [ 71, 78 ], [ 80, 78 ], [ 80, 80 ], [ 82, 82 ], [ 95, 88 ], [ 97, 89 ], [ 440, 91 ], [ 95, 92 ], [ 97, 93 ], [ 95, 95 ], [ 97, 97 ], [ 102, 101 ], [ 156, 106 ], [ 112, 109 ], [ 101, 110 ], [ 117, 114 ], [ 101, 115 ], [ 120, 119 ], [ 119, 124 ], [ 151, 124 ], [ 119, 125 ], [ 151, 125 ], [ 156, 126 ], [ 101, 129 ], [ 119, 130 ], [ 151, 130 ], [ 133, 132 ], [ 119, 133 ], [ 151, 133 ], [ 119, 137 ], [ 151, 137 ], [ 132, 138 ], [ 148, 138 ], [ 156, 139 ], [ 146, 141 ], [ 119, 144 ], [ 151, 144 ], [ 132, 145 ], [ 148, 145 ], [ 149, 148 ], [ 152, 151 ], [ 101, 154 ], [ 156, 156 ], [ 161, 160 ], [ 431, 162 ], [ 161, 163 ], [ 161, 164 ], [ 161, 165 ], [ 168, 167 ], [ 163, 172 ], [ 165, 173 ], [ 178, 175 ], [ 167, 176 ], [ 181, 180 ], [ 165, 186 ], [ 160, 187 ], [ 164, 188 ], [ 193, 190 ], [ 167, 191 ], [ 180, 193 ], [ 198, 195 ], [ 167, 196 ], [ 422, 198 ], [ 201, 200 ], [ 164, 207 ], [ 163, 209 ], [ 165, 210 ], [ 215, 212 ], [ 167, 213 ], [ 200, 215 ], [ 220, 217 ], [ 167, 218 ], [ 422, 220 ], [ 223, 222 ], [ 160, 227 ], [ 164, 228 ], [ 233, 230 ], [ 167, 231 ], [ 222, 235 ], [ 422, 237 ], [ 422, 239 ], [ 244, 241 ], [ 167, 242 ], [ 422, 244 ], [ 247, 246 ], [ 165, 251 ], [ 257, 254 ], [ 167, 255 ], [ 246, 259 ], [ 422, 261 ], [ 422, 263 ], [ 268, 265 ], [ 167, 266 ], [ 422, 268 ], [ 271, 270 ], [ 163, 275 ], [ 165, 276 ], [ 281, 278 ], [ 167, 279 ], [ 270, 283 ], [ 422, 285 ], [ 422, 287 ], [ 292, 289 ], [ 167, 290 ], [ 422, 292 ], [ 295, 294 ], [ 164, 298 ], [ 303, 300 ], [ 167, 301 ], [ 294, 305 ], [ 422, 307 ], [ 422, 309 ], [ 314, 311 ], [ 167, 312 ], [ 422, 314 ], [ 317, 316 ], [ 163, 321 ], [ 165, 322 ], [ 327, 324 ], [ 167, 325 ], [ 316, 326 ], [ 167, 328 ], [ 316, 330 ], [ 336, 333 ], [ 167, 334 ], [ 316, 335 ], [ 165, 340 ], [ 160, 341 ], [ 164, 342 ], [ 316, 344 ], [ 349, 346 ], [ 167, 347 ], [ 316, 348 ], [ 422, 349 ], [ 354, 351 ], [ 167, 352 ], [ 316, 353 ], [ 163, 356 ], [ 165, 357 ], [ 316, 358 ], [ 363, 360 ], [ 167, 361 ], [ 316, 362 ], [ 422, 363 ], [ 368, 365 ], [ 167, 366 ], [ 316, 367 ], [ 165, 371 ], [ 316, 372 ], [ 422, 374 ], [ 422, 376 ], [ 381, 378 ], [ 167, 379 ], [ 316, 380 ], [ 422, 381 ], [ 386, 383 ], [ 167, 384 ], [ 316, 385 ], [ 164, 392 ], [ 163, 394 ], [ 165, 395 ], [ 316, 396 ], [ 422, 398 ], [ 422, 400 ], [ 405, 402 ], [ 167, 403 ], [ 316, 404 ], [ 422, 405 ], [ 167, 410 ], [ 422, 411 ], [ 446, 419 ], [ 421, 422 ], [ 448, 449 ] ]
[ "import sys\nimport heapq\nimport bisect\n\nmod = 10**9+7\ndd = ((-1,0),(1,0),(0,-1),(0,1))\n\ndef I(): return(int(sys.stdin.readline()))\ndef LI(): return([int(x) for x in sys.stdin.readline().split()])\ndef S(): return(sys.stdin.readline()[:-1])\ndef IR(n): return([I() for _ in range(n)])\n\ndef GCD(a,b):\n while b!=0:\n a,b = b,a%b\n return a\n\ndef LCM(a,b):\n return a * b // GCD(a,b)\n\ndef Eratosthenes(N):\n r = [True]*(N+1)\n r[0] = False\n r[1] = False\n i = 2\n while i*i<=N:\n if r[i]: \n j = i\n while i*j<=N:\n prime[i*j]=False\n j+=1\n i+=1\n return(r)\n\ndef main():\n H,W,A,B = LI()\n\n ans = [0]*(W-B)\n\n ans[0] = 1\n\n for i in range(1,B+H-A):\n ans[0] *= i\n ans[0] %= mod\n for i in range(1,A-1+W-B):\n ans[0] *= i\n ans[0] %= mod\n for i in range(1,H-A):\n ans[0] *= pow(i,mod-2,mod)\n ans[0] %= mod\n for i in range(1,B+1):\n ans[0] *= pow(i,mod-2,mod)\n ans[0] %= mod\n for i in range(1,W-B):\n ans[0] *= pow(i,mod-2,mod)\n ans[0] %= mod\n for i in range(1,A):\n ans[0] *= pow(i,mod-2,mod)\n ans[0] %= mod\n\n for i in range(1,W-B):\n ans[i] = ans[i-1]\n ans[i] *= (B+H-A-1+i)\n ans[i] %= mod\n ans[i] *= (W-B-i)\n ans[i] %= mod\n ans[i] *= pow(B+i,mod-2,mod)\n ans[i] %= mod\n ans[i] *= pow(A-1+W-B-i,mod-2,mod)\n ans[i] %= mod\n\n return(sum(ans)%mod)\n\n\nif __name__ == \"__main__\":\n print(main())", "import sys", "sys", "import heapq", "heapq", "import bisect", "bisect", "mod = 10**9+7", "mod", "10**9+7", "10**9", "10", "9", "7", "dd = ((-1,0),(1,0),(0,-1),(0,1))", "dd", "((-1,0),(1,0),(0,-1),(0,1))", "(-1,0)", "-1", "0", "(1,0)", "1", "0", "(0,-1)", "0", "-1", "(0,1)", "0", "1", "def I(): return(int(sys.stdin.readline()))", "I", "int(x) for x in sys.stdin.readline().split()", "for x in sys.stdin.readline().split()", "x", "sys.stdin.readline().split()", "sys.stdin.readline().split", "sys.stdin.readline()", "sys.stdin.readline", "sys.stdin", "sys", "stdin", "readline", "split", "for x in sys.stdin.readline().split()", "int(x)", "int", "x", "def LI(): return([int(x) for x in sys.stdin.readline().split()])", "LI", "def S(): return(sys.stdin.readline()[:-1])", "S", "I() for _ in range(n)", "for _ in range(n)", "_", "range(n)", "range", "n", "for _ in range(n)", "I()", "I", "def IR(n): return([I() for _ in range(n)])", "IR", "n", "n", "def GCD(a,b):\n while b!=0:\n a,b = b,a%b\n return a", "GCD", "while b!=0:\n a,b = b,a%b\n ", "b!=0", "b", "0", "a,b = b,a%b", "a", "b", "b", "a%b", "a", "b", "return a", "a", "a", "a", "b", "b", "def LCM(a,b):\n return a * b // GCD(a,b)", "LCM", "return a * b // GCD(a,b)", "a * b // GCD(a,b)", "a * b", "a", "b", "GCD(a,b)", "GCD", "a", "b", "a", "a", "b", "b", "def Eratosthenes(N):\n r = [True]*(N+1)\n r[0] = False\n r[1] = False\n i = 2\n while i*i<=N:\n if r[i]: \n j = i\n while i*j<=N:\n prime[i*j]=False\n j+=1\n i+=1\n return(r)", "Eratosthenes", "r = [True]*(N+1)", "r", "[True]*(N+1)", "[True]", "True", "N+1", "N", "1", "r[0] = False", "r[0]", "r", "0", "False", "r[1] = False", "r[1]", "r", "1", "False", "i = 2", "i", "2", "while i*i<=N:\n if r[i]: \n j = i\n while i*j<=N:\n prime[i*j]=False\n j+=1\n i+=1\n ", "i*i<=N", "i*i", "i", "i", "N", "if r[i]: \n j = i\n while i*j<=N:\n prime[i*j]=False\n j+=1\n ", "r[i]", "r", "i", "j = i", "j", "i", "while i*j<=N:\n prime[i*j]=False\n j+=1\n ", "i*j<=N", "i*j", "i", "j", "N", "prime[i*j]=False", "prime[i*j]", "prime", "i*j", "i", "j", "False", "j+=1", "j", "1", "i+=1", "i", "1", "return(r)", "r", "N", "N", "def main():\n H,W,A,B = LI()\n\n ans = [0]*(W-B)\n\n ans[0] = 1\n\n for i in range(1,B+H-A):\n ans[0] *= i\n ans[0] %= mod\n for i in range(1,A-1+W-B):\n ans[0] *= i\n ans[0] %= mod\n for i in range(1,H-A):\n ans[0] *= pow(i,mod-2,mod)\n ans[0] %= mod\n for i in range(1,B+1):\n ans[0] *= pow(i,mod-2,mod)\n ans[0] %= mod\n for i in range(1,W-B):\n ans[0] *= pow(i,mod-2,mod)\n ans[0] %= mod\n for i in range(1,A):\n ans[0] *= pow(i,mod-2,mod)\n ans[0] %= mod\n\n for i in range(1,W-B):\n ans[i] = ans[i-1]\n ans[i] *= (B+H-A-1+i)\n ans[i] %= mod\n ans[i] *= (W-B-i)\n ans[i] %= mod\n ans[i] *= pow(B+i,mod-2,mod)\n ans[i] %= mod\n ans[i] *= pow(A-1+W-B-i,mod-2,mod)\n ans[i] %= mod\n\n return(sum(ans)%mod)", "main", "H,W,A,B = LI()", "H", "LI()", "LI", "W", "A", "B", "ans = [0]*(W-B)", "ans", "[0]*(W-B)", "[0]", "0", "W-B", "W", "B", "ans[0] = 1", "ans[0]", "ans", "0", "1", "for i in range(1,B+H-A):\n ans[0] *= i\n ans[0] %= mod\n ", "i", "range(1,B+H-A)", "range", "1", "B+H-A", "B+H", "B", "H", "A", "ans[0] *= i", "ans[0]", "ans", "0", "i", "ans[0] %= mod", "ans[0]", "ans", "0", "mod", "for i in range(1,A-1+W-B):\n ans[0] *= i\n ans[0] %= mod\n ", "i", "range(1,A-1+W-B)", "range", "1", "A-1+W-B", "A-1+W", "A-1", "A", "1", "W", "B", "ans[0] *= i", "ans[0]", "ans", "0", "i", "ans[0] %= mod", "ans[0]", "ans", "0", "mod", "for i in range(1,H-A):\n ans[0] *= pow(i,mod-2,mod)\n ans[0] %= mod\n ", "i", "range(1,H-A)", "range", "1", "H-A", "H", "A", "ans[0] *= pow(i,mod-2,mod)", "ans[0]", "ans", "0", "pow(i,mod-2,mod)", "pow", "i", "mod-2", "mod", "2", "mod", "ans[0] %= mod", "ans[0]", "ans", "0", "mod", "for i in range(1,B+1):\n ans[0] *= pow(i,mod-2,mod)\n ans[0] %= mod\n ", "i", "range(1,B+1)", "range", "1", "B+1", "B", "1", "ans[0] *= pow(i,mod-2,mod)", "ans[0]", "ans", "0", "pow(i,mod-2,mod)", "pow", "i", "mod-2", "mod", "2", "mod", "ans[0] %= mod", "ans[0]", "ans", "0", "mod", "for i in range(1,W-B):\n ans[0] *= pow(i,mod-2,mod)\n ans[0] %= mod\n ", "i", "range(1,W-B)", "range", "1", "W-B", "W", "B", "ans[0] *= pow(i,mod-2,mod)", "ans[0]", "ans", "0", "pow(i,mod-2,mod)", "pow", "i", "mod-2", "mod", "2", "mod", "ans[0] %= mod", "ans[0]", "ans", "0", "mod", "for i in range(1,A):\n ans[0] *= pow(i,mod-2,mod)\n ans[0] %= mod\n\n ", "i", "range(1,A)", "range", "1", "A", "ans[0] *= pow(i,mod-2,mod)", "ans[0]", "ans", "0", "pow(i,mod-2,mod)", "pow", "i", "mod-2", "mod", "2", "mod", "ans[0] %= mod", "ans[0]", "ans", "0", "mod", "for i in range(1,W-B):\n ans[i] = ans[i-1]\n ans[i] *= (B+H-A-1+i)\n ans[i] %= mod\n ans[i] *= (W-B-i)\n ans[i] %= mod\n ans[i] *= pow(B+i,mod-2,mod)\n ans[i] %= mod\n ans[i] *= pow(A-1+W-B-i,mod-2,mod)\n ans[i] %= mod\n\n ", "i", "range(1,W-B)", "range", "1", "W-B", "W", "B", "ans[i] = ans[i-1]", "ans[i]", "ans", "i", "ans[i-1]", "ans", "i-1", "i", "1", "ans[i] *= (B+H-A-1+i)", "ans[i]", "ans", "i", "B+H-A-1+i", "B+H-A-1", "B+H-A", "B+H", "B", "H", "A", "1", "i", "ans[i] %= mod", "ans[i]", "ans", "i", "mod", "ans[i] *= (W-B-i)", "ans[i]", "ans", "i", "W-B-i", "W-B", "W", "B", "i", "ans[i] %= mod", "ans[i]", "ans", "i", "mod", "ans[i] *= pow(B+i,mod-2,mod)", "ans[i]", "ans", "i", "pow(B+i,mod-2,mod)", "pow", "B+i", "B", "i", "mod-2", "mod", "2", "mod", "ans[i] %= mod", "ans[i]", "ans", "i", "mod", "ans[i] *= pow(A-1+W-B-i,mod-2,mod)", "ans[i]", "ans", "i", "pow(A-1+W-B-i,mod-2,mod)", "pow", "A-1+W-B-i", "A-1+W-B", "A-1+W", "A-1", "A", "1", "W", "B", "i", "mod-2", "mod", "2", "mod", "ans[i] %= mod", "ans[i]", "ans", "i", "mod", "return(sum(ans)%mod)", "sum(ans)%mod", "sum(ans)", "sum", "ans", "mod", "if __name__ == \"__main__\":\n print(main())", "__name__ == \"__main__\"", "__name__", "\"__main__\"", "print(main())", "print", "main()", "main", "mod = 10**9+7", "10**9+7", "mod", "def IR(n): return([I() for _ in range(n)])", "def IR(n): return([I() for _ in range(n)])", "IR", "def S(): return(sys.stdin.readline()[:-1])", "def S(): return(sys.stdin.readline()[:-1])", "S", "def LI(): return([int(x) for x in sys.stdin.readline().split()])", "def LI(): return([int(x) for x in sys.stdin.readline().split()])", "LI", "def LCM(a,b):\n return a * b // GCD(a,b)", "def LCM(a,b):\n return a * b // GCD(a,b)", "LCM", "def I(): return(int(sys.stdin.readline()))", "def I(): return(int(sys.stdin.readline()))", "I", "def GCD(a,b):\n while b!=0:\n a,b = b,a%b\n return a", "def GCD(a,b):\n while b!=0:\n a,b = b,a%b\n return a", "GCD", "def Eratosthenes(N):\n r = [True]*(N+1)\n r[0] = False\n r[1] = False\n i = 2\n while i*i<=N:\n if r[i]: \n j = i\n while i*j<=N:\n prime[i*j]=False\n j+=1\n i+=1\n return(r)", "def Eratosthenes(N):\n r = [True]*(N+1)\n r[0] = False\n r[1] = False\n i = 2\n while i*i<=N:\n if r[i]: \n j = i\n while i*j<=N:\n prime[i*j]=False\n j+=1\n i+=1\n return(r)", "Eratosthenes", "def main():\n H,W,A,B = LI()\n\n ans = [0]*(W-B)\n\n ans[0] = 1\n\n for i in range(1,B+H-A):\n ans[0] *= i\n ans[0] %= mod\n for i in range(1,A-1+W-B):\n ans[0] *= i\n ans[0] %= mod\n for i in range(1,H-A):\n ans[0] *= pow(i,mod-2,mod)\n ans[0] %= mod\n for i in range(1,B+1):\n ans[0] *= pow(i,mod-2,mod)\n ans[0] %= mod\n for i in range(1,W-B):\n ans[0] *= pow(i,mod-2,mod)\n ans[0] %= mod\n for i in range(1,A):\n ans[0] *= pow(i,mod-2,mod)\n ans[0] %= mod\n\n for i in range(1,W-B):\n ans[i] = ans[i-1]\n ans[i] *= (B+H-A-1+i)\n ans[i] %= mod\n ans[i] *= (W-B-i)\n ans[i] %= mod\n ans[i] *= pow(B+i,mod-2,mod)\n ans[i] %= mod\n ans[i] *= pow(A-1+W-B-i,mod-2,mod)\n ans[i] %= mod\n\n return(sum(ans)%mod)", "def main():\n H,W,A,B = LI()\n\n ans = [0]*(W-B)\n\n ans[0] = 1\n\n for i in range(1,B+H-A):\n ans[0] *= i\n ans[0] %= mod\n for i in range(1,A-1+W-B):\n ans[0] *= i\n ans[0] %= mod\n for i in range(1,H-A):\n ans[0] *= pow(i,mod-2,mod)\n ans[0] %= mod\n for i in range(1,B+1):\n ans[0] *= pow(i,mod-2,mod)\n ans[0] %= mod\n for i in range(1,W-B):\n ans[0] *= pow(i,mod-2,mod)\n ans[0] %= mod\n for i in range(1,A):\n ans[0] *= pow(i,mod-2,mod)\n ans[0] %= mod\n\n for i in range(1,W-B):\n ans[i] = ans[i-1]\n ans[i] *= (B+H-A-1+i)\n ans[i] %= mod\n ans[i] *= (W-B-i)\n ans[i] %= mod\n ans[i] *= pow(B+i,mod-2,mod)\n ans[i] %= mod\n ans[i] *= pow(A-1+W-B-i,mod-2,mod)\n ans[i] %= mod\n\n return(sum(ans)%mod)", "main", "dd = ((-1,0),(1,0),(0,-1),(0,1))", "((-1,0),(1,0),(0,-1),(0,1))", "dd" ]
import sys import heapq import bisect mod = 10**9+7 dd = ((-1,0),(1,0),(0,-1),(0,1)) def I(): return(int(sys.stdin.readline())) def LI(): return([int(x) for x in sys.stdin.readline().split()]) def S(): return(sys.stdin.readline()[:-1]) def IR(n): return([I() for _ in range(n)]) def GCD(a,b): while b!=0: a,b = b,a%b return a def LCM(a,b): return a * b // GCD(a,b) def Eratosthenes(N): r = [True]*(N+1) r[0] = False r[1] = False i = 2 while i*i<=N: if r[i]: j = i while i*j<=N: prime[i*j]=False j+=1 i+=1 return(r) def main(): H,W,A,B = LI() ans = [0]*(W-B) ans[0] = 1 for i in range(1,B+H-A): ans[0] *= i ans[0] %= mod for i in range(1,A-1+W-B): ans[0] *= i ans[0] %= mod for i in range(1,H-A): ans[0] *= pow(i,mod-2,mod) ans[0] %= mod for i in range(1,B+1): ans[0] *= pow(i,mod-2,mod) ans[0] %= mod for i in range(1,W-B): ans[0] *= pow(i,mod-2,mod) ans[0] %= mod for i in range(1,A): ans[0] *= pow(i,mod-2,mod) ans[0] %= mod for i in range(1,W-B): ans[i] = ans[i-1] ans[i] *= (B+H-A-1+i) ans[i] %= mod ans[i] *= (W-B-i) ans[i] %= mod ans[i] *= pow(B+i,mod-2,mod) ans[i] %= mod ans[i] *= pow(A-1+W-B-i,mod-2,mod) ans[i] %= mod return(sum(ans)%mod) if __name__ == "__main__": print(main())
[ 7, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 13, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 39, 17, 28, 13, 4, 13, 17, 2, 13, 17, 4, 18, 13, 13, 2, 2, 18, 13, 17, 13, 13, 0, 13, 39, 4, 13, 18, 13, 17, 2, 13, 17, 13, 28, 13, 4, 13, 13, 17, 17, 4, 18, 13, 13, 2, 2, 18, 13, 17, 13, 13, 4, 18, 13, 13, 12, 13, 29, 2, 2, 18, 13, 13, 18, 13, 2, 13, 13, 18, 13, 13, 23, 13, 23, 13, 0, 13, 17, 28, 13, 4, 13, 2, 13, 13, 0, 13, 2, 4, 13, 2, 2, 13, 13, 17, 13, 4, 13, 2, 2, 2, 13, 13, 17, 2, 2, 13, 13, 17, 2, 2, 13, 13, 17, 0, 13, 13, 4, 13, 13, 10, 4, 13, 10, 39, 13, 10, 4, 13, 10, 13, 13, 10, 2, 13, 10, 2, 13, 10, 17, 13, 10, 4, 13, 10, 4, 13, 10, 39, 13, 10, 12, 13, 10, 2, 13 ]
[ [ 173, 2 ], [ 173, 11 ], [ 173, 12 ], [ 173, 13 ], [ 164, 15 ], [ 150, 17 ], [ 171, 18 ], [ 182, 20 ], [ 152, 27 ], [ 32, 31 ], [ 165, 36 ], [ 153, 40 ], [ 153, 45 ], [ 31, 47 ], [ 183, 48 ], [ 176, 50 ], [ 153, 55 ], [ 183, 58 ], [ 183, 60 ], [ 63, 62 ], [ 165, 65 ], [ 177, 70 ], [ 177, 75 ], [ 62, 77 ], [ 183, 78 ], [ 177, 81 ], [ 153, 89 ], [ 100, 90 ], [ 177, 92 ], [ 100, 94 ], [ 102, 95 ], [ 177, 97 ], [ 102, 98 ], [ 100, 100 ], [ 102, 102 ], [ 167, 104 ], [ 108, 107 ], [ 150, 111 ], [ 174, 112 ], [ 161, 114 ], [ 180, 117 ], [ 156, 120 ], [ 107, 121 ], [ 107, 123 ], [ 180, 125 ], [ 171, 129 ], [ 156, 130 ], [ 150, 134 ], [ 107, 135 ], [ 150, 139 ], [ 107, 140 ], [ 158, 143 ], [ 183, 144 ], [ 159, 147 ], [ 162, 147 ], [ 168, 147 ], [ 173, 150 ], [ 152, 153 ], [ 173, 156 ], [ 183, 158 ], [ 158, 159 ], [ 161, 162 ], [ 164, 165 ], [ 167, 168 ], [ 173, 171 ], [ 173, 174 ], [ 176, 177 ], [ 182, 183 ] ]
[ "H,W,A,B=map(int,input().split())\nN=H+W\nmod=10**9+7\nfactl=[1]\nfor i in range(1,N+1):\n factl.append(factl[-1]*i%mod)\ninvl=[pow(factl[-1],mod-2,mod)]\nfor i in range(N,0,-1):\n invl.append(invl[-1]*i%mod)\ninvl.reverse()\ndef Comb(a,b):\n return factl[a]*invl[a-b]*invl[b]\nans=0\nfor i in range(H-A):\n ans+=Comb(B+i-1,i)*Comb((W-B-1)+(H-i-1), H-i-1)\n ans%=mod\nprint(ans)", "H,W,A,B=map(int,input().split())", "H", "map(int,input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "N=H+W", "N", "H+W", "H", "W", "mod=10**9+7", "mod", "10**9+7", "10**9", "10", "9", "7", "factl=[1]", "factl", "[1]", "1", "for i in range(1,N+1):\n factl.append(factl[-1]*i%mod)", "i", "range(1,N+1)", "range", "1", "N+1", "N", "1", "factl.append(factl[-1]*i%mod)", "factl.append", "factl", "append", "factl[-1]*i%mod", "factl[-1]*i", "factl[-1]", "factl", "-1", "i", "mod", "invl=[pow(factl[-1],mod-2,mod)]", "invl", "[pow(factl[-1],mod-2,mod)]", "pow(factl[-1],mod-2,mod)", "pow", "factl[-1]", "factl", "-1", "mod-2", "mod", "2", "mod", "for i in range(N,0,-1):\n invl.append(invl[-1]*i%mod)", "i", "range(N,0,-1)", "range", "N", "0", "-1", "invl.append(invl[-1]*i%mod)", "invl.append", "invl", "append", "invl[-1]*i%mod", "invl[-1]*i", "invl[-1]", "invl", "-1", "i", "mod", "invl.reverse()", "invl.reverse", "invl", "reverse", "def Comb(a,b):\n return factl[a]*invl[a-b]*invl[b]", "Comb", "return factl[a]*invl[a-b]*invl[b]", "factl[a]*invl[a-b]*invl[b]", "factl[a]*invl[a-b]", "factl[a]", "factl", "a", "invl[a-b]", "invl", "a-b", "a", "b", "invl[b]", "invl", "b", "a", "a", "b", "b", "ans=0", "ans", "0", "for i in range(H-A):\n ans+=Comb(B+i-1,i)*Comb((W-B-1)+(H-i-1), H-i-1)\n ans%=mod", "i", "range(H-A)", "range", "H-A", "H", "A", "ans+=Comb(B+i-1,i)*Comb((W-B-1)+(H-i-1), H-i-1)", "ans", "Comb(B+i-1,i)*Comb((W-B-1)+(H-i-1), H-i-1)", "Comb(B+i-1,i)", "Comb", "B+i-1", "B+i", "B", "i", "1", "i", "Comb((W-B-1)+(H-i-1), H-i-1)", "Comb", "(W-B-1)+(H-i-1)", "W-B-1", "W-B", "W", "B", "1", "H-i-1", "H-i", "H", "i", "1", "H-i-1", "H-i", "H", "i", "1", "ans%=mod", "ans", "mod", "print(ans)", "print", "ans", "H,W,A,B=map(int,input().split())", "map(int,input().split())", "H", "factl=[1]", "[1]", "factl", "B=map(int,input().split())", "map(int,input().split())", "B", "ans%=mod", "mod", "ans", "ans+=Comb(B+i-1,i)*Comb((W-B-1)+(H-i-1), H-i-1)", "Comb(B+i-1,i)*Comb((W-B-1)+(H-i-1), H-i-1)", "ans", "N=H+W", "H+W", "N", "ans=0", "0", "ans", "W,A,B=map(int,input().split())", "map(int,input().split())", "W", "A,B=map(int,input().split())", "map(int,input().split())", "A", "invl=[pow(factl[-1],mod-2,mod)]", "[pow(factl[-1],mod-2,mod)]", "invl", "def Comb(a,b):\n return factl[a]*invl[a-b]*invl[b]", "def Comb(a,b):\n return factl[a]*invl[a-b]*invl[b]", "Comb", "mod=10**9+7", "10**9+7", "mod" ]
H,W,A,B=map(int,input().split()) N=H+W mod=10**9+7 factl=[1] for i in range(1,N+1): factl.append(factl[-1]*i%mod) invl=[pow(factl[-1],mod-2,mod)] for i in range(N,0,-1): invl.append(invl[-1]*i%mod) invl.reverse() def Comb(a,b): return factl[a]*invl[a-b]*invl[b] ans=0 for i in range(H-A): ans+=Comb(B+i-1,i)*Comb((W-B-1)+(H-i-1), H-i-1) ans%=mod print(ans)
[ 7, 12, 13, 29, 2, 2, 18, 13, 13, 18, 13, 2, 13, 13, 18, 13, 13, 23, 13, 23, 13, 12, 13, 41, 0, 13, 4, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 2, 39, 17, 2, 2, 13, 13, 17, 13, 17, 28, 13, 4, 13, 17, 2, 2, 13, 13, 17, 0, 13, 2, 2, 13, 13, 13, 0, 18, 13, 13, 13, 0, 13, 2, 39, 17, 2, 2, 13, 13, 17, 0, 18, 13, 17, 4, 13, 18, 13, 17, 2, 13, 17, 13, 0, 13, 18, 13, 17, 28, 13, 4, 13, 2, 2, 13, 13, 17, 17, 17, 0, 13, 2, 2, 13, 2, 13, 17, 13, 0, 18, 13, 13, 13, 0, 13, 17, 28, 13, 4, 13, 13, 13, 0, 13, 2, 4, 13, 2, 2, 2, 13, 13, 13, 17, 13, 4, 13, 2, 2, 2, 2, 13, 13, 17, 13, 17, 2, 13, 17, 4, 13, 2, 13, 13, 14, 2, 13, 17, 4, 13, 10, 12, 13, 10, 12, 13 ]
[ [ 18, 8 ], [ 18, 12 ], [ 20, 13 ], [ 20, 16 ], [ 18, 18 ], [ 20, 20 ], [ 26, 25 ], [ 26, 36 ], [ 26, 37 ], [ 26, 38 ], [ 41, 40 ], [ 48, 47 ], [ 25, 53 ], [ 36, 54 ], [ 57, 56 ], [ 60, 59 ], [ 25, 65 ], [ 36, 66 ], [ 70, 69 ], [ 56, 72 ], [ 69, 72 ], [ 59, 73 ], [ 40, 74 ], [ 79, 76 ], [ 47, 77 ], [ 59, 78 ], [ 69, 79 ], [ 56, 79 ], [ 82, 81 ], [ 25, 87 ], [ 36, 88 ], [ 94, 91 ], [ 81, 92 ], [ 47, 97 ], [ 40, 100 ], [ 40, 102 ], [ 105, 104 ], [ 81, 106 ], [ 110, 109 ], [ 25, 114 ], [ 36, 115 ], [ 121, 120 ], [ 104, 123 ], [ 69, 123 ], [ 56, 123 ], [ 120, 123 ], [ 109, 125 ], [ 40, 127 ], [ 132, 129 ], [ 81, 130 ], [ 109, 131 ], [ 120, 132 ], [ 104, 132 ], [ 69, 132 ], [ 56, 132 ], [ 135, 134 ], [ 138, 137 ], [ 38, 140 ], [ 36, 141 ], [ 144, 143 ], [ 185, 146 ], [ 137, 150 ], [ 25, 151 ], [ 37, 152 ], [ 137, 154 ], [ 185, 156 ], [ 36, 161 ], [ 137, 162 ], [ 37, 164 ], [ 37, 167 ], [ 143, 172 ], [ 134, 172 ], [ 40, 173 ], [ 182, 179 ] ]
[ "# ABC042D - いろはちゃんとマス目 / Iroha and a Grid (ARC058D)\ndef comb(n: int, r: int) -> int:\n return fact[n] * inv[n - r] * inv[r]\n\n\ndef main():\n global fact, inv\n H, W, A, B = tuple(map(int, input().split()))\n MOD = 10 ** 9 + 7\n # table of factorials\n fact, x = [1] * (H + W + 1), 1\n for i in range(1, H + W + 1):\n x = (x * i) % MOD\n fact[i] = x\n # table of inverse factorials\n inv = [1] * (H + W + 1)\n inv[-1] = pow(fact[-1], MOD - 2, MOD)\n x = inv[-1]\n for i in range(H + W - 1, 0, -1):\n x = (x * (i + 1)) % MOD\n inv[i] = x\n\n ans = 0\n for i in range(B, W):\n ans += comb(i + H - A - 1, i) * comb(W - i - 1 + A - 1, A - 1)\n print(ans % MOD)\n\n\nif __name__ == \"__main__\":\n main()", "def comb(n: int, r: int) -> int:\n return fact[n] * inv[n - r] * inv[r]", "comb", "return fact[n] * inv[n - r] * inv[r]", "fact[n] * inv[n - r] * inv[r]", "fact[n] * inv[n - r]", "fact[n]", "fact", "n", "inv[n - r]", "inv", "n - r", "n", "r", "inv[r]", "inv", "r", "n: int", "n", "r: int", "r", "def main():\n global fact, inv\n H, W, A, B = tuple(map(int, input().split()))\n MOD = 10 ** 9 + 7\n # table of factorials\n fact, x = [1] * (H + W + 1), 1\n for i in range(1, H + W + 1):\n x = (x * i) % MOD\n fact[i] = x\n # table of inverse factorials\n inv = [1] * (H + W + 1)\n inv[-1] = pow(fact[-1], MOD - 2, MOD)\n x = inv[-1]\n for i in range(H + W - 1, 0, -1):\n x = (x * (i + 1)) % MOD\n inv[i] = x\n\n ans = 0\n for i in range(B, W):\n ans += comb(i + H - A - 1, i) * comb(W - i - 1 + A - 1, A - 1)\n print(ans % MOD)", "main", "global fact, inv", "H, W, A, B = tuple(map(int, input().split()))", "H", "tuple(map(int, input().split()))", "tuple", "map(int, input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "MOD = 10 ** 9 + 7", "MOD", "10 ** 9 + 7", "10 ** 9", "10", "9", "7", "fact, x = [1] * (H + W + 1), 1", "fact", "[1] * (H + W + 1)", "[1]", "1", "H + W + 1", "H + W", "H", "W", "1", "x", "1", "for i in range(1, H + W + 1):\n x = (x * i) % MOD\n fact[i] = x\n # table of inverse factorials\n ", "i", "range(1, H + W + 1)", "range", "1", "H + W + 1", "H + W", "H", "W", "1", "x = (x * i) % MOD", "x", "(x * i) % MOD", "x * i", "x", "i", "MOD", "fact[i] = x", "fact[i]", "fact", "i", "x", "inv = [1] * (H + W + 1)", "inv", "[1] * (H + W + 1)", "[1]", "1", "H + W + 1", "H + W", "H", "W", "1", "inv[-1] = pow(fact[-1], MOD - 2, MOD)", "inv[-1]", "inv", "-1", "pow(fact[-1], MOD - 2, MOD)", "pow", "fact[-1]", "fact", "-1", "MOD - 2", "MOD", "2", "MOD", "x = inv[-1]", "x", "inv[-1]", "inv", "-1", "for i in range(H + W - 1, 0, -1):\n x = (x * (i + 1)) % MOD\n inv[i] = x\n\n ", "i", "range(H + W - 1, 0, -1)", "range", "H + W - 1", "H + W", "H", "W", "1", "0", "-1", "x = (x * (i + 1)) % MOD", "x", "(x * (i + 1)) % MOD", "x * (i + 1)", "x", "i + 1", "i", "1", "MOD", "inv[i] = x", "inv[i]", "inv", "i", "x", "ans = 0", "ans", "0", "for i in range(B, W):\n ans += comb(i + H - A - 1, i) * comb(W - i - 1 + A - 1, A - 1)\n ", "i", "range(B, W)", "range", "B", "W", "ans += comb(i + H - A - 1, i) * comb(W - i - 1 + A - 1, A - 1)", "ans", "comb(i + H - A - 1, i) * comb(W - i - 1 + A - 1, A - 1)", "comb(i + H - A - 1, i)", "comb", "i + H - A - 1", "i + H - A", "i + H", "i", "H", "A", "1", "i", "comb(W - i - 1 + A - 1, A - 1)", "comb", "W - i - 1 + A - 1", "W - i - 1 + A", "W - i - 1", "W - i", "W", "i", "1", "A", "1", "A - 1", "A", "1", "print(ans % MOD)", "print", "ans % MOD", "ans", "MOD", "if __name__ == \"__main__\":\n main()", "__name__ == \"__main__\"", "__name__", "\"__main__\"", "main()", "main", "def main():\n global fact, inv\n H, W, A, B = tuple(map(int, input().split()))\n MOD = 10 ** 9 + 7\n # table of factorials\n fact, x = [1] * (H + W + 1), 1\n for i in range(1, H + W + 1):\n x = (x * i) % MOD\n fact[i] = x\n # table of inverse factorials\n inv = [1] * (H + W + 1)\n inv[-1] = pow(fact[-1], MOD - 2, MOD)\n x = inv[-1]\n for i in range(H + W - 1, 0, -1):\n x = (x * (i + 1)) % MOD\n inv[i] = x\n\n ans = 0\n for i in range(B, W):\n ans += comb(i + H - A - 1, i) * comb(W - i - 1 + A - 1, A - 1)\n print(ans % MOD)", "def main():\n global fact, inv\n H, W, A, B = tuple(map(int, input().split()))\n MOD = 10 ** 9 + 7\n # table of factorials\n fact, x = [1] * (H + W + 1), 1\n for i in range(1, H + W + 1):\n x = (x * i) % MOD\n fact[i] = x\n # table of inverse factorials\n inv = [1] * (H + W + 1)\n inv[-1] = pow(fact[-1], MOD - 2, MOD)\n x = inv[-1]\n for i in range(H + W - 1, 0, -1):\n x = (x * (i + 1)) % MOD\n inv[i] = x\n\n ans = 0\n for i in range(B, W):\n ans += comb(i + H - A - 1, i) * comb(W - i - 1 + A - 1, A - 1)\n print(ans % MOD)", "main", "def comb(n: int, r: int) -> int:\n return fact[n] * inv[n - r] * inv[r]", "def comb(n: int, r: int) -> int:\n return fact[n] * inv[n - r] * inv[r]", "comb" ]
# ABC042D - いろはちゃんとマス目 / Iroha and a Grid (ARC058D) def comb(n: int, r: int) -> int: return fact[n] * inv[n - r] * inv[r] def main(): global fact, inv H, W, A, B = tuple(map(int, input().split())) MOD = 10 ** 9 + 7 # table of factorials fact, x = [1] * (H + W + 1), 1 for i in range(1, H + W + 1): x = (x * i) % MOD fact[i] = x # table of inverse factorials inv = [1] * (H + W + 1) inv[-1] = pow(fact[-1], MOD - 2, MOD) x = inv[-1] for i in range(H + W - 1, 0, -1): x = (x * (i + 1)) % MOD inv[i] = x ans = 0 for i in range(B, W): ans += comb(i + H - A - 1, i) * comb(W - i - 1 + A - 1, A - 1) print(ans % MOD) if __name__ == "__main__": main()
[ 7, 15, 15, 13, 4, 18, 13, 13, 2, 17, 17, 15, 15, 15, 12, 13, 12, 13, 12, 13, 12, 13, 41, 28, 13, 4, 13, 13, 4, 4, 13, 12, 13, 23, 13, 0, 13, 12, 2, 4, 13, 13, 17, 23, 12, 13, 12, 13, 0, 13, 12, 4, 13, 31, 13, 0, 13, 17, 23, 0, 13, 39, 39, 17, 17, 39, 17, 17, 39, 17, 17, 39, 17, 17, 6, 13, 12, 13, 0, 18, 13, 13, 2, 13, 13, 23, 13, 23, 13, 12, 13, 29, 4, 13, 18, 13, 13, 23, 13, 12, 13, 29, 4, 13, 40, 18, 13, 13, 23, 13, 12, 13, 14, 4, 13, 13, 13, 29, 4, 13, 2, 18, 13, 13, 13, 23, 13, 23, 13, 12, 13, 14, 4, 13, 13, 13, 29, 4, 13, 2, 18, 13, 13, 13, 23, 13, 23, 13, 12, 13, 29, 4, 13, 2, 13, 18, 13, 13, 23, 13, 23, 13, 12, 13, 14, 4, 13, 13, 13, 29, 4, 13, 2, 18, 13, 13, 13, 23, 13, 23, 13, 0, 13, 13, 0, 13, 13, 12, 13, 14, 4, 13, 13, 13, 29, 4, 13, 2, 18, 13, 13, 4, 13, 13, 2, 13, 17, 13, 23, 13, 23, 13, 12, 13, 29, 4, 13, 2, 13, 4, 13, 18, 13, 13, 2, 13, 17, 13, 23, 13, 23, 13, 12, 13, 29, 4, 13, 4, 13, 18, 13, 13, 13, 13, 23, 13, 23, 13, 23, 13, 17, 0, 13, 2, 2, 17, 17, 17, 12, 13, 14, 2, 13, 13, 29, 2, 2, 18, 13, 13, 18, 13, 13, 18, 13, 2, 13, 13, 23, 13, 23, 13, 0, 13, 17, 0, 13, 39, 4, 13, 17, 28, 13, 4, 13, 17, 2, 13, 17, 0, 13, 2, 39, 4, 13, 17, 2, 13, 17, 0, 18, 13, 13, 18, 13, 13, 28, 13, 4, 13, 2, 13, 17, 17, 17, 12, 13, 0, 13, 4, 13, 13, 13, 13, 0, 13, 39, 28, 13, 4, 13, 2, 13, 13, 4, 18, 13, 13, 4, 13, 2, 13, 13, 13, 0, 13, 4, 13, 17, 0, 13, 17, 28, 13, 13, 4, 13, 13, 0, 13, 2, 2, 13, 13, 4, 13, 2, 2, 2, 2, 2, 13, 17, 13, 13, 17, 13, 2, 2, 13, 17, 13, 0, 13, 13, 4, 13, 13, 4, 13, 10, 12, 13, 10, 12, 13, 10, 12, 13, 10, 12, 13, 10, 12, 13, 10, 12, 13, 10, 17, 13, 10, 39, 13, 10, 6, 13, 10, 12, 13, 10, 12, 13, 10, 12, 13, 10, 39, 13, 10, 2, 13, 10, 12, 13, 10, 12, 13, 10, 2, 13 ]
[ [ 25, 24 ], [ 435, 30 ], [ 34, 34 ], [ 413, 36 ], [ 407, 49 ], [ 57, 56 ], [ 437, 60 ], [ 82, 79 ], [ 86, 80 ], [ 88, 83 ], [ 86, 86 ], [ 88, 88 ], [ 98, 95 ], [ 98, 98 ], [ 109, 106 ], [ 109, 109 ], [ 128, 115 ], [ 126, 122 ], [ 128, 124 ], [ 126, 126 ], [ 128, 128 ], [ 147, 134 ], [ 145, 141 ], [ 147, 143 ], [ 145, 145 ], [ 147, 147 ], [ 161, 154 ], [ 159, 156 ], [ 159, 159 ], [ 161, 161 ], [ 180, 167 ], [ 178, 174 ], [ 180, 176 ], [ 178, 178 ], [ 180, 180 ], [ 183, 182 ], [ 111, 183 ], [ 186, 185 ], [ 163, 186 ], [ 211, 192 ], [ 209, 199 ], [ 211, 203 ], [ 209, 209 ], [ 211, 211 ], [ 231, 218 ], [ 229, 222 ], [ 229, 229 ], [ 231, 231 ], [ 245, 240 ], [ 247, 242 ], [ 245, 245 ], [ 247, 247 ], [ 250, 249 ], [ 449, 252 ], [ 279, 262 ], [ 281, 263 ], [ 279, 269 ], [ 281, 272 ], [ 279, 276 ], [ 281, 277 ], [ 279, 279 ], [ 281, 281 ], [ 419, 283 ], [ 422, 286 ], [ 293, 292 ], [ 420, 297 ], [ 440, 300 ], [ 420, 307 ], [ 313, 310 ], [ 441, 311 ], [ 420, 312 ], [ 423, 314 ], [ 420, 315 ], [ 318, 317 ], [ 420, 321 ], [ 329, 328 ], [ 402, 330 ], [ 329, 331 ], [ 329, 332 ], [ 329, 333 ], [ 336, 335 ], [ 339, 338 ], [ 328, 342 ], [ 332, 343 ], [ 335, 346 ], [ 411, 349 ], [ 333, 351 ], [ 338, 352 ], [ 338, 353 ], [ 356, 355 ], [ 361, 360 ], [ 335, 367 ], [ 370, 369 ], [ 360, 373 ], [ 393, 373 ], [ 411, 375 ], [ 328, 381 ], [ 331, 384 ], [ 333, 386 ], [ 331, 389 ], [ 333, 391 ], [ 394, 393 ], [ 369, 397 ], [ 355, 397 ], [ 444, 399 ], [ 407, 408 ], [ 413, 414 ], [ 419, 420 ], [ 422, 423 ], [ 437, 438 ], [ 440, 441 ], [ 449, 450 ] ]
[ "from itertools import permutations\nimport sys\n\nsys.setrecursionlimit(10 ** 6)\nfrom bisect import *\nfrom collections import *\nfrom heapq import *\n\ndef II(): return int(sys.stdin.readline())\ndef MI(): return map(int, sys.stdin.readline().split())\ndef LI(): return list(map(int, sys.stdin.readline().split()))\ndef SI(): return sys.stdin.readline()[:-1]\ndef LLI(rows_number): return [LI() for _ in range(rows_number)]\nint1 = lambda x: int(x) - 1\ndef MI1(): return map(int1, sys.stdin.readline().split())\ndef LI1(): return list(map(int1, sys.stdin.readline().split()))\np2D = lambda x: print(*x, sep=\"\\n\")\ndij = [(1, 0), (0, 1), (-1, 0), (0, -1)]\n\n# grobalにmdを設定すること\nclass mint:\n def __init__(self, x):\n self.__x = x % md\n\n def __str__(self):\n return str(self.__x)\n\n def __neg__(self):\n return mint(-self.__x)\n\n def __add__(self, other):\n if isinstance(other, mint): other = other.__x\n return mint(self.__x + other)\n\n def __sub__(self, other):\n if isinstance(other, mint): other = other.__x\n return mint(self.__x - other)\n\n def __rsub__(self, other):\n return mint(other - self.__x)\n\n def __mul__(self, other):\n if isinstance(other, mint): other = other.__x\n return mint(self.__x * other)\n\n __radd__ = __add__\n __rmul__ = __mul__\n\n def __truediv__(self, other):\n if isinstance(other, mint): other = other.__x\n return mint(self.__x * pow(other, md - 2, md))\n\n def __rtruediv__(self, other):\n return mint(other * pow(self.__x, md - 2, md))\n\n def __pow__(self, power, modulo=None):\n return mint(pow(self.__x, power, md))\n\nmd = 10**9+7\n\ndef nCr(com_n, com_r):\n if com_n < com_r: return 0\n return fac[com_n] * ifac[com_r] * ifac[com_n - com_r]\n\nn_max = 200005\nfac = [mint(1)]\nfor i in range(1, n_max + 1): fac.append(fac[-1] * i)\nifac = [mint(1)] * (n_max + 1)\nifac[n_max] /= fac[n_max]\nfor i in range(n_max - 1, 1, -1): ifac[i] = ifac[i + 1] * (i + 1)\n\ndef main():\n h,w,a,b=MI()\n cc=[]\n for i in range(h-a):\n cc.append(nCr(b+i,i))\n #print(*cc)\n ans=mint(0)\n pc=0\n for i,c in enumerate(cc):\n ans+=(c-pc)*nCr(h-1-i+w-1-b,w-1-b)\n pc=c\n print(ans)\n\nmain()", "from itertools import permutations", "import sys", "sys", "sys.setrecursionlimit(10 ** 6)", "sys.setrecursionlimit", "sys", "setrecursionlimit", "10 ** 6", "10", "6", "from bisect import *", "from collections import *", "from heapq import *", "def II(): return int(sys.stdin.readline())", "II", "def MI(): return map(int, sys.stdin.readline().split())", "MI", "def LI(): return list(map(int, sys.stdin.readline().split()))", "LI", "def SI(): return sys.stdin.readline()[:-1]", "SI", "LI() for _ in range(rows_number)", "for _ in range(rows_number)", "_", "range(rows_number)", "range", "rows_number", "for _ in range(rows_number)", "LI()", "LI", "def LLI(rows_number): return [LI() for _ in range(rows_number)]", "LLI", "rows_number", "rows_number", "int1 = lambda x: int(x) - 1", "int1", "lambda x: int(x) - 1", "int(x) - 1", "int(x)", "int", "x", "1", "x", "def MI1(): return map(int1, sys.stdin.readline().split())", "MI1", "def LI1(): return list(map(int1, sys.stdin.readline().split()))", "LI1", "p2D = lambda x: print(*x, sep=\"\\n\")", "p2D", "lambda x: print(*x, sep=\"\\n\")", "print(*x, sep=\"\\n\")", "print", "*x", "x", "sep=\"\\n\"", "sep", "\"\\n\"", "x", "dij = [(1, 0), (0, 1), (-1, 0), (0, -1)]", "dij", "[(1, 0), (0, 1), (-1, 0), (0, -1)]", "(1, 0)", "1", "0", "(0, 1)", "0", "1", "(-1, 0)", "-1", "0", "(0, -1)", "0", "-1", "class mint:\n def __init__(self, x):\n self.__x = x % md\n\n def __str__(self):\n return str(self.__x)\n\n def __neg__(self):\n return mint(-self.__x)\n\n def __add__(self, other):\n if isinstance(other, mint): other = other.__x\n return mint(self.__x + other)\n\n def __sub__(self, other):\n if isinstance(other, mint): other = other.__x\n return mint(self.__x - other)\n\n def __rsub__(self, other):\n return mint(other - self.__x)\n\n def __mul__(self, other):\n if isinstance(other, mint): other = other.__x\n return mint(self.__x * other)\n\n __radd__ = __add__\n __rmul__ = __mul__\n\n def __truediv__(self, other):\n if isinstance(other, mint): other = other.__x\n return mint(self.__x * pow(other, md - 2, md))\n\n def __rtruediv__(self, other):\n return mint(other * pow(self.__x, md - 2, md))\n\n def __pow__(self, power, modulo=None):\n return mint(pow(self.__x, power, md))", "mint", "def __init__(self, x):\n self.__x = x % md\n\n ", "__init__", "self.__x = x % md", "self.__x", "self", "__x", "x % md", "x", "md", "self", "self", "x", "x", "def __str__(self):\n return str(self.__x)\n\n ", "__str__", "return str(self.__x)", "str(self.__x)", "str", "self.__x", "self", "__x", "self", "self", "def __neg__(self):\n return mint(-self.__x)\n\n ", "__neg__", "return mint(-self.__x)", "mint(-self.__x)", "mint", "-self.__x", "self.__x", "self", "__x", "self", "self", "def __add__(self, other):\n if isinstance(other, mint): other = other.__x\n return mint(self.__x + other)\n\n ", "__add__", "if isinstance(other, mint): other = other.__x\n ", "isinstance(other, mint)", "isinstance", "other", "mint", "return mint(self.__x + other)", "mint(self.__x + other)", "mint", "self.__x + other", "self.__x", "self", "__x", "other", "self", "self", "other", "other", "def __sub__(self, other):\n if isinstance(other, mint): other = other.__x\n return mint(self.__x - other)\n\n ", "__sub__", "if isinstance(other, mint): other = other.__x\n ", "isinstance(other, mint)", "isinstance", "other", "mint", "return mint(self.__x - other)", "mint(self.__x - other)", "mint", "self.__x - other", "self.__x", "self", "__x", "other", "self", "self", "other", "other", "def __rsub__(self, other):\n return mint(other - self.__x)\n\n ", "__rsub__", "return mint(other - self.__x)", "mint(other - self.__x)", "mint", "other - self.__x", "other", "self.__x", "self", "__x", "self", "self", "other", "other", "def __mul__(self, other):\n if isinstance(other, mint): other = other.__x\n return mint(self.__x * other)\n\n ", "__mul__", "if isinstance(other, mint): other = other.__x\n ", "isinstance(other, mint)", "isinstance", "other", "mint", "return mint(self.__x * other)", "mint(self.__x * other)", "mint", "self.__x * other", "self.__x", "self", "__x", "other", "self", "self", "other", "other", "__radd__ = __add__", "__radd__", "__add__", "__rmul__ = __mul__", "__rmul__", "__mul__", "def __truediv__(self, other):\n if isinstance(other, mint): other = other.__x\n return mint(self.__x * pow(other, md - 2, md))\n\n ", "__truediv__", "if isinstance(other, mint): other = other.__x\n ", "isinstance(other, mint)", "isinstance", "other", "mint", "return mint(self.__x * pow(other, md - 2, md))", "mint(self.__x * pow(other, md - 2, md))", "mint", "self.__x * pow(other, md - 2, md)", "self.__x", "self", "__x", "pow(other, md - 2, md)", "pow", "other", "md - 2", "md", "2", "md", "self", "self", "other", "other", "def __rtruediv__(self, other):\n return mint(other * pow(self.__x, md - 2, md))\n\n ", "__rtruediv__", "return mint(other * pow(self.__x, md - 2, md))", "mint(other * pow(self.__x, md - 2, md))", "mint", "other * pow(self.__x, md - 2, md)", "other", "pow(self.__x, md - 2, md)", "pow", "self.__x", "self", "__x", "md - 2", "md", "2", "md", "self", "self", "other", "other", "def __pow__(self, power, modulo=None):\n return mint(pow(self.__x, power, md))", "__pow__", "return mint(pow(self.__x, power, md))", "mint(pow(self.__x, power, md))", "mint", "pow(self.__x, power, md)", "pow", "self.__x", "self", "__x", "power", "md", "self", "self", "power", "power", "modulo=None", "modulo", "None", "md = 10**9+7", "md", "10**9+7", "10**9", "10", "9", "7", "def nCr(com_n, com_r):\n if com_n < com_r: return 0\n return fac[com_n] * ifac[com_r] * ifac[com_n - com_r]", "nCr", "if com_n < com_r: return 0\n ", "com_n < com_r", "com_n", "com_r", "return fac[com_n] * ifac[com_r] * ifac[com_n - com_r]", "fac[com_n] * ifac[com_r] * ifac[com_n - com_r]", "fac[com_n] * ifac[com_r]", "fac[com_n]", "fac", "com_n", "ifac[com_r]", "ifac", "com_r", "ifac[com_n - com_r]", "ifac", "com_n - com_r", "com_n", "com_r", "com_n", "com_n", "com_r", "com_r", "n_max = 200005", "n_max", "200005", "fac = [mint(1)]", "fac", "[mint(1)]", "mint(1)", "mint", "1", "for i in range(1, n_max + 1): fac.append(fac[-1] * i)", "i", "range(1, n_max + 1)", "range", "1", "n_max + 1", "n_max", "1", "ifac = [mint(1)] * (n_max + 1)", "ifac", "[mint(1)] * (n_max + 1)", "[mint(1)]", "mint(1)", "mint", "1", "n_max + 1", "n_max", "1", "ifac[n_max] /= fac[n_max]", "ifac[n_max]", "ifac", "n_max", "fac[n_max]", "fac", "n_max", "for i in range(n_max - 1, 1, -1): ifac[i] = ifac[i + 1] * (i + 1)", "i", "range(n_max - 1, 1, -1)", "range", "n_max - 1", "n_max", "1", "1", "-1", "def main():\n h,w,a,b=MI()\n cc=[]\n for i in range(h-a):\n cc.append(nCr(b+i,i))\n #print(*cc)\n ans=mint(0)\n pc=0\n for i,c in enumerate(cc):\n ans+=(c-pc)*nCr(h-1-i+w-1-b,w-1-b)\n pc=c\n print(ans)", "main", "h,w,a,b=MI()", "h", "MI()", "MI", "w", "a", "b", "cc=[]", "cc", "[]", "for i in range(h-a):\n cc.append(nCr(b+i,i))\n #print(*cc)\n ", "i", "range(h-a)", "range", "h-a", "h", "a", "cc.append(nCr(b+i,i))", "cc.append", "cc", "append", "nCr(b+i,i)", "nCr", "b+i", "b", "i", "i", "ans=mint(0)", "ans", "mint(0)", "mint", "0", "pc=0", "pc", "0", "for i,c in enumerate(cc):\n ans+=(c-pc)*nCr(h-1-i+w-1-b,w-1-b)\n pc=c\n ", "i", "c", "enumerate(cc)", "enumerate", "cc", "ans+=(c-pc)*nCr(h-1-i+w-1-b,w-1-b)", "ans", "(c-pc)*nCr(h-1-i+w-1-b,w-1-b)", "c-pc", "c", "pc", "nCr(h-1-i+w-1-b,w-1-b)", "nCr", "h-1-i+w-1-b", "h-1-i+w-1", "h-1-i+w", "h-1-i", "h-1", "h", "1", "i", "w", "1", "b", "w-1-b", "w-1", "w", "1", "b", "pc=c", "pc", "c", "print(ans)", "print", "ans", "main()", "main", "def MI(): return map(int, sys.stdin.readline().split())", "def MI(): return map(int, sys.stdin.readline().split())", "MI", "def LI1(): return list(map(int1, sys.stdin.readline().split()))", "def LI1(): return list(map(int1, sys.stdin.readline().split()))", "LI1", "p2D = lambda x: print(*x, sep=\"\\n\")", "lambda x: print(*x, sep=\"\\n\")", "p2D", "def nCr(com_n, com_r):\n if com_n < com_r: return 0\n return fac[com_n] * ifac[com_r] * ifac[com_n - com_r]", "def nCr(com_n, com_r):\n if com_n < com_r: return 0\n return fac[com_n] * ifac[com_r] * ifac[com_n - com_r]", "nCr", "int1 = lambda x: int(x) - 1", "lambda x: int(x) - 1", "int1", "def II(): return int(sys.stdin.readline())", "def II(): return int(sys.stdin.readline())", "II", "n_max = 200005", "200005", "n_max", "fac = [mint(1)]", "[mint(1)]", "fac", "class mint:\n def __init__(self, x):\n self.__x = x % md\n\n def __str__(self):\n return str(self.__x)\n\n def __neg__(self):\n return mint(-self.__x)\n\n def __add__(self, other):\n if isinstance(other, mint): other = other.__x\n return mint(self.__x + other)\n\n def __sub__(self, other):\n if isinstance(other, mint): other = other.__x\n return mint(self.__x - other)\n\n def __rsub__(self, other):\n return mint(other - self.__x)\n\n def __mul__(self, other):\n if isinstance(other, mint): other = other.__x\n return mint(self.__x * other)\n\n __radd__ = __add__\n __rmul__ = __mul__\n\n def __truediv__(self, other):\n if isinstance(other, mint): other = other.__x\n return mint(self.__x * pow(other, md - 2, md))\n\n def __rtruediv__(self, other):\n return mint(other * pow(self.__x, md - 2, md))\n\n def __pow__(self, power, modulo=None):\n return mint(pow(self.__x, power, md))", "class mint:\n def __init__(self, x):\n self.__x = x % md\n\n def __str__(self):\n return str(self.__x)\n\n def __neg__(self):\n return mint(-self.__x)\n\n def __add__(self, other):\n if isinstance(other, mint): other = other.__x\n return mint(self.__x + other)\n\n def __sub__(self, other):\n if isinstance(other, mint): other = other.__x\n return mint(self.__x - other)\n\n def __rsub__(self, other):\n return mint(other - self.__x)\n\n def __mul__(self, other):\n if isinstance(other, mint): other = other.__x\n return mint(self.__x * other)\n\n __radd__ = __add__\n __rmul__ = __mul__\n\n def __truediv__(self, other):\n if isinstance(other, mint): other = other.__x\n return mint(self.__x * pow(other, md - 2, md))\n\n def __rtruediv__(self, other):\n return mint(other * pow(self.__x, md - 2, md))\n\n def __pow__(self, power, modulo=None):\n return mint(pow(self.__x, power, md))", "mint", "def LLI(rows_number): return [LI() for _ in range(rows_number)]", "def LLI(rows_number): return [LI() for _ in range(rows_number)]", "LLI", "def SI(): return sys.stdin.readline()[:-1]", "def SI(): return sys.stdin.readline()[:-1]", "SI", "def LI(): return list(map(int, sys.stdin.readline().split()))", "def LI(): return list(map(int, sys.stdin.readline().split()))", "LI", "dij = [(1, 0), (0, 1), (-1, 0), (0, -1)]", "[(1, 0), (0, 1), (-1, 0), (0, -1)]", "dij", "ifac = [mint(1)] * (n_max + 1)", "[mint(1)] * (n_max + 1)", "ifac", "def main():\n h,w,a,b=MI()\n cc=[]\n for i in range(h-a):\n cc.append(nCr(b+i,i))\n #print(*cc)\n ans=mint(0)\n pc=0\n for i,c in enumerate(cc):\n ans+=(c-pc)*nCr(h-1-i+w-1-b,w-1-b)\n pc=c\n print(ans)", "def main():\n h,w,a,b=MI()\n cc=[]\n for i in range(h-a):\n cc.append(nCr(b+i,i))\n #print(*cc)\n ans=mint(0)\n pc=0\n for i,c in enumerate(cc):\n ans+=(c-pc)*nCr(h-1-i+w-1-b,w-1-b)\n pc=c\n print(ans)", "main", "def MI1(): return map(int1, sys.stdin.readline().split())", "def MI1(): return map(int1, sys.stdin.readline().split())", "MI1", "md = 10**9+7", "10**9+7", "md" ]
from itertools import permutations import sys sys.setrecursionlimit(10 ** 6) from bisect import * from collections import * from heapq import * def II(): return int(sys.stdin.readline()) def MI(): return map(int, sys.stdin.readline().split()) def LI(): return list(map(int, sys.stdin.readline().split())) def SI(): return sys.stdin.readline()[:-1] def LLI(rows_number): return [LI() for _ in range(rows_number)] int1 = lambda x: int(x) - 1 def MI1(): return map(int1, sys.stdin.readline().split()) def LI1(): return list(map(int1, sys.stdin.readline().split())) p2D = lambda x: print(*x, sep="\n") dij = [(1, 0), (0, 1), (-1, 0), (0, -1)] # grobalにmdを設定すること class mint: def __init__(self, x): self.__x = x % md def __str__(self): return str(self.__x) def __neg__(self): return mint(-self.__x) def __add__(self, other): if isinstance(other, mint): other = other.__x return mint(self.__x + other) def __sub__(self, other): if isinstance(other, mint): other = other.__x return mint(self.__x - other) def __rsub__(self, other): return mint(other - self.__x) def __mul__(self, other): if isinstance(other, mint): other = other.__x return mint(self.__x * other) __radd__ = __add__ __rmul__ = __mul__ def __truediv__(self, other): if isinstance(other, mint): other = other.__x return mint(self.__x * pow(other, md - 2, md)) def __rtruediv__(self, other): return mint(other * pow(self.__x, md - 2, md)) def __pow__(self, power, modulo=None): return mint(pow(self.__x, power, md)) md = 10**9+7 def nCr(com_n, com_r): if com_n < com_r: return 0 return fac[com_n] * ifac[com_r] * ifac[com_n - com_r] n_max = 200005 fac = [mint(1)] for i in range(1, n_max + 1): fac.append(fac[-1] * i) ifac = [mint(1)] * (n_max + 1) ifac[n_max] /= fac[n_max] for i in range(n_max - 1, 1, -1): ifac[i] = ifac[i + 1] * (i + 1) def main(): h,w,a,b=MI() cc=[] for i in range(h-a): cc.append(nCr(b+i,i)) #print(*cc) ans=mint(0) pc=0 for i,c in enumerate(cc): ans+=(c-pc)*nCr(h-1-i+w-1-b,w-1-b) pc=c print(ans) main()
[ 7, 15, 13, 41, 28, 13, 4, 18, 4, 18, 18, 13, 13, 13, 13, 4, 4, 13, 13, 0, 13, 13, 13, 13, 13, 0, 13, 4, 13, 0, 13, 2, 2, 17, 17, 17, 12, 13, 14, 2, 2, 13, 17, 2, 13, 13, 29, 17, 0, 13, 4, 13, 13, 2, 13, 13, 29, 2, 2, 2, 18, 13, 13, 18, 13, 13, 18, 13, 2, 13, 13, 13, 23, 13, 23, 13, 23, 13, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 2, 17, 17, 0, 13, 39, 17, 17, 0, 13, 39, 17, 17, 0, 13, 39, 17, 17, 28, 13, 4, 13, 17, 2, 13, 17, 4, 18, 13, 13, 2, 2, 18, 13, 17, 13, 13, 4, 18, 13, 13, 2, 2, 40, 18, 13, 2, 13, 13, 2, 13, 13, 13, 4, 18, 13, 13, 2, 2, 18, 13, 17, 18, 13, 17, 13, 0, 13, 17, 0, 13, 17, 28, 13, 4, 13, 2, 13, 13, 0, 18, 13, 13, 4, 13, 2, 13, 13, 13, 0, 13, 2, 2, 18, 13, 13, 13, 4, 13, 2, 2, 2, 2, 2, 13, 13, 17, 13, 13, 17, 2, 2, 13, 13, 17, 0, 13, 18, 13, 13, 0, 13, 13, 4, 13, 13, 10, 2, 13, 10, 39, 13, 10, 18, 13, 10, 2, 13, 10, 4, 13, 10, 13, 13, 10, 13, 13, 10, 13, 13, 10, 2, 13, 10, 39, 13, 10, 13, 13, 10, 17, 13, 10, 2, 13, 10, 17, 13, 10, 13, 13, 10, 12, 13, 10, 39, 13 ]
[ [ 6, 5 ], [ 5, 18 ], [ 257, 20 ], [ 257, 22 ], [ 257, 23 ], [ 257, 24 ], [ 227, 26 ], [ 215, 30 ], [ 75, 41 ], [ 75, 44 ], [ 73, 45 ], [ 50, 49 ], [ 75, 52 ], [ 73, 54 ], [ 75, 55 ], [ 73, 62 ], [ 49, 65 ], [ 75, 65 ], [ 73, 69 ], [ 49, 70 ], [ 75, 70 ], [ 77, 71 ], [ 73, 73 ], [ 75, 75 ], [ 78, 77 ], [ 224, 80 ], [ 239, 87 ], [ 218, 92 ], [ 242, 97 ], [ 263, 102 ], [ 108, 107 ], [ 240, 112 ], [ 219, 116 ], [ 219, 121 ], [ 107, 123 ], [ 225, 124 ], [ 264, 127 ], [ 264, 133 ], [ 225, 135 ], [ 107, 136 ], [ 225, 138 ], [ 107, 139 ], [ 225, 140 ], [ 243, 143 ], [ 243, 148 ], [ 264, 151 ], [ 225, 153 ], [ 254, 155 ], [ 248, 158 ], [ 162, 161 ], [ 234, 165 ], [ 246, 166 ], [ 171, 168 ], [ 228, 169 ], [ 161, 170 ], [ 261, 172 ], [ 161, 174 ], [ 258, 175 ], [ 161, 176 ], [ 251, 178 ], [ 168, 181 ], [ 228, 182 ], [ 161, 183 ], [ 249, 184 ], [ 222, 184 ], [ 261, 186 ], [ 234, 192 ], [ 161, 193 ], [ 237, 195 ], [ 258, 196 ], [ 234, 200 ], [ 161, 201 ], [ 221, 204 ], [ 168, 205 ], [ 228, 206 ], [ 161, 207 ], [ 230, 209 ], [ 216, 210 ], [ 231, 213 ], [ 252, 213 ], [ 255, 213 ], [ 215, 216 ], [ 218, 219 ], [ 168, 221 ], [ 221, 222 ], [ 224, 225 ], [ 227, 228 ], [ 216, 230 ], [ 230, 231 ], [ 257, 234 ], [ 257, 237 ], [ 239, 240 ], [ 242, 243 ], [ 257, 246 ], [ 248, 249 ], [ 251, 252 ], [ 254, 255 ], [ 257, 258 ], [ 263, 264 ] ]
[ "import sys\nh, w, a, b = [int(i) for i in sys.stdin.readline().split()]\ndic = dict()\nMOD = 10**9+7\n\ndef nCr(n, r, mod=MOD):\n if ( r<0 or r>n ):\n return 0\n r = min(r, n-r)\n return g1[n] * g2[r] * g2[n-r] % mod\n\nmod = 10**9+7 #出力の制限\nN = 10**6\ng1 = [1, 1] # 元テーブル\ng2 = [1, 1] #逆元テーブル\ninverse = [0, 1] #逆元テーブル計算用テーブル\n\nfor i in range( 2, N + 1 ):\n g1.append( ( g1[-1] * i ) % mod )\n inverse.append( ( -inverse[mod % i] * (mod//i) ) % mod )\n g2.append( (g2[-1] * inverse[-1]) % mod )\n\n\n\nres = 0\n_sum = 0\nfor i in range(h - a):\n dic[i] = nCr(i + b, i)\n res += (dic[i] - _sum) * nCr(h - i - 1 + w - b - 1, h - i - 1)\n _sum = dic[i]\n res %= MOD\nprint(res)", "import sys", "sys", "int(i) for i in sys.stdin.readline().split()", "for i in sys.stdin.readline().split()", "i", "sys.stdin.readline().split()", "sys.stdin.readline().split", "sys.stdin.readline()", "sys.stdin.readline", "sys.stdin", "sys", "stdin", "readline", "split", "for i in sys.stdin.readline().split()", "int(i)", "int", "i", "h, w, a, b = [int(i) for i in sys.stdin.readline().split()]", "h", "[int(i) for i in sys.stdin.readline().split()]", "w", "a", "b", "dic = dict()", "dic", "dict()", "dict", "MOD = 10**9+7", "MOD", "10**9+7", "10**9", "10", "9", "7", "def nCr(n, r, mod=MOD):\n if ( r<0 or r>n ):\n return 0\n r = min(r, n-r)\n return g1[n] * g2[r] * g2[n-r] % mod", "nCr", "if ( r<0 or r>n ):\n return 0\n ", "r<0 or r>n", "r<0", "r", "0", "r>n", "r", "n", "return 0", "0", "r = min(r, n-r)", "r", "min(r, n-r)", "min", "r", "n-r", "n", "r", "return g1[n] * g2[r] * g2[n-r] % mod", "g1[n] * g2[r] * g2[n-r] % mod", "g1[n] * g2[r] * g2[n-r]", "g1[n] * g2[r]", "g1[n]", "g1", "n", "g2[r]", "g2", "r", "g2[n-r]", "g2", "n-r", "n", "r", "mod", "n", "n", "r", "r", "mod=MOD", "mod", "MOD", "mod = 10**9+7", "mod", "10**9+7", "10**9", "10", "9", "7", "N = 10**6", "N", "10**6", "10", "6", "g1 = [1, 1]", "g1", "[1, 1]", "1", "1", "g2 = [1, 1]", "g2", "[1, 1]", "1", "1", "inverse = [0, 1]", "inverse", "[0, 1]", "0", "1", "for i in range( 2, N + 1 ):\n g1.append( ( g1[-1] * i ) % mod )\n inverse.append( ( -inverse[mod % i] * (mod//i) ) % mod )\n g2.append( (g2[-1] * inverse[-1]) % mod )", "i", "range( 2, N + 1 )", "range", "2", "N + 1", "N", "1", "g1.append( ( g1[-1] * i ) % mod )", "g1.append", "g1", "append", "( g1[-1] * i ) % mod", "g1[-1] * i", "g1[-1]", "g1", "-1", "i", "mod", "inverse.append( ( -inverse[mod % i] * (mod//i) ) % mod )", "inverse.append", "inverse", "append", "( -inverse[mod % i] * (mod//i) ) % mod", "-inverse[mod % i] * (mod//i)", "-inverse[mod % i]", "inverse[mod % i]", "inverse", "mod % i", "mod", "i", "mod//i", "mod", "i", "mod", "g2.append( (g2[-1] * inverse[-1]) % mod )", "g2.append", "g2", "append", "(g2[-1] * inverse[-1]) % mod", "g2[-1] * inverse[-1]", "g2[-1]", "g2", "-1", "inverse[-1]", "inverse", "-1", "mod", "res = 0", "res", "0", "_sum = 0", "_sum", "0", "for i in range(h - a):\n dic[i] = nCr(i + b, i)\n res += (dic[i] - _sum) * nCr(h - i - 1 + w - b - 1, h - i - 1)\n _sum = dic[i]\n res %= MOD", "i", "range(h - a)", "range", "h - a", "h", "a", "dic[i] = nCr(i + b, i)", "dic[i]", "dic", "i", "nCr(i + b, i)", "nCr", "i + b", "i", "b", "i", "res += (dic[i] - _sum) * nCr(h - i - 1 + w - b - 1, h - i - 1)", "res", "(dic[i] - _sum) * nCr(h - i - 1 + w - b - 1, h - i - 1)", "dic[i] - _sum", "dic[i]", "dic", "i", "_sum", "nCr(h - i - 1 + w - b - 1, h - i - 1)", "nCr", "h - i - 1 + w - b - 1", "h - i - 1 + w - b", "h - i - 1 + w", "h - i - 1", "h - i", "h", "i", "1", "w", "b", "1", "h - i - 1", "h - i", "h", "i", "1", "_sum = dic[i]", "_sum", "dic[i]", "dic", "i", "res %= MOD", "res", "MOD", "print(res)", "print", "res", "MOD = 10**9+7", "10**9+7", "MOD", "g1 = [1, 1]", "[1, 1]", "g1", "_sum = dic[i]", "dic[i]", "_sum", "mod = 10**9+7", "10**9+7", "mod", "dic = dict()", "dict()", "dic", "res %= MOD", "MOD", "res", "h, w, a, b = [int(i) for i in sys.stdin.readline().split()]", "[int(i) for i in sys.stdin.readline().split()]", "h", "w, a, b = [int(i) for i in sys.stdin.readline().split()]", "[int(i) for i in sys.stdin.readline().split()]", "w", "N = 10**6", "10**6", "N", "g2 = [1, 1]", "[1, 1]", "g2", "a, b = [int(i) for i in sys.stdin.readline().split()]", "[int(i) for i in sys.stdin.readline().split()]", "a", "_sum = 0", "0", "_sum", "res += (dic[i] - _sum) * nCr(h - i - 1 + w - b - 1, h - i - 1)", "(dic[i] - _sum) * nCr(h - i - 1 + w - b - 1, h - i - 1)", "res", "res = 0", "0", "res", "b = [int(i) for i in sys.stdin.readline().split()]", "[int(i) for i in sys.stdin.readline().split()]", "b", "def nCr(n, r, mod=MOD):\n if ( r<0 or r>n ):\n return 0\n r = min(r, n-r)\n return g1[n] * g2[r] * g2[n-r] % mod", "def nCr(n, r, mod=MOD):\n if ( r<0 or r>n ):\n return 0\n r = min(r, n-r)\n return g1[n] * g2[r] * g2[n-r] % mod", "nCr", "inverse = [0, 1]", "[0, 1]", "inverse" ]
import sys h, w, a, b = [int(i) for i in sys.stdin.readline().split()] dic = dict() MOD = 10**9+7 def nCr(n, r, mod=MOD): if ( r<0 or r>n ): return 0 r = min(r, n-r) return g1[n] * g2[r] * g2[n-r] % mod mod = 10**9+7 #出力の制限 N = 10**6 g1 = [1, 1] # 元テーブル g2 = [1, 1] #逆元テーブル inverse = [0, 1] #逆元テーブル計算用テーブル for i in range( 2, N + 1 ): g1.append( ( g1[-1] * i ) % mod ) inverse.append( ( -inverse[mod % i] * (mod//i) ) % mod ) g2.append( (g2[-1] * inverse[-1]) % mod ) res = 0 _sum = 0 for i in range(h - a): dic[i] = nCr(i + b, i) res += (dic[i] - _sum) * nCr(h - i - 1 + w - b - 1, h - i - 1) _sum = dic[i] res %= MOD print(res)
[ 7, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 2, 2, 13, 13, 17, 0, 13, 2, 39, 17, 13, 13, 2, 39, 17, 13, 28, 13, 4, 13, 17, 13, 0, 18, 13, 13, 2, 2, 13, 18, 13, 2, 13, 17, 13, 0, 18, 13, 2, 13, 17, 4, 13, 18, 13, 2, 13, 17, 2, 13, 17, 13, 28, 13, 4, 13, 2, 13, 17, 17, 17, 0, 18, 13, 2, 13, 17, 2, 2, 18, 13, 13, 13, 13, 0, 13, 12, 2, 2, 2, 18, 13, 2, 13, 13, 18, 13, 13, 18, 13, 13, 13, 23, 23, 0, 13, 17, 28, 13, 4, 13, 13, 13, 0, 13, 2, 2, 4, 13, 2, 2, 13, 13, 17, 13, 4, 13, 2, 13, 17, 2, 2, 13, 13, 17, 13, 4, 13, 2, 13, 13, 10, 2, 13, 10, 2, 13, 10, 4, 13, 10, 2, 13, 10, 17, 13, 10, 4, 13, 10, 4, 13, 10, 2, 13, 10, 2, 13, 10, 4, 13, 10, 12, 13 ]
[ [ 182, 2 ], [ 182, 11 ], [ 182, 12 ], [ 182, 13 ], [ 155, 15 ], [ 164, 22 ], [ 183, 25 ], [ 171, 26 ], [ 179, 29 ], [ 165, 33 ], [ 176, 34 ], [ 165, 38 ], [ 41, 40 ], [ 165, 44 ], [ 49, 46 ], [ 180, 47 ], [ 40, 48 ], [ 40, 51 ], [ 180, 53 ], [ 40, 55 ], [ 156, 57 ], [ 64, 59 ], [ 177, 60 ], [ 165, 62 ], [ 180, 67 ], [ 165, 69 ], [ 156, 72 ], [ 156, 74 ], [ 77, 76 ], [ 165, 80 ], [ 90, 85 ], [ 177, 86 ], [ 76, 88 ], [ 177, 93 ], [ 76, 94 ], [ 76, 95 ], [ 156, 96 ], [ 185, 98 ], [ 180, 104 ], [ 177, 109 ], [ 177, 112 ], [ 156, 114 ], [ 167, 118 ], [ 122, 121 ], [ 174, 124 ], [ 171, 125 ], [ 158, 127 ], [ 186, 131 ], [ 183, 134 ], [ 162, 135 ], [ 121, 137 ], [ 186, 139 ], [ 162, 141 ], [ 171, 145 ], [ 121, 146 ], [ 156, 148 ], [ 159, 152 ], [ 168, 152 ], [ 156, 153 ], [ 155, 156 ], [ 158, 159 ], [ 182, 162 ], [ 164, 165 ], [ 167, 168 ], [ 182, 171 ], [ 182, 174 ], [ 176, 177 ], [ 179, 180 ], [ 182, 183 ], [ 185, 186 ] ]
[ "h,w,a,b=map(int,input().split())\nmod=10**9+7\n\nn=h+w+1\nfc,inv=[1]*n,[1]*n\nfor i in range(1,n):\n fc[i]=i*fc[i-1]%mod\ninv[n-1]=pow(fc[n-1],mod-2,mod)\nfor i in range(n-1,0,-1):\n inv[i-1]=inv[i]*i%mod\nf=lambda a,b:fc[a+b]*inv[a]*inv[b]%mod\n\nv=0\nfor i in range(b,w):\n v+=f(h-a-1,i)*f(a-1,w-i-1)%mod\nprint(v%mod)", "h,w,a,b=map(int,input().split())", "h", "map(int,input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "w", "a", "b", "mod=10**9+7", "mod", "10**9+7", "10**9", "10", "9", "7", "n=h+w+1", "n", "h+w+1", "h+w", "h", "w", "1", "fc,inv=[1]*n,[1]*n", "fc", "[1]*n", "[1]", "1", "n", "inv", "[1]*n", "[1]", "1", "n", "for i in range(1,n):\n fc[i]=i*fc[i-1]%mod", "i", "range(1,n)", "range", "1", "n", "fc[i]=i*fc[i-1]%mod", "fc[i]", "fc", "i", "i*fc[i-1]%mod", "i*fc[i-1]", "i", "fc[i-1]", "fc", "i-1", "i", "1", "mod", "inv[n-1]=pow(fc[n-1],mod-2,mod)", "inv[n-1]", "inv", "n-1", "n", "1", "pow(fc[n-1],mod-2,mod)", "pow", "fc[n-1]", "fc", "n-1", "n", "1", "mod-2", "mod", "2", "mod", "for i in range(n-1,0,-1):\n inv[i-1]=inv[i]*i%mod", "i", "range(n-1,0,-1)", "range", "n-1", "n", "1", "0", "-1", "inv[i-1]=inv[i]*i%mod", "inv[i-1]", "inv", "i-1", "i", "1", "inv[i]*i%mod", "inv[i]*i", "inv[i]", "inv", "i", "i", "mod", "f=lambda a,b:fc[a+b]*inv[a]*inv[b]%mod", "f", "lambda a,b:fc[a+b]*inv[a]*inv[b]%mod", "fc[a+b]*inv[a]*inv[b]%mod", "fc[a+b]*inv[a]*inv[b]", "fc[a+b]*inv[a]", "fc[a+b]", "fc", "a+b", "a", "b", "inv[a]", "inv", "a", "inv[b]", "inv", "b", "mod", "a", "b", "v=0", "v", "0", "for i in range(b,w):\n v+=f(h-a-1,i)*f(a-1,w-i-1)%mod", "i", "range(b,w)", "range", "b", "w", "v+=f(h-a-1,i)*f(a-1,w-i-1)%mod", "v", "f(h-a-1,i)*f(a-1,w-i-1)%mod", "f(h-a-1,i)*f(a-1,w-i-1)", "f(h-a-1,i)", "f", "h-a-1", "h-a", "h", "a", "1", "i", "f(a-1,w-i-1)", "f", "a-1", "a", "1", "w-i-1", "w-i", "w", "i", "1", "mod", "print(v%mod)", "print", "v%mod", "v", "mod", "mod=10**9+7", "10**9+7", "mod", "v+=f(h-a-1,i)*f(a-1,w-i-1)%mod", "f(h-a-1,i)*f(a-1,w-i-1)%mod", "v", "a,b=map(int,input().split())", "map(int,input().split())", "a", "n=h+w+1", "h+w+1", "n", "v=0", "0", "v", "w,a,b=map(int,input().split())", "map(int,input().split())", "w", "b=map(int,input().split())", "map(int,input().split())", "b", "inv=[1]*n,[1]*n", "[1]*n", "inv", "fc,inv=[1]*n,[1]*n", "[1]*n", "fc", "h,w,a,b=map(int,input().split())", "map(int,input().split())", "h", "f=lambda a,b:fc[a+b]*inv[a]*inv[b]%mod", "lambda a,b:fc[a+b]*inv[a]*inv[b]%mod", "f" ]
h,w,a,b=map(int,input().split()) mod=10**9+7 n=h+w+1 fc,inv=[1]*n,[1]*n for i in range(1,n): fc[i]=i*fc[i-1]%mod inv[n-1]=pow(fc[n-1],mod-2,mod) for i in range(n-1,0,-1): inv[i-1]=inv[i]*i%mod f=lambda a,b:fc[a+b]*inv[a]*inv[b]%mod v=0 for i in range(b,w): v+=f(h-a-1,i)*f(a-1,w-i-1)%mod print(v%mod)
[ 7, 0, 13, 2, 2, 17, 17, 17, 0, 13, 17, 0, 13, 2, 39, 17, 2, 13, 17, 0, 18, 13, 17, 17, 28, 13, 4, 13, 17, 2, 13, 17, 0, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 13, 13, 12, 13, 29, 2, 2, 2, 18, 13, 13, 4, 13, 18, 13, 13, 2, 13, 17, 13, 4, 13, 18, 13, 2, 13, 13, 2, 13, 17, 13, 13, 23, 13, 23, 13, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 17, 28, 13, 4, 13, 2, 13, 17, 2, 13, 17, 0, 13, 2, 2, 4, 13, 2, 2, 2, 13, 13, 13, 17, 2, 13, 17, 4, 13, 2, 2, 2, 13, 13, 13, 17, 2, 13, 17, 13, 0, 13, 2, 2, 13, 13, 13, 4, 13, 13, 10, 17, 13, 10, 4, 13, 10, 2, 13, 10, 2, 13, 10, 4, 13, 10, 2, 13, 10, 4, 13, 10, 2, 13, 10, 12, 13, 10, 17, 13, 10, 4, 13 ]
[ [ 166, 2 ], [ 172, 9 ], [ 160, 12 ], [ 173, 17 ], [ 23, 20 ], [ 161, 21 ], [ 26, 25 ], [ 173, 30 ], [ 36, 33 ], [ 161, 34 ], [ 25, 35 ], [ 161, 39 ], [ 25, 41 ], [ 25, 43 ], [ 167, 44 ], [ 161, 52 ], [ 76, 53 ], [ 161, 57 ], [ 78, 58 ], [ 167, 60 ], [ 167, 62 ], [ 161, 66 ], [ 76, 68 ], [ 78, 69 ], [ 167, 71 ], [ 167, 73 ], [ 167, 74 ], [ 76, 76 ], [ 78, 78 ], [ 175, 80 ], [ 175, 89 ], [ 175, 90 ], [ 175, 91 ], [ 145, 93 ], [ 97, 96 ], [ 176, 100 ], [ 149, 103 ], [ 151, 106 ], [ 170, 110 ], [ 158, 114 ], [ 164, 115 ], [ 96, 116 ], [ 96, 119 ], [ 170, 122 ], [ 164, 126 ], [ 149, 127 ], [ 96, 128 ], [ 164, 131 ], [ 167, 133 ], [ 154, 135 ], [ 146, 138 ], [ 155, 138 ], [ 152, 139 ], [ 167, 140 ], [ 155, 143 ], [ 146, 143 ], [ 145, 146 ], [ 175, 149 ], [ 151, 152 ], [ 154, 155 ], [ 175, 158 ], [ 160, 161 ], [ 175, 164 ], [ 166, 167 ], [ 172, 173 ], [ 175, 176 ] ]
[ "mod = 10**9 + 7\nN = 200000\nfact = [None] * (N+1)\nfact[0] = 1\nfor i in range(1, N+1):\n fact[i] = fact[i-1] * i % mod\n\ndef comb(n, k):\n return fact[n] * pow(fact[k], mod-2, mod) * pow(fact[n-k], mod-2, mod) % mod\n\nH, W, A, B = map(int, input().split())\nans = 0\nfor b in range(B+1, W+1):\n tmp = comb(H-A+b-2, b-1) * comb(A+W-b-1, A-1) % mod\n ans = (ans + tmp) % mod\nprint(ans)", "mod = 10**9 + 7", "mod", "10**9 + 7", "10**9", "10", "9", "7", "N = 200000", "N", "200000", "fact = [None] * (N+1)", "fact", "[None] * (N+1)", "[None]", "None", "N+1", "N", "1", "fact[0] = 1", "fact[0]", "fact", "0", "1", "for i in range(1, N+1):\n fact[i] = fact[i-1] * i % mod", "i", "range(1, N+1)", "range", "1", "N+1", "N", "1", "fact[i] = fact[i-1] * i % mod", "fact[i]", "fact", "i", "fact[i-1] * i % mod", "fact[i-1] * i", "fact[i-1]", "fact", "i-1", "i", "1", "i", "mod", "def comb(n, k):\n return fact[n] * pow(fact[k], mod-2, mod) * pow(fact[n-k], mod-2, mod) % mod", "comb", "return fact[n] * pow(fact[k], mod-2, mod) * pow(fact[n-k], mod-2, mod) % mod", "fact[n] * pow(fact[k], mod-2, mod) * pow(fact[n-k], mod-2, mod) % mod", "fact[n] * pow(fact[k], mod-2, mod) * pow(fact[n-k], mod-2, mod)", "fact[n] * pow(fact[k], mod-2, mod)", "fact[n]", "fact", "n", "pow(fact[k], mod-2, mod)", "pow", "fact[k]", "fact", "k", "mod-2", "mod", "2", "mod", "pow(fact[n-k], mod-2, mod)", "pow", "fact[n-k]", "fact", "n-k", "n", "k", "mod-2", "mod", "2", "mod", "mod", "n", "n", "k", "k", "H, W, A, B = map(int, input().split())", "H", "map(int, input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "ans = 0", "ans", "0", "for b in range(B+1, W+1):\n tmp = comb(H-A+b-2, b-1) * comb(A+W-b-1, A-1) % mod\n ans = (ans + tmp) % mod", "b", "range(B+1, W+1)", "range", "B+1", "B", "1", "W+1", "W", "1", "tmp = comb(H-A+b-2, b-1) * comb(A+W-b-1, A-1) % mod", "tmp", "comb(H-A+b-2, b-1) * comb(A+W-b-1, A-1) % mod", "comb(H-A+b-2, b-1) * comb(A+W-b-1, A-1)", "comb(H-A+b-2, b-1)", "comb", "H-A+b-2", "H-A+b", "H-A", "H", "A", "b", "2", "b-1", "b", "1", "comb(A+W-b-1, A-1)", "comb", "A+W-b-1", "A+W-b", "A+W", "A", "W", "b", "1", "A-1", "A", "1", "mod", "ans = (ans + tmp) % mod", "ans", "(ans + tmp) % mod", "ans + tmp", "ans", "tmp", "mod", "print(ans)", "print", "ans", "ans = 0", "0", "ans", "W, A, B = map(int, input().split())", "map(int, input().split())", "W", "tmp = comb(H-A+b-2, b-1) * comb(A+W-b-1, A-1) % mod", "comb(H-A+b-2, b-1) * comb(A+W-b-1, A-1) % mod", "tmp", "ans = (ans + tmp) % mod", "(ans + tmp) % mod", "ans", "H, W, A, B = map(int, input().split())", "map(int, input().split())", "H", "fact = [None] * (N+1)", "[None] * (N+1)", "fact", "A, B = map(int, input().split())", "map(int, input().split())", "A", "mod = 10**9 + 7", "10**9 + 7", "mod", "def comb(n, k):\n return fact[n] * pow(fact[k], mod-2, mod) * pow(fact[n-k], mod-2, mod) % mod", "def comb(n, k):\n return fact[n] * pow(fact[k], mod-2, mod) * pow(fact[n-k], mod-2, mod) % mod", "comb", "N = 200000", "200000", "N", "B = map(int, input().split())", "map(int, input().split())", "B" ]
mod = 10**9 + 7 N = 200000 fact = [None] * (N+1) fact[0] = 1 for i in range(1, N+1): fact[i] = fact[i-1] * i % mod def comb(n, k): return fact[n] * pow(fact[k], mod-2, mod) * pow(fact[n-k], mod-2, mod) % mod H, W, A, B = map(int, input().split()) ans = 0 for b in range(B+1, W+1): tmp = comb(H-A+b-2, b-1) * comb(A+W-b-1, A-1) % mod ans = (ans + tmp) % mod print(ans)
[ 7, 12, 13, 0, 13, 17, 28, 13, 4, 13, 13, 0, 13, 13, 0, 13, 13, 0, 13, 17, 29, 13, 23, 13, 23, 13, 23, 13, 12, 13, 0, 13, 17, 28, 13, 4, 13, 17, 2, 13, 17, 0, 13, 13, 0, 13, 13, 29, 13, 23, 13, 23, 13, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 4, 13, 17, 17, 17, 0, 13, 2, 2, 2, 13, 13, 13, 17, 0, 13, 2, 2, 2, 13, 13, 13, 17, 0, 13, 2, 2, 4, 13, 13, 2, 2, 13, 13, 17, 13, 4, 13, 13, 2, 13, 17, 13, 13, 0, 13, 13, 28, 13, 4, 13, 2, 2, 13, 13, 17, 0, 13, 17, 0, 13, 2, 2, 2, 2, 13, 13, 2, 13, 2, 13, 17, 4, 13, 2, 2, 13, 2, 2, 13, 13, 17, 13, 2, 13, 17, 13, 13, 0, 13, 17, 0, 13, 13, 0, 13, 13, 0, 13, 2, 2, 2, 13, 4, 13, 4, 13, 2, 13, 17, 13, 2, 13, 17, 13, 4, 13, 4, 13, 2, 2, 13, 13, 17, 13, 2, 13, 17, 13, 13, 4, 13, 13, 10, 12, 13, 10, 13, 13, 10, 12, 13, 10, 2, 13, 10, 4, 13, 10, 13, 13, 10, 17, 13, 10, 13, 13, 10, 2, 13, 10, 4, 13, 10, 2, 13, 10, 2, 13, 10, 2, 13, 10, 4, 13, 10, 4, 13, 10, 17, 13, 10, 2, 13 ]
[ [ 5, 4 ], [ 8, 7 ], [ 25, 10 ], [ 13, 12 ], [ 23, 13 ], [ 18, 13 ], [ 16, 15 ], [ 27, 16 ], [ 19, 18 ], [ 15, 21 ], [ 12, 21 ], [ 4, 21 ], [ 23, 23 ], [ 25, 25 ], [ 27, 27 ], [ 32, 31 ], [ 35, 34 ], [ 50, 39 ], [ 43, 42 ], [ 34, 43 ], [ 46, 45 ], [ 52, 46 ], [ 45, 48 ], [ 42, 48 ], [ 31, 48 ], [ 50, 50 ], [ 52, 52 ], [ 245, 54 ], [ 245, 63 ], [ 245, 64 ], [ 245, 65 ], [ 233, 67 ], [ 227, 75 ], [ 231, 79 ], [ 243, 80 ], [ 246, 81 ], [ 251, 84 ], [ 216, 88 ], [ 246, 89 ], [ 243, 90 ], [ 236, 93 ], [ 204, 97 ], [ 228, 98 ], [ 231, 101 ], [ 243, 102 ], [ 234, 104 ], [ 204, 106 ], [ 252, 107 ], [ 243, 109 ], [ 234, 111 ], [ 234, 112 ], [ 218, 114 ], [ 237, 115 ], [ 118, 117 ], [ 216, 122 ], [ 246, 123 ], [ 248, 126 ], [ 239, 129 ], [ 237, 134 ], [ 240, 134 ], [ 249, 135 ], [ 228, 135 ], [ 252, 137 ], [ 222, 137 ], [ 243, 139 ], [ 249, 145 ], [ 228, 145 ], [ 231, 148 ], [ 243, 149 ], [ 252, 151 ], [ 222, 151 ], [ 234, 153 ], [ 234, 155 ], [ 234, 156 ], [ 221, 158 ], [ 224, 161 ], [ 240, 162 ], [ 237, 162 ], [ 206, 164 ], [ 234, 165 ], [ 212, 167 ], [ 207, 171 ], [ 225, 171 ], [ 219, 171 ], [ 210, 175 ], [ 243, 177 ], [ 234, 179 ], [ 234, 181 ], [ 234, 183 ], [ 210, 187 ], [ 231, 190 ], [ 243, 191 ], [ 234, 193 ], [ 234, 195 ], [ 234, 197 ], [ 234, 198 ], [ 213, 201 ], [ 207, 201 ], [ 225, 201 ], [ 219, 201 ], [ 234, 206 ], [ 206, 207 ], [ 212, 213 ], [ 245, 216 ], [ 237, 218 ], [ 218, 219 ], [ 221, 222 ], [ 240, 224 ], [ 237, 224 ], [ 224, 225 ], [ 227, 228 ], [ 245, 231 ], [ 233, 234 ], [ 236, 237 ], [ 239, 240 ], [ 245, 243 ], [ 245, 246 ], [ 248, 249 ], [ 251, 252 ] ]
[ "def permutation(n, k, mod):\n s = 1\n for _ in range(k):\n s *= n\n s %= mod\n n -= 1\n return s\n\ndef factorial(n, mod):\n s = 1\n for i in range(1, n + 1):\n s *= i\n s %= mod\n return s\n\nh, w, a, b = map(int, input().split())\nmod = pow(10, 9) + 7\nx = h - a + b - 1\ny = w - b + a - 2\np = permutation(x, h - a - 1, mod) * permutation(y, a - 1, mod) % mod\nans = p\nfor _ in range(w - b - 1):\n x += 1\n p = p * x * (y - (a - 1)) * pow((x - (h - a - 1)) * y, mod - 2, mod) % mod\n y -= 1\n ans += p\n ans %= mod\nans = ans * pow(factorial(a - 1, mod), mod - 2, mod) * pow(factorial(h - a - 1, mod), mod - 2, mod) % mod\nprint(ans)", "def permutation(n, k, mod):\n s = 1\n for _ in range(k):\n s *= n\n s %= mod\n n -= 1\n return s", "permutation", "s = 1", "s", "1", "for _ in range(k):\n s *= n\n s %= mod\n n -= 1\n ", "_", "range(k)", "range", "k", "s *= n", "s", "n", "s %= mod", "s", "mod", "n -= 1", "n", "1", "return s", "s", "n", "n", "k", "k", "mod", "mod", "def factorial(n, mod):\n s = 1\n for i in range(1, n + 1):\n s *= i\n s %= mod\n return s", "factorial", "s = 1", "s", "1", "for i in range(1, n + 1):\n s *= i\n s %= mod\n ", "i", "range(1, n + 1)", "range", "1", "n + 1", "n", "1", "s *= i", "s", "i", "s %= mod", "s", "mod", "return s", "s", "n", "n", "mod", "mod", "h, w, a, b = map(int, input().split())", "h", "map(int, input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "w", "a", "b", "mod = pow(10, 9) + 7", "mod", "pow(10, 9) + 7", "pow(10, 9)", "pow", "10", "9", "7", "x = h - a + b - 1", "x", "h - a + b - 1", "h - a + b", "h - a", "h", "a", "b", "1", "y = w - b + a - 2", "y", "w - b + a - 2", "w - b + a", "w - b", "w", "b", "a", "2", "p = permutation(x, h - a - 1, mod) * permutation(y, a - 1, mod) % mod", "p", "permutation(x, h - a - 1, mod) * permutation(y, a - 1, mod) % mod", "permutation(x, h - a - 1, mod) * permutation(y, a - 1, mod)", "permutation(x, h - a - 1, mod)", "permutation", "x", "h - a - 1", "h - a", "h", "a", "1", "mod", "permutation(y, a - 1, mod)", "permutation", "y", "a - 1", "a", "1", "mod", "mod", "ans = p", "ans", "p", "for _ in range(w - b - 1):\n x += 1\n p = p * x * (y - (a - 1)) * pow((x - (h - a - 1)) * y, mod - 2, mod) % mod\n y -= 1\n ans += p\n ans %= mod", "_", "range(w - b - 1)", "range", "w - b - 1", "w - b", "w", "b", "1", "x += 1", "x", "1", "p = p * x * (y - (a - 1)) * pow((x - (h - a - 1)) * y, mod - 2, mod) % mod", "p", "p * x * (y - (a - 1)) * pow((x - (h - a - 1)) * y, mod - 2, mod) % mod", "p * x * (y - (a - 1)) * pow((x - (h - a - 1)) * y, mod - 2, mod)", "p * x * (y - (a - 1))", "p * x", "p", "x", "y - (a - 1)", "y", "a - 1", "a", "1", "pow((x - (h - a - 1)) * y, mod - 2, mod)", "pow", "(x - (h - a - 1)) * y", "x - (h - a - 1)", "x", "h - a - 1", "h - a", "h", "a", "1", "y", "mod - 2", "mod", "2", "mod", "mod", "y -= 1", "y", "1", "ans += p", "ans", "p", "ans %= mod", "ans", "mod", "ans = ans * pow(factorial(a - 1, mod), mod - 2, mod) * pow(factorial(h - a - 1, mod), mod - 2, mod) % mod", "ans", "ans * pow(factorial(a - 1, mod), mod - 2, mod) * pow(factorial(h - a - 1, mod), mod - 2, mod) % mod", "ans * pow(factorial(a - 1, mod), mod - 2, mod) * pow(factorial(h - a - 1, mod), mod - 2, mod)", "ans * pow(factorial(a - 1, mod), mod - 2, mod)", "ans", "pow(factorial(a - 1, mod), mod - 2, mod)", "pow", "factorial(a - 1, mod)", "factorial", "a - 1", "a", "1", "mod", "mod - 2", "mod", "2", "mod", "pow(factorial(h - a - 1, mod), mod - 2, mod)", "pow", "factorial(h - a - 1, mod)", "factorial", "h - a - 1", "h - a", "h", "a", "1", "mod", "mod - 2", "mod", "2", "mod", "mod", "print(ans)", "print", "ans", "def permutation(n, k, mod):\n s = 1\n for _ in range(k):\n s *= n\n s %= mod\n n -= 1\n return s", "def permutation(n, k, mod):\n s = 1\n for _ in range(k):\n s *= n\n s %= mod\n n -= 1\n return s", "permutation", "ans %= mod", "mod", "ans", "def factorial(n, mod):\n s = 1\n for i in range(1, n + 1):\n s *= i\n s %= mod\n return s", "def factorial(n, mod):\n s = 1\n for i in range(1, n + 1):\n s *= i\n s %= mod\n return s", "factorial", "ans = ans * pow(factorial(a - 1, mod), mod - 2, mod) * pow(factorial(h - a - 1, mod), mod - 2, mod) % mod", "ans * pow(factorial(a - 1, mod), mod - 2, mod) * pow(factorial(h - a - 1, mod), mod - 2, mod) % mod", "ans", "w, a, b = map(int, input().split())", "map(int, input().split())", "w", "ans = p", "p", "ans", "y -= 1", "1", "y", "ans += p", "p", "ans", "x = h - a + b - 1", "h - a + b - 1", "x", "h, w, a, b = map(int, input().split())", "map(int, input().split())", "h", "mod = pow(10, 9) + 7", "pow(10, 9) + 7", "mod", "p = permutation(x, h - a - 1, mod) * permutation(y, a - 1, mod) % mod", "permutation(x, h - a - 1, mod) * permutation(y, a - 1, mod) % mod", "p", "p = p * x * (y - (a - 1)) * pow((x - (h - a - 1)) * y, mod - 2, mod) % mod", "p * x * (y - (a - 1)) * pow((x - (h - a - 1)) * y, mod - 2, mod) % mod", "p", "a, b = map(int, input().split())", "map(int, input().split())", "a", "b = map(int, input().split())", "map(int, input().split())", "b", "x += 1", "1", "x", "y = w - b + a - 2", "w - b + a - 2", "y" ]
def permutation(n, k, mod): s = 1 for _ in range(k): s *= n s %= mod n -= 1 return s def factorial(n, mod): s = 1 for i in range(1, n + 1): s *= i s %= mod return s h, w, a, b = map(int, input().split()) mod = pow(10, 9) + 7 x = h - a + b - 1 y = w - b + a - 2 p = permutation(x, h - a - 1, mod) * permutation(y, a - 1, mod) % mod ans = p for _ in range(w - b - 1): x += 1 p = p * x * (y - (a - 1)) * pow((x - (h - a - 1)) * y, mod - 2, mod) % mod y -= 1 ans += p ans %= mod ans = ans * pow(factorial(a - 1, mod), mod - 2, mod) * pow(factorial(h - a - 1, mod), mod - 2, mod) % mod print(ans)
[ 7, 12, 13, 14, 2, 2, 13, 17, 2, 13, 13, 29, 17, 0, 13, 4, 13, 13, 2, 13, 13, 29, 2, 2, 2, 18, 13, 13, 18, 13, 13, 18, 13, 2, 13, 13, 13, 23, 13, 23, 13, 23, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 2, 2, 17, 17, 17, 0, 13, 39, 17, 17, 0, 13, 39, 17, 17, 0, 13, 39, 17, 17, 28, 13, 4, 13, 17, 2, 13, 17, 4, 18, 13, 13, 2, 2, 18, 13, 17, 13, 13, 4, 18, 13, 13, 2, 2, 40, 18, 13, 2, 13, 13, 2, 13, 13, 13, 4, 18, 13, 13, 2, 2, 18, 13, 17, 18, 13, 17, 13, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 17, 28, 13, 4, 13, 2, 13, 13, 0, 13, 2, 4, 13, 2, 2, 13, 13, 17, 2, 13, 17, 13, 4, 13, 2, 2, 2, 2, 13, 13, 13, 13, 17, 2, 2, 13, 13, 17, 13, 4, 13, 2, 13, 13, 10, 12, 13, 10, 4, 13, 10, 39, 13, 10, 39, 13, 10, 4, 13, 10, 2, 13, 10, 4, 13, 10, 17, 13, 10, 4, 13, 10, 2, 13, 10, 39, 13, 10, 2, 13 ]
[ [ 40, 6 ], [ 40, 9 ], [ 38, 10 ], [ 15, 14 ], [ 40, 17 ], [ 38, 19 ], [ 40, 20 ], [ 38, 27 ], [ 14, 30 ], [ 40, 30 ], [ 38, 34 ], [ 14, 35 ], [ 40, 35 ], [ 42, 36 ], [ 38, 38 ], [ 40, 40 ], [ 42, 42 ], [ 207, 44 ], [ 195, 51 ], [ 186, 58 ], [ 210, 63 ], [ 189, 68 ], [ 74, 73 ], [ 196, 78 ], [ 187, 82 ], [ 187, 87 ], [ 73, 89 ], [ 208, 90 ], [ 190, 93 ], [ 190, 99 ], [ 208, 101 ], [ 73, 102 ], [ 208, 104 ], [ 73, 105 ], [ 208, 106 ], [ 211, 109 ], [ 211, 114 ], [ 190, 117 ], [ 208, 119 ], [ 204, 121 ], [ 204, 130 ], [ 204, 131 ], [ 204, 132 ], [ 201, 134 ], [ 138, 137 ], [ 193, 141 ], [ 184, 142 ], [ 213, 144 ], [ 181, 147 ], [ 199, 150 ], [ 137, 151 ], [ 199, 154 ], [ 208, 156 ], [ 181, 158 ], [ 193, 163 ], [ 137, 164 ], [ 205, 165 ], [ 199, 166 ], [ 205, 170 ], [ 199, 171 ], [ 208, 173 ], [ 214, 177 ], [ 202, 177 ], [ 208, 178 ], [ 204, 184 ], [ 186, 187 ], [ 189, 190 ], [ 204, 193 ], [ 195, 196 ], [ 204, 199 ], [ 201, 202 ], [ 204, 205 ], [ 207, 208 ], [ 210, 211 ], [ 213, 214 ] ]
[ "#縦H A\n\ndef cmb(n, r, mod):\n if ( r<0 or r>n ):\n return 0\n r = min(r, n-r)\n return g1[n] * g2[r] * g2[n-r] % mod\n\nmod = 10**9+7 #出力の制限\nN = (10**5)*2\ng1 = [1, 1] # 元テーブル\ng2 = [1, 1] #逆元テーブル\ninverse = [0, 1] #逆元テーブル計算用テーブル\n\nfor i in range( 2, N + 1 ):\n g1.append( ( g1[-1] * i ) % mod )\n inverse.append( ( -inverse[mod % i] * (mod//i) ) % mod )\n g2.append( (g2[-1] * inverse[-1]) % mod )\nH,W,A,B=map(int,input().split())\nans=0\nfor i in range(H-A):\n ans+=cmb(B+i-1,B-1,mod) * cmb(H-i+W-B-2,W-B-1,mod)\nprint(ans%mod)\n# 1 1 1\n# $ 1 2", "def cmb(n, r, mod):\n if ( r<0 or r>n ):\n return 0\n r = min(r, n-r)\n return g1[n] * g2[r] * g2[n-r] % mod", "cmb", "if ( r<0 or r>n ):\n return 0\n ", "r<0 or r>n", "r<0", "r", "0", "r>n", "r", "n", "return 0", "0", "r = min(r, n-r)", "r", "min(r, n-r)", "min", "r", "n-r", "n", "r", "return g1[n] * g2[r] * g2[n-r] % mod", "g1[n] * g2[r] * g2[n-r] % mod", "g1[n] * g2[r] * g2[n-r]", "g1[n] * g2[r]", "g1[n]", "g1", "n", "g2[r]", "g2", "r", "g2[n-r]", "g2", "n-r", "n", "r", "mod", "n", "n", "r", "r", "mod", "mod", "mod = 10**9+7", "mod", "10**9+7", "10**9", "10", "9", "7", "N = (10**5)*2", "N", "(10**5)*2", "10**5", "10", "5", "2", "g1 = [1, 1]", "g1", "[1, 1]", "1", "1", "g2 = [1, 1]", "g2", "[1, 1]", "1", "1", "inverse = [0, 1]", "inverse", "[0, 1]", "0", "1", "for i in range( 2, N + 1 ):\n g1.append( ( g1[-1] * i ) % mod )\n inverse.append( ( -inverse[mod % i] * (mod//i) ) % mod )\n g2.append( (g2[-1] * inverse[-1]) % mod )", "i", "range( 2, N + 1 )", "range", "2", "N + 1", "N", "1", "g1.append( ( g1[-1] * i ) % mod )", "g1.append", "g1", "append", "( g1[-1] * i ) % mod", "g1[-1] * i", "g1[-1]", "g1", "-1", "i", "mod", "inverse.append( ( -inverse[mod % i] * (mod//i) ) % mod )", "inverse.append", "inverse", "append", "( -inverse[mod % i] * (mod//i) ) % mod", "-inverse[mod % i] * (mod//i)", "-inverse[mod % i]", "inverse[mod % i]", "inverse", "mod % i", "mod", "i", "mod//i", "mod", "i", "mod", "g2.append( (g2[-1] * inverse[-1]) % mod )", "g2.append", "g2", "append", "(g2[-1] * inverse[-1]) % mod", "g2[-1] * inverse[-1]", "g2[-1]", "g2", "-1", "inverse[-1]", "inverse", "-1", "mod", "H,W,A,B=map(int,input().split())", "H", "map(int,input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "ans=0", "ans", "0", "for i in range(H-A):\n ans+=cmb(B+i-1,B-1,mod) * cmb(H-i+W-B-2,W-B-1,mod)", "i", "range(H-A)", "range", "H-A", "H", "A", "ans+=cmb(B+i-1,B-1,mod) * cmb(H-i+W-B-2,W-B-1,mod)", "ans", "cmb(B+i-1,B-1,mod) * cmb(H-i+W-B-2,W-B-1,mod)", "cmb(B+i-1,B-1,mod)", "cmb", "B+i-1", "B+i", "B", "i", "1", "B-1", "B", "1", "mod", "cmb(H-i+W-B-2,W-B-1,mod)", "cmb", "H-i+W-B-2", "H-i+W-B", "H-i+W", "H-i", "H", "i", "W", "B", "2", "W-B-1", "W-B", "W", "B", "1", "mod", "print(ans%mod)", "print", "ans%mod", "ans", "mod", "def cmb(n, r, mod):\n if ( r<0 or r>n ):\n return 0\n r = min(r, n-r)\n return g1[n] * g2[r] * g2[n-r] % mod", "def cmb(n, r, mod):\n if ( r<0 or r>n ):\n return 0\n r = min(r, n-r)\n return g1[n] * g2[r] * g2[n-r] % mod", "cmb", "A,B=map(int,input().split())", "map(int,input().split())", "A", "g1 = [1, 1]", "[1, 1]", "g1", "inverse = [0, 1]", "[0, 1]", "inverse", "H,W,A,B=map(int,input().split())", "map(int,input().split())", "H", "N = (10**5)*2", "(10**5)*2", "N", "B=map(int,input().split())", "map(int,input().split())", "B", "ans=0", "0", "ans", "W,A,B=map(int,input().split())", "map(int,input().split())", "W", "mod = 10**9+7", "10**9+7", "mod", "g2 = [1, 1]", "[1, 1]", "g2", "ans+=cmb(B+i-1,B-1,mod) * cmb(H-i+W-B-2,W-B-1,mod)", "cmb(B+i-1,B-1,mod) * cmb(H-i+W-B-2,W-B-1,mod)", "ans" ]
#縦H A def cmb(n, r, mod): if ( r<0 or r>n ): return 0 r = min(r, n-r) return g1[n] * g2[r] * g2[n-r] % mod mod = 10**9+7 #出力の制限 N = (10**5)*2 g1 = [1, 1] # 元テーブル g2 = [1, 1] #逆元テーブル inverse = [0, 1] #逆元テーブル計算用テーブル for i in range( 2, N + 1 ): g1.append( ( g1[-1] * i ) % mod ) inverse.append( ( -inverse[mod % i] * (mod//i) ) % mod ) g2.append( (g2[-1] * inverse[-1]) % mod ) H,W,A,B=map(int,input().split()) ans=0 for i in range(H-A): ans+=cmb(B+i-1,B-1,mod) * cmb(H-i+W-B-2,W-B-1,mod) print(ans%mod) # 1 1 1 # $ 1 2
[ 7, 12, 13, 42, 13, 0, 13, 13, 13, 2, 13, 13, 29, 13, 23, 13, 23, 13, 12, 13, 0, 39, 13, 13, 39, 17, 17, 0, 39, 13, 13, 39, 17, 17, 42, 40, 13, 17, 0, 13, 2, 13, 13, 0, 39, 13, 13, 39, 13, 2, 13, 13, 0, 39, 13, 13, 39, 2, 13, 2, 13, 13, 13, 0, 39, 13, 13, 39, 2, 13, 2, 13, 13, 13, 29, 39, 13, 13, 13, 23, 13, 23, 13, 12, 13, 0, 39, 13, 13, 13, 4, 13, 13, 13, 29, 2, 13, 13, 23, 13, 23, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 2, 2, 17, 17, 17, 0, 13, 2, 39, 17, 2, 13, 17, 12, 13, 0, 13, 17, 0, 18, 13, 17, 17, 28, 13, 4, 13, 17, 2, 13, 17, 0, 13, 2, 2, 2, 13, 13, 13, 13, 0, 18, 13, 13, 13, 23, 13, 23, 13, 4, 13, 13, 13, 0, 13, 2, 39, 17, 2, 13, 17, 12, 13, 28, 13, 4, 13, 2, 13, 17, 0, 13, 18, 13, 13, 0, 39, 13, 13, 13, 4, 13, 13, 13, 0, 18, 13, 13, 2, 13, 13, 23, 13, 23, 13, 4, 13, 13, 13, 12, 13, 0, 13, 18, 13, 13, 0, 13, 18, 13, 13, 0, 13, 18, 13, 2, 13, 13, 29, 2, 2, 2, 2, 13, 13, 13, 13, 13, 23, 13, 23, 13, 23, 13, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 17, 28, 13, 4, 13, 13, 13, 0, 13, 2, 4, 13, 2, 2, 2, 13, 13, 17, 13, 13, 13, 4, 13, 2, 2, 2, 2, 13, 17, 13, 13, 17, 2, 13, 17, 13, 0, 13, 13, 4, 13, 13, 10, 12, 13, 10, 17, 13, 10, 2, 13, 10, 12, 13, 10, 12, 13, 10, 2, 13, 10, 4, 13, 10, 12, 13, 10, 4, 13, 10, 12, 13, 10, 4, 13, 10, 13, 13, 10, 2, 13, 10, 12, 13, 10, 4, 13, 10, 2, 13, 10, 2, 13 ]
[ [ 7, 6 ], [ 17, 7 ], [ 8, 7 ], [ 9, 8 ], [ 6, 10 ], [ 15, 10 ], [ 17, 11 ], [ 8, 11 ], [ 6, 13 ], [ 15, 13 ], [ 15, 15 ], [ 17, 17 ], [ 24, 21 ], [ 31, 28 ], [ 82, 36 ], [ 40, 39 ], [ 80, 41 ], [ 82, 42 ], [ 47, 44 ], [ 80, 50 ], [ 82, 51 ], [ 56, 53 ], [ 39, 60 ], [ 67, 64 ], [ 39, 71 ], [ 80, 80 ], [ 82, 82 ], [ 90, 86 ], [ 325, 91 ], [ 99, 92 ], [ 101, 93 ], [ 101, 97 ], [ 99, 99 ], [ 101, 101 ], [ 309, 103 ], [ 348, 110 ], [ 318, 117 ], [ 349, 122 ], [ 128, 127 ], [ 133, 130 ], [ 319, 131 ], [ 136, 135 ], [ 157, 140 ], [ 144, 143 ], [ 127, 147 ], [ 143, 147 ], [ 159, 148 ], [ 135, 149 ], [ 159, 150 ], [ 155, 152 ], [ 319, 153 ], [ 135, 154 ], [ 143, 155 ], [ 127, 155 ], [ 157, 157 ], [ 159, 159 ], [ 313, 161 ], [ 349, 162 ], [ 310, 163 ], [ 339, 165 ], [ 349, 170 ], [ 176, 175 ], [ 203, 179 ], [ 183, 182 ], [ 319, 184 ], [ 175, 185 ], [ 191, 187 ], [ 325, 192 ], [ 182, 193 ], [ 205, 194 ], [ 199, 196 ], [ 340, 197 ], [ 304, 197 ], [ 175, 198 ], [ 205, 201 ], [ 203, 203 ], [ 205, 205 ], [ 331, 207 ], [ 349, 208 ], [ 310, 209 ], [ 214, 213 ], [ 319, 215 ], [ 240, 216 ], [ 219, 218 ], [ 340, 220 ], [ 304, 220 ], [ 242, 221 ], [ 224, 223 ], [ 340, 225 ], [ 304, 225 ], [ 240, 227 ], [ 242, 228 ], [ 213, 234 ], [ 218, 235 ], [ 244, 236 ], [ 223, 237 ], [ 244, 238 ], [ 240, 240 ], [ 242, 242 ], [ 244, 244 ], [ 345, 246 ], [ 345, 255 ], [ 345, 256 ], [ 345, 257 ], [ 306, 259 ], [ 263, 262 ], [ 328, 265 ], [ 346, 266 ], [ 351, 268 ], [ 316, 271 ], [ 334, 275 ], [ 322, 276 ], [ 262, 278 ], [ 262, 279 ], [ 310, 280 ], [ 316, 282 ], [ 322, 287 ], [ 346, 289 ], [ 262, 290 ], [ 322, 293 ], [ 310, 295 ], [ 336, 297 ], [ 310, 298 ], [ 337, 301 ], [ 352, 301 ], [ 307, 301 ], [ 306, 307 ], [ 309, 310 ], [ 318, 319 ], [ 345, 322 ], [ 345, 328 ], [ 345, 334 ], [ 310, 336 ], [ 336, 337 ], [ 339, 340 ], [ 345, 346 ], [ 348, 349 ], [ 351, 352 ] ]
[ "def gcd(a, b):\n\twhile b:\n\t\ta, b = b, a % b\n\treturn a\n\ndef egcd(a, b):\n (x, lastx) = (0, 1)\n (y, lasty) = (1, 0)\n while b != 0:\n q = a // b\n (a, b) = (b, a % b)\n (x, lastx) = (lastx - q * x, x)\n (y, lasty) = (lasty - q * y, y)\n return (lastx, lasty, a)\n\n# ax ≡ 1 (mod m)\ndef modinv(a, m):\n (inv, q, gcd_val) = egcd(a, m)\n return inv % m\nN = 10**9+7\nR = 10**5*2\nmodfact = [0]*(R+1)\ndef modfact_memo(n,N):\n r = 1\n modfact[0] = 1\n for i in range(1,n+1):\n r = r % N * i % N\n modfact[i] = r\nmodfact_memo(R,N)\n\n# ax ≡ 1 (mod m)\nmodinv=[0]*(R+1)\ndef modinv_memo(a,m):\n for i in range(a+1):\n j = modfact[i]\n (inv, q, gcd_val) = egcd(j, m)\n modinv[i] = inv % m\nmodinv_memo(R,N)\n\ndef modconb(n,r,N):\n p = modfact[n]\n q1 = modinv[r]\n q2 = modinv[n-r]\n return p*q1%N*q2%N\n\nH,W,A,B = map(int,input().split())\nans = 0\nfor r in range(B,W):\n ans += modconb(H-A-1+r,r,N)*modconb(A-1+W-r-1,A-1,N)\n ans %= N\n\nprint(ans)", "def gcd(a, b):\n\twhile b:\n\t\ta, b = b, a % b\n\treturn a", "gcd", "while b:\n\t\ta, b = b, a % b\n\t", "b", "a, b = b, a % b", "a", "b", "b", "a % b", "a", "b", "return a", "a", "a", "a", "b", "b", "def egcd(a, b):\n (x, lastx) = (0, 1)\n (y, lasty) = (1, 0)\n while b != 0:\n q = a // b\n (a, b) = (b, a % b)\n (x, lastx) = (lastx - q * x, x)\n (y, lasty) = (lasty - q * y, y)\n return (lastx, lasty, a)\n\n# ax ≡ 1 (mod m)", "egcd", "(x, lastx) = (0, 1)", "(x, lastx)", "x", "lastx", "(0, 1)", "0", "1", "(y, lasty) = (1, 0)", "(y, lasty)", "y", "lasty", "(1, 0)", "1", "0", "while b != 0:\n q = a // b\n (a, b) = (b, a % b)\n (x, lastx) = (lastx - q * x, x)\n (y, lasty) = (lasty - q * y, y)\n ", "b != 0", "b", "0", "q = a // b", "q", "a // b", "a", "b", "(a, b) = (b, a % b)", "(a, b)", "a", "b", "(b, a % b)", "b", "a % b", "a", "b", "(x, lastx) = (lastx - q * x, x)", "(x, lastx)", "x", "lastx", "(lastx - q * x, x)", "lastx - q * x", "lastx", "q * x", "q", "x", "x", "(y, lasty) = (lasty - q * y, y)", "(y, lasty)", "y", "lasty", "(lasty - q * y, y)", "lasty - q * y", "lasty", "q * y", "q", "y", "y", "return (lastx, lasty, a)", "(lastx, lasty, a)", "lastx", "lasty", "a", "a", "a", "b", "b", "def modinv(a, m):\n (inv, q, gcd_val) = egcd(a, m)\n return inv % m", "modinv", "(inv, q, gcd_val) = egcd(a, m)", "(inv, q, gcd_val)", "inv", "q", "gcd_val", "egcd(a, m)", "egcd", "a", "m", "return inv % m", "inv % m", "inv", "m", "a", "a", "m", "m", "N = 10**9+7", "N", "10**9+7", "10**9", "10", "9", "7", "R = 10**5*2", "R", "10**5*2", "10**5", "10", "5", "2", "modfact = [0]*(R+1)", "modfact", "[0]*(R+1)", "[0]", "0", "R+1", "R", "1", "def modfact_memo(n,N):\n r = 1\n modfact[0] = 1\n for i in range(1,n+1):\n r = r % N * i % N\n modfact[i] = r", "modfact_memo", "r = 1", "r", "1", "modfact[0] = 1", "modfact[0]", "modfact", "0", "1", "for i in range(1,n+1):\n r = r % N * i % N\n modfact[i] = r", "i", "range(1,n+1)", "range", "1", "n+1", "n", "1", "r = r % N * i % N", "r", "r % N * i % N", "r % N * i", "r % N", "r", "N", "i", "N", "modfact[i] = r", "modfact[i]", "modfact", "i", "r", "n", "n", "N", "N", "modfact_memo(R,N)", "modfact_memo", "R", "N", "modinv=[0]*(R+1)", "modinv", "[0]*(R+1)", "[0]", "0", "R+1", "R", "1", "def modinv_memo(a,m):\n for i in range(a+1):\n j = modfact[i]\n (inv, q, gcd_val) = egcd(j, m)\n modinv[i] = inv % m", "modinv_memo", "for i in range(a+1):\n j = modfact[i]\n (inv, q, gcd_val) = egcd(j, m)\n modinv[i] = inv % m", "i", "range(a+1)", "range", "a+1", "a", "1", "j = modfact[i]", "j", "modfact[i]", "modfact", "i", "(inv, q, gcd_val) = egcd(j, m)", "(inv, q, gcd_val)", "inv", "q", "gcd_val", "egcd(j, m)", "egcd", "j", "m", "modinv[i] = inv % m", "modinv[i]", "modinv", "i", "inv % m", "inv", "m", "a", "a", "m", "m", "modinv_memo(R,N)", "modinv_memo", "R", "N", "def modconb(n,r,N):\n p = modfact[n]\n q1 = modinv[r]\n q2 = modinv[n-r]\n return p*q1%N*q2%N", "modconb", "p = modfact[n]", "p", "modfact[n]", "modfact", "n", "q1 = modinv[r]", "q1", "modinv[r]", "modinv", "r", "q2 = modinv[n-r]", "q2", "modinv[n-r]", "modinv", "n-r", "n", "r", "return p*q1%N*q2%N", "p*q1%N*q2%N", "p*q1%N*q2", "p*q1%N", "p*q1", "p", "q1", "N", "q2", "N", "n", "n", "r", "r", "N", "N", "H,W,A,B = map(int,input().split())", "H", "map(int,input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "ans = 0", "ans", "0", "for r in range(B,W):\n ans += modconb(H-A-1+r,r,N)*modconb(A-1+W-r-1,A-1,N)\n ans %= N", "r", "range(B,W)", "range", "B", "W", "ans += modconb(H-A-1+r,r,N)*modconb(A-1+W-r-1,A-1,N)", "ans", "modconb(H-A-1+r,r,N)*modconb(A-1+W-r-1,A-1,N)", "modconb(H-A-1+r,r,N)", "modconb", "H-A-1+r", "H-A-1", "H-A", "H", "A", "1", "r", "r", "N", "modconb(A-1+W-r-1,A-1,N)", "modconb", "A-1+W-r-1", "A-1+W-r", "A-1+W", "A-1", "A", "1", "W", "r", "1", "A-1", "A", "1", "N", "ans %= N", "ans", "N", "print(ans)", "print", "ans", "def modinv(a, m):\n (inv, q, gcd_val) = egcd(a, m)\n return inv % m", "def modinv(a, m):\n (inv, q, gcd_val) = egcd(a, m)\n return inv % m", "modinv", "ans = 0", "0", "ans", "N = 10**9+7", "10**9+7", "N", "def modfact_memo(n,N):\n r = 1\n modfact[0] = 1\n for i in range(1,n+1):\n r = r % N * i % N\n modfact[i] = r", "def modfact_memo(n,N):\n r = 1\n modfact[0] = 1\n for i in range(1,n+1):\n r = r % N * i % N\n modfact[i] = r", "modfact_memo", "def modconb(n,r,N):\n p = modfact[n]\n q1 = modinv[r]\n q2 = modinv[n-r]\n return p*q1%N*q2%N", "def modconb(n,r,N):\n p = modfact[n]\n q1 = modinv[r]\n q2 = modinv[n-r]\n return p*q1%N*q2%N", "modconb", "modfact = [0]*(R+1)", "[0]*(R+1)", "modfact", "A,B = map(int,input().split())", "map(int,input().split())", "A", "def egcd(a, b):\n (x, lastx) = (0, 1)\n (y, lasty) = (1, 0)\n while b != 0:\n q = a // b\n (a, b) = (b, a % b)\n (x, lastx) = (lastx - q * x, x)\n (y, lasty) = (lasty - q * y, y)\n return (lastx, lasty, a)\n\n# ax ≡ 1 (mod m)", "def egcd(a, b):\n (x, lastx) = (0, 1)\n (y, lasty) = (1, 0)\n while b != 0:\n q = a // b\n (a, b) = (b, a % b)\n (x, lastx) = (lastx - q * x, x)\n (y, lasty) = (lasty - q * y, y)\n return (lastx, lasty, a)\n\n# ax ≡ 1 (mod m)", "egcd", "B = map(int,input().split())", "map(int,input().split())", "B", "def modinv_memo(a,m):\n for i in range(a+1):\n j = modfact[i]\n (inv, q, gcd_val) = egcd(j, m)\n modinv[i] = inv % m", "def modinv_memo(a,m):\n for i in range(a+1):\n j = modfact[i]\n (inv, q, gcd_val) = egcd(j, m)\n modinv[i] = inv % m", "modinv_memo", "H,W,A,B = map(int,input().split())", "map(int,input().split())", "H", "ans %= N", "N", "ans", "modinv=[0]*(R+1)", "[0]*(R+1)", "modinv", "def gcd(a, b):\n\twhile b:\n\t\ta, b = b, a % b\n\treturn a", "def gcd(a, b):\n\twhile b:\n\t\ta, b = b, a % b\n\treturn a", "gcd", "W,A,B = map(int,input().split())", "map(int,input().split())", "W", "R = 10**5*2", "10**5*2", "R", "ans += modconb(H-A-1+r,r,N)*modconb(A-1+W-r-1,A-1,N)", "modconb(H-A-1+r,r,N)*modconb(A-1+W-r-1,A-1,N)", "ans" ]
def gcd(a, b): while b: a, b = b, a % b return a def egcd(a, b): (x, lastx) = (0, 1) (y, lasty) = (1, 0) while b != 0: q = a // b (a, b) = (b, a % b) (x, lastx) = (lastx - q * x, x) (y, lasty) = (lasty - q * y, y) return (lastx, lasty, a) # ax ≡ 1 (mod m) def modinv(a, m): (inv, q, gcd_val) = egcd(a, m) return inv % m N = 10**9+7 R = 10**5*2 modfact = [0]*(R+1) def modfact_memo(n,N): r = 1 modfact[0] = 1 for i in range(1,n+1): r = r % N * i % N modfact[i] = r modfact_memo(R,N) # ax ≡ 1 (mod m) modinv=[0]*(R+1) def modinv_memo(a,m): for i in range(a+1): j = modfact[i] (inv, q, gcd_val) = egcd(j, m) modinv[i] = inv % m modinv_memo(R,N) def modconb(n,r,N): p = modfact[n] q1 = modinv[r] q2 = modinv[n-r] return p*q1%N*q2%N H,W,A,B = map(int,input().split()) ans = 0 for r in range(B,W): ans += modconb(H-A-1+r,r,N)*modconb(A-1+W-r-1,A-1,N) ans %= N print(ans)
[ 7, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 2, 17, 2, 17, 17, 17, 0, 13, 2, 2, 17, 17, 17, 0, 13, 2, 39, 17, 2, 13, 17, 0, 18, 13, 17, 17, 0, 18, 13, 17, 17, 28, 13, 4, 13, 17, 2, 13, 17, 0, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 13, 13, 0, 13, 2, 39, 17, 2, 13, 17, 0, 18, 13, 13, 4, 13, 18, 13, 13, 2, 13, 17, 13, 28, 13, 4, 13, 4, 13, 17, 2, 13, 17, 0, 18, 13, 2, 13, 17, 2, 2, 18, 13, 13, 13, 13, 12, 13, 29, 2, 2, 18, 13, 2, 13, 13, 18, 13, 13, 18, 13, 13, 23, 13, 23, 13, 0, 13, 17, 28, 13, 4, 13, 13, 13, 0, 13, 2, 2, 4, 13, 13, 2, 2, 13, 13, 17, 4, 13, 2, 2, 13, 13, 17, 2, 13, 17, 13, 0, 13, 13, 4, 13, 13, 10, 4, 13, 10, 2, 13, 10, 12, 13, 10, 2, 13, 10, 4, 13, 10, 4, 13, 10, 2, 13, 10, 13, 13, 10, 4, 13, 10, 2, 13, 10, 17, 13, 10, 2, 13 ]
[ [ 196, 2 ], [ 196, 11 ], [ 196, 12 ], [ 196, 13 ], [ 181, 15 ], [ 175, 24 ], [ 190, 31 ], [ 182, 36 ], [ 42, 39 ], [ 191, 40 ], [ 47, 44 ], [ 191, 45 ], [ 50, 49 ], [ 182, 54 ], [ 60, 57 ], [ 191, 58 ], [ 49, 59 ], [ 191, 63 ], [ 49, 65 ], [ 49, 67 ], [ 176, 68 ], [ 205, 70 ], [ 182, 75 ], [ 81, 78 ], [ 206, 79 ], [ 182, 80 ], [ 191, 84 ], [ 182, 85 ], [ 176, 87 ], [ 176, 89 ], [ 92, 91 ], [ 182, 98 ], [ 106, 101 ], [ 206, 102 ], [ 91, 104 ], [ 206, 109 ], [ 91, 110 ], [ 91, 111 ], [ 176, 112 ], [ 191, 119 ], [ 130, 121 ], [ 132, 122 ], [ 206, 124 ], [ 130, 125 ], [ 206, 127 ], [ 132, 128 ], [ 130, 130 ], [ 132, 132 ], [ 202, 134 ], [ 138, 137 ], [ 197, 140 ], [ 173, 141 ], [ 199, 143 ], [ 179, 147 ], [ 137, 148 ], [ 185, 151 ], [ 188, 152 ], [ 179, 155 ], [ 173, 158 ], [ 137, 159 ], [ 188, 162 ], [ 176, 164 ], [ 193, 166 ], [ 176, 167 ], [ 194, 170 ], [ 200, 170 ], [ 203, 170 ], [ 196, 173 ], [ 175, 176 ], [ 181, 182 ], [ 196, 185 ], [ 196, 188 ], [ 190, 191 ], [ 176, 193 ], [ 193, 194 ], [ 196, 197 ], [ 199, 200 ], [ 202, 203 ], [ 205, 206 ] ]
[ "H, W, A, B = map(int, input().split())\n\nMAX = 2 * 10 ** 5 + 1\nMOD = 10 ** 9 + 7\n\n# Factorial\nfac = [0] * (MAX + 1)\nfac[0] = 1\nfac[1] = 1\nfor i in range(2, MAX + 1):\n fac[i] = fac[i - 1] * i % MOD\n \n# Inverse factorial\nfinv = [0] * (MAX + 1)\nfinv[MAX] = pow(fac[MAX], MOD - 2, MOD)\nfor i in reversed(range(1, MAX + 1)):\n finv[i - 1] = finv[i] * i % MOD\n\n\ndef comb(a, b):\n return fac[a + b] * finv[a] * finv[b]\n\n\nans = 0\nfor i in range(B, W):\n ans += comb(i, H - A - 1) * comb(W - i - 1, A - 1) % MOD\n ans %= MOD\n\nprint(ans)", "H, W, A, B = map(int, input().split())", "H", "map(int, input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "MAX = 2 * 10 ** 5 + 1", "MAX", "2 * 10 ** 5 + 1", "2 * 10 ** 5", "2", "10 ** 5", "10", "5", "1", "MOD = 10 ** 9 + 7", "MOD", "10 ** 9 + 7", "10 ** 9", "10", "9", "7", "fac = [0] * (MAX + 1)", "fac", "[0] * (MAX + 1)", "[0]", "0", "MAX + 1", "MAX", "1", "fac[0] = 1", "fac[0]", "fac", "0", "1", "fac[1] = 1", "fac[1]", "fac", "1", "1", "for i in range(2, MAX + 1):\n fac[i] = fac[i - 1] * i % MOD\n \n# Inverse factorial", "i", "range(2, MAX + 1)", "range", "2", "MAX + 1", "MAX", "1", "fac[i] = fac[i - 1] * i % MOD", "fac[i]", "fac", "i", "fac[i - 1] * i % MOD", "fac[i - 1] * i", "fac[i - 1]", "fac", "i - 1", "i", "1", "i", "MOD", "finv = [0] * (MAX + 1)", "finv", "[0] * (MAX + 1)", "[0]", "0", "MAX + 1", "MAX", "1", "finv[MAX] = pow(fac[MAX], MOD - 2, MOD)", "finv[MAX]", "finv", "MAX", "pow(fac[MAX], MOD - 2, MOD)", "pow", "fac[MAX]", "fac", "MAX", "MOD - 2", "MOD", "2", "MOD", "for i in reversed(range(1, MAX + 1)):\n finv[i - 1] = finv[i] * i % MOD", "i", "reversed(range(1, MAX + 1))", "reversed", "range(1, MAX + 1)", "range", "1", "MAX + 1", "MAX", "1", "finv[i - 1] = finv[i] * i % MOD", "finv[i - 1]", "finv", "i - 1", "i", "1", "finv[i] * i % MOD", "finv[i] * i", "finv[i]", "finv", "i", "i", "MOD", "def comb(a, b):\n return fac[a + b] * finv[a] * finv[b]", "comb", "return fac[a + b] * finv[a] * finv[b]", "fac[a + b] * finv[a] * finv[b]", "fac[a + b] * finv[a]", "fac[a + b]", "fac", "a + b", "a", "b", "finv[a]", "finv", "a", "finv[b]", "finv", "b", "a", "a", "b", "b", "ans = 0", "ans", "0", "for i in range(B, W):\n ans += comb(i, H - A - 1) * comb(W - i - 1, A - 1) % MOD\n ans %= MOD", "i", "range(B, W)", "range", "B", "W", "ans += comb(i, H - A - 1) * comb(W - i - 1, A - 1) % MOD", "ans", "comb(i, H - A - 1) * comb(W - i - 1, A - 1) % MOD", "comb(i, H - A - 1) * comb(W - i - 1, A - 1)", "comb(i, H - A - 1)", "comb", "i", "H - A - 1", "H - A", "H", "A", "1", "comb(W - i - 1, A - 1)", "comb", "W - i - 1", "W - i", "W", "i", "1", "A - 1", "A", "1", "MOD", "ans %= MOD", "ans", "MOD", "print(ans)", "print", "ans", "W, A, B = map(int, input().split())", "map(int, input().split())", "W", "MOD = 10 ** 9 + 7", "10 ** 9 + 7", "MOD", "def comb(a, b):\n return fac[a + b] * finv[a] * finv[b]", "def comb(a, b):\n return fac[a + b] * finv[a] * finv[b]", "comb", "MAX = 2 * 10 ** 5 + 1", "2 * 10 ** 5 + 1", "MAX", "H, W, A, B = map(int, input().split())", "map(int, input().split())", "H", "A, B = map(int, input().split())", "map(int, input().split())", "A", "fac = [0] * (MAX + 1)", "[0] * (MAX + 1)", "fac", "ans %= MOD", "MOD", "ans", "B = map(int, input().split())", "map(int, input().split())", "B", "ans += comb(i, H - A - 1) * comb(W - i - 1, A - 1) % MOD", "comb(i, H - A - 1) * comb(W - i - 1, A - 1) % MOD", "ans", "ans = 0", "0", "ans", "finv = [0] * (MAX + 1)", "[0] * (MAX + 1)", "finv" ]
H, W, A, B = map(int, input().split()) MAX = 2 * 10 ** 5 + 1 MOD = 10 ** 9 + 7 # Factorial fac = [0] * (MAX + 1) fac[0] = 1 fac[1] = 1 for i in range(2, MAX + 1): fac[i] = fac[i - 1] * i % MOD # Inverse factorial finv = [0] * (MAX + 1) finv[MAX] = pow(fac[MAX], MOD - 2, MOD) for i in reversed(range(1, MAX + 1)): finv[i - 1] = finv[i] * i % MOD def comb(a, b): return fac[a + b] * finv[a] * finv[b] ans = 0 for i in range(B, W): ans += comb(i, H - A - 1) * comb(W - i - 1, A - 1) % MOD ans %= MOD print(ans)
[ 7, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 2, 13, 13, 0, 13, 2, 39, 17, 2, 13, 17, 28, 13, 4, 13, 17, 2, 13, 17, 0, 18, 13, 13, 4, 13, 13, 2, 13, 17, 13, 0, 13, 2, 2, 13, 13, 17, 0, 13, 2, 13, 17, 0, 13, 2, 39, 17, 2, 13, 17, 0, 18, 13, 13, 17, 28, 13, 4, 13, 2, 13, 17, 2, 13, 17, 0, 18, 13, 13, 2, 2, 2, 18, 13, 2, 13, 17, 13, 18, 13, 2, 13, 13, 13, 0, 13, 2, 2, 13, 13, 17, 0, 13, 2, 13, 17, 0, 13, 2, 39, 17, 2, 13, 17, 0, 18, 13, 13, 17, 28, 13, 4, 13, 2, 13, 17, 2, 13, 17, 0, 18, 13, 13, 2, 2, 2, 18, 13, 2, 13, 17, 13, 18, 13, 2, 13, 13, 13, 0, 13, 2, 2, 2, 13, 13, 17, 13, 0, 13, 2, 2, 13, 13, 17, 0, 13, 2, 39, 17, 2, 13, 17, 0, 18, 13, 13, 17, 28, 13, 4, 13, 2, 13, 17, 2, 13, 17, 0, 18, 13, 13, 2, 2, 2, 18, 13, 2, 13, 17, 13, 18, 13, 2, 13, 13, 13, 0, 13, 18, 13, 2, 2, 13, 13, 17, 28, 13, 4, 13, 2, 13, 13, 13, 0, 13, 2, 2, 13, 2, 18, 13, 2, 2, 13, 13, 17, 18, 13, 2, 2, 2, 2, 2, 13, 13, 17, 13, 13, 17, 13, 4, 13, 13, 10, 2, 13, 10, 2, 13, 10, 4, 13, 10, 2, 13, 10, 2, 13, 10, 2, 13, 10, 2, 13, 10, 4, 13, 10, 2, 13, 10, 2, 13, 10, 4, 13, 10, 2, 13, 10, 4, 13, 10, 2, 13, 10, 2, 13, 10, 2, 13, 10, 18, 13, 10, 2, 13 ]
[ [ 303, 2 ], [ 303, 11 ], [ 303, 12 ], [ 303, 13 ], [ 276, 15 ], [ 309, 22 ], [ 274, 24 ], [ 298, 25 ], [ 279, 27 ], [ 310, 32 ], [ 36, 35 ], [ 310, 40 ], [ 46, 43 ], [ 280, 44 ], [ 35, 45 ], [ 35, 48 ], [ 277, 50 ], [ 277, 52 ], [ 291, 54 ], [ 274, 57 ], [ 298, 58 ], [ 318, 61 ], [ 274, 63 ], [ 282, 66 ], [ 292, 71 ], [ 77, 74 ], [ 283, 75 ], [ 319, 76 ], [ 310, 76 ], [ 80, 79 ], [ 319, 83 ], [ 310, 83 ], [ 292, 86 ], [ 92, 89 ], [ 283, 90 ], [ 79, 91 ], [ 283, 96 ], [ 79, 98 ], [ 79, 100 ], [ 280, 102 ], [ 79, 104 ], [ 319, 105 ], [ 310, 105 ], [ 277, 106 ], [ 294, 108 ], [ 274, 111 ], [ 304, 112 ], [ 300, 115 ], [ 304, 117 ], [ 306, 120 ], [ 295, 125 ], [ 292, 125 ], [ 131, 128 ], [ 307, 129 ], [ 301, 130 ], [ 319, 130 ], [ 310, 130 ], [ 134, 133 ], [ 301, 137 ], [ 319, 137 ], [ 310, 137 ], [ 295, 140 ], [ 292, 140 ], [ 146, 143 ], [ 307, 144 ], [ 133, 145 ], [ 307, 150 ], [ 133, 152 ], [ 133, 154 ], [ 280, 156 ], [ 133, 158 ], [ 301, 159 ], [ 319, 159 ], [ 310, 159 ], [ 277, 160 ], [ 267, 162 ], [ 298, 166 ], [ 304, 167 ], [ 289, 169 ], [ 312, 171 ], [ 298, 174 ], [ 304, 175 ], [ 270, 178 ], [ 268, 183 ], [ 295, 183 ], [ 292, 183 ], [ 189, 186 ], [ 271, 187 ], [ 313, 188 ], [ 301, 188 ], [ 319, 188 ], [ 310, 188 ], [ 192, 191 ], [ 313, 195 ], [ 301, 195 ], [ 319, 195 ], [ 310, 195 ], [ 268, 198 ], [ 295, 198 ], [ 292, 198 ], [ 204, 201 ], [ 271, 202 ], [ 191, 203 ], [ 271, 208 ], [ 191, 210 ], [ 191, 212 ], [ 280, 214 ], [ 191, 216 ], [ 313, 217 ], [ 301, 217 ], [ 319, 217 ], [ 310, 217 ], [ 277, 218 ], [ 315, 220 ], [ 283, 222 ], [ 274, 225 ], [ 298, 226 ], [ 230, 229 ], [ 274, 233 ], [ 289, 234 ], [ 274, 235 ], [ 285, 237 ], [ 316, 240 ], [ 286, 240 ], [ 307, 243 ], [ 229, 246 ], [ 304, 247 ], [ 271, 250 ], [ 274, 256 ], [ 229, 257 ], [ 298, 259 ], [ 304, 260 ], [ 277, 262 ], [ 286, 265 ], [ 316, 265 ], [ 267, 268 ], [ 270, 271 ], [ 303, 274 ], [ 276, 277 ], [ 279, 280 ], [ 282, 283 ], [ 285, 286 ], [ 303, 289 ], [ 291, 292 ], [ 294, 295 ], [ 303, 298 ], [ 300, 301 ], [ 303, 304 ], [ 306, 307 ], [ 309, 310 ], [ 312, 313 ], [ 315, 316 ], [ 318, 319 ] ]
[ "H,W,A,B=map(int,input().split())\n\nmod=10**9+7\n\nn=H+W\nINV=[None]*(n+1)#1/aのリストを予め作っておく.\nfor i in range(1,n+1):\n INV[i]=pow(i,mod-2,mod)\n\nk=H+W-2\nn=H-1\nCombi1=[None]*(k+1)#Combi[i]=iCnを表す.kは必要な分だけ.\nCombi1[n]=1\nfor i in range(n+1,k+1):\n Combi1[i]=Combi1[i-1]*i*INV[i-n] %mod\n\nk=H+B-2\nn=B-1\nCombi2=[None]*(k+1)#Combi[i]=iCnを表す.kは必要な分だけ.\nCombi2[n]=1\nfor i in range(n+1,k+1):\n Combi2[i]=Combi2[i-1]*i*INV[i-n] %mod\n\nk=W-B-1+A\nn=W-B-1\nCombi3=[None]*(k+1)#Combi[i]=iCnを表す.kは必要な分だけ.\nCombi3[n]=1\nfor i in range(n+1,k+1):\n Combi3[i]=Combi3[i-1]*i*INV[i-n] %mod\n\n\n\n\nANS=Combi1[H+W-2]\nfor x in range(H-A,H):\n ANS=(ANS-Combi2[x+B-1]*Combi3[(H-x-1)+W-B-1])%mod\n\n\nprint(ANS)", "H,W,A,B=map(int,input().split())", "H", "map(int,input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "mod=10**9+7", "mod", "10**9+7", "10**9", "10", "9", "7", "n=H+W", "n", "H+W", "H", "W", "INV=[None]*(n+1)", "INV", "[None]*(n+1)", "[None]", "None", "n+1", "n", "1", "for i in range(1,n+1):\n INV[i]=pow(i,mod-2,mod)", "i", "range(1,n+1)", "range", "1", "n+1", "n", "1", "INV[i]=pow(i,mod-2,mod)", "INV[i]", "INV", "i", "pow(i,mod-2,mod)", "pow", "i", "mod-2", "mod", "2", "mod", "k=H+W-2", "k", "H+W-2", "H+W", "H", "W", "2", "n=H-1", "n", "H-1", "H", "1", "Combi1=[None]*(k+1)", "Combi1", "[None]*(k+1)", "[None]", "None", "k+1", "k", "1", "Combi1[n]=1", "Combi1[n]", "Combi1", "n", "1", "for i in range(n+1,k+1):\n Combi1[i]=Combi1[i-1]*i*INV[i-n] %mod", "i", "range(n+1,k+1)", "range", "n+1", "n", "1", "k+1", "k", "1", "Combi1[i]=Combi1[i-1]*i*INV[i-n] %mod", "Combi1[i]", "Combi1", "i", "Combi1[i-1]*i*INV[i-n] %mod", "Combi1[i-1]*i*INV[i-n]", "Combi1[i-1]*i", "Combi1[i-1]", "Combi1", "i-1", "i", "1", "i", "INV[i-n]", "INV", "i-n", "i", "n", "mod", "k=H+B-2", "k", "H+B-2", "H+B", "H", "B", "2", "n=B-1", "n", "B-1", "B", "1", "Combi2=[None]*(k+1)", "Combi2", "[None]*(k+1)", "[None]", "None", "k+1", "k", "1", "Combi2[n]=1", "Combi2[n]", "Combi2", "n", "1", "for i in range(n+1,k+1):\n Combi2[i]=Combi2[i-1]*i*INV[i-n] %mod", "i", "range(n+1,k+1)", "range", "n+1", "n", "1", "k+1", "k", "1", "Combi2[i]=Combi2[i-1]*i*INV[i-n] %mod", "Combi2[i]", "Combi2", "i", "Combi2[i-1]*i*INV[i-n] %mod", "Combi2[i-1]*i*INV[i-n]", "Combi2[i-1]*i", "Combi2[i-1]", "Combi2", "i-1", "i", "1", "i", "INV[i-n]", "INV", "i-n", "i", "n", "mod", "k=W-B-1+A", "k", "W-B-1+A", "W-B-1", "W-B", "W", "B", "1", "A", "n=W-B-1", "n", "W-B-1", "W-B", "W", "B", "1", "Combi3=[None]*(k+1)", "Combi3", "[None]*(k+1)", "[None]", "None", "k+1", "k", "1", "Combi3[n]=1", "Combi3[n]", "Combi3", "n", "1", "for i in range(n+1,k+1):\n Combi3[i]=Combi3[i-1]*i*INV[i-n] %mod", "i", "range(n+1,k+1)", "range", "n+1", "n", "1", "k+1", "k", "1", "Combi3[i]=Combi3[i-1]*i*INV[i-n] %mod", "Combi3[i]", "Combi3", "i", "Combi3[i-1]*i*INV[i-n] %mod", "Combi3[i-1]*i*INV[i-n]", "Combi3[i-1]*i", "Combi3[i-1]", "Combi3", "i-1", "i", "1", "i", "INV[i-n]", "INV", "i-n", "i", "n", "mod", "ANS=Combi1[H+W-2]", "ANS", "Combi1[H+W-2]", "Combi1", "H+W-2", "H+W", "H", "W", "2", "for x in range(H-A,H):\n ANS=(ANS-Combi2[x+B-1]*Combi3[(H-x-1)+W-B-1])%mod", "x", "range(H-A,H)", "range", "H-A", "H", "A", "H", "ANS=(ANS-Combi2[x+B-1]*Combi3[(H-x-1)+W-B-1])%mod", "ANS", "(ANS-Combi2[x+B-1]*Combi3[(H-x-1)+W-B-1])%mod", "ANS-Combi2[x+B-1]*Combi3[(H-x-1)+W-B-1]", "ANS", "Combi2[x+B-1]*Combi3[(H-x-1)+W-B-1]", "Combi2[x+B-1]", "Combi2", "x+B-1", "x+B", "x", "B", "1", "Combi3[(H-x-1)+W-B-1]", "Combi3", "(H-x-1)+W-B-1", "(H-x-1)+W-B", "(H-x-1)+W", "H-x-1", "H-x", "H", "x", "1", "W", "B", "1", "mod", "print(ANS)", "print", "ANS", "k=W-B-1+A", "W-B-1+A", "k", "Combi3=[None]*(k+1)", "[None]*(k+1)", "Combi3", "H,W,A,B=map(int,input().split())", "map(int,input().split())", "H", "mod=10**9+7", "10**9+7", "mod", "INV=[None]*(n+1)", "[None]*(n+1)", "INV", "Combi1=[None]*(k+1)", "[None]*(k+1)", "Combi1", "ANS=(ANS-Combi2[x+B-1]*Combi3[(H-x-1)+W-B-1])%mod", "(ANS-Combi2[x+B-1]*Combi3[(H-x-1)+W-B-1])%mod", "ANS", "A,B=map(int,input().split())", "map(int,input().split())", "A", "k=H+W-2", "H+W-2", "k", "k=H+B-2", "H+B-2", "k", "W,A,B=map(int,input().split())", "map(int,input().split())", "W", "n=B-1", "B-1", "n", "B=map(int,input().split())", "map(int,input().split())", "B", "Combi2=[None]*(k+1)", "[None]*(k+1)", "Combi2", "n=H+W", "H+W", "n", "n=W-B-1", "W-B-1", "n", "ANS=Combi1[H+W-2]", "Combi1[H+W-2]", "ANS", "n=H-1", "H-1", "n" ]
H,W,A,B=map(int,input().split()) mod=10**9+7 n=H+W INV=[None]*(n+1)#1/aのリストを予め作っておく. for i in range(1,n+1): INV[i]=pow(i,mod-2,mod) k=H+W-2 n=H-1 Combi1=[None]*(k+1)#Combi[i]=iCnを表す.kは必要な分だけ. Combi1[n]=1 for i in range(n+1,k+1): Combi1[i]=Combi1[i-1]*i*INV[i-n] %mod k=H+B-2 n=B-1 Combi2=[None]*(k+1)#Combi[i]=iCnを表す.kは必要な分だけ. Combi2[n]=1 for i in range(n+1,k+1): Combi2[i]=Combi2[i-1]*i*INV[i-n] %mod k=W-B-1+A n=W-B-1 Combi3=[None]*(k+1)#Combi[i]=iCnを表す.kは必要な分だけ. Combi3[n]=1 for i in range(n+1,k+1): Combi3[i]=Combi3[i-1]*i*INV[i-n] %mod ANS=Combi1[H+W-2] for x in range(H-A,H): ANS=(ANS-Combi2[x+B-1]*Combi3[(H-x-1)+W-B-1])%mod print(ANS)
[ 7, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 12, 13, 0, 13, 39, 17, 17, 13, 0, 13, 39, 17, 17, 13, 42, 40, 18, 13, 17, 17, 0, 13, 2, 18, 13, 17, 18, 13, 17, 0, 13, 13, 0, 13, 39, 2, 18, 13, 17, 2, 13, 18, 13, 17, 2, 18, 13, 17, 2, 13, 18, 13, 17, 2, 18, 13, 17, 2, 13, 18, 13, 17, 0, 13, 13, 0, 13, 13, 29, 39, 18, 13, 17, 18, 13, 17, 23, 13, 23, 13, 12, 13, 0, 13, 18, 4, 13, 13, 13, 17, 29, 2, 2, 13, 2, 13, 13, 13, 23, 13, 23, 13, 12, 13, 0, 18, 13, 17, 17, 28, 13, 4, 13, 17, 13, 0, 13, 2, 2, 18, 13, 2, 13, 17, 2, 13, 13, 2, 2, 17, 17, 17, 0, 18, 13, 13, 2, 13, 4, 13, 13, 2, 2, 17, 17, 17, 29, 13, 23, 13, 23, 13, 23, 13, 0, 13, 2, 39, 17, 2, 13, 13, 0, 13, 2, 39, 17, 13, 0, 13, 4, 13, 2, 13, 13, 2, 13, 17, 13, 0, 13, 4, 13, 13, 2, 2, 13, 13, 17, 13, 17, 0, 13, 17, 28, 13, 4, 13, 2, 13, 13, 0, 13, 2, 18, 13, 13, 18, 13, 2, 40, 13, 17, 4, 13, 2, 13, 2, 2, 17, 17, 17, 17, 10, 4, 13, 10, 2, 13, 10, 12, 13, 10, 12, 13, 10, 2, 13, 10, 4, 13, 10, 4, 13, 10, 2, 13, 10, 4, 13, 10, 4, 13, 10, 12, 13, 10, 4, 13, 10, 17, 13 ]
[ [ 271, 2 ], [ 271, 11 ], [ 271, 12 ], [ 271, 13 ], [ 18, 17 ], [ 24, 23 ], [ 23, 31 ], [ 80, 31 ], [ 36, 35 ], [ 17, 38 ], [ 77, 38 ], [ 23, 41 ], [ 80, 41 ], [ 45, 44 ], [ 23, 45 ], [ 80, 45 ], [ 48, 47 ], [ 17, 51 ], [ 77, 51 ], [ 35, 54 ], [ 23, 56 ], [ 80, 56 ], [ 17, 60 ], [ 77, 60 ], [ 35, 63 ], [ 23, 65 ], [ 80, 65 ], [ 17, 69 ], [ 77, 69 ], [ 35, 72 ], [ 23, 74 ], [ 80, 74 ], [ 78, 77 ], [ 44, 78 ], [ 81, 80 ], [ 47, 81 ], [ 80, 85 ], [ 23, 85 ], [ 80, 88 ], [ 23, 88 ], [ 91, 91 ], [ 93, 93 ], [ 98, 97 ], [ 269, 100 ], [ 113, 101 ], [ 115, 102 ], [ 115, 107 ], [ 97, 109 ], [ 115, 110 ], [ 115, 111 ], [ 113, 113 ], [ 115, 115 ], [ 122, 119 ], [ 167, 120 ], [ 125, 124 ], [ 163, 128 ], [ 131, 130 ], [ 167, 134 ], [ 124, 136 ], [ 165, 139 ], [ 124, 140 ], [ 150, 147 ], [ 167, 148 ], [ 124, 149 ], [ 130, 151 ], [ 245, 153 ], [ 124, 154 ], [ 167, 161 ], [ 163, 163 ], [ 165, 165 ], [ 167, 167 ], [ 241, 169 ], [ 239, 174 ], [ 257, 175 ], [ 259, 177 ], [ 239, 181 ], [ 253, 183 ], [ 248, 185 ], [ 239, 187 ], [ 257, 188 ], [ 266, 190 ], [ 242, 192 ], [ 262, 194 ], [ 248, 196 ], [ 239, 197 ], [ 272, 200 ], [ 266, 201 ], [ 260, 203 ], [ 274, 206 ], [ 210, 209 ], [ 239, 213 ], [ 257, 214 ], [ 250, 216 ], [ 254, 219 ], [ 242, 219 ], [ 209, 220 ], [ 263, 222 ], [ 260, 222 ], [ 209, 225 ], [ 251, 230 ], [ 275, 230 ], [ 271, 239 ], [ 241, 242 ], [ 250, 251 ], [ 253, 254 ], [ 271, 257 ], [ 259, 260 ], [ 262, 263 ], [ 271, 266 ], [ 271, 272 ], [ 274, 275 ] ]
[ "H,W,A,B=map(int,input().split())\ndef extgcd(a,b):\n r = [1,0,a]\n w = [0,1,b]\n while w[2]!=1:\n q = r[2]//w[2]\n r2 = w\n w2 = [r[0]-q*w[0],r[1]-q*w[1],r[2]-q*w[2]]\n r = r2\n w = w2\n #[x,y]\n return [w[0],w[1]]\ndef mod_inv(a,m):\n x = extgcd(a,m)[0]\n return (m+x%m)%m\ndef kumi(h,w,a):\n a[0]=1\n #print(a)\n for i in range(1,h):\n b=a[i-1]*(w+i)%(10**9+7)\n a[i]=b*mod_inv(i,10**9+7)\n #print(a)\n return a\nf=[0]*(H-A)\ns=[0]*(H)\nf=kumi(H-A,B-1,f)\ns=kumi(H,W-B-1,s)\n\"\"\"print(f)\nprint(s)\"\"\"\nans=0\nfor i in range(H-A):\n ans+=f[i]*s[-i-1]\nprint(ans%(10**9+7))\n\"\"\"ans=0\nfor i in range(H-A):\n #print(cmb(i+B-1,B-1)%(10**9+7),cmb(H-i+W-B-2,W-B-1)%(10**9+7))\n ans+=cmb(i+B-1,B-1)*cmb(H-i+W-B-2,W-B-1)%(10**9+7)\nprint(ans%(10**9+7))\"\"\"", "H,W,A,B=map(int,input().split())", "H", "map(int,input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "def extgcd(a,b):\n r = [1,0,a]\n w = [0,1,b]\n while w[2]!=1:\n q = r[2]//w[2]\n r2 = w\n w2 = [r[0]-q*w[0],r[1]-q*w[1],r[2]-q*w[2]]\n r = r2\n w = w2\n #[x,y]\n return [w[0],w[1]]", "extgcd", "r = [1,0,a]", "r", "[1,0,a]", "1", "0", "a", "w = [0,1,b]", "w", "[0,1,b]", "0", "1", "b", "while w[2]!=1:\n q = r[2]//w[2]\n r2 = w\n w2 = [r[0]-q*w[0],r[1]-q*w[1],r[2]-q*w[2]]\n r = r2\n w = w2\n #[x,y]\n ", "w[2]!=1", "w[2]", "w", "2", "1", "q = r[2]//w[2]", "q", "r[2]//w[2]", "r[2]", "r", "2", "w[2]", "w", "2", "r2 = w", "r2", "w", "w2 = [r[0]-q*w[0],r[1]-q*w[1],r[2]-q*w[2]]", "w2", "[r[0]-q*w[0],r[1]-q*w[1],r[2]-q*w[2]]", "r[0]-q*w[0]", "r[0]", "r", "0", "q*w[0]", "q", "w[0]", "w", "0", "r[1]-q*w[1]", "r[1]", "r", "1", "q*w[1]", "q", "w[1]", "w", "1", "r[2]-q*w[2]", "r[2]", "r", "2", "q*w[2]", "q", "w[2]", "w", "2", "r = r2", "r", "r2", "w = w2", "w", "w2", "return [w[0],w[1]]", "[w[0],w[1]]", "w[0]", "w", "0", "w[1]", "w", "1", "a", "a", "b", "b", "def mod_inv(a,m):\n x = extgcd(a,m)[0]\n return (m+x%m)%m", "mod_inv", "x = extgcd(a,m)[0]", "x", "extgcd(a,m)[0]", "(a,m)", "extgcd", "a", "m", "0", "return (m+x%m)%m", "(m+x%m)%m", "m+x%m", "m", "x%m", "x", "m", "m", "a", "a", "m", "m", "def kumi(h,w,a):\n a[0]=1\n #print(a)\n for i in range(1,h):\n b=a[i-1]*(w+i)%(10**9+7)\n a[i]=b*mod_inv(i,10**9+7)\n #print(a)\n return a", "kumi", "a[0]=1", "a[0]", "a", "0", "1", "for i in range(1,h):\n b=a[i-1]*(w+i)%(10**9+7)\n a[i]=b*mod_inv(i,10**9+7)\n #print(a)\n ", "i", "range(1,h)", "range", "1", "h", "b=a[i-1]*(w+i)%(10**9+7)", "b", "a[i-1]*(w+i)%(10**9+7)", "a[i-1]*(w+i)", "a[i-1]", "a", "i-1", "i", "1", "w+i", "w", "i", "10**9+7", "10**9", "10", "9", "7", "a[i]=b*mod_inv(i,10**9+7)", "a[i]", "a", "i", "b*mod_inv(i,10**9+7)", "b", "mod_inv(i,10**9+7)", "mod_inv", "i", "10**9+7", "10**9", "10", "9", "7", "return a", "a", "h", "h", "w", "w", "a", "a", "f=[0]*(H-A)", "f", "[0]*(H-A)", "[0]", "0", "H-A", "H", "A", "s=[0]*(H)", "s", "[0]*(H)", "[0]", "0", "H", "f=kumi(H-A,B-1,f)", "f", "kumi(H-A,B-1,f)", "kumi", "H-A", "H", "A", "B-1", "B", "1", "f", "s=kumi(H,W-B-1,s)", "s", "kumi(H,W-B-1,s)", "kumi", "H", "W-B-1", "W-B", "W", "B", "1", "s", "\"\"\"print(f)\nprint(s)\"\"\"", "ans=0", "ans", "0", "for i in range(H-A):\n ans+=f[i]*s[-i-1]", "i", "range(H-A)", "range", "H-A", "H", "A", "ans+=f[i]*s[-i-1]", "ans", "f[i]*s[-i-1]", "f[i]", "f", "i", "s[-i-1]", "s", "-i-1", "-i", "i", "1", "print(ans%(10**9+7))", "print", "ans%(10**9+7)", "ans", "10**9+7", "10**9", "10", "9", "7", "\"\"\"ans=0\nfor i in range(H-A):\n #print(cmb(i+B-1,B-1)%(10**9+7),cmb(H-i+W-B-2,W-B-1)%(10**9+7))\n ans+=cmb(i+B-1,B-1)*cmb(H-i+W-B-2,W-B-1)%(10**9+7)\nprint(ans%(10**9+7))\"\"\"", "H,W,A,B=map(int,input().split())", "map(int,input().split())", "H", "f=[0]*(H-A)", "[0]*(H-A)", "f", "def mod_inv(a,m):\n x = extgcd(a,m)[0]\n return (m+x%m)%m", "def mod_inv(a,m):\n x = extgcd(a,m)[0]\n return (m+x%m)%m", "mod_inv", "def kumi(h,w,a):\n a[0]=1\n #print(a)\n for i in range(1,h):\n b=a[i-1]*(w+i)%(10**9+7)\n a[i]=b*mod_inv(i,10**9+7)\n #print(a)\n return a", "def kumi(h,w,a):\n a[0]=1\n #print(a)\n for i in range(1,h):\n b=a[i-1]*(w+i)%(10**9+7)\n a[i]=b*mod_inv(i,10**9+7)\n #print(a)\n return a", "kumi", "ans+=f[i]*s[-i-1]", "f[i]*s[-i-1]", "ans", "f=kumi(H-A,B-1,f)", "kumi(H-A,B-1,f)", "f", "A,B=map(int,input().split())", "map(int,input().split())", "A", "s=[0]*(H)", "[0]*(H)", "s", "s=kumi(H,W-B-1,s)", "kumi(H,W-B-1,s)", "s", "B=map(int,input().split())", "map(int,input().split())", "B", "def extgcd(a,b):\n r = [1,0,a]\n w = [0,1,b]\n while w[2]!=1:\n q = r[2]//w[2]\n r2 = w\n w2 = [r[0]-q*w[0],r[1]-q*w[1],r[2]-q*w[2]]\n r = r2\n w = w2\n #[x,y]\n return [w[0],w[1]]", "def extgcd(a,b):\n r = [1,0,a]\n w = [0,1,b]\n while w[2]!=1:\n q = r[2]//w[2]\n r2 = w\n w2 = [r[0]-q*w[0],r[1]-q*w[1],r[2]-q*w[2]]\n r = r2\n w = w2\n #[x,y]\n return [w[0],w[1]]", "extgcd", "W,A,B=map(int,input().split())", "map(int,input().split())", "W", "ans=0", "0", "ans" ]
H,W,A,B=map(int,input().split()) def extgcd(a,b): r = [1,0,a] w = [0,1,b] while w[2]!=1: q = r[2]//w[2] r2 = w w2 = [r[0]-q*w[0],r[1]-q*w[1],r[2]-q*w[2]] r = r2 w = w2 #[x,y] return [w[0],w[1]] def mod_inv(a,m): x = extgcd(a,m)[0] return (m+x%m)%m def kumi(h,w,a): a[0]=1 #print(a) for i in range(1,h): b=a[i-1]*(w+i)%(10**9+7) a[i]=b*mod_inv(i,10**9+7) #print(a) return a f=[0]*(H-A) s=[0]*(H) f=kumi(H-A,B-1,f) s=kumi(H,W-B-1,s) """print(f) print(s)""" ans=0 for i in range(H-A): ans+=f[i]*s[-i-1] print(ans%(10**9+7)) """ans=0 for i in range(H-A): #print(cmb(i+B-1,B-1)%(10**9+7),cmb(H-i+W-B-2,W-B-1)%(10**9+7)) ans+=cmb(i+B-1,B-1)*cmb(H-i+W-B-2,W-B-1)%(10**9+7) print(ans%(10**9+7))"""
[ 7, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 17, 0, 13, 2, 2, 17, 17, 17, 0, 13, 2, 39, 17, 2, 2, 13, 13, 17, 0, 13, 2, 39, 17, 2, 2, 13, 13, 17, 28, 13, 4, 13, 17, 2, 13, 13, 0, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 13, 13, 0, 18, 13, 13, 4, 13, 18, 13, 13, 2, 13, 17, 13, 12, 13, 29, 2, 2, 2, 18, 13, 13, 18, 13, 13, 18, 13, 2, 13, 13, 13, 23, 13, 23, 13, 28, 13, 4, 13, 13, 13, 0, 13, 2, 13, 2, 2, 13, 13, 17, 0, 13, 2, 2, 2, 13, 13, 17, 2, 13, 17, 0, 13, 2, 4, 13, 13, 13, 4, 13, 13, 2, 13, 17, 0, 13, 2, 2, 13, 13, 13, 4, 13, 13, 10, 2, 13, 10, 2, 13, 10, 2, 13, 10, 4, 13, 10, 4, 13, 10, 4, 13, 10, 2, 13, 10, 2, 13, 10, 17, 13, 10, 2, 13, 10, 4, 13, 10, 12, 13, 10, 2, 13 ]
[ [ 180, 2 ], [ 180, 11 ], [ 180, 12 ], [ 180, 13 ], [ 174, 15 ], [ 186, 18 ], [ 177, 25 ], [ 160, 31 ], [ 163, 32 ], [ 168, 35 ], [ 160, 41 ], [ 163, 42 ], [ 46, 45 ], [ 160, 50 ], [ 163, 51 ], [ 56, 53 ], [ 178, 54 ], [ 45, 55 ], [ 178, 59 ], [ 45, 61 ], [ 45, 63 ], [ 187, 64 ], [ 69, 66 ], [ 169, 67 ], [ 45, 68 ], [ 53, 71 ], [ 178, 72 ], [ 45, 73 ], [ 187, 75 ], [ 187, 77 ], [ 178, 85 ], [ 97, 86 ], [ 169, 88 ], [ 99, 89 ], [ 169, 91 ], [ 97, 93 ], [ 99, 94 ], [ 187, 95 ], [ 97, 97 ], [ 99, 99 ], [ 102, 101 ], [ 166, 104 ], [ 163, 105 ], [ 150, 107 ], [ 101, 109 ], [ 160, 112 ], [ 181, 113 ], [ 171, 116 ], [ 163, 120 ], [ 101, 121 ], [ 181, 124 ], [ 153, 127 ], [ 184, 130 ], [ 151, 131 ], [ 101, 132 ], [ 184, 134 ], [ 172, 135 ], [ 181, 137 ], [ 156, 140 ], [ 175, 143 ], [ 157, 143 ], [ 154, 144 ], [ 187, 145 ], [ 157, 148 ], [ 175, 148 ], [ 150, 151 ], [ 153, 154 ], [ 156, 157 ], [ 180, 160 ], [ 180, 163 ], [ 180, 166 ], [ 168, 169 ], [ 171, 172 ], [ 174, 175 ], [ 177, 178 ], [ 180, 181 ], [ 186, 187 ] ]
[ "h,w,a,b=map(int,input().split())\nans = 0\n\nmod = 10**9 + 7\nfac = [1] * (h+w+1)\ninv = [1] * (h+w+1)\nfor i in range(1,h+w):\n fac[i] = (fac[i-1] * i)%mod\n inv[i] = pow(fac[i], mod-2, mod)\n\ndef cmb(n,r):\n return fac[n] * inv[r] * inv[n-r] % mod\n \nfor x in range(b,w):\n c = x + (h - a - 1)\n d = (w - x - 1) + (a - 1)\n e = cmb(c, x) * cmb(d, a - 1)\n ans = (ans+e)%mod\n\nprint(ans)", "h,w,a,b=map(int,input().split())", "h", "map(int,input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "w", "a", "b", "ans = 0", "ans", "0", "mod = 10**9 + 7", "mod", "10**9 + 7", "10**9", "10", "9", "7", "fac = [1] * (h+w+1)", "fac", "[1] * (h+w+1)", "[1]", "1", "h+w+1", "h+w", "h", "w", "1", "inv = [1] * (h+w+1)", "inv", "[1] * (h+w+1)", "[1]", "1", "h+w+1", "h+w", "h", "w", "1", "for i in range(1,h+w):\n fac[i] = (fac[i-1] * i)%mod\n inv[i] = pow(fac[i], mod-2, mod)", "i", "range(1,h+w)", "range", "1", "h+w", "h", "w", "fac[i] = (fac[i-1] * i)%mod", "fac[i]", "fac", "i", "(fac[i-1] * i)%mod", "fac[i-1] * i", "fac[i-1]", "fac", "i-1", "i", "1", "i", "mod", "inv[i] = pow(fac[i], mod-2, mod)", "inv[i]", "inv", "i", "pow(fac[i], mod-2, mod)", "pow", "fac[i]", "fac", "i", "mod-2", "mod", "2", "mod", "def cmb(n,r):\n return fac[n] * inv[r] * inv[n-r] % mod\n ", "cmb", "return fac[n] * inv[r] * inv[n-r] % mod", "fac[n] * inv[r] * inv[n-r] % mod", "fac[n] * inv[r] * inv[n-r]", "fac[n] * inv[r]", "fac[n]", "fac", "n", "inv[r]", "inv", "r", "inv[n-r]", "inv", "n-r", "n", "r", "mod", "n", "n", "r", "r", "for x in range(b,w):\n c = x + (h - a - 1)\n d = (w - x - 1) + (a - 1)\n e = cmb(c, x) * cmb(d, a - 1)\n ans = (ans+e)%mod", "x", "range(b,w)", "range", "b", "w", "c = x + (h - a - 1)", "c", "x + (h - a - 1)", "x", "h - a - 1", "h - a", "h", "a", "1", "d = (w - x - 1) + (a - 1)", "d", "(w - x - 1) + (a - 1)", "w - x - 1", "w - x", "w", "x", "1", "a - 1", "a", "1", "e = cmb(c, x) * cmb(d, a - 1)", "e", "cmb(c, x) * cmb(d, a - 1)", "cmb(c, x)", "cmb", "c", "x", "cmb(d, a - 1)", "cmb", "d", "a - 1", "a", "1", "ans = (ans+e)%mod", "ans", "(ans+e)%mod", "ans+e", "ans", "e", "mod", "print(ans)", "print", "ans", "c = x + (h - a - 1)", "x + (h - a - 1)", "c", "e = cmb(c, x) * cmb(d, a - 1)", "cmb(c, x) * cmb(d, a - 1)", "e", "ans = (ans+e)%mod", "(ans+e)%mod", "ans", "h,w,a,b=map(int,input().split())", "map(int,input().split())", "h", "w,a,b=map(int,input().split())", "map(int,input().split())", "w", "b=map(int,input().split())", "map(int,input().split())", "b", "inv = [1] * (h+w+1)", "[1] * (h+w+1)", "inv", "d = (w - x - 1) + (a - 1)", "(w - x - 1) + (a - 1)", "d", "ans = 0", "0", "ans", "fac = [1] * (h+w+1)", "[1] * (h+w+1)", "fac", "a,b=map(int,input().split())", "map(int,input().split())", "a", "def cmb(n,r):\n return fac[n] * inv[r] * inv[n-r] % mod\n ", "def cmb(n,r):\n return fac[n] * inv[r] * inv[n-r] % mod\n ", "cmb", "mod = 10**9 + 7", "10**9 + 7", "mod" ]
h,w,a,b=map(int,input().split()) ans = 0 mod = 10**9 + 7 fac = [1] * (h+w+1) inv = [1] * (h+w+1) for i in range(1,h+w): fac[i] = (fac[i-1] * i)%mod inv[i] = pow(fac[i], mod-2, mod) def cmb(n,r): return fac[n] * inv[r] * inv[n-r] % mod for x in range(b,w): c = x + (h - a - 1) d = (w - x - 1) + (a - 1) e = cmb(c, x) * cmb(d, a - 1) ans = (ans+e)%mod print(ans)
[ 7, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 2, 13, 13, 17, 0, 13, 2, 2, 17, 17, 17, 0, 13, 2, 39, 17, 2, 13, 17, 0, 13, 17, 28, 13, 4, 13, 17, 2, 13, 17, 0, 13, 13, 0, 13, 13, 0, 18, 13, 13, 13, 0, 13, 2, 39, 17, 2, 13, 17, 0, 13, 17, 28, 13, 4, 13, 17, 2, 13, 17, 0, 13, 4, 13, 13, 2, 13, 17, 13, 0, 13, 13, 0, 18, 13, 13, 13, 0, 13, 17, 28, 13, 4, 13, 2, 13, 13, 0, 13, 2, 2, 18, 13, 2, 2, 13, 17, 13, 18, 13, 13, 18, 13, 2, 13, 17, 0, 13, 2, 2, 18, 13, 2, 2, 2, 2, 13, 13, 13, 13, 17, 18, 13, 2, 2, 13, 13, 17, 18, 13, 2, 2, 13, 13, 17, 0, 13, 2, 2, 13, 13, 13, 0, 13, 13, 0, 13, 13, 4, 13, 13, 10, 2, 13, 10, 2, 13, 10, 17, 13, 10, 4, 13, 10, 4, 13, 10, 4, 13, 10, 17, 13, 10, 2, 13, 10, 2, 13, 10, 2, 13, 10, 13, 13, 10, 2, 13, 10, 4, 13, 10, 2, 13, 10, 13, 13, 10, 13, 13, 10, 13, 13, 10, 13, 13, 10, 17, 13, 10, 4, 13 ]
[ [ 226, 2 ], [ 226, 11 ], [ 226, 12 ], [ 226, 13 ], [ 208, 15 ], [ 206, 18 ], [ 182, 19 ], [ 172, 22 ], [ 190, 29 ], [ 209, 34 ], [ 223, 37 ], [ 41, 40 ], [ 209, 45 ], [ 214, 48 ], [ 40, 49 ], [ 211, 51 ], [ 173, 52 ], [ 57, 54 ], [ 191, 55 ], [ 40, 56 ], [ 212, 57 ], [ 215, 57 ], [ 224, 57 ], [ 193, 59 ], [ 209, 64 ], [ 175, 67 ], [ 71, 70 ], [ 209, 75 ], [ 178, 78 ], [ 70, 81 ], [ 173, 83 ], [ 173, 85 ], [ 217, 87 ], [ 173, 88 ], [ 93, 90 ], [ 194, 91 ], [ 70, 92 ], [ 218, 93 ], [ 179, 93 ], [ 176, 93 ], [ 212, 93 ], [ 215, 93 ], [ 224, 93 ], [ 187, 95 ], [ 99, 98 ], [ 206, 102 ], [ 185, 103 ], [ 169, 105 ], [ 191, 109 ], [ 227, 112 ], [ 98, 114 ], [ 90, 115 ], [ 194, 116 ], [ 98, 117 ], [ 194, 119 ], [ 227, 121 ], [ 202, 124 ], [ 191, 128 ], [ 182, 133 ], [ 206, 134 ], [ 227, 135 ], [ 98, 136 ], [ 194, 139 ], [ 206, 142 ], [ 98, 143 ], [ 194, 146 ], [ 182, 149 ], [ 227, 150 ], [ 196, 153 ], [ 170, 156 ], [ 218, 156 ], [ 179, 156 ], [ 176, 156 ], [ 212, 156 ], [ 215, 156 ], [ 224, 156 ], [ 197, 156 ], [ 203, 157 ], [ 173, 158 ], [ 199, 160 ], [ 197, 161 ], [ 170, 161 ], [ 218, 161 ], [ 179, 161 ], [ 176, 161 ], [ 212, 161 ], [ 215, 161 ], [ 224, 161 ], [ 220, 163 ], [ 173, 164 ], [ 221, 167 ], [ 200, 167 ], [ 188, 167 ], [ 169, 170 ], [ 172, 173 ], [ 175, 176 ], [ 178, 179 ], [ 226, 182 ], [ 226, 185 ], [ 187, 188 ], [ 190, 191 ], [ 193, 194 ], [ 196, 197 ], [ 197, 199 ], [ 170, 199 ], [ 218, 199 ], [ 179, 199 ], [ 176, 199 ], [ 212, 199 ], [ 215, 199 ], [ 224, 199 ], [ 199, 200 ], [ 202, 203 ], [ 226, 206 ], [ 208, 209 ], [ 173, 211 ], [ 211, 212 ], [ 40, 214 ], [ 214, 215 ], [ 173, 217 ], [ 217, 218 ], [ 173, 220 ], [ 220, 221 ], [ 223, 224 ], [ 226, 227 ] ]
[ "H,W,A,B=map(int,input().split())\nN=H+W+2\nmod=10**9+7\ntable=[1]*(N+3)\nt=1\nfor i in range(1,N+3):\n t*=i\n t%=mod\n table[i]=t\nrtable=[1]*(N+3)\nt=1\nfor i in range(1,N+3):\n t*=pow(i,mod-2,mod)\n t%=mod\n rtable[i]=t\nans=0\nfor i in range(H-A):\n t=table[B-1+i]*rtable[i]*rtable[B-1]\n s=table[W+H-B-i-2]*rtable[H-i-1]*rtable[W-B-1]\n t=(t*s)%mod\n #print(t)\n ans+=t\n ans%=mod\nprint(ans)", "H,W,A,B=map(int,input().split())", "H", "map(int,input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "N=H+W+2", "N", "H+W+2", "H+W", "H", "W", "2", "mod=10**9+7", "mod", "10**9+7", "10**9", "10", "9", "7", "table=[1]*(N+3)", "table", "[1]*(N+3)", "[1]", "1", "N+3", "N", "3", "t=1", "t", "1", "for i in range(1,N+3):\n t*=i\n t%=mod\n table[i]=t", "i", "range(1,N+3)", "range", "1", "N+3", "N", "3", "t*=i", "t", "i", "t%=mod", "t", "mod", "table[i]=t", "table[i]", "table", "i", "t", "rtable=[1]*(N+3)", "rtable", "[1]*(N+3)", "[1]", "1", "N+3", "N", "3", "t=1", "t", "1", "for i in range(1,N+3):\n t*=pow(i,mod-2,mod)\n t%=mod\n rtable[i]=t", "i", "range(1,N+3)", "range", "1", "N+3", "N", "3", "t*=pow(i,mod-2,mod)", "t", "pow(i,mod-2,mod)", "pow", "i", "mod-2", "mod", "2", "mod", "t%=mod", "t", "mod", "rtable[i]=t", "rtable[i]", "rtable", "i", "t", "ans=0", "ans", "0", "for i in range(H-A):\n t=table[B-1+i]*rtable[i]*rtable[B-1]\n s=table[W+H-B-i-2]*rtable[H-i-1]*rtable[W-B-1]\n t=(t*s)%mod\n #print(t)\n ans+=t\n ans%=mod", "i", "range(H-A)", "range", "H-A", "H", "A", "t=table[B-1+i]*rtable[i]*rtable[B-1]", "t", "table[B-1+i]*rtable[i]*rtable[B-1]", "table[B-1+i]*rtable[i]", "table[B-1+i]", "table", "B-1+i", "B-1", "B", "1", "i", "rtable[i]", "rtable", "i", "rtable[B-1]", "rtable", "B-1", "B", "1", "s=table[W+H-B-i-2]*rtable[H-i-1]*rtable[W-B-1]", "s", "table[W+H-B-i-2]*rtable[H-i-1]*rtable[W-B-1]", "table[W+H-B-i-2]*rtable[H-i-1]", "table[W+H-B-i-2]", "table", "W+H-B-i-2", "W+H-B-i", "W+H-B", "W+H", "W", "H", "B", "i", "2", "rtable[H-i-1]", "rtable", "H-i-1", "H-i", "H", "i", "1", "rtable[W-B-1]", "rtable", "W-B-1", "W-B", "W", "B", "1", "t=(t*s)%mod", "t", "(t*s)%mod", "t*s", "t", "s", "mod", "ans+=t", "ans", "t", "ans%=mod", "ans", "mod", "print(ans)", "print", "ans", "t=table[B-1+i]*rtable[i]*rtable[B-1]", "table[B-1+i]*rtable[i]*rtable[B-1]", "t", "mod=10**9+7", "10**9+7", "mod", "t=1", "1", "t", "t*=pow(i,mod-2,mod)", "pow(i,mod-2,mod)", "t", "W,A,B=map(int,input().split())", "map(int,input().split())", "W", "A,B=map(int,input().split())", "map(int,input().split())", "A", "ans=0", "0", "ans", "table=[1]*(N+3)", "[1]*(N+3)", "table", "rtable=[1]*(N+3)", "[1]*(N+3)", "rtable", "t=(t*s)%mod", "(t*s)%mod", "t", "ans+=t", "t", "ans", "s=table[W+H-B-i-2]*rtable[H-i-1]*rtable[W-B-1]", "table[W+H-B-i-2]*rtable[H-i-1]*rtable[W-B-1]", "s", "H,W,A,B=map(int,input().split())", "map(int,input().split())", "H", "N=H+W+2", "H+W+2", "N", "t%=mod", "mod", "t", "t*=i", "i", "t", "t%=mod", "mod", "t", "ans%=mod", "mod", "ans", "t=1", "1", "t", "B=map(int,input().split())", "map(int,input().split())", "B" ]
H,W,A,B=map(int,input().split()) N=H+W+2 mod=10**9+7 table=[1]*(N+3) t=1 for i in range(1,N+3): t*=i t%=mod table[i]=t rtable=[1]*(N+3) t=1 for i in range(1,N+3): t*=pow(i,mod-2,mod) t%=mod rtable[i]=t ans=0 for i in range(H-A): t=table[B-1+i]*rtable[i]*rtable[B-1] s=table[W+H-B-i-2]*rtable[H-i-1]*rtable[W-B-1] t=(t*s)%mod #print(t) ans+=t ans%=mod print(ans)
[ 7, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 17, 12, 13, 14, 2, 13, 17, 14, 2, 13, 17, 14, 2, 2, 13, 17, 17, 23, 13, 23, 13, 0, 13, 39, 17, 28, 13, 4, 13, 17, 2, 2, 13, 13, 17, 4, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 13, 13, 0, 13, 2, 39, 17, 2, 13, 13, 0, 18, 13, 2, 2, 13, 13, 17, 4, 13, 18, 13, 2, 2, 13, 13, 17, 2, 13, 17, 28, 13, 4, 13, 2, 2, 13, 13, 17, 17, 17, 0, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 2, 13, 17, 13, 0, 13, 17, 28, 13, 4, 13, 2, 13, 13, 0, 13, 2, 18, 13, 2, 2, 2, 2, 13, 13, 13, 13, 17, 13, 0, 13, 2, 2, 13, 18, 13, 2, 2, 13, 13, 17, 13, 0, 13, 2, 2, 13, 18, 13, 2, 2, 13, 13, 17, 13, 0, 13, 2, 2, 13, 18, 13, 2, 2, 13, 13, 17, 13, 0, 13, 2, 2, 13, 18, 13, 13, 13, 0, 13, 2, 2, 13, 18, 13, 2, 13, 17, 13, 0, 13, 13, 4, 13, 2, 13, 13, 10, 4, 13, 10, 2, 13, 10, 2, 13, 10, 39, 13, 10, 17, 13, 10, 2, 13, 10, 4, 13, 10, 2, 13, 10, 13, 13, 10, 4, 13, 10, 2, 13, 10, 4, 13, 10, 12, 13, 10, 2, 13, 10, 17, 13, 10, 2, 13 ]
[ [ 244, 2 ], [ 244, 11 ], [ 244, 12 ], [ 244, 13 ], [ 223, 15 ], [ 36, 21 ], [ 36, 25 ], [ 36, 30 ], [ 34, 34 ], [ 36, 36 ], [ 220, 38 ], [ 43, 42 ], [ 239, 48 ], [ 230, 49 ], [ 221, 53 ], [ 221, 58 ], [ 42, 60 ], [ 42, 62 ], [ 224, 63 ], [ 250, 65 ], [ 239, 70 ], [ 230, 71 ], [ 80, 73 ], [ 251, 74 ], [ 239, 77 ], [ 230, 78 ], [ 248, 81 ], [ 221, 83 ], [ 239, 86 ], [ 230, 87 ], [ 224, 90 ], [ 94, 93 ], [ 239, 98 ], [ 230, 99 ], [ 107, 104 ], [ 251, 105 ], [ 93, 106 ], [ 251, 110 ], [ 93, 112 ], [ 93, 115 ], [ 224, 117 ], [ 253, 119 ], [ 123, 122 ], [ 230, 126 ], [ 245, 127 ], [ 241, 129 ], [ 221, 132 ], [ 230, 137 ], [ 122, 138 ], [ 239, 139 ], [ 212, 140 ], [ 224, 142 ], [ 226, 144 ], [ 242, 147 ], [ 257, 147 ], [ 215, 147 ], [ 233, 147 ], [ 218, 147 ], [ 227, 147 ], [ 251, 149 ], [ 230, 152 ], [ 122, 153 ], [ 224, 155 ], [ 217, 157 ], [ 227, 160 ], [ 242, 160 ], [ 257, 160 ], [ 215, 160 ], [ 233, 160 ], [ 218, 160 ], [ 251, 162 ], [ 239, 165 ], [ 212, 166 ], [ 224, 168 ], [ 232, 170 ], [ 218, 173 ], [ 227, 173 ], [ 242, 173 ], [ 257, 173 ], [ 215, 173 ], [ 233, 173 ], [ 221, 175 ], [ 122, 178 ], [ 212, 179 ], [ 224, 181 ], [ 214, 183 ], [ 233, 186 ], [ 218, 186 ], [ 227, 186 ], [ 242, 186 ], [ 257, 186 ], [ 215, 186 ], [ 104, 187 ], [ 251, 188 ], [ 122, 189 ], [ 224, 190 ], [ 256, 192 ], [ 215, 195 ], [ 233, 195 ], [ 218, 195 ], [ 227, 195 ], [ 242, 195 ], [ 257, 195 ], [ 251, 197 ], [ 212, 199 ], [ 224, 201 ], [ 235, 203 ], [ 257, 204 ], [ 215, 204 ], [ 233, 204 ], [ 218, 204 ], [ 227, 204 ], [ 242, 204 ], [ 236, 208 ], [ 254, 208 ], [ 224, 209 ], [ 244, 212 ], [ 214, 215 ], [ 217, 218 ], [ 220, 221 ], [ 223, 224 ], [ 226, 227 ], [ 244, 230 ], [ 232, 233 ], [ 257, 235 ], [ 215, 235 ], [ 233, 235 ], [ 218, 235 ], [ 227, 235 ], [ 242, 235 ], [ 235, 236 ], [ 244, 239 ], [ 241, 242 ], [ 244, 245 ], [ 250, 251 ], [ 253, 254 ], [ 256, 257 ] ]
[ "h, w, a, b = map(int, input().split())\nmod = 1000000007\n\ndef modpow(x, y): \n if y == 0 : return 1\n elif y == 1 : return x % mod\n elif y % 2 == 0 : return modpow(x, y//2)**2 % mod\n else : return modpow(x, y//2)**2 * x % mod\n\nstairs = [1]\nfor i in range(1, h+w+1):\n stairs.append(stairs[i-1]*i%mod)\n\ninverse_stairs = [0]*(h+w)\ninverse_stairs[h+w-1] = modpow(stairs[h+w-1], mod-2)\nfor i in range(h+w-2, -1, -1):\n inverse_stairs[i] = inverse_stairs[i+1] * (i+1) % mod\n \nret = 0\nfor i in range(w-b):\n com = stairs[w-i+h-a-2]%mod\n com = com*inverse_stairs[w-i-1]%mod\n com = com*inverse_stairs[h-a-1]%mod\n com = com*stairs[i+a-1]%mod\n com = com*inverse_stairs[i]%mod\n com = com*inverse_stairs[a-1]%mod\n ret += com\n\nprint(ret%mod)", "h, w, a, b = map(int, input().split())", "h", "map(int, input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "w", "a", "b", "mod = 1000000007", "mod", "1000000007", "def modpow(x, y): \n if y == 0 : return 1\n elif y == 1 : return x % mod\n elif y % 2 == 0 : return modpow(x, y//2)**2 % mod\n else : return modpow(x, y//2)**2 * x % mod", "modpow", "if y == 0 : return 1\n elif y == 1 : return x % mod\n elif y % 2 == 0 : return modpow(x, y//2)**2 % mod\n else : return modpow(x, y//2)**2 * x % mod", "y == 0", "y", "0", "elif y == 1 : return x % mod\n ", "y == 1", "y", "1", "elif y % 2 == 0 : return modpow(x, y//2)**2 % mod\n ", "y % 2 == 0", "y % 2", "y", "2", "0", "x", "x", "y", "y", "stairs = [1]", "stairs", "[1]", "1", "for i in range(1, h+w+1):\n stairs.append(stairs[i-1]*i%mod)", "i", "range(1, h+w+1)", "range", "1", "h+w+1", "h+w", "h", "w", "1", "stairs.append(stairs[i-1]*i%mod)", "stairs.append", "stairs", "append", "stairs[i-1]*i%mod", "stairs[i-1]*i", "stairs[i-1]", "stairs", "i-1", "i", "1", "i", "mod", "inverse_stairs = [0]*(h+w)", "inverse_stairs", "[0]*(h+w)", "[0]", "0", "h+w", "h", "w", "inverse_stairs[h+w-1] = modpow(stairs[h+w-1], mod-2)", "inverse_stairs[h+w-1]", "inverse_stairs", "h+w-1", "h+w", "h", "w", "1", "modpow(stairs[h+w-1], mod-2)", "modpow", "stairs[h+w-1]", "stairs", "h+w-1", "h+w", "h", "w", "1", "mod-2", "mod", "2", "for i in range(h+w-2, -1, -1):\n inverse_stairs[i] = inverse_stairs[i+1] * (i+1) % mod\n ", "i", "range(h+w-2, -1, -1)", "range", "h+w-2", "h+w", "h", "w", "2", "-1", "-1", "inverse_stairs[i] = inverse_stairs[i+1] * (i+1) % mod", "inverse_stairs[i]", "inverse_stairs", "i", "inverse_stairs[i+1] * (i+1) % mod", "inverse_stairs[i+1] * (i+1)", "inverse_stairs[i+1]", "inverse_stairs", "i+1", "i", "1", "i+1", "i", "1", "mod", "ret = 0", "ret", "0", "for i in range(w-b):\n com = stairs[w-i+h-a-2]%mod\n com = com*inverse_stairs[w-i-1]%mod\n com = com*inverse_stairs[h-a-1]%mod\n com = com*stairs[i+a-1]%mod\n com = com*inverse_stairs[i]%mod\n com = com*inverse_stairs[a-1]%mod\n ret += com", "i", "range(w-b)", "range", "w-b", "w", "b", "com = stairs[w-i+h-a-2]%mod", "com", "stairs[w-i+h-a-2]%mod", "stairs[w-i+h-a-2]", "stairs", "w-i+h-a-2", "w-i+h-a", "w-i+h", "w-i", "w", "i", "h", "a", "2", "mod", "com = com*inverse_stairs[w-i-1]%mod", "com", "com*inverse_stairs[w-i-1]%mod", "com*inverse_stairs[w-i-1]", "com", "inverse_stairs[w-i-1]", "inverse_stairs", "w-i-1", "w-i", "w", "i", "1", "mod", "com = com*inverse_stairs[h-a-1]%mod", "com", "com*inverse_stairs[h-a-1]%mod", "com*inverse_stairs[h-a-1]", "com", "inverse_stairs[h-a-1]", "inverse_stairs", "h-a-1", "h-a", "h", "a", "1", "mod", "com = com*stairs[i+a-1]%mod", "com", "com*stairs[i+a-1]%mod", "com*stairs[i+a-1]", "com", "stairs[i+a-1]", "stairs", "i+a-1", "i+a", "i", "a", "1", "mod", "com = com*inverse_stairs[i]%mod", "com", "com*inverse_stairs[i]%mod", "com*inverse_stairs[i]", "com", "inverse_stairs[i]", "inverse_stairs", "i", "mod", "com = com*inverse_stairs[a-1]%mod", "com", "com*inverse_stairs[a-1]%mod", "com*inverse_stairs[a-1]", "com", "inverse_stairs[a-1]", "inverse_stairs", "a-1", "a", "1", "mod", "ret += com", "ret", "com", "print(ret%mod)", "print", "ret%mod", "ret", "mod", "a, b = map(int, input().split())", "map(int, input().split())", "a", "com = com*inverse_stairs[i]%mod", "com*inverse_stairs[i]%mod", "com", "com = com*inverse_stairs[h-a-1]%mod", "com*inverse_stairs[h-a-1]%mod", "com", "stairs = [1]", "[1]", "stairs", "mod = 1000000007", "1000000007", "mod", "com = com*inverse_stairs[w-i-1]%mod", "com*inverse_stairs[w-i-1]%mod", "com", "w, a, b = map(int, input().split())", "map(int, input().split())", "w", "com = com*stairs[i+a-1]%mod", "com*stairs[i+a-1]%mod", "com", "ret += com", "com", "ret", "h, w, a, b = map(int, input().split())", "map(int, input().split())", "h", "com = stairs[w-i+h-a-2]%mod", "stairs[w-i+h-a-2]%mod", "com", "b = map(int, input().split())", "map(int, input().split())", "b", "def modpow(x, y): \n if y == 0 : return 1\n elif y == 1 : return x % mod\n elif y % 2 == 0 : return modpow(x, y//2)**2 % mod\n else : return modpow(x, y//2)**2 * x % mod", "def modpow(x, y): \n if y == 0 : return 1\n elif y == 1 : return x % mod\n elif y % 2 == 0 : return modpow(x, y//2)**2 % mod\n else : return modpow(x, y//2)**2 * x % mod", "modpow", "inverse_stairs = [0]*(h+w)", "[0]*(h+w)", "inverse_stairs", "ret = 0", "0", "ret", "com = com*inverse_stairs[a-1]%mod", "com*inverse_stairs[a-1]%mod", "com" ]
h, w, a, b = map(int, input().split()) mod = 1000000007 def modpow(x, y): if y == 0 : return 1 elif y == 1 : return x % mod elif y % 2 == 0 : return modpow(x, y//2)**2 % mod else : return modpow(x, y//2)**2 * x % mod stairs = [1] for i in range(1, h+w+1): stairs.append(stairs[i-1]*i%mod) inverse_stairs = [0]*(h+w) inverse_stairs[h+w-1] = modpow(stairs[h+w-1], mod-2) for i in range(h+w-2, -1, -1): inverse_stairs[i] = inverse_stairs[i+1] * (i+1) % mod ret = 0 for i in range(w-b): com = stairs[w-i+h-a-2]%mod com = com*inverse_stairs[w-i-1]%mod com = com*inverse_stairs[h-a-1]%mod com = com*stairs[i+a-1]%mod com = com*inverse_stairs[i]%mod com = com*inverse_stairs[a-1]%mod ret += com print(ret%mod)
[ 7, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 41, 28, 13, 2, 39, 17, 17, 4, 17, 0, 13, 13, 0, 18, 13, 17, 17, 28, 13, 4, 13, 17, 17, 0, 18, 13, 13, 2, 2, 13, 18, 13, 2, 13, 17, 2, 2, 17, 17, 17, 12, 13, 23, 13, 23, 13, 2, 2, 17, 17, 17, 12, 13, 23, 13, 23, 13, 23, 13, 2, 2, 17, 17, 17, 0, 13, 17, 28, 13, 4, 13, 2, 13, 13, 0, 13, 2, 2, 13, 2, 4, 13, 2, 2, 13, 13, 17, 2, 13, 17, 4, 13, 2, 2, 2, 2, 13, 13, 13, 13, 17, 2, 2, 13, 13, 17, 2, 2, 17, 17, 17, 4, 13, 13, 10, 4, 13, 10, 2, 13, 10, 4, 13, 10, 17, 13, 10, 12, 13, 10, 4, 13, 10, 4, 13, 10, 13, 13, 10, 12, 13 ]
[ [ 147, 2 ], [ 147, 11 ], [ 147, 12 ], [ 147, 13 ], [ 17, 16 ], [ 150, 24 ], [ 30, 27 ], [ 151, 28 ], [ 33, 32 ], [ 41, 38 ], [ 151, 39 ], [ 32, 40 ], [ 32, 43 ], [ 151, 45 ], [ 32, 47 ], [ 57, 57 ], [ 60, 59 ], [ 68, 68 ], [ 70, 70 ], [ 73, 72 ], [ 138, 79 ], [ 83, 82 ], [ 136, 86 ], [ 145, 87 ], [ 132, 89 ], [ 139, 92 ], [ 133, 92 ], [ 142, 95 ], [ 82, 98 ], [ 130, 99 ], [ 130, 102 ], [ 142, 105 ], [ 136, 110 ], [ 148, 111 ], [ 130, 112 ], [ 82, 113 ], [ 148, 117 ], [ 130, 118 ], [ 133, 127 ], [ 139, 127 ], [ 147, 130 ], [ 132, 133 ], [ 147, 136 ], [ 138, 139 ], [ 147, 145 ], [ 147, 148 ], [ 150, 151 ] ]
[ "h,w,a,b=map(int,input().split())\nn_func=[None for _ in [0]*200001]\nn_func[0]=1\nfor i in range(1,200001):\n n_func[i]=(i*n_func[i-1])%(10**9+7)\ndef inv_n(n,mod=10**9+7):return pow(n,mod-2,mod)\ndef nCr(n,r,mod=10**9+7):return inv_n(n_func[n-r]*n_func[r]%mod,mod)*n_func[n]%mod\n\ncnt=0\nfor i in range(h-a):\n cnt=(cnt+nCr(i+b-1,b-1)*nCr(h+w-b-i-2,w-b-1))%(10**9+7)\nprint(cnt)", "h,w,a,b=map(int,input().split())", "h", "map(int,input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "w", "a", "b", "None for _ in [0]*200001", "for _ in [0]*200001", "_", "[0]*200001", "[0]", "0", "200001", "for _ in [0]*200001", "None", "n_func=[None for _ in [0]*200001]", "n_func", "[None for _ in [0]*200001]", "n_func[0]=1", "n_func[0]", "n_func", "0", "1", "for i in range(1,200001):\n n_func[i]=(i*n_func[i-1])%(10**9+7)", "i", "range(1,200001)", "range", "1", "200001", "n_func[i]=(i*n_func[i-1])%(10**9+7)", "n_func[i]", "n_func", "i", "(i*n_func[i-1])%(10**9+7)", "i*n_func[i-1]", "i", "n_func[i-1]", "n_func", "i-1", "i", "1", "10**9+7", "10**9", "10", "9", "7", "def inv_n(n,mod=10**9+7):return pow(n,mod-2,mod)", "inv_n", "n", "n", "mod=10**9+7", "mod", "10**9+7", "10**9", "10", "9", "7", "def nCr(n,r,mod=10**9+7):return inv_n(n_func[n-r]*n_func[r]%mod,mod)*n_func[n]%mod", "nCr", "n", "n", "r", "r", "mod=10**9+7", "mod", "10**9+7", "10**9", "10", "9", "7", "cnt=0", "cnt", "0", "for i in range(h-a):\n cnt=(cnt+nCr(i+b-1,b-1)*nCr(h+w-b-i-2,w-b-1))%(10**9+7)", "i", "range(h-a)", "range", "h-a", "h", "a", "cnt=(cnt+nCr(i+b-1,b-1)*nCr(h+w-b-i-2,w-b-1))%(10**9+7)", "cnt", "(cnt+nCr(i+b-1,b-1)*nCr(h+w-b-i-2,w-b-1))%(10**9+7)", "cnt+nCr(i+b-1,b-1)*nCr(h+w-b-i-2,w-b-1)", "cnt", "nCr(i+b-1,b-1)*nCr(h+w-b-i-2,w-b-1)", "nCr(i+b-1,b-1)", "nCr", "i+b-1", "i+b", "i", "b", "1", "b-1", "b", "1", "nCr(h+w-b-i-2,w-b-1)", "nCr", "h+w-b-i-2", "h+w-b-i", "h+w-b", "h+w", "h", "w", "b", "i", "2", "w-b-1", "w-b", "w", "b", "1", "10**9+7", "10**9", "10", "9", "7", "print(cnt)", "print", "cnt", "b=map(int,input().split())", "map(int,input().split())", "b", "cnt=(cnt+nCr(i+b-1,b-1)*nCr(h+w-b-i-2,w-b-1))%(10**9+7)", "(cnt+nCr(i+b-1,b-1)*nCr(h+w-b-i-2,w-b-1))%(10**9+7)", "cnt", "h,w,a,b=map(int,input().split())", "map(int,input().split())", "h", "cnt=0", "0", "cnt", "def nCr(n,r,mod=10**9+7):return inv_n(n_func[n-r]*n_func[r]%mod,mod)*n_func[n]%mod", "def nCr(n,r,mod=10**9+7):return inv_n(n_func[n-r]*n_func[r]%mod,mod)*n_func[n]%mod", "nCr", "a,b=map(int,input().split())", "map(int,input().split())", "a", "w,a,b=map(int,input().split())", "map(int,input().split())", "w", "n_func=[None for _ in [0]*200001]", "[None for _ in [0]*200001]", "n_func", "def inv_n(n,mod=10**9+7):return pow(n,mod-2,mod)", "def inv_n(n,mod=10**9+7):return pow(n,mod-2,mod)", "inv_n" ]
h,w,a,b=map(int,input().split()) n_func=[None for _ in [0]*200001] n_func[0]=1 for i in range(1,200001): n_func[i]=(i*n_func[i-1])%(10**9+7) def inv_n(n,mod=10**9+7):return pow(n,mod-2,mod) def nCr(n,r,mod=10**9+7):return inv_n(n_func[n-r]*n_func[r]%mod,mod)*n_func[n]%mod cnt=0 for i in range(h-a): cnt=(cnt+nCr(i+b-1,b-1)*nCr(h+w-b-i-2,w-b-1))%(10**9+7) print(cnt)
[ 7, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 2, 17, 2, 17, 17, 41, 28, 13, 4, 13, 2, 13, 17, 4, 17, 0, 13, 13, 28, 13, 4, 13, 17, 2, 13, 17, 0, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 13, 13, 41, 28, 13, 4, 13, 2, 13, 17, 4, 17, 0, 13, 13, 0, 18, 13, 13, 4, 13, 18, 13, 13, 2, 13, 17, 13, 28, 13, 4, 13, 13, 17, 17, 0, 18, 13, 2, 13, 17, 2, 2, 18, 13, 13, 13, 13, 12, 13, 14, 2, 2, 13, 17, 2, 13, 13, 29, 17, 0, 13, 18, 13, 13, 0, 13, 18, 13, 13, 0, 13, 13, 0, 13, 18, 13, 2, 13, 13, 0, 13, 13, 29, 13, 23, 13, 23, 13, 0, 13, 17, 28, 13, 4, 13, 2, 13, 13, 0, 13, 4, 13, 2, 2, 13, 17, 13, 13, 0, 13, 2, 2, 13, 17, 13, 0, 13, 2, 2, 13, 17, 13, 0, 13, 4, 13, 2, 13, 13, 13, 0, 13, 13, 0, 13, 13, 0, 13, 13, 4, 13, 13, 10, 17, 13, 10, 2, 13, 10, 4, 13, 10, 12, 13, 10, 2, 13, 10, 13, 13, 10, 4, 13, 10, 4, 13, 10, 4, 13, 10, 13, 13, 10, 4, 13, 10, 13, 13, 10, 13, 13, 10, 4, 13, 10, 13, 13, 10, 2, 13, 10, 2, 13 ]
[ [ 243, 2 ], [ 243, 11 ], [ 243, 12 ], [ 243, 13 ], [ 252, 15 ], [ 216, 22 ], [ 31, 30 ], [ 217, 34 ], [ 246, 39 ], [ 43, 42 ], [ 217, 47 ], [ 53, 50 ], [ 247, 51 ], [ 42, 52 ], [ 247, 56 ], [ 42, 58 ], [ 42, 60 ], [ 253, 61 ], [ 65, 64 ], [ 217, 68 ], [ 219, 73 ], [ 79, 76 ], [ 220, 77 ], [ 217, 78 ], [ 247, 82 ], [ 217, 83 ], [ 253, 85 ], [ 253, 87 ], [ 90, 89 ], [ 217, 92 ], [ 101, 96 ], [ 220, 97 ], [ 89, 99 ], [ 220, 104 ], [ 89, 105 ], [ 89, 106 ], [ 253, 107 ], [ 148, 113 ], [ 148, 116 ], [ 146, 117 ], [ 122, 121 ], [ 247, 123 ], [ 146, 124 ], [ 127, 126 ], [ 220, 128 ], [ 148, 129 ], [ 132, 131 ], [ 253, 132 ], [ 135, 134 ], [ 220, 136 ], [ 146, 138 ], [ 148, 139 ], [ 142, 141 ], [ 253, 142 ], [ 141, 144 ], [ 134, 144 ], [ 131, 144 ], [ 126, 144 ], [ 121, 144 ], [ 146, 146 ], [ 148, 148 ], [ 204, 150 ], [ 154, 153 ], [ 244, 157 ], [ 235, 158 ], [ 210, 160 ], [ 214, 162 ], [ 229, 165 ], [ 153, 167 ], [ 153, 168 ], [ 207, 170 ], [ 244, 173 ], [ 153, 175 ], [ 249, 177 ], [ 226, 180 ], [ 229, 182 ], [ 222, 184 ], [ 214, 186 ], [ 208, 188 ], [ 250, 189 ], [ 208, 190 ], [ 240, 192 ], [ 253, 193 ], [ 237, 195 ], [ 241, 196 ], [ 223, 196 ], [ 211, 196 ], [ 231, 198 ], [ 253, 199 ], [ 232, 202 ], [ 238, 202 ], [ 205, 202 ], [ 204, 205 ], [ 207, 208 ], [ 210, 211 ], [ 216, 217 ], [ 219, 220 ], [ 222, 223 ], [ 243, 226 ], [ 243, 229 ], [ 253, 231 ], [ 231, 232 ], [ 243, 235 ], [ 241, 237 ], [ 223, 237 ], [ 211, 237 ], [ 237, 238 ], [ 253, 240 ], [ 240, 241 ], [ 243, 244 ], [ 246, 247 ], [ 249, 250 ], [ 252, 253 ] ]
[ "H, W, A, B = map(int, input().split())\nmod = 10**9 + 7\nU = 2 * 10**5\n\nfactorial = [1 for _ in range(U + 1)]\nfor i in range(1, U + 1):\n factorial[i] = (factorial[i - 1] * i) % mod\n\ninverse = [1 for _ in range(U + 1)]\ninverse[U] = pow(factorial[U], mod - 2, mod)\nfor i in range(U, 0, -1):\n inverse[i - 1] = (inverse[i] * i) % mod\n\n\ndef comb(n, k):\n if k < 0 or k > n:\n return 0\n x = factorial[n]\n x *= inverse[k]\n x %= mod\n x *= inverse[n - k]\n x %= mod\n return x\n \n \nans = 0\nfor i in range(H - A):\n x = comb(B - 1 + i, i)\n a = H - 1 - i\n b = W - 1 - B\n x *= comb(a + b, a)\n x %= mod\n ans += x\nans %= mod\nprint(ans)", "H, W, A, B = map(int, input().split())", "H", "map(int, input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "mod = 10**9 + 7", "mod", "10**9 + 7", "10**9", "10", "9", "7", "U = 2 * 10**5", "U", "2 * 10**5", "2", "10**5", "10", "5", "1 for _ in range(U + 1)", "for _ in range(U + 1)", "_", "range(U + 1)", "range", "U + 1", "U", "1", "for _ in range(U + 1)", "1", "factorial = [1 for _ in range(U + 1)]", "factorial", "[1 for _ in range(U + 1)]", "for i in range(1, U + 1):\n factorial[i] = (factorial[i - 1] * i) % mod", "i", "range(1, U + 1)", "range", "1", "U + 1", "U", "1", "factorial[i] = (factorial[i - 1] * i) % mod", "factorial[i]", "factorial", "i", "(factorial[i - 1] * i) % mod", "factorial[i - 1] * i", "factorial[i - 1]", "factorial", "i - 1", "i", "1", "i", "mod", "1 for _ in range(U + 1)", "for _ in range(U + 1)", "_", "range(U + 1)", "range", "U + 1", "U", "1", "for _ in range(U + 1)", "1", "inverse = [1 for _ in range(U + 1)]", "inverse", "[1 for _ in range(U + 1)]", "inverse[U] = pow(factorial[U], mod - 2, mod)", "inverse[U]", "inverse", "U", "pow(factorial[U], mod - 2, mod)", "pow", "factorial[U]", "factorial", "U", "mod - 2", "mod", "2", "mod", "for i in range(U, 0, -1):\n inverse[i - 1] = (inverse[i] * i) % mod", "i", "range(U, 0, -1)", "range", "U", "0", "-1", "inverse[i - 1] = (inverse[i] * i) % mod", "inverse[i - 1]", "inverse", "i - 1", "i", "1", "(inverse[i] * i) % mod", "inverse[i] * i", "inverse[i]", "inverse", "i", "i", "mod", "def comb(n, k):\n if k < 0 or k > n:\n return 0\n x = factorial[n]\n x *= inverse[k]\n x %= mod\n x *= inverse[n - k]\n x %= mod\n return x\n \n ", "comb", "if k < 0 or k > n:\n return 0\n ", "k < 0 or k > n", "k < 0", "k", "0", "k > n", "k", "n", "return 0", "0", "x = factorial[n]", "x", "factorial[n]", "factorial", "n", "x *= inverse[k]", "x", "inverse[k]", "inverse", "k", "x %= mod", "x", "mod", "x *= inverse[n - k]", "x", "inverse[n - k]", "inverse", "n - k", "n", "k", "x %= mod", "x", "mod", "return x", "x", "n", "n", "k", "k", "ans = 0", "ans", "0", "for i in range(H - A):\n x = comb(B - 1 + i, i)\n a = H - 1 - i\n b = W - 1 - B\n x *= comb(a + b, a)\n x %= mod\n ans += x", "i", "range(H - A)", "range", "H - A", "H", "A", "x = comb(B - 1 + i, i)", "x", "comb(B - 1 + i, i)", "comb", "B - 1 + i", "B - 1", "B", "1", "i", "i", "a = H - 1 - i", "a", "H - 1 - i", "H - 1", "H", "1", "i", "b = W - 1 - B", "b", "W - 1 - B", "W - 1", "W", "1", "B", "x *= comb(a + b, a)", "x", "comb(a + b, a)", "comb", "a + b", "a", "b", "a", "x %= mod", "x", "mod", "ans += x", "ans", "x", "ans %= mod", "ans", "mod", "print(ans)", "print", "ans", "ans = 0", "0", "ans", "a = H - 1 - i", "H - 1 - i", "a", "x = comb(B - 1 + i, i)", "comb(B - 1 + i, i)", "x", "def comb(n, k):\n if k < 0 or k > n:\n return 0\n x = factorial[n]\n x *= inverse[k]\n x %= mod\n x *= inverse[n - k]\n x %= mod\n return x\n \n ", "def comb(n, k):\n if k < 0 or k > n:\n return 0\n x = factorial[n]\n x *= inverse[k]\n x %= mod\n x *= inverse[n - k]\n x %= mod\n return x\n \n ", "comb", "U = 2 * 10**5", "2 * 10**5", "U", "inverse = [1 for _ in range(U + 1)]", "[1 for _ in range(U + 1)]", "inverse", "x *= comb(a + b, a)", "comb(a + b, a)", "x", "W, A, B = map(int, input().split())", "map(int, input().split())", "W", "B = map(int, input().split())", "map(int, input().split())", "B", "ans %= mod", "mod", "ans", "A, B = map(int, input().split())", "map(int, input().split())", "A", "ans += x", "x", "ans", "x %= mod", "mod", "x", "H, W, A, B = map(int, input().split())", "map(int, input().split())", "H", "factorial = [1 for _ in range(U + 1)]", "[1 for _ in range(U + 1)]", "factorial", "b = W - 1 - B", "W - 1 - B", "b", "mod = 10**9 + 7", "10**9 + 7", "mod" ]
H, W, A, B = map(int, input().split()) mod = 10**9 + 7 U = 2 * 10**5 factorial = [1 for _ in range(U + 1)] for i in range(1, U + 1): factorial[i] = (factorial[i - 1] * i) % mod inverse = [1 for _ in range(U + 1)] inverse[U] = pow(factorial[U], mod - 2, mod) for i in range(U, 0, -1): inverse[i - 1] = (inverse[i] * i) % mod def comb(n, k): if k < 0 or k > n: return 0 x = factorial[n] x *= inverse[k] x %= mod x *= inverse[n - k] x %= mod return x ans = 0 for i in range(H - A): x = comb(B - 1 + i, i) a = H - 1 - i b = W - 1 - B x *= comb(a + b, a) x %= mod ans += x ans %= mod print(ans)
[ 7, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 2, 17, 17, 17, 12, 13, 0, 13, 17, 0, 13, 39, 17, 28, 13, 4, 13, 17, 2, 13, 17, 0, 13, 13, 0, 13, 13, 4, 18, 13, 13, 13, 0, 13, 4, 13, 13, 2, 13, 17, 13, 0, 13, 2, 39, 17, 2, 13, 17, 0, 18, 13, 13, 13, 28, 13, 4, 13, 13, 17, 17, 0, 13, 13, 0, 13, 13, 0, 18, 13, 2, 13, 17, 13, 29, 39, 13, 13, 23, 13, 23, 13, 0, 13, 4, 13, 2, 2, 13, 13, 17, 13, 13, 0, 13, 17, 28, 13, 4, 13, 13, 13, 0, 13, 2, 2, 2, 2, 2, 18, 13, 2, 2, 2, 13, 13, 17, 13, 18, 13, 2, 2, 13, 13, 17, 13, 18, 13, 13, 13, 2, 2, 2, 2, 18, 13, 2, 2, 2, 2, 13, 17, 13, 13, 17, 18, 13, 2, 13, 17, 13, 18, 13, 2, 2, 13, 13, 17, 13, 4, 13, 2, 13, 13, 10, 4, 13, 10, 4, 13, 10, 4, 13, 10, 4, 13, 10, 2, 13, 10, 12, 13, 10, 4, 13, 10, 4, 13, 10, 2, 13, 10, 17, 13 ]
[ [ 200, 2 ], [ 200, 11 ], [ 200, 12 ], [ 200, 13 ], [ 194, 15 ], [ 25, 24 ], [ 28, 27 ], [ 32, 31 ], [ 96, 36 ], [ 40, 39 ], [ 31, 40 ], [ 43, 42 ], [ 98, 43 ], [ 27, 46 ], [ 42, 48 ], [ 39, 48 ], [ 24, 48 ], [ 51, 50 ], [ 42, 53 ], [ 39, 53 ], [ 24, 53 ], [ 98, 55 ], [ 98, 57 ], [ 60, 59 ], [ 96, 64 ], [ 70, 67 ], [ 59, 68 ], [ 96, 69 ], [ 50, 70 ], [ 73, 72 ], [ 96, 75 ], [ 80, 79 ], [ 72, 80 ], [ 83, 82 ], [ 98, 83 ], [ 90, 85 ], [ 59, 86 ], [ 72, 88 ], [ 82, 90 ], [ 79, 90 ], [ 50, 90 ], [ 96, 96 ], [ 98, 98 ], [ 203, 100 ], [ 198, 102 ], [ 189, 105 ], [ 201, 106 ], [ 195, 108 ], [ 203, 109 ], [ 209, 111 ], [ 115, 114 ], [ 192, 117 ], [ 201, 118 ], [ 206, 120 ], [ 186, 127 ], [ 189, 131 ], [ 183, 132 ], [ 114, 134 ], [ 204, 136 ], [ 189, 139 ], [ 183, 140 ], [ 195, 142 ], [ 204, 144 ], [ 114, 145 ], [ 195, 146 ], [ 186, 152 ], [ 183, 157 ], [ 201, 159 ], [ 114, 160 ], [ 204, 163 ], [ 183, 165 ], [ 195, 167 ], [ 204, 169 ], [ 201, 172 ], [ 114, 173 ], [ 195, 175 ], [ 207, 179 ], [ 210, 179 ], [ 195, 180 ], [ 200, 183 ], [ 203, 186 ], [ 200, 189 ], [ 200, 192 ], [ 194, 195 ], [ 200, 201 ], [ 203, 204 ], [ 206, 207 ], [ 209, 210 ] ]
[ "H, W, A, B = map(int,input().split())\nMOD = 10**9 + 7\ndef prepare(n, MOD):\n\n # 1! - n! の計算\n f = 1\n factorials = [1] # 0!の分\n for m in range(1, n + 1):\n f *= m\n f %= MOD\n factorials.append(f)\n # n!^-1 の計算\n inv = pow(f, MOD - 2, MOD)\n # n!^-1 - 1!^-1 の計算\n invs = [1] * (n + 1)\n invs[n] = inv\n for m in range(n, 1, -1):\n inv *= m\n inv %= MOD\n invs[m - 1] = inv\n\n return factorials, invs\n\nfactorials, invs = prepare(H+W+1,MOD)\nans = 0\nfor b in range(B,W):\n ans += (factorials[H-A-1+b] * invs[H-A-1] % MOD * invs[b] % MOD) * (factorials[A-1+W-b-1] * invs[A-1] % MOD * invs[W-b-1] % MOD)\nprint(ans % MOD)", "H, W, A, B = map(int,input().split())", "H", "map(int,input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "MOD = 10**9 + 7", "MOD", "10**9 + 7", "10**9", "10", "9", "7", "def prepare(n, MOD):\n\n # 1! - n! の計算\n f = 1\n factorials = [1] # 0!の分\n for m in range(1, n + 1):\n f *= m\n f %= MOD\n factorials.append(f)\n # n!^-1 の計算\n inv = pow(f, MOD - 2, MOD)\n # n!^-1 - 1!^-1 の計算\n invs = [1] * (n + 1)\n invs[n] = inv\n for m in range(n, 1, -1):\n inv *= m\n inv %= MOD\n invs[m - 1] = inv\n\n return factorials, invs", "prepare", "f = 1", "f", "1", "factorials = [1]", "factorials", "[1]", "1", "for m in range(1, n + 1):\n f *= m\n f %= MOD\n factorials.append(f)\n # n!^-1 の計算\n ", "m", "range(1, n + 1)", "range", "1", "n + 1", "n", "1", "f *= m", "f", "m", "f %= MOD", "f", "MOD", "factorials.append(f)", "factorials.append", "factorials", "append", "f", "inv = pow(f, MOD - 2, MOD)", "inv", "pow(f, MOD - 2, MOD)", "pow", "f", "MOD - 2", "MOD", "2", "MOD", "invs = [1] * (n + 1)", "invs", "[1] * (n + 1)", "[1]", "1", "n + 1", "n", "1", "invs[n] = inv", "invs[n]", "invs", "n", "inv", "for m in range(n, 1, -1):\n inv *= m\n inv %= MOD\n invs[m - 1] = inv\n\n ", "m", "range(n, 1, -1)", "range", "n", "1", "-1", "inv *= m", "inv", "m", "inv %= MOD", "inv", "MOD", "invs[m - 1] = inv", "invs[m - 1]", "invs", "m - 1", "m", "1", "inv", "return factorials, invs", "return factorials, invs", "factorials", "invs", "n", "n", "MOD", "MOD", "factorials, invs = prepare(H+W+1,MOD)", "factorials", "prepare(H+W+1,MOD)", "prepare", "H+W+1", "H+W", "H", "W", "1", "MOD", "invs", "ans = 0", "ans", "0", "for b in range(B,W):\n ans += (factorials[H-A-1+b] * invs[H-A-1] % MOD * invs[b] % MOD) * (factorials[A-1+W-b-1] * invs[A-1] % MOD * invs[W-b-1] % MOD)", "b", "range(B,W)", "range", "B", "W", "ans += (factorials[H-A-1+b] * invs[H-A-1] % MOD * invs[b] % MOD) * (factorials[A-1+W-b-1] * invs[A-1] % MOD * invs[W-b-1] % MOD)", "ans", "(factorials[H-A-1+b] * invs[H-A-1] % MOD * invs[b] % MOD) * (factorials[A-1+W-b-1] * invs[A-1] % MOD * invs[W-b-1] % MOD)", "factorials[H-A-1+b] * invs[H-A-1] % MOD * invs[b] % MOD", "factorials[H-A-1+b] * invs[H-A-1] % MOD * invs[b]", "factorials[H-A-1+b] * invs[H-A-1] % MOD", "factorials[H-A-1+b] * invs[H-A-1]", "factorials[H-A-1+b]", "factorials", "H-A-1+b", "H-A-1", "H-A", "H", "A", "1", "b", "invs[H-A-1]", "invs", "H-A-1", "H-A", "H", "A", "1", "MOD", "invs[b]", "invs", "b", "MOD", "factorials[A-1+W-b-1] * invs[A-1] % MOD * invs[W-b-1] % MOD", "factorials[A-1+W-b-1] * invs[A-1] % MOD * invs[W-b-1]", "factorials[A-1+W-b-1] * invs[A-1] % MOD", "factorials[A-1+W-b-1] * invs[A-1]", "factorials[A-1+W-b-1]", "factorials", "A-1+W-b-1", "A-1+W-b", "A-1+W", "A-1", "A", "1", "W", "b", "1", "invs[A-1]", "invs", "A-1", "A", "1", "MOD", "invs[W-b-1]", "invs", "W-b-1", "W-b", "W", "b", "1", "MOD", "print(ans % MOD)", "print", "ans % MOD", "ans", "MOD", "A, B = map(int,input().split())", "map(int,input().split())", "A", "factorials, invs = prepare(H+W+1,MOD)", "prepare(H+W+1,MOD)", "factorials", "H, W, A, B = map(int,input().split())", "map(int,input().split())", "H", "B = map(int,input().split())", "map(int,input().split())", "B", "MOD = 10**9 + 7", "10**9 + 7", "MOD", "def prepare(n, MOD):\n\n # 1! - n! の計算\n f = 1\n factorials = [1] # 0!の分\n for m in range(1, n + 1):\n f *= m\n f %= MOD\n factorials.append(f)\n # n!^-1 の計算\n inv = pow(f, MOD - 2, MOD)\n # n!^-1 - 1!^-1 の計算\n invs = [1] * (n + 1)\n invs[n] = inv\n for m in range(n, 1, -1):\n inv *= m\n inv %= MOD\n invs[m - 1] = inv\n\n return factorials, invs", "def prepare(n, MOD):\n\n # 1! - n! の計算\n f = 1\n factorials = [1] # 0!の分\n for m in range(1, n + 1):\n f *= m\n f %= MOD\n factorials.append(f)\n # n!^-1 の計算\n inv = pow(f, MOD - 2, MOD)\n # n!^-1 - 1!^-1 の計算\n invs = [1] * (n + 1)\n invs[n] = inv\n for m in range(n, 1, -1):\n inv *= m\n inv %= MOD\n invs[m - 1] = inv\n\n return factorials, invs", "prepare", "W, A, B = map(int,input().split())", "map(int,input().split())", "W", "invs = prepare(H+W+1,MOD)", "prepare(H+W+1,MOD)", "invs", "ans += (factorials[H-A-1+b] * invs[H-A-1] % MOD * invs[b] % MOD) * (factorials[A-1+W-b-1] * invs[A-1] % MOD * invs[W-b-1] % MOD)", "(factorials[H-A-1+b] * invs[H-A-1] % MOD * invs[b] % MOD) * (factorials[A-1+W-b-1] * invs[A-1] % MOD * invs[W-b-1] % MOD)", "ans", "ans = 0", "0", "ans" ]
H, W, A, B = map(int,input().split()) MOD = 10**9 + 7 def prepare(n, MOD): # 1! - n! の計算 f = 1 factorials = [1] # 0!の分 for m in range(1, n + 1): f *= m f %= MOD factorials.append(f) # n!^-1 の計算 inv = pow(f, MOD - 2, MOD) # n!^-1 - 1!^-1 の計算 invs = [1] * (n + 1) invs[n] = inv for m in range(n, 1, -1): inv *= m inv %= MOD invs[m - 1] = inv return factorials, invs factorials, invs = prepare(H+W+1,MOD) ans = 0 for b in range(B,W): ans += (factorials[H-A-1+b] * invs[H-A-1] % MOD * invs[b] % MOD) * (factorials[A-1+W-b-1] * invs[A-1] % MOD * invs[W-b-1] % MOD) print(ans % MOD)
[ 7, 15, 13, 0, 13, 18, 18, 13, 13, 13, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 17, 0, 13, 2, 39, 17, 2, 13, 17, 0, 13, 2, 39, 17, 2, 13, 17, 28, 13, 4, 13, 17, 2, 13, 17, 0, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 13, 13, 0, 18, 13, 17, 4, 13, 18, 13, 17, 2, 13, 17, 13, 28, 13, 18, 4, 13, 17, 2, 13, 17, 39, 17, 0, 18, 13, 2, 13, 17, 2, 2, 18, 13, 13, 13, 13, 12, 13, 14, 2, 13, 13, 29, 17, 29, 2, 2, 2, 18, 13, 13, 18, 13, 13, 18, 13, 2, 13, 13, 13, 23, 13, 23, 13, 0, 13, 17, 28, 13, 4, 13, 2, 13, 17, 2, 13, 17, 0, 13, 2, 4, 13, 2, 2, 13, 17, 2, 2, 13, 13, 17, 2, 13, 17, 4, 13, 2, 2, 13, 17, 2, 13, 13, 2, 13, 17, 0, 13, 13, 4, 13, 13, 10, 4, 13, 10, 4, 13, 10, 4, 13, 10, 4, 13, 10, 18, 13, 10, 2, 13, 10, 17, 13, 10, 17, 13, 10, 2, 13, 10, 2, 13, 10, 2, 13, 10, 12, 13, 10, 13, 13 ]
[ [ 196, 4 ], [ 193, 11 ], [ 197, 18 ], [ 193, 20 ], [ 193, 21 ], [ 193, 22 ], [ 199, 24 ], [ 202, 31 ], [ 211, 34 ], [ 203, 39 ], [ 214, 42 ], [ 203, 47 ], [ 51, 50 ], [ 203, 55 ], [ 61, 58 ], [ 212, 59 ], [ 50, 60 ], [ 212, 64 ], [ 50, 66 ], [ 50, 68 ], [ 200, 69 ], [ 74, 71 ], [ 215, 72 ], [ 212, 77 ], [ 200, 80 ], [ 200, 82 ], [ 85, 84 ], [ 203, 90 ], [ 100, 95 ], [ 215, 96 ], [ 84, 98 ], [ 215, 103 ], [ 84, 104 ], [ 84, 105 ], [ 200, 106 ], [ 134, 111 ], [ 132, 112 ], [ 212, 120 ], [ 132, 121 ], [ 215, 123 ], [ 134, 124 ], [ 215, 126 ], [ 132, 128 ], [ 134, 129 ], [ 200, 130 ], [ 132, 132 ], [ 134, 134 ], [ 205, 136 ], [ 140, 139 ], [ 194, 143 ], [ 191, 146 ], [ 208, 149 ], [ 218, 152 ], [ 139, 155 ], [ 188, 159 ], [ 185, 160 ], [ 139, 163 ], [ 218, 166 ], [ 185, 169 ], [ 191, 172 ], [ 139, 173 ], [ 185, 175 ], [ 220, 178 ], [ 200, 179 ], [ 221, 182 ], [ 209, 182 ], [ 206, 182 ], [ 193, 185 ], [ 193, 188 ], [ 193, 191 ], [ 193, 194 ], [ 196, 197 ], [ 199, 200 ], [ 202, 203 ], [ 205, 206 ], [ 208, 209 ], [ 211, 212 ], [ 214, 215 ], [ 200, 220 ], [ 220, 221 ] ]
[ "import sys\ninput = sys.stdin.readline\nH,W,A,B= map(int,input().split())\n\nMOD = 10**9 + 7\nnum = 200010\nfact = [1] * (num+1)\nifact = [1] * (num+1)\n\nfor i in range(1,num+1):\n fact[i] = (fact[i-1] * i) % MOD\nifact[-1] = pow(fact[-1],MOD-2,MOD)\nfor i in range(1,num+1)[::-1]:\n ifact[i-1] = (ifact[i] * i)% MOD\n\ndef nCr(n,r):\n if r > n:\n return 0\n return (fact[n] * ifact[r] * ifact[n-r]) % MOD\n\nans = 0\nfor i in range(B+1,W+1):\n ans += nCr((i-1)+(H-A-1),i-1) * nCr((A-1)+(W-i),A-1)\n ans %= MOD\nprint(ans)", "import sys", "sys", "input = sys.stdin.readline", "input", "sys.stdin.readline", "sys.stdin", "sys", "stdin", "readline", "H,W,A,B= map(int,input().split())", "H", "map(int,input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "MOD = 10**9 + 7", "MOD", "10**9 + 7", "10**9", "10", "9", "7", "num = 200010", "num", "200010", "fact = [1] * (num+1)", "fact", "[1] * (num+1)", "[1]", "1", "num+1", "num", "1", "ifact = [1] * (num+1)", "ifact", "[1] * (num+1)", "[1]", "1", "num+1", "num", "1", "for i in range(1,num+1):\n fact[i] = (fact[i-1] * i) % MOD", "i", "range(1,num+1)", "range", "1", "num+1", "num", "1", "fact[i] = (fact[i-1] * i) % MOD", "fact[i]", "fact", "i", "(fact[i-1] * i) % MOD", "fact[i-1] * i", "fact[i-1]", "fact", "i-1", "i", "1", "i", "MOD", "ifact[-1] = pow(fact[-1],MOD-2,MOD)", "ifact[-1]", "ifact", "-1", "pow(fact[-1],MOD-2,MOD)", "pow", "fact[-1]", "fact", "-1", "MOD-2", "MOD", "2", "MOD", "for i in range(1,num+1)[::-1]:\n ifact[i-1] = (ifact[i] * i)% MOD", "i", "range(1,num+1)[::-1]", "(1,num+1)", "range", "1", "num+1", "num", "1", "::-1", "-1", "ifact[i-1] = (ifact[i] * i)% MOD", "ifact[i-1]", "ifact", "i-1", "i", "1", "(ifact[i] * i)% MOD", "ifact[i] * i", "ifact[i]", "ifact", "i", "i", "MOD", "def nCr(n,r):\n if r > n:\n return 0\n return (fact[n] * ifact[r] * ifact[n-r]) % MOD", "nCr", "if r > n:\n return 0\n ", "r > n", "r", "n", "return 0", "0", "return (fact[n] * ifact[r] * ifact[n-r]) % MOD", "(fact[n] * ifact[r] * ifact[n-r]) % MOD", "fact[n] * ifact[r] * ifact[n-r]", "fact[n] * ifact[r]", "fact[n]", "fact", "n", "ifact[r]", "ifact", "r", "ifact[n-r]", "ifact", "n-r", "n", "r", "MOD", "n", "n", "r", "r", "ans = 0", "ans", "0", "for i in range(B+1,W+1):\n ans += nCr((i-1)+(H-A-1),i-1) * nCr((A-1)+(W-i),A-1)\n ans %= MOD", "i", "range(B+1,W+1)", "range", "B+1", "B", "1", "W+1", "W", "1", "ans += nCr((i-1)+(H-A-1),i-1) * nCr((A-1)+(W-i),A-1)", "ans", "nCr((i-1)+(H-A-1),i-1) * nCr((A-1)+(W-i),A-1)", "nCr((i-1)+(H-A-1),i-1)", "nCr", "(i-1)+(H-A-1)", "i-1", "i", "1", "H-A-1", "H-A", "H", "A", "1", "i-1", "i", "1", "nCr((A-1)+(W-i),A-1)", "nCr", "(A-1)+(W-i)", "A-1", "A", "1", "W-i", "W", "i", "A-1", "A", "1", "ans %= MOD", "ans", "MOD", "print(ans)", "print", "ans", "A,B= map(int,input().split())", "map(int,input().split())", "A", "H,W,A,B= map(int,input().split())", "map(int,input().split())", "H", "W,A,B= map(int,input().split())", "map(int,input().split())", "W", "B= map(int,input().split())", "map(int,input().split())", "B", "input = sys.stdin.readline", "sys.stdin.readline", "input", "MOD = 10**9 + 7", "10**9 + 7", "MOD", "num = 200010", "200010", "num", "ans = 0", "0", "ans", "ans += nCr((i-1)+(H-A-1),i-1) * nCr((A-1)+(W-i),A-1)", "nCr((i-1)+(H-A-1),i-1) * nCr((A-1)+(W-i),A-1)", "ans", "fact = [1] * (num+1)", "[1] * (num+1)", "fact", "ifact = [1] * (num+1)", "[1] * (num+1)", "ifact", "def nCr(n,r):\n if r > n:\n return 0\n return (fact[n] * ifact[r] * ifact[n-r]) % MOD", "def nCr(n,r):\n if r > n:\n return 0\n return (fact[n] * ifact[r] * ifact[n-r]) % MOD", "nCr", "ans %= MOD", "MOD", "ans" ]
import sys input = sys.stdin.readline H,W,A,B= map(int,input().split()) MOD = 10**9 + 7 num = 200010 fact = [1] * (num+1) ifact = [1] * (num+1) for i in range(1,num+1): fact[i] = (fact[i-1] * i) % MOD ifact[-1] = pow(fact[-1],MOD-2,MOD) for i in range(1,num+1)[::-1]: ifact[i-1] = (ifact[i] * i)% MOD def nCr(n,r): if r > n: return 0 return (fact[n] * ifact[r] * ifact[n-r]) % MOD ans = 0 for i in range(B+1,W+1): ans += nCr((i-1)+(H-A-1),i-1) * nCr((A-1)+(W-i),A-1) ans %= MOD print(ans)
[ 7, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 39, 17, 28, 13, 4, 13, 2, 13, 13, 4, 18, 13, 13, 2, 2, 18, 13, 13, 2, 13, 17, 13, 12, 13, 29, 2, 2, 2, 18, 13, 13, 4, 13, 18, 13, 13, 2, 13, 17, 13, 4, 13, 18, 13, 2, 13, 13, 2, 13, 17, 13, 13, 23, 13, 23, 13, 23, 13, 0, 13, 17, 28, 13, 4, 13, 13, 13, 0, 13, 2, 2, 4, 13, 2, 2, 2, 13, 13, 13, 17, 13, 13, 4, 13, 2, 2, 2, 2, 13, 17, 13, 13, 17, 2, 13, 17, 13, 13, 4, 13, 2, 13, 13, 10, 2, 13, 10, 4, 13, 10, 17, 13, 10, 4, 13, 10, 2, 13, 10, 4, 13, 10, 12, 13, 10, 39, 13, 10, 4, 13 ]
[ [ 151, 2 ], [ 151, 11 ], [ 151, 12 ], [ 151, 13 ], [ 139, 15 ], [ 148, 22 ], [ 27, 26 ], [ 143, 30 ], [ 152, 31 ], [ 149, 34 ], [ 149, 39 ], [ 26, 40 ], [ 26, 42 ], [ 140, 44 ], [ 149, 52 ], [ 76, 53 ], [ 149, 57 ], [ 78, 58 ], [ 80, 60 ], [ 80, 62 ], [ 149, 66 ], [ 76, 68 ], [ 78, 69 ], [ 80, 71 ], [ 80, 73 ], [ 80, 74 ], [ 76, 76 ], [ 78, 78 ], [ 80, 80 ], [ 133, 82 ], [ 86, 85 ], [ 137, 88 ], [ 152, 89 ], [ 127, 91 ], [ 146, 95 ], [ 143, 99 ], [ 85, 100 ], [ 131, 101 ], [ 85, 103 ], [ 140, 104 ], [ 146, 106 ], [ 152, 111 ], [ 85, 113 ], [ 131, 114 ], [ 131, 117 ], [ 140, 119 ], [ 140, 120 ], [ 128, 124 ], [ 134, 124 ], [ 140, 125 ], [ 127, 128 ], [ 151, 131 ], [ 133, 134 ], [ 151, 137 ], [ 139, 140 ], [ 151, 143 ], [ 148, 149 ], [ 151, 152 ] ]
[ "h,w,a,b = map(int,input().split()) #入力\nmod = 10**9+7 \n\n#前計算 f[i] = i!\nf=[1]\nfor i in range(h+w):\n f.append(f[i]*(i+1)%mod)\n\n#C(n,r,p) = ( n! * r!^(p-2) * (n-r)!^(p-2) )%p\n#pythonだとpow()で二分累乗法が使える\ndef comb(n, r, p):\n return f[n] * pow(f[r], p-2, p) * pow(f[n-r], p-2, p) % p\n\n#紫点ごとに調べる\nans=0\nfor i in range(b, w):\n ans+= comb(h+i-a-1, i, mod) * comb(w-1-i+a-1, a-1, mod) % mod\n\nprint(ans%mod)", "h,w,a,b = map(int,input().split())", "h", "map(int,input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "w", "a", "b", "mod = 10**9+7", "mod", "10**9+7", "10**9", "10", "9", "7", "f=[1]", "f", "[1]", "1", "for i in range(h+w):\n f.append(f[i]*(i+1)%mod)\n\n#C(n,r,p) = ( n! * r!^(p-2) * (n-r)!^(p-2) )%p\n#pythonだとpow()で二分累乗法が使える", "i", "range(h+w)", "range", "h+w", "h", "w", "f.append(f[i]*(i+1)%mod)", "f.append", "f", "append", "f[i]*(i+1)%mod", "f[i]*(i+1)", "f[i]", "f", "i", "i+1", "i", "1", "mod", "def comb(n, r, p):\n return f[n] * pow(f[r], p-2, p) * pow(f[n-r], p-2, p) % p\n\n#紫点ごとに調べる", "comb", "return f[n] * pow(f[r], p-2, p) * pow(f[n-r], p-2, p) % p", "f[n] * pow(f[r], p-2, p) * pow(f[n-r], p-2, p) % p", "f[n] * pow(f[r], p-2, p) * pow(f[n-r], p-2, p)", "f[n] * pow(f[r], p-2, p)", "f[n]", "f", "n", "pow(f[r], p-2, p)", "pow", "f[r]", "f", "r", "p-2", "p", "2", "p", "pow(f[n-r], p-2, p)", "pow", "f[n-r]", "f", "n-r", "n", "r", "p-2", "p", "2", "p", "p", "n", "n", "r", "r", "p", "p", "ans=0", "ans", "0", "for i in range(b, w):\n ans+= comb(h+i-a-1, i, mod) * comb(w-1-i+a-1, a-1, mod) % mod", "i", "range(b, w)", "range", "b", "w", "ans+= comb(h+i-a-1, i, mod) * comb(w-1-i+a-1, a-1, mod) % mod", "ans", "comb(h+i-a-1, i, mod) * comb(w-1-i+a-1, a-1, mod) % mod", "comb(h+i-a-1, i, mod) * comb(w-1-i+a-1, a-1, mod)", "comb(h+i-a-1, i, mod)", "comb", "h+i-a-1", "h+i-a", "h+i", "h", "i", "a", "1", "i", "mod", "comb(w-1-i+a-1, a-1, mod)", "comb", "w-1-i+a-1", "w-1-i+a", "w-1-i", "w-1", "w", "1", "i", "a", "1", "a-1", "a", "1", "mod", "mod", "print(ans%mod)", "print", "ans%mod", "ans", "mod", "ans+= comb(h+i-a-1, i, mod) * comb(w-1-i+a-1, a-1, mod) % mod", "comb(h+i-a-1, i, mod) * comb(w-1-i+a-1, a-1, mod) % mod", "ans", "a,b = map(int,input().split())", "map(int,input().split())", "a", "ans=0", "0", "ans", "b = map(int,input().split())", "map(int,input().split())", "b", "mod = 10**9+7", "10**9+7", "mod", "h,w,a,b = map(int,input().split())", "map(int,input().split())", "h", "def comb(n, r, p):\n return f[n] * pow(f[r], p-2, p) * pow(f[n-r], p-2, p) % p\n\n#紫点ごとに調べる", "def comb(n, r, p):\n return f[n] * pow(f[r], p-2, p) * pow(f[n-r], p-2, p) % p\n\n#紫点ごとに調べる", "comb", "f=[1]", "[1]", "f", "w,a,b = map(int,input().split())", "map(int,input().split())", "w" ]
h,w,a,b = map(int,input().split()) #入力 mod = 10**9+7 #前計算 f[i] = i! f=[1] for i in range(h+w): f.append(f[i]*(i+1)%mod) #C(n,r,p) = ( n! * r!^(p-2) * (n-r)!^(p-2) )%p #pythonだとpow()で二分累乗法が使える def comb(n, r, p): return f[n] * pow(f[r], p-2, p) * pow(f[n-r], p-2, p) % p #紫点ごとに調べる ans=0 for i in range(b, w): ans+= comb(h+i-a-1, i, mod) * comb(w-1-i+a-1, a-1, mod) % mod print(ans%mod)
[ 7, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 13, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 2, 39, 17, 2, 13, 17, 0, 13, 2, 39, 17, 2, 13, 17, 28, 13, 4, 13, 17, 2, 13, 17, 0, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 13, 13, 0, 18, 13, 17, 4, 13, 18, 13, 17, 2, 13, 17, 13, 28, 13, 4, 13, 2, 13, 17, 17, 17, 0, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 2, 13, 17, 13, 12, 13, 4, 40, 40, 13, 13, 17, 0, 13, 18, 13, 13, 0, 13, 18, 13, 2, 13, 13, 0, 13, 13, 0, 13, 18, 13, 13, 29, 2, 13, 13, 23, 13, 23, 13, 0, 13, 4, 13, 2, 2, 4, 13, 2, 2, 2, 13, 13, 13, 17, 13, 4, 13, 2, 2, 2, 13, 13, 17, 13, 2, 13, 17, 13, 4, 13, 2, 13, 13, 10, 4, 13, 10, 4, 13, 10, 2, 13, 10, 4, 13, 10, 2, 13, 10, 4, 13, 10, 12, 13, 10, 2, 13, 10, 4, 13, 10, 2, 13 ]
[ [ 186, 2 ], [ 186, 11 ], [ 186, 12 ], [ 186, 13 ], [ 198, 15 ], [ 187, 17 ], [ 172, 18 ], [ 192, 20 ], [ 177, 27 ], [ 199, 32 ], [ 183, 35 ], [ 199, 40 ], [ 44, 43 ], [ 199, 48 ], [ 54, 51 ], [ 178, 52 ], [ 43, 53 ], [ 178, 57 ], [ 43, 59 ], [ 43, 61 ], [ 193, 62 ], [ 67, 64 ], [ 184, 65 ], [ 178, 70 ], [ 193, 73 ], [ 193, 75 ], [ 78, 77 ], [ 199, 81 ], [ 89, 86 ], [ 184, 87 ], [ 77, 88 ], [ 184, 92 ], [ 77, 94 ], [ 77, 97 ], [ 193, 99 ], [ 133, 105 ], [ 135, 106 ], [ 110, 109 ], [ 178, 111 ], [ 133, 112 ], [ 115, 114 ], [ 184, 116 ], [ 133, 118 ], [ 135, 119 ], [ 122, 121 ], [ 193, 122 ], [ 125, 124 ], [ 184, 126 ], [ 135, 127 ], [ 124, 130 ], [ 121, 130 ], [ 114, 130 ], [ 109, 130 ], [ 193, 131 ], [ 133, 133 ], [ 135, 135 ], [ 195, 137 ], [ 190, 143 ], [ 187, 147 ], [ 175, 148 ], [ 190, 153 ], [ 175, 157 ], [ 172, 158 ], [ 175, 162 ], [ 193, 164 ], [ 196, 168 ], [ 193, 169 ], [ 186, 172 ], [ 186, 175 ], [ 177, 178 ], [ 186, 181 ], [ 183, 184 ], [ 186, 187 ], [ 192, 193 ], [ 195, 196 ], [ 198, 199 ] ]
[ "h, w, a, b = map(int, input().split())\nm = h + w\nmod = 10 ** 9 + 7\n\nfac = [1] * (m + 1)\ninv = [1] * (m + 1)\nfor i in range(1, m + 1):\n fac[i] = fac[i - 1] * i % mod\ninv[-1] = pow(fac[-1], mod - 2, mod)\nfor i in range(m - 1, -1, -1):\n inv[i] = inv[i + 1] * (i + 1) % mod\n\n\ndef cmb(n, r):\n assert n >= r >= 0\n ret = fac[n] \n ret *= inv[n - r]\n ret %= mod\n ret *= inv[r]\n return ret % mod\n\n\nans = sum(cmb(h - a + i - 1, i) * cmb(a + w - 2 - i, a - 1) % mod for i in range(b, w))\nprint(ans % mod)", "h, w, a, b = map(int, input().split())", "h", "map(int, input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "w", "a", "b", "m = h + w", "m", "h + w", "h", "w", "mod = 10 ** 9 + 7", "mod", "10 ** 9 + 7", "10 ** 9", "10", "9", "7", "fac = [1] * (m + 1)", "fac", "[1] * (m + 1)", "[1]", "1", "m + 1", "m", "1", "inv = [1] * (m + 1)", "inv", "[1] * (m + 1)", "[1]", "1", "m + 1", "m", "1", "for i in range(1, m + 1):\n fac[i] = fac[i - 1] * i % mod", "i", "range(1, m + 1)", "range", "1", "m + 1", "m", "1", "fac[i] = fac[i - 1] * i % mod", "fac[i]", "fac", "i", "fac[i - 1] * i % mod", "fac[i - 1] * i", "fac[i - 1]", "fac", "i - 1", "i", "1", "i", "mod", "inv[-1] = pow(fac[-1], mod - 2, mod)", "inv[-1]", "inv", "-1", "pow(fac[-1], mod - 2, mod)", "pow", "fac[-1]", "fac", "-1", "mod - 2", "mod", "2", "mod", "for i in range(m - 1, -1, -1):\n inv[i] = inv[i + 1] * (i + 1) % mod", "i", "range(m - 1, -1, -1)", "range", "m - 1", "m", "1", "-1", "-1", "inv[i] = inv[i + 1] * (i + 1) % mod", "inv[i]", "inv", "i", "inv[i + 1] * (i + 1) % mod", "inv[i + 1] * (i + 1)", "inv[i + 1]", "inv", "i + 1", "i", "1", "i + 1", "i", "1", "mod", "def cmb(n, r):\n assert n >= r >= 0\n ret = fac[n] \n ret *= inv[n - r]\n ret %= mod\n ret *= inv[r]\n return ret % mod", "cmb", "assert n >= r >= 0", "n >= r >= 0", "n >= r", "n", "r", "0", "ret = fac[n]", "ret", "fac[n]", "fac", "n", "ret *= inv[n - r]", "ret", "inv[n - r]", "inv", "n - r", "n", "r", "ret %= mod", "ret", "mod", "ret *= inv[r]", "ret", "inv[r]", "inv", "r", "return ret % mod", "ret % mod", "ret", "mod", "n", "n", "r", "r", "ans = sum(cmb(h - a + i - 1, i) * cmb(a + w - 2 - i, a - 1) % mod for i in range(b, w))", "ans", "sum(cmb(h - a + i - 1, i) * cmb(a + w - 2 - i, a - 1) % mod for i in range(b, w))", "sum", "cmb(h - a + i - 1, i) * cmb(a + w - 2 - i, a - 1) % mod", "cmb(h - a + i - 1, i) * cmb(a + w - 2 - i, a - 1)", "cmb(h - a + i - 1, i)", "cmb", "h - a + i - 1", "h - a + i", "h - a", "h", "a", "i", "1", "i", "cmb(a + w - 2 - i, a - 1)", "cmb", "a + w - 2 - i", "a + w - 2", "a + w", "a", "w", "2", "i", "a - 1", "a", "1", "mod", "print(ans % mod)", "print", "ans % mod", "ans", "mod", "w, a, b = map(int, input().split())", "map(int, input().split())", "w", "a, b = map(int, input().split())", "map(int, input().split())", "a", "fac = [1] * (m + 1)", "[1] * (m + 1)", "fac", "b = map(int, input().split())", "map(int, input().split())", "b", "inv = [1] * (m + 1)", "[1] * (m + 1)", "inv", "h, w, a, b = map(int, input().split())", "map(int, input().split())", "h", "def cmb(n, r):\n assert n >= r >= 0\n ret = fac[n] \n ret *= inv[n - r]\n ret %= mod\n ret *= inv[r]\n return ret % mod", "def cmb(n, r):\n assert n >= r >= 0\n ret = fac[n] \n ret *= inv[n - r]\n ret %= mod\n ret *= inv[r]\n return ret % mod", "cmb", "mod = 10 ** 9 + 7", "10 ** 9 + 7", "mod", "ans = sum(cmb(h - a + i - 1, i) * cmb(a + w - 2 - i, a - 1) % mod for i in range(b, w))", "sum(cmb(h - a + i - 1, i) * cmb(a + w - 2 - i, a - 1) % mod for i in range(b, w))", "ans", "m = h + w", "h + w", "m" ]
h, w, a, b = map(int, input().split()) m = h + w mod = 10 ** 9 + 7 fac = [1] * (m + 1) inv = [1] * (m + 1) for i in range(1, m + 1): fac[i] = fac[i - 1] * i % mod inv[-1] = pow(fac[-1], mod - 2, mod) for i in range(m - 1, -1, -1): inv[i] = inv[i + 1] * (i + 1) % mod def cmb(n, r): assert n >= r >= 0 ret = fac[n] ret *= inv[n - r] ret %= mod ret *= inv[r] return ret % mod ans = sum(cmb(h - a + i - 1, i) * cmb(a + w - 2 - i, a - 1) % mod for i in range(b, w)) print(ans % mod)
[ 7, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 2, 2, 13, 13, 17, 0, 13, 13, 12, 13, 0, 13, 39, 17, 28, 13, 4, 13, 17, 13, 4, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 13, 13, 0, 13, 2, 39, 17, 13, 0, 18, 13, 2, 13, 17, 4, 13, 18, 13, 2, 13, 17, 2, 13, 17, 13, 28, 13, 4, 13, 2, 13, 17, 17, 17, 0, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 2, 13, 17, 13, 29, 39, 13, 13, 23, 13, 23, 13, 2, 2, 17, 17, 17, 0, 13, 4, 13, 2, 2, 13, 13, 17, 13, 13, 0, 13, 17, 42, 2, 40, 13, 17, 2, 13, 13, 0, 13, 2, 2, 2, 2, 18, 13, 2, 13, 13, 18, 13, 13, 13, 18, 13, 13, 13, 0, 13, 2, 2, 2, 2, 18, 13, 2, 2, 2, 13, 13, 17, 2, 2, 13, 13, 17, 18, 13, 2, 2, 13, 13, 17, 13, 18, 13, 2, 2, 13, 13, 17, 13, 0, 13, 2, 2, 13, 13, 13, 0, 13, 17, 0, 13, 17, 4, 13, 2, 13, 13, 10, 4, 13, 10, 17, 13, 10, 17, 13, 10, 4, 13, 10, 2, 13, 10, 4, 13, 10, 2, 13, 10, 13, 13, 10, 2, 13, 10, 2, 13, 10, 2, 13, 10, 12, 13, 10, 4, 13, 10, 4, 13, 10, 17, 13, 10, 4, 13 ]
[ [ 256, 2 ], [ 256, 11 ], [ 256, 12 ], [ 256, 13 ], [ 238, 15 ], [ 223, 22 ], [ 257, 25 ], [ 221, 26 ], [ 232, 29 ], [ 251, 30 ], [ 35, 34 ], [ 39, 38 ], [ 38, 42 ], [ 34, 45 ], [ 34, 50 ], [ 38, 52 ], [ 38, 54 ], [ 110, 55 ], [ 58, 57 ], [ 108, 61 ], [ 68, 63 ], [ 57, 64 ], [ 108, 66 ], [ 34, 71 ], [ 108, 73 ], [ 110, 76 ], [ 110, 78 ], [ 81, 80 ], [ 80, 84 ], [ 92, 89 ], [ 57, 90 ], [ 80, 91 ], [ 57, 95 ], [ 80, 97 ], [ 80, 100 ], [ 110, 102 ], [ 108, 108 ], [ 111, 110 ], [ 226, 117 ], [ 245, 119 ], [ 248, 122 ], [ 257, 123 ], [ 239, 125 ], [ 226, 126 ], [ 214, 128 ], [ 224, 133 ], [ 254, 133 ], [ 248, 136 ], [ 233, 137 ], [ 218, 137 ], [ 241, 139 ], [ 212, 145 ], [ 224, 147 ], [ 254, 147 ], [ 233, 148 ], [ 218, 148 ], [ 227, 150 ], [ 224, 151 ], [ 254, 151 ], [ 239, 152 ], [ 227, 154 ], [ 233, 155 ], [ 218, 155 ], [ 239, 156 ], [ 229, 158 ], [ 212, 164 ], [ 257, 168 ], [ 224, 169 ], [ 254, 169 ], [ 248, 173 ], [ 233, 174 ], [ 218, 174 ], [ 227, 177 ], [ 257, 180 ], [ 224, 181 ], [ 254, 181 ], [ 239, 183 ], [ 227, 185 ], [ 248, 188 ], [ 233, 189 ], [ 218, 189 ], [ 239, 191 ], [ 235, 193 ], [ 242, 196 ], [ 230, 197 ], [ 239, 198 ], [ 253, 200 ], [ 217, 203 ], [ 236, 208 ], [ 215, 208 ], [ 239, 209 ], [ 226, 212 ], [ 214, 215 ], [ 217, 218 ], [ 256, 221 ], [ 223, 224 ], [ 226, 227 ], [ 229, 230 ], [ 251, 232 ], [ 232, 233 ], [ 235, 236 ], [ 238, 239 ], [ 241, 242 ], [ 256, 248 ], [ 256, 251 ], [ 253, 254 ], [ 256, 257 ] ]
[ "H, W, A, B = map(int, input().split())\nMOD = 10 ** 9 + 7\n\ni = H - A - 1\nj = B\n\n\n# 階乗とその逆元を事前計算する (O(N))\n# finv[0] := 0の階乗の逆元\ndef factorial_and_inv(n, mod=10 ** 9 + 7):\n f = [1]\n for n in range(1, n):\n f.append(f[n - 1] * n % mod)\n finv = [0] * n\n finv[n - 1] = pow(f[n - 1], mod - 2, mod)\n for n in range(n - 2, -1, -1):\n finv[n] = finv[n + 1] * (n + 1) % mod\n return f, finv\n\n\nf, finv = factorial_and_inv(W + H + 2, MOD)\nans = 0\nwhile i >= 0 and W > j:\n path1 = f[i + j] * finv[i] % MOD * finv[j] % MOD\n path2 = f[(H - i - 1) + (W - j - 1)] * finv[H - i - 1] % MOD * finv[W - j - 1] % MOD\n ans += path1 * path2 % MOD\n i -= 1\n j += 1\nprint(ans % MOD)", "H, W, A, B = map(int, input().split())", "H", "map(int, input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "MOD = 10 ** 9 + 7", "MOD", "10 ** 9 + 7", "10 ** 9", "10", "9", "7", "i = H - A - 1", "i", "H - A - 1", "H - A", "H", "A", "1", "j = B", "j", "B", "def factorial_and_inv(n, mod=10 ** 9 + 7):\n f = [1]\n for n in range(1, n):\n f.append(f[n - 1] * n % mod)\n finv = [0] * n\n finv[n - 1] = pow(f[n - 1], mod - 2, mod)\n for n in range(n - 2, -1, -1):\n finv[n] = finv[n + 1] * (n + 1) % mod\n return f, finv", "factorial_and_inv", "f = [1]", "f", "[1]", "1", "for n in range(1, n):\n f.append(f[n - 1] * n % mod)\n ", "n", "range(1, n)", "range", "1", "n", "f.append(f[n - 1] * n % mod)", "f.append", "f", "append", "f[n - 1] * n % mod", "f[n - 1] * n", "f[n - 1]", "f", "n - 1", "n", "1", "n", "mod", "finv = [0] * n", "finv", "[0] * n", "[0]", "0", "n", "finv[n - 1] = pow(f[n - 1], mod - 2, mod)", "finv[n - 1]", "finv", "n - 1", "n", "1", "pow(f[n - 1], mod - 2, mod)", "pow", "f[n - 1]", "f", "n - 1", "n", "1", "mod - 2", "mod", "2", "mod", "for n in range(n - 2, -1, -1):\n finv[n] = finv[n + 1] * (n + 1) % mod\n ", "n", "range(n - 2, -1, -1)", "range", "n - 2", "n", "2", "-1", "-1", "finv[n] = finv[n + 1] * (n + 1) % mod", "finv[n]", "finv", "n", "finv[n + 1] * (n + 1) % mod", "finv[n + 1] * (n + 1)", "finv[n + 1]", "finv", "n + 1", "n", "1", "n + 1", "n", "1", "mod", "return f, finv", "return f, finv", "f", "finv", "n", "n", "mod=10 ** 9 + 7", "mod", "10 ** 9 + 7", "10 ** 9", "10", "9", "7", "f, finv = factorial_and_inv(W + H + 2, MOD)", "f", "factorial_and_inv(W + H + 2, MOD)", "factorial_and_inv", "W + H + 2", "W + H", "W", "H", "2", "MOD", "finv", "ans = 0", "ans", "0", "while i >= 0 and W > j:\n path1 = f[i + j] * finv[i] % MOD * finv[j] % MOD\n path2 = f[(H - i - 1) + (W - j - 1)] * finv[H - i - 1] % MOD * finv[W - j - 1] % MOD\n ans += path1 * path2 % MOD\n i -= 1\n j += 1", "i >= 0 and W > j", "i >= 0", "i", "0", "W > j", "W", "j", "path1 = f[i + j] * finv[i] % MOD * finv[j] % MOD", "path1", "f[i + j] * finv[i] % MOD * finv[j] % MOD", "f[i + j] * finv[i] % MOD * finv[j]", "f[i + j] * finv[i] % MOD", "f[i + j] * finv[i]", "f[i + j]", "f", "i + j", "i", "j", "finv[i]", "finv", "i", "MOD", "finv[j]", "finv", "j", "MOD", "path2 = f[(H - i - 1) + (W - j - 1)] * finv[H - i - 1] % MOD * finv[W - j - 1] % MOD", "path2", "f[(H - i - 1) + (W - j - 1)] * finv[H - i - 1] % MOD * finv[W - j - 1] % MOD", "f[(H - i - 1) + (W - j - 1)] * finv[H - i - 1] % MOD * finv[W - j - 1]", "f[(H - i - 1) + (W - j - 1)] * finv[H - i - 1] % MOD", "f[(H - i - 1) + (W - j - 1)] * finv[H - i - 1]", "f[(H - i - 1) + (W - j - 1)]", "f", "(H - i - 1) + (W - j - 1)", "H - i - 1", "H - i", "H", "i", "1", "W - j - 1", "W - j", "W", "j", "1", "finv[H - i - 1]", "finv", "H - i - 1", "H - i", "H", "i", "1", "MOD", "finv[W - j - 1]", "finv", "W - j - 1", "W - j", "W", "j", "1", "MOD", "ans += path1 * path2 % MOD", "ans", "path1 * path2 % MOD", "path1 * path2", "path1", "path2", "MOD", "i -= 1", "i", "1", "j += 1", "j", "1", "print(ans % MOD)", "print", "ans % MOD", "ans", "MOD", "f, finv = factorial_and_inv(W + H + 2, MOD)", "factorial_and_inv(W + H + 2, MOD)", "f", "ans = 0", "0", "ans", "j += 1", "1", "j", "A, B = map(int, input().split())", "map(int, input().split())", "A", "i = H - A - 1", "H - A - 1", "i", "finv = factorial_and_inv(W + H + 2, MOD)", "factorial_and_inv(W + H + 2, MOD)", "finv", "path2 = f[(H - i - 1) + (W - j - 1)] * finv[H - i - 1] % MOD * finv[W - j - 1] % MOD", "f[(H - i - 1) + (W - j - 1)] * finv[H - i - 1] % MOD * finv[W - j - 1] % MOD", "path2", "j = B", "B", "j", "ans += path1 * path2 % MOD", "path1 * path2 % MOD", "ans", "MOD = 10 ** 9 + 7", "10 ** 9 + 7", "MOD", "path1 = f[i + j] * finv[i] % MOD * finv[j] % MOD", "f[i + j] * finv[i] % MOD * finv[j] % MOD", "path1", "def factorial_and_inv(n, mod=10 ** 9 + 7):\n f = [1]\n for n in range(1, n):\n f.append(f[n - 1] * n % mod)\n finv = [0] * n\n finv[n - 1] = pow(f[n - 1], mod - 2, mod)\n for n in range(n - 2, -1, -1):\n finv[n] = finv[n + 1] * (n + 1) % mod\n return f, finv", "def factorial_and_inv(n, mod=10 ** 9 + 7):\n f = [1]\n for n in range(1, n):\n f.append(f[n - 1] * n % mod)\n finv = [0] * n\n finv[n - 1] = pow(f[n - 1], mod - 2, mod)\n for n in range(n - 2, -1, -1):\n finv[n] = finv[n + 1] * (n + 1) % mod\n return f, finv", "factorial_and_inv", "W, A, B = map(int, input().split())", "map(int, input().split())", "W", "B = map(int, input().split())", "map(int, input().split())", "B", "i -= 1", "1", "i", "H, W, A, B = map(int, input().split())", "map(int, input().split())", "H" ]
H, W, A, B = map(int, input().split()) MOD = 10 ** 9 + 7 i = H - A - 1 j = B # 階乗とその逆元を事前計算する (O(N)) # finv[0] := 0の階乗の逆元 def factorial_and_inv(n, mod=10 ** 9 + 7): f = [1] for n in range(1, n): f.append(f[n - 1] * n % mod) finv = [0] * n finv[n - 1] = pow(f[n - 1], mod - 2, mod) for n in range(n - 2, -1, -1): finv[n] = finv[n + 1] * (n + 1) % mod return f, finv f, finv = factorial_and_inv(W + H + 2, MOD) ans = 0 while i >= 0 and W > j: path1 = f[i + j] * finv[i] % MOD * finv[j] % MOD path2 = f[(H - i - 1) + (W - j - 1)] * finv[H - i - 1] % MOD * finv[W - j - 1] % MOD ans += path1 * path2 % MOD i -= 1 j += 1 print(ans % MOD)
[ 7, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 2, 17, 17, 17, 12, 13, 0, 13, 2, 13, 17, 0, 13, 17, 42, 2, 13, 17, 14, 2, 2, 13, 17, 17, 0, 13, 2, 2, 13, 13, 13, 0, 13, 2, 2, 13, 17, 13, 0, 13, 17, 29, 13, 23, 13, 23, 13, 41, 28, 13, 4, 13, 17, 2, 2, 13, 13, 17, 4, 4, 13, 13, 13, 0, 13, 2, 39, 17, 13, 0, 13, 17, 0, 13, 17, 28, 13, 4, 13, 2, 2, 2, 13, 13, 13, 17, 2, 2, 2, 2, 13, 13, 13, 17, 2, 2, 13, 13, 17, 17, 0, 13, 2, 2, 13, 13, 13, 28, 13, 4, 13, 2, 2, 2, 13, 13, 17, 17, 0, 13, 2, 2, 13, 18, 13, 13, 13, 0, 13, 39, 13, 0, 13, 39, 13, 28, 13, 4, 13, 17, 2, 13, 13, 0, 13, 2, 2, 13, 2, 2, 13, 17, 13, 13, 0, 13, 2, 2, 13, 18, 13, 13, 13, 4, 18, 13, 13, 13, 0, 13, 2, 2, 13, 2, 2, 2, 2, 13, 13, 13, 17, 13, 13, 0, 13, 2, 2, 13, 18, 13, 2, 2, 2, 2, 2, 13, 13, 13, 17, 2, 2, 13, 13, 17, 13, 13, 4, 18, 13, 13, 13, 0, 13, 17, 28, 13, 4, 13, 2, 13, 13, 0, 13, 2, 2, 18, 13, 13, 18, 13, 2, 40, 13, 17, 13, 0, 13, 2, 2, 13, 13, 13, 4, 13, 13, 10, 2, 13, 10, 39, 13, 10, 2, 13, 10, 4, 13, 10, 2, 13, 10, 2, 13, 10, 2, 13, 10, 17, 13, 10, 12, 13, 10, 2, 13, 10, 2, 13, 10, 17, 13, 10, 4, 13, 10, 39, 13, 10, 2, 13, 10, 17, 13, 10, 4, 13, 10, 2, 13, 10, 4, 13, 10, 2, 13 ]
[ [ 317, 2 ], [ 317, 11 ], [ 317, 12 ], [ 317, 13 ], [ 305, 15 ], [ 25, 24 ], [ 63, 26 ], [ 30, 29 ], [ 24, 33 ], [ 56, 33 ], [ 24, 38 ], [ 56, 38 ], [ 43, 42 ], [ 29, 45 ], [ 42, 45 ], [ 61, 46 ], [ 49, 46 ], [ 63, 47 ], [ 50, 49 ], [ 61, 52 ], [ 49, 52 ], [ 63, 54 ], [ 57, 56 ], [ 42, 59 ], [ 29, 59 ], [ 61, 61 ], [ 63, 63 ], [ 67, 66 ], [ 312, 72 ], [ 318, 73 ], [ 288, 77 ], [ 66, 78 ], [ 306, 79 ], [ 275, 81 ], [ 296, 87 ], [ 284, 90 ], [ 94, 93 ], [ 318, 99 ], [ 273, 100 ], [ 300, 101 ], [ 318, 107 ], [ 273, 108 ], [ 300, 109 ], [ 318, 113 ], [ 273, 114 ], [ 293, 118 ], [ 285, 121 ], [ 294, 121 ], [ 93, 122 ], [ 306, 123 ], [ 126, 125 ], [ 318, 131 ], [ 273, 132 ], [ 290, 136 ], [ 294, 139 ], [ 285, 139 ], [ 291, 139 ], [ 276, 141 ], [ 125, 142 ], [ 306, 143 ], [ 302, 145 ], [ 266, 149 ], [ 154, 153 ], [ 312, 158 ], [ 300, 159 ], [ 263, 161 ], [ 297, 164 ], [ 321, 164 ], [ 264, 164 ], [ 273, 167 ], [ 153, 169 ], [ 306, 170 ], [ 320, 172 ], [ 264, 175 ], [ 297, 175 ], [ 321, 175 ], [ 276, 177 ], [ 153, 178 ], [ 306, 179 ], [ 303, 182 ], [ 321, 184 ], [ 264, 184 ], [ 297, 184 ], [ 269, 186 ], [ 291, 189 ], [ 294, 189 ], [ 285, 189 ], [ 315, 189 ], [ 270, 189 ], [ 318, 194 ], [ 273, 195 ], [ 300, 196 ], [ 153, 198 ], [ 306, 199 ], [ 314, 201 ], [ 270, 204 ], [ 291, 204 ], [ 294, 204 ], [ 285, 204 ], [ 315, 204 ], [ 276, 206 ], [ 318, 212 ], [ 273, 213 ], [ 300, 214 ], [ 318, 218 ], [ 273, 219 ], [ 153, 221 ], [ 306, 222 ], [ 267, 225 ], [ 315, 227 ], [ 270, 227 ], [ 291, 227 ], [ 294, 227 ], [ 285, 227 ], [ 308, 229 ], [ 233, 232 ], [ 312, 236 ], [ 300, 237 ], [ 281, 239 ], [ 303, 243 ], [ 232, 244 ], [ 267, 246 ], [ 232, 249 ], [ 306, 251 ], [ 278, 253 ], [ 309, 256 ], [ 279, 256 ], [ 282, 257 ], [ 306, 258 ], [ 279, 261 ], [ 309, 261 ], [ 263, 264 ], [ 266, 267 ], [ 269, 270 ], [ 317, 273 ], [ 275, 276 ], [ 278, 279 ], [ 281, 282 ], [ 284, 285 ], [ 290, 291 ], [ 293, 294 ], [ 296, 297 ], [ 317, 300 ], [ 302, 303 ], [ 305, 306 ], [ 308, 309 ], [ 317, 312 ], [ 314, 315 ], [ 317, 318 ], [ 320, 321 ] ]
[ "h, w, a, b = map(int,input().split())\nmod = 10**9 + 7\n\ndef inv(x, p):\n pp = p-2\n ans = 1\n while pp > 0:\n if pp % 2 == 1:\n ans = (ans * x) % p\n x = (x ** 2) % p\n pp //= 2\n return ans\n\nI = [1] + [inv(i, mod) for i in range(1, h+w+1)]\n\na0 = 1\na1 = 1\nfor i in range(w-b+a-1, (w-b+a-1)-(w-b-1), -1):\n a1 = (a1 * i) % mod\n# print(a1)\nfor i in range(w-b-1+1):\n #print(\"i\",i)\n a1 = (a1 * I[i]) % mod\n\nA0 = [a0]\nA1 = [a1]\nfor i in range(1, h-a):\n a0 = (a0 * (b-1+i)) % mod\n a0 = (a0 * I[i]) % mod\n A0.append(a0)\n\n a1 = (a1 * (w-b+a-1+i)) % mod\n a1 = (a1 * I[(w-b+a-1)-(w-b-1)+i]) % mod\n A1.append(a1)\n\n# print(A0)\n# print(A1)\nans = 0\nfor i in range(h-a):\n pl = (A0[i] * A1[-i-1]) % mod\n ans = (ans + pl) % mod\n\nprint(ans)", "h, w, a, b = map(int,input().split())", "h", "map(int,input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "w", "a", "b", "mod = 10**9 + 7", "mod", "10**9 + 7", "10**9", "10", "9", "7", "def inv(x, p):\n pp = p-2\n ans = 1\n while pp > 0:\n if pp % 2 == 1:\n ans = (ans * x) % p\n x = (x ** 2) % p\n pp //= 2\n return ans", "inv", "pp = p-2", "pp", "p-2", "p", "2", "ans = 1", "ans", "1", "while pp > 0:\n if pp % 2 == 1:\n ans = (ans * x) % p\n x = (x ** 2) % p\n pp //= 2\n ", "pp > 0", "pp", "0", "if pp % 2 == 1:\n ans = (ans * x) % p\n ", "pp % 2 == 1", "pp % 2", "pp", "2", "1", "ans = (ans * x) % p", "ans", "(ans * x) % p", "ans * x", "ans", "x", "p", "x = (x ** 2) % p", "x", "(x ** 2) % p", "x ** 2", "x", "2", "p", "pp //= 2", "pp", "2", "return ans", "ans", "x", "x", "p", "p", "inv(i, mod) for i in range(1, h+w+1)", "for i in range(1, h+w+1)", "i", "range(1, h+w+1)", "range", "1", "h+w+1", "h+w", "h", "w", "1", "for i in range(1, h+w+1)", "inv(i, mod)", "inv", "i", "mod", "I = [1] + [inv(i, mod) for i in range(1, h+w+1)]", "I", "[1] + [inv(i, mod) for i in range(1, h+w+1)]", "[1]", "1", "[inv(i, mod) for i in range(1, h+w+1)]", "a0 = 1", "a0", "1", "a1 = 1", "a1", "1", "for i in range(w-b+a-1, (w-b+a-1)-(w-b-1), -1):\n a1 = (a1 * i) % mod\n# print(a1)", "i", "range(w-b+a-1, (w-b+a-1)-(w-b-1), -1)", "range", "w-b+a-1", "w-b+a", "w-b", "w", "b", "a", "1", "(w-b+a-1)-(w-b-1)", "w-b+a-1", "w-b+a", "w-b", "w", "b", "a", "1", "w-b-1", "w-b", "w", "b", "1", "-1", "a1 = (a1 * i) % mod", "a1", "(a1 * i) % mod", "a1 * i", "a1", "i", "mod", "for i in range(w-b-1+1):\n #print(\"i\",i)\n a1 = (a1 * I[i]) % mod", "i", "range(w-b-1+1)", "range", "w-b-1+1", "w-b-1", "w-b", "w", "b", "1", "1", "a1 = (a1 * I[i]) % mod", "a1", "(a1 * I[i]) % mod", "a1 * I[i]", "a1", "I[i]", "I", "i", "mod", "A0 = [a0]", "A0", "[a0]", "a0", "A1 = [a1]", "A1", "[a1]", "a1", "for i in range(1, h-a):\n a0 = (a0 * (b-1+i)) % mod\n a0 = (a0 * I[i]) % mod\n A0.append(a0)\n\n a1 = (a1 * (w-b+a-1+i)) % mod\n a1 = (a1 * I[(w-b+a-1)-(w-b-1)+i]) % mod\n A1.append(a1)\n\n# print(A0)\n# print(A1)", "i", "range(1, h-a)", "range", "1", "h-a", "h", "a", "a0 = (a0 * (b-1+i)) % mod", "a0", "(a0 * (b-1+i)) % mod", "a0 * (b-1+i)", "a0", "b-1+i", "b-1", "b", "1", "i", "mod", "a0 = (a0 * I[i]) % mod", "a0", "(a0 * I[i]) % mod", "a0 * I[i]", "a0", "I[i]", "I", "i", "mod", "A0.append(a0)", "A0.append", "A0", "append", "a0", "a1 = (a1 * (w-b+a-1+i)) % mod", "a1", "(a1 * (w-b+a-1+i)) % mod", "a1 * (w-b+a-1+i)", "a1", "w-b+a-1+i", "w-b+a-1", "w-b+a", "w-b", "w", "b", "a", "1", "i", "mod", "a1 = (a1 * I[(w-b+a-1)-(w-b-1)+i]) % mod", "a1", "(a1 * I[(w-b+a-1)-(w-b-1)+i]) % mod", "a1 * I[(w-b+a-1)-(w-b-1)+i]", "a1", "I[(w-b+a-1)-(w-b-1)+i]", "I", "(w-b+a-1)-(w-b-1)+i", "(w-b+a-1)-(w-b-1)", "w-b+a-1", "w-b+a", "w-b", "w", "b", "a", "1", "w-b-1", "w-b", "w", "b", "1", "i", "mod", "A1.append(a1)", "A1.append", "A1", "append", "a1", "ans = 0", "ans", "0", "for i in range(h-a):\n pl = (A0[i] * A1[-i-1]) % mod\n ans = (ans + pl) % mod", "i", "range(h-a)", "range", "h-a", "h", "a", "pl = (A0[i] * A1[-i-1]) % mod", "pl", "(A0[i] * A1[-i-1]) % mod", "A0[i] * A1[-i-1]", "A0[i]", "A0", "i", "A1[-i-1]", "A1", "-i-1", "-i", "i", "1", "mod", "ans = (ans + pl) % mod", "ans", "(ans + pl) % mod", "ans + pl", "ans", "pl", "mod", "print(ans)", "print", "ans", "a0 = (a0 * (b-1+i)) % mod", "(a0 * (b-1+i)) % mod", "a0", "A1 = [a1]", "[a1]", "A1", "a1 = (a1 * (w-b+a-1+i)) % mod", "(a1 * (w-b+a-1+i)) % mod", "a1", "b = map(int,input().split())", "map(int,input().split())", "b", "I = [1] + [inv(i, mod) for i in range(1, h+w+1)]", "[1] + [inv(i, mod) for i in range(1, h+w+1)]", "I", "ans = (ans + pl) % mod", "(ans + pl) % mod", "ans", "pl = (A0[i] * A1[-i-1]) % mod", "(A0[i] * A1[-i-1]) % mod", "pl", "a1 = 1", "1", "a1", "def inv(x, p):\n pp = p-2\n ans = 1\n while pp > 0:\n if pp % 2 == 1:\n ans = (ans * x) % p\n x = (x ** 2) % p\n pp //= 2\n return ans", "def inv(x, p):\n pp = p-2\n ans = 1\n while pp > 0:\n if pp % 2 == 1:\n ans = (ans * x) % p\n x = (x ** 2) % p\n pp //= 2\n return ans", "inv", "a1 = (a1 * I[i]) % mod", "(a1 * I[i]) % mod", "a1", "a1 = (a1 * i) % mod", "(a1 * i) % mod", "a1", "a0 = 1", "1", "a0", "a, b = map(int,input().split())", "map(int,input().split())", "a", "A0 = [a0]", "[a0]", "A0", "mod = 10**9 + 7", "10**9 + 7", "mod", "ans = 0", "0", "ans", "h, w, a, b = map(int,input().split())", "map(int,input().split())", "h", "a1 = (a1 * I[(w-b+a-1)-(w-b-1)+i]) % mod", "(a1 * I[(w-b+a-1)-(w-b-1)+i]) % mod", "a1", "w, a, b = map(int,input().split())", "map(int,input().split())", "w", "a0 = (a0 * I[i]) % mod", "(a0 * I[i]) % mod", "a0" ]
h, w, a, b = map(int,input().split()) mod = 10**9 + 7 def inv(x, p): pp = p-2 ans = 1 while pp > 0: if pp % 2 == 1: ans = (ans * x) % p x = (x ** 2) % p pp //= 2 return ans I = [1] + [inv(i, mod) for i in range(1, h+w+1)] a0 = 1 a1 = 1 for i in range(w-b+a-1, (w-b+a-1)-(w-b-1), -1): a1 = (a1 * i) % mod # print(a1) for i in range(w-b-1+1): #print("i",i) a1 = (a1 * I[i]) % mod A0 = [a0] A1 = [a1] for i in range(1, h-a): a0 = (a0 * (b-1+i)) % mod a0 = (a0 * I[i]) % mod A0.append(a0) a1 = (a1 * (w-b+a-1+i)) % mod a1 = (a1 * I[(w-b+a-1)-(w-b-1)+i]) % mod A1.append(a1) # print(A0) # print(A1) ans = 0 for i in range(h-a): pl = (A0[i] * A1[-i-1]) % mod ans = (ans + pl) % mod print(ans)
[ 7, 12, 13, 14, 2, 2, 13, 17, 2, 13, 13, 29, 17, 0, 13, 4, 13, 13, 2, 13, 13, 29, 2, 2, 2, 18, 13, 13, 18, 13, 13, 18, 13, 2, 13, 13, 13, 23, 13, 23, 13, 23, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 2, 17, 2, 17, 17, 0, 13, 39, 17, 17, 0, 13, 39, 17, 17, 0, 13, 39, 17, 17, 28, 13, 4, 13, 17, 2, 13, 17, 4, 18, 13, 13, 2, 2, 18, 13, 17, 13, 13, 4, 18, 13, 13, 2, 2, 40, 18, 13, 2, 13, 13, 2, 13, 13, 13, 4, 18, 13, 13, 2, 2, 18, 13, 17, 18, 13, 17, 13, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 4, 13, 2, 2, 13, 13, 17, 2, 13, 17, 13, 28, 13, 4, 13, 2, 13, 13, 13, 0, 13, 2, 4, 13, 2, 2, 13, 13, 17, 2, 13, 17, 13, 4, 13, 2, 2, 2, 2, 13, 13, 17, 13, 13, 2, 2, 13, 13, 17, 13, 0, 13, 13, 4, 13, 13, 10, 4, 13, 10, 13, 13, 10, 4, 13, 10, 2, 13, 10, 4, 13, 10, 2, 13, 10, 39, 13, 10, 4, 13, 10, 2, 13, 10, 12, 13, 10, 39, 13, 10, 39, 13, 10, 4, 13 ]
[ [ 40, 6 ], [ 40, 9 ], [ 38, 10 ], [ 15, 14 ], [ 40, 17 ], [ 38, 19 ], [ 40, 20 ], [ 38, 27 ], [ 14, 30 ], [ 40, 30 ], [ 38, 34 ], [ 14, 35 ], [ 40, 35 ], [ 42, 36 ], [ 38, 38 ], [ 40, 40 ], [ 42, 42 ], [ 207, 44 ], [ 201, 51 ], [ 225, 58 ], [ 222, 63 ], [ 210, 68 ], [ 74, 73 ], [ 202, 78 ], [ 226, 82 ], [ 226, 87 ], [ 73, 89 ], [ 208, 90 ], [ 211, 93 ], [ 211, 99 ], [ 208, 101 ], [ 73, 102 ], [ 208, 104 ], [ 73, 105 ], [ 208, 106 ], [ 223, 109 ], [ 223, 114 ], [ 211, 117 ], [ 208, 119 ], [ 213, 121 ], [ 213, 130 ], [ 213, 131 ], [ 213, 132 ], [ 228, 134 ], [ 220, 136 ], [ 205, 139 ], [ 193, 140 ], [ 205, 143 ], [ 208, 145 ], [ 148, 147 ], [ 205, 151 ], [ 214, 152 ], [ 205, 153 ], [ 216, 155 ], [ 220, 158 ], [ 147, 161 ], [ 199, 162 ], [ 199, 165 ], [ 208, 167 ], [ 220, 169 ], [ 205, 174 ], [ 193, 175 ], [ 147, 177 ], [ 199, 178 ], [ 193, 181 ], [ 199, 182 ], [ 208, 184 ], [ 195, 186 ], [ 208, 187 ], [ 196, 190 ], [ 217, 190 ], [ 229, 190 ], [ 213, 193 ], [ 208, 195 ], [ 195, 196 ], [ 213, 199 ], [ 201, 202 ], [ 213, 205 ], [ 207, 208 ], [ 210, 211 ], [ 213, 214 ], [ 216, 217 ], [ 222, 223 ], [ 225, 226 ], [ 228, 229 ] ]
[ "def cmb(n, r, mod):#コンビネーションの高速計算 \n if ( r<0 or r>n ):\n return 0\n r = min(r, n-r)\n return g1[n] * g2[r] * g2[n-r] % mod\n\nmod = 10**9+7 #出力の制限\nN = 2*10**5\ng1 = [1, 1] # 元テーブル\ng2 = [1, 1] #逆元テーブル\ninverse = [0, 1] #逆元テーブル計算用テーブル\n\nfor i in range( 2, N + 1 ):\n g1.append( ( g1[-1] * i ) % mod )\n inverse.append( ( -inverse[mod % i] * (mod//i) ) % mod )\n g2.append( (g2[-1] * inverse[-1]) % mod )\n\nH,W,A,B=map(int,input().split())\nans=cmb(H+W-2,H-1,mod)\nfor i in range(H-A,H):\n ans-=cmb(i+B-1,B-1,mod)*cmb(H+W-2-i-B,W-B-1,mod)\n ans%=mod\nprint(ans)", "def cmb(n, r, mod):#コンビネーションの高速計算 \n if ( r<0 or r>n ):\n return 0\n r = min(r, n-r)\n return g1[n] * g2[r] * g2[n-r] % mod", "cmb", "if ( r<0 or r>n ):\n return 0\n ", "r<0 or r>n", "r<0", "r", "0", "r>n", "r", "n", "return 0", "0", "r = min(r, n-r)", "r", "min(r, n-r)", "min", "r", "n-r", "n", "r", "return g1[n] * g2[r] * g2[n-r] % mod", "g1[n] * g2[r] * g2[n-r] % mod", "g1[n] * g2[r] * g2[n-r]", "g1[n] * g2[r]", "g1[n]", "g1", "n", "g2[r]", "g2", "r", "g2[n-r]", "g2", "n-r", "n", "r", "mod", "n", "n", "r", "r", "mod", "mod", "mod = 10**9+7", "mod", "10**9+7", "10**9", "10", "9", "7", "N = 2*10**5", "N", "2*10**5", "2", "10**5", "10", "5", "g1 = [1, 1]", "g1", "[1, 1]", "1", "1", "g2 = [1, 1]", "g2", "[1, 1]", "1", "1", "inverse = [0, 1]", "inverse", "[0, 1]", "0", "1", "for i in range( 2, N + 1 ):\n g1.append( ( g1[-1] * i ) % mod )\n inverse.append( ( -inverse[mod % i] * (mod//i) ) % mod )\n g2.append( (g2[-1] * inverse[-1]) % mod )", "i", "range( 2, N + 1 )", "range", "2", "N + 1", "N", "1", "g1.append( ( g1[-1] * i ) % mod )", "g1.append", "g1", "append", "( g1[-1] * i ) % mod", "g1[-1] * i", "g1[-1]", "g1", "-1", "i", "mod", "inverse.append( ( -inverse[mod % i] * (mod//i) ) % mod )", "inverse.append", "inverse", "append", "( -inverse[mod % i] * (mod//i) ) % mod", "-inverse[mod % i] * (mod//i)", "-inverse[mod % i]", "inverse[mod % i]", "inverse", "mod % i", "mod", "i", "mod//i", "mod", "i", "mod", "g2.append( (g2[-1] * inverse[-1]) % mod )", "g2.append", "g2", "append", "(g2[-1] * inverse[-1]) % mod", "g2[-1] * inverse[-1]", "g2[-1]", "g2", "-1", "inverse[-1]", "inverse", "-1", "mod", "H,W,A,B=map(int,input().split())", "H", "map(int,input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "ans=cmb(H+W-2,H-1,mod)", "ans", "cmb(H+W-2,H-1,mod)", "cmb", "H+W-2", "H+W", "H", "W", "2", "H-1", "H", "1", "mod", "for i in range(H-A,H):\n ans-=cmb(i+B-1,B-1,mod)*cmb(H+W-2-i-B,W-B-1,mod)\n ans%=mod", "i", "range(H-A,H)", "range", "H-A", "H", "A", "H", "ans-=cmb(i+B-1,B-1,mod)*cmb(H+W-2-i-B,W-B-1,mod)", "ans", "cmb(i+B-1,B-1,mod)*cmb(H+W-2-i-B,W-B-1,mod)", "cmb(i+B-1,B-1,mod)", "cmb", "i+B-1", "i+B", "i", "B", "1", "B-1", "B", "1", "mod", "cmb(H+W-2-i-B,W-B-1,mod)", "cmb", "H+W-2-i-B", "H+W-2-i", "H+W-2", "H+W", "H", "W", "2", "i", "B", "W-B-1", "W-B", "W", "B", "1", "mod", "ans%=mod", "ans", "mod", "print(ans)", "print", "ans", "W,A,B=map(int,input().split())", "map(int,input().split())", "W", "ans%=mod", "mod", "ans", "B=map(int,input().split())", "map(int,input().split())", "B", "N = 2*10**5", "2*10**5", "N", "H,W,A,B=map(int,input().split())", "map(int,input().split())", "H", "mod = 10**9+7", "10**9+7", "mod", "inverse = [0, 1]", "[0, 1]", "inverse", "A,B=map(int,input().split())", "map(int,input().split())", "A", "ans-=cmb(i+B-1,B-1,mod)*cmb(H+W-2-i-B,W-B-1,mod)", "cmb(i+B-1,B-1,mod)*cmb(H+W-2-i-B,W-B-1,mod)", "ans", "def cmb(n, r, mod):#コンビネーションの高速計算 \n if ( r<0 or r>n ):\n return 0\n r = min(r, n-r)\n return g1[n] * g2[r] * g2[n-r] % mod", "def cmb(n, r, mod):#コンビネーションの高速計算 \n if ( r<0 or r>n ):\n return 0\n r = min(r, n-r)\n return g1[n] * g2[r] * g2[n-r] % mod", "cmb", "g2 = [1, 1]", "[1, 1]", "g2", "g1 = [1, 1]", "[1, 1]", "g1", "ans=cmb(H+W-2,H-1,mod)", "cmb(H+W-2,H-1,mod)", "ans" ]
def cmb(n, r, mod):#コンビネーションの高速計算  if ( r<0 or r>n ): return 0 r = min(r, n-r) return g1[n] * g2[r] * g2[n-r] % mod mod = 10**9+7 #出力の制限 N = 2*10**5 g1 = [1, 1] # 元テーブル g2 = [1, 1] #逆元テーブル inverse = [0, 1] #逆元テーブル計算用テーブル for i in range( 2, N + 1 ): g1.append( ( g1[-1] * i ) % mod ) inverse.append( ( -inverse[mod % i] * (mod//i) ) % mod ) g2.append( (g2[-1] * inverse[-1]) % mod ) H,W,A,B=map(int,input().split()) ans=cmb(H+W-2,H-1,mod) for i in range(H-A,H): ans-=cmb(i+B-1,B-1,mod)*cmb(H+W-2-i-B,W-B-1,mod) ans%=mod print(ans)
[ 7, 15, 13, 12, 13, 29, 4, 13, 13, 4, 18, 4, 18, 4, 18, 18, 13, 13, 13, 13, 13, 12, 13, 0, 13, 13, 0, 13, 13, 29, 2, 2, 13, 13, 13, 23, 13, 23, 13, 23, 13, 12, 13, 0, 13, 13, 0, 13, 13, 29, 2, 2, 13, 4, 13, 13, 2, 13, 17, 13, 13, 23, 13, 23, 13, 23, 13, 12, 13, 14, 2, 13, 17, 29, 17, 14, 2, 2, 13, 17, 17, 0, 13, 4, 13, 13, 2, 13, 17, 13, 29, 2, 2, 13, 13, 13, 29, 2, 2, 13, 4, 13, 13, 2, 13, 17, 13, 13, 23, 13, 23, 13, 23, 13, 12, 13, 0, 13, 2, 39, 17, 2, 13, 17, 0, 18, 13, 13, 4, 13, 17, 13, 13, 28, 13, 4, 13, 4, 13, 13, 0, 18, 13, 13, 4, 13, 18, 13, 2, 13, 17, 2, 13, 17, 13, 29, 13, 23, 13, 23, 13, 23, 13, 12, 13, 0, 13, 2, 39, 17, 2, 13, 17, 0, 18, 13, 17, 17, 28, 13, 4, 13, 13, 0, 18, 13, 2, 13, 17, 2, 2, 2, 13, 17, 18, 13, 13, 13, 29, 13, 23, 13, 23, 13, 12, 13, 14, 2, 4, 13, 13, 17, 37, 0, 13, 18, 13, 13, 0, 13, 18, 13, 13, 0, 13, 18, 13, 2, 13, 13, 29, 4, 13, 4, 13, 13, 13, 13, 13, 13, 23, 13, 23, 13, 23, 13, 23, 13, 23, 13, 12, 13, 0, 13, 4, 13, 13, 13, 13, 0, 13, 17, 0, 13, 2, 2, 17, 17, 17, 0, 13, 4, 13, 2, 2, 13, 13, 17, 13, 0, 13, 4, 13, 2, 2, 13, 13, 17, 13, 18, 13, 2, 2, 13, 13, 17, 28, 13, 4, 13, 2, 13, 13, 0, 13, 4, 13, 2, 2, 13, 17, 13, 2, 13, 17, 13, 13, 13, 0, 13, 4, 13, 2, 2, 2, 13, 13, 17, 2, 2, 13, 17, 13, 2, 2, 13, 13, 17, 13, 13, 13, 0, 13, 2, 2, 13, 13, 13, 0, 13, 13, 4, 13, 13, 14, 2, 13, 17, 4, 13, 10, 12, 13, 10, 12, 13, 10, 12, 13, 10, 12, 13, 10, 12, 13, 10, 12, 13, 10, 12, 13, 10, 12, 13 ]
[ [ 25, 24 ], [ 40, 25 ], [ 28, 27 ], [ 40, 28 ], [ 24, 32 ], [ 36, 32 ], [ 27, 33 ], [ 38, 33 ], [ 40, 34 ], [ 36, 36 ], [ 38, 38 ], [ 40, 40 ], [ 45, 44 ], [ 66, 45 ], [ 48, 47 ], [ 66, 48 ], [ 44, 52 ], [ 62, 52 ], [ 47, 55 ], [ 64, 55 ], [ 66, 57 ], [ 66, 59 ], [ 66, 60 ], [ 62, 62 ], [ 64, 64 ], [ 66, 66 ], [ 111, 71 ], [ 111, 78 ], [ 83, 82 ], [ 109, 85 ], [ 111, 87 ], [ 113, 89 ], [ 82, 93 ], [ 82, 94 ], [ 113, 95 ], [ 109, 99 ], [ 109, 102 ], [ 111, 104 ], [ 113, 106 ], [ 113, 107 ], [ 109, 109 ], [ 111, 111 ], [ 113, 113 ], [ 118, 117 ], [ 158, 122 ], [ 128, 125 ], [ 117, 126 ], [ 158, 127 ], [ 377, 129 ], [ 162, 131 ], [ 160, 132 ], [ 135, 134 ], [ 158, 139 ], [ 144, 141 ], [ 117, 142 ], [ 134, 143 ], [ 383, 145 ], [ 117, 147 ], [ 134, 149 ], [ 134, 152 ], [ 160, 154 ], [ 117, 156 ], [ 158, 158 ], [ 160, 160 ], [ 162, 162 ], [ 167, 166 ], [ 201, 171 ], [ 177, 174 ], [ 166, 175 ], [ 180, 179 ], [ 201, 182 ], [ 189, 184 ], [ 166, 185 ], [ 179, 187 ], [ 179, 192 ], [ 166, 195 ], [ 179, 196 ], [ 203, 197 ], [ 166, 199 ], [ 201, 201 ], [ 203, 203 ], [ 247, 210 ], [ 215, 214 ], [ 247, 216 ], [ 241, 217 ], [ 220, 219 ], [ 249, 221 ], [ 243, 222 ], [ 225, 224 ], [ 249, 226 ], [ 241, 228 ], [ 243, 229 ], [ 383, 232 ], [ 383, 234 ], [ 214, 235 ], [ 219, 236 ], [ 245, 237 ], [ 224, 238 ], [ 245, 239 ], [ 241, 241 ], [ 243, 243 ], [ 245, 245 ], [ 247, 247 ], [ 249, 249 ], [ 254, 253 ], [ 362, 255 ], [ 254, 256 ], [ 254, 257 ], [ 254, 258 ], [ 261, 260 ], [ 264, 263 ], [ 271, 270 ], [ 374, 272 ], [ 253, 275 ], [ 256, 276 ], [ 263, 278 ], [ 281, 280 ], [ 368, 282 ], [ 253, 285 ], [ 256, 286 ], [ 263, 288 ], [ 270, 290 ], [ 253, 293 ], [ 256, 294 ], [ 298, 297 ], [ 253, 301 ], [ 257, 302 ], [ 305, 304 ], [ 380, 306 ], [ 258, 309 ], [ 297, 311 ], [ 258, 313 ], [ 263, 315 ], [ 270, 316 ], [ 280, 317 ], [ 320, 319 ], [ 380, 321 ], [ 253, 325 ], [ 256, 326 ], [ 258, 330 ], [ 297, 332 ], [ 256, 335 ], [ 258, 336 ], [ 263, 338 ], [ 270, 339 ], [ 280, 340 ], [ 343, 342 ], [ 304, 345 ], [ 319, 346 ], [ 263, 347 ], [ 350, 349 ], [ 263, 350 ], [ 349, 353 ], [ 342, 353 ], [ 260, 353 ], [ 371, 359 ] ]
[ "#!/usr/bin/python\n# -*- coding: UTF-8 -*-\n\nimport sys\n\n\ndef get_ints():\n return map(int, sys.stdin.readline().strip().split())\n\n\ndef mul(x, y, mod):\n x %= mod\n y %= mod\n return x * y % mod\n\n\ndef div(x, y, mod):\n x %= mod\n y %= mod\n return x * mod_pow(y, mod - 2, mod) % mod\n\n\ndef mod_pow(a, p, mod):\n if p == 0:\n return 1\n if p % 2 == 0:\n root = mod_pow(a, p / 2, mod)\n return root * root % mod\n else:\n return a * mod_pow(a, p - 1, mod) % mod\n\n\ndef pre_factorial_divs(n, mod, factorials):\n factorial_divs = [0] * (n + 1)\n\n factorial_divs[n] = div(1, factorials, mod)\n for i in reversed(range(n)):\n factorial_divs[i] = mul(factorial_divs[i+1], i+1, mod)\n return factorial_divs\n\n\ndef pre_factorials(n, mod):\n factorials = [0] * (n + 1)\n factorials[0] = 1\n for i in range(n):\n factorials[i + 1] = (i + 1) * factorials[i] % mod\n return factorials\n\n\ndef fast_fast_fermat_comb(a, b, mod, factorials, factorial_divs):\n if len(factorials) == 0:\n raise\n af = factorials[a]\n bf = factorial_divs[b]\n abf = factorial_divs[a - b]\n return mul(mul(af, bf, mod), abf, mod)\n\n\ndef main():\n h, w, a, b = get_ints()\n\n ans = 0\n mod = 10 ** 9 + 7\n\n factorials = pre_factorials(h+w-2, mod)\n factorial_divs = pre_factorial_divs(h+w-2, mod, factorials[h+w-2])\n\n for i in range(h-a):\n x = fast_fast_fermat_comb(b-1+i, b-1, mod, factorials, factorial_divs)\n y = fast_fast_fermat_comb(h+w-3-(b-1+i), w-b-1, mod, factorials, factorial_divs)\n ans += x * y % mod\n ans %= mod\n\n print(ans)\n\n\nif __name__ == \"__main__\":\n main()", "import sys", "sys", "def get_ints():\n return map(int, sys.stdin.readline().strip().split())", "get_ints", "return map(int, sys.stdin.readline().strip().split())", "map(int, sys.stdin.readline().strip().split())", "map", "int", "sys.stdin.readline().strip().split()", "sys.stdin.readline().strip().split", "sys.stdin.readline().strip()", "sys.stdin.readline().strip", "sys.stdin.readline()", "sys.stdin.readline", "sys.stdin", "sys", "stdin", "readline", "strip", "split", "def mul(x, y, mod):\n x %= mod\n y %= mod\n return x * y % mod", "mul", "x %= mod", "x", "mod", "y %= mod", "y", "mod", "return x * y % mod", "x * y % mod", "x * y", "x", "y", "mod", "x", "x", "y", "y", "mod", "mod", "def div(x, y, mod):\n x %= mod\n y %= mod\n return x * mod_pow(y, mod - 2, mod) % mod", "div", "x %= mod", "x", "mod", "y %= mod", "y", "mod", "return x * mod_pow(y, mod - 2, mod) % mod", "x * mod_pow(y, mod - 2, mod) % mod", "x * mod_pow(y, mod - 2, mod)", "x", "mod_pow(y, mod - 2, mod)", "mod_pow", "y", "mod - 2", "mod", "2", "mod", "mod", "x", "x", "y", "y", "mod", "mod", "def mod_pow(a, p, mod):\n if p == 0:\n return 1\n if p % 2 == 0:\n root = mod_pow(a, p / 2, mod)\n return root * root % mod\n else:\n return a * mod_pow(a, p - 1, mod) % mod", "mod_pow", "if p == 0:\n return 1\n ", "p == 0", "p", "0", "return 1", "1", "if p % 2 == 0:\n root = mod_pow(a, p / 2, mod)\n return root * root % mod\n else:\n return a * mod_pow(a, p - 1, mod) % mod", "p % 2 == 0", "p % 2", "p", "2", "0", "root = mod_pow(a, p / 2, mod)", "root", "mod_pow(a, p / 2, mod)", "mod_pow", "a", "p / 2", "p", "2", "mod", "return root * root % mod", "root * root % mod", "root * root", "root", "root", "mod", "return a * mod_pow(a, p - 1, mod) % mod", "a * mod_pow(a, p - 1, mod) % mod", "a * mod_pow(a, p - 1, mod)", "a", "mod_pow(a, p - 1, mod)", "mod_pow", "a", "p - 1", "p", "1", "mod", "mod", "a", "a", "p", "p", "mod", "mod", "def pre_factorial_divs(n, mod, factorials):\n factorial_divs = [0] * (n + 1)\n\n factorial_divs[n] = div(1, factorials, mod)\n for i in reversed(range(n)):\n factorial_divs[i] = mul(factorial_divs[i+1], i+1, mod)\n return factorial_divs", "pre_factorial_divs", "factorial_divs = [0] * (n + 1)", "factorial_divs", "[0] * (n + 1)", "[0]", "0", "n + 1", "n", "1", "factorial_divs[n] = div(1, factorials, mod)", "factorial_divs[n]", "factorial_divs", "n", "div(1, factorials, mod)", "div", "1", "factorials", "mod", "for i in reversed(range(n)):\n factorial_divs[i] = mul(factorial_divs[i+1], i+1, mod)\n ", "i", "reversed(range(n))", "reversed", "range(n)", "range", "n", "factorial_divs[i] = mul(factorial_divs[i+1], i+1, mod)", "factorial_divs[i]", "factorial_divs", "i", "mul(factorial_divs[i+1], i+1, mod)", "mul", "factorial_divs[i+1]", "factorial_divs", "i+1", "i", "1", "i+1", "i", "1", "mod", "return factorial_divs", "factorial_divs", "n", "n", "mod", "mod", "factorials", "factorials", "def pre_factorials(n, mod):\n factorials = [0] * (n + 1)\n factorials[0] = 1\n for i in range(n):\n factorials[i + 1] = (i + 1) * factorials[i] % mod\n return factorials", "pre_factorials", "factorials = [0] * (n + 1)", "factorials", "[0] * (n + 1)", "[0]", "0", "n + 1", "n", "1", "factorials[0] = 1", "factorials[0]", "factorials", "0", "1", "for i in range(n):\n factorials[i + 1] = (i + 1) * factorials[i] % mod\n ", "i", "range(n)", "range", "n", "factorials[i + 1] = (i + 1) * factorials[i] % mod", "factorials[i + 1]", "factorials", "i + 1", "i", "1", "(i + 1) * factorials[i] % mod", "(i + 1) * factorials[i]", "i + 1", "i", "1", "factorials[i]", "factorials", "i", "mod", "return factorials", "factorials", "n", "n", "mod", "mod", "def fast_fast_fermat_comb(a, b, mod, factorials, factorial_divs):\n if len(factorials) == 0:\n raise\n af = factorials[a]\n bf = factorial_divs[b]\n abf = factorial_divs[a - b]\n return mul(mul(af, bf, mod), abf, mod)", "fast_fast_fermat_comb", "if len(factorials) == 0:\n raise\n ", "len(factorials) == 0", "len(factorials)", "len", "factorials", "0", "raise", "af = factorials[a]", "af", "factorials[a]", "factorials", "a", "bf = factorial_divs[b]", "bf", "factorial_divs[b]", "factorial_divs", "b", "abf = factorial_divs[a - b]", "abf", "factorial_divs[a - b]", "factorial_divs", "a - b", "a", "b", "return mul(mul(af, bf, mod), abf, mod)", "mul(mul(af, bf, mod), abf, mod)", "mul", "mul(af, bf, mod)", "mul", "af", "bf", "mod", "abf", "mod", "a", "a", "b", "b", "mod", "mod", "factorials", "factorials", "factorial_divs", "factorial_divs", "def main():\n h, w, a, b = get_ints()\n\n ans = 0\n mod = 10 ** 9 + 7\n\n factorials = pre_factorials(h+w-2, mod)\n factorial_divs = pre_factorial_divs(h+w-2, mod, factorials[h+w-2])\n\n for i in range(h-a):\n x = fast_fast_fermat_comb(b-1+i, b-1, mod, factorials, factorial_divs)\n y = fast_fast_fermat_comb(h+w-3-(b-1+i), w-b-1, mod, factorials, factorial_divs)\n ans += x * y % mod\n ans %= mod\n\n print(ans)", "main", "h, w, a, b = get_ints()", "h", "get_ints()", "get_ints", "w", "a", "b", "ans = 0", "ans", "0", "mod = 10 ** 9 + 7", "mod", "10 ** 9 + 7", "10 ** 9", "10", "9", "7", "factorials = pre_factorials(h+w-2, mod)", "factorials", "pre_factorials(h+w-2, mod)", "pre_factorials", "h+w-2", "h+w", "h", "w", "2", "mod", "factorial_divs = pre_factorial_divs(h+w-2, mod, factorials[h+w-2])", "factorial_divs", "pre_factorial_divs(h+w-2, mod, factorials[h+w-2])", "pre_factorial_divs", "h+w-2", "h+w", "h", "w", "2", "mod", "factorials[h+w-2]", "factorials", "h+w-2", "h+w", "h", "w", "2", "for i in range(h-a):\n x = fast_fast_fermat_comb(b-1+i, b-1, mod, factorials, factorial_divs)\n y = fast_fast_fermat_comb(h+w-3-(b-1+i), w-b-1, mod, factorials, factorial_divs)\n ans += x * y % mod\n ans %= mod\n\n ", "i", "range(h-a)", "range", "h-a", "h", "a", "x = fast_fast_fermat_comb(b-1+i, b-1, mod, factorials, factorial_divs)", "x", "fast_fast_fermat_comb(b-1+i, b-1, mod, factorials, factorial_divs)", "fast_fast_fermat_comb", "b-1+i", "b-1", "b", "1", "i", "b-1", "b", "1", "mod", "factorials", "factorial_divs", "y = fast_fast_fermat_comb(h+w-3-(b-1+i), w-b-1, mod, factorials, factorial_divs)", "y", "fast_fast_fermat_comb(h+w-3-(b-1+i), w-b-1, mod, factorials, factorial_divs)", "fast_fast_fermat_comb", "h+w-3-(b-1+i)", "h+w-3", "h+w", "h", "w", "3", "b-1+i", "b-1", "b", "1", "i", "w-b-1", "w-b", "w", "b", "1", "mod", "factorials", "factorial_divs", "ans += x * y % mod", "ans", "x * y % mod", "x * y", "x", "y", "mod", "ans %= mod", "ans", "mod", "print(ans)", "print", "ans", "if __name__ == \"__main__\":\n main()", "__name__ == \"__main__\"", "__name__", "\"__main__\"", "main()", "main", "def get_ints():\n return map(int, sys.stdin.readline().strip().split())", "def get_ints():\n return map(int, sys.stdin.readline().strip().split())", "get_ints", "def mod_pow(a, p, mod):\n if p == 0:\n return 1\n if p % 2 == 0:\n root = mod_pow(a, p / 2, mod)\n return root * root % mod\n else:\n return a * mod_pow(a, p - 1, mod) % mod", "def mod_pow(a, p, mod):\n if p == 0:\n return 1\n if p % 2 == 0:\n root = mod_pow(a, p / 2, mod)\n return root * root % mod\n else:\n return a * mod_pow(a, p - 1, mod) % mod", "mod_pow", "def pre_factorial_divs(n, mod, factorials):\n factorial_divs = [0] * (n + 1)\n\n factorial_divs[n] = div(1, factorials, mod)\n for i in reversed(range(n)):\n factorial_divs[i] = mul(factorial_divs[i+1], i+1, mod)\n return factorial_divs", "def pre_factorial_divs(n, mod, factorials):\n factorial_divs = [0] * (n + 1)\n\n factorial_divs[n] = div(1, factorials, mod)\n for i in reversed(range(n)):\n factorial_divs[i] = mul(factorial_divs[i+1], i+1, mod)\n return factorial_divs", "pre_factorial_divs", "def main():\n h, w, a, b = get_ints()\n\n ans = 0\n mod = 10 ** 9 + 7\n\n factorials = pre_factorials(h+w-2, mod)\n factorial_divs = pre_factorial_divs(h+w-2, mod, factorials[h+w-2])\n\n for i in range(h-a):\n x = fast_fast_fermat_comb(b-1+i, b-1, mod, factorials, factorial_divs)\n y = fast_fast_fermat_comb(h+w-3-(b-1+i), w-b-1, mod, factorials, factorial_divs)\n ans += x * y % mod\n ans %= mod\n\n print(ans)", "def main():\n h, w, a, b = get_ints()\n\n ans = 0\n mod = 10 ** 9 + 7\n\n factorials = pre_factorials(h+w-2, mod)\n factorial_divs = pre_factorial_divs(h+w-2, mod, factorials[h+w-2])\n\n for i in range(h-a):\n x = fast_fast_fermat_comb(b-1+i, b-1, mod, factorials, factorial_divs)\n y = fast_fast_fermat_comb(h+w-3-(b-1+i), w-b-1, mod, factorials, factorial_divs)\n ans += x * y % mod\n ans %= mod\n\n print(ans)", "main", "def pre_factorials(n, mod):\n factorials = [0] * (n + 1)\n factorials[0] = 1\n for i in range(n):\n factorials[i + 1] = (i + 1) * factorials[i] % mod\n return factorials", "def pre_factorials(n, mod):\n factorials = [0] * (n + 1)\n factorials[0] = 1\n for i in range(n):\n factorials[i + 1] = (i + 1) * factorials[i] % mod\n return factorials", "pre_factorials", "def div(x, y, mod):\n x %= mod\n y %= mod\n return x * mod_pow(y, mod - 2, mod) % mod", "def div(x, y, mod):\n x %= mod\n y %= mod\n return x * mod_pow(y, mod - 2, mod) % mod", "div", "def fast_fast_fermat_comb(a, b, mod, factorials, factorial_divs):\n if len(factorials) == 0:\n raise\n af = factorials[a]\n bf = factorial_divs[b]\n abf = factorial_divs[a - b]\n return mul(mul(af, bf, mod), abf, mod)", "def fast_fast_fermat_comb(a, b, mod, factorials, factorial_divs):\n if len(factorials) == 0:\n raise\n af = factorials[a]\n bf = factorial_divs[b]\n abf = factorial_divs[a - b]\n return mul(mul(af, bf, mod), abf, mod)", "fast_fast_fermat_comb", "def mul(x, y, mod):\n x %= mod\n y %= mod\n return x * y % mod", "def mul(x, y, mod):\n x %= mod\n y %= mod\n return x * y % mod", "mul" ]
#!/usr/bin/python # -*- coding: UTF-8 -*- import sys def get_ints(): return map(int, sys.stdin.readline().strip().split()) def mul(x, y, mod): x %= mod y %= mod return x * y % mod def div(x, y, mod): x %= mod y %= mod return x * mod_pow(y, mod - 2, mod) % mod def mod_pow(a, p, mod): if p == 0: return 1 if p % 2 == 0: root = mod_pow(a, p / 2, mod) return root * root % mod else: return a * mod_pow(a, p - 1, mod) % mod def pre_factorial_divs(n, mod, factorials): factorial_divs = [0] * (n + 1) factorial_divs[n] = div(1, factorials, mod) for i in reversed(range(n)): factorial_divs[i] = mul(factorial_divs[i+1], i+1, mod) return factorial_divs def pre_factorials(n, mod): factorials = [0] * (n + 1) factorials[0] = 1 for i in range(n): factorials[i + 1] = (i + 1) * factorials[i] % mod return factorials def fast_fast_fermat_comb(a, b, mod, factorials, factorial_divs): if len(factorials) == 0: raise af = factorials[a] bf = factorial_divs[b] abf = factorial_divs[a - b] return mul(mul(af, bf, mod), abf, mod) def main(): h, w, a, b = get_ints() ans = 0 mod = 10 ** 9 + 7 factorials = pre_factorials(h+w-2, mod) factorial_divs = pre_factorial_divs(h+w-2, mod, factorials[h+w-2]) for i in range(h-a): x = fast_fast_fermat_comb(b-1+i, b-1, mod, factorials, factorial_divs) y = fast_fast_fermat_comb(h+w-3-(b-1+i), w-b-1, mod, factorials, factorial_divs) ans += x * y % mod ans %= mod print(ans) if __name__ == "__main__": main()
[ 7, 6, 13, 12, 13, 17, 0, 13, 2, 2, 17, 17, 17, 0, 13, 2, 17, 2, 17, 17, 0, 18, 13, 13, 2, 39, 17, 13, 0, 18, 13, 13, 2, 39, 17, 13, 0, 18, 13, 13, 2, 39, 17, 13, 0, 18, 18, 13, 13, 17, 17, 0, 18, 18, 13, 13, 17, 17, 0, 18, 18, 13, 13, 17, 17, 0, 18, 18, 13, 13, 17, 17, 0, 18, 18, 13, 13, 17, 17, 28, 13, 4, 13, 17, 13, 0, 18, 18, 13, 13, 13, 2, 2, 18, 18, 13, 13, 2, 13, 17, 13, 13, 0, 18, 18, 13, 13, 13, 2, 13, 2, 2, 18, 18, 13, 13, 2, 13, 13, 2, 13, 13, 13, 0, 18, 18, 13, 13, 13, 2, 2, 18, 18, 13, 13, 2, 13, 17, 18, 18, 13, 13, 13, 13, 23, 13, 12, 13, 0, 13, 2, 2, 17, 17, 17, 14, 2, 13, 13, 29, 17, 14, 2, 2, 13, 17, 2, 13, 17, 29, 17, 29, 2, 2, 18, 18, 13, 13, 13, 2, 2, 18, 18, 13, 13, 13, 18, 18, 13, 13, 2, 13, 13, 13, 13, 23, 13, 23, 13, 23, 13, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 4, 13, 0, 13, 17, 0, 13, 2, 2, 17, 17, 17, 28, 13, 4, 13, 2, 13, 13, 0, 13, 4, 18, 13, 13, 2, 2, 13, 17, 13, 13, 0, 13, 2, 2, 13, 17, 13, 0, 13, 2, 2, 13, 17, 13, 0, 13, 4, 18, 13, 13, 2, 13, 13, 13, 0, 13, 13, 0, 13, 13, 0, 13, 13, 4, 13, 13, 10, 4, 13, 10, 17, 13, 10, 4, 13, 10, 4, 13, 10, 13, 13, 10, 13, 13, 10, 4, 13, 10, 4, 13, 10, 13, 13, 10, 2, 13, 10, 4, 13, 10, 2, 13, 10, 2, 13, 10, 4, 13, 10, 6, 13 ]
[ [ 8, 7 ], [ 15, 14 ], [ 24, 21 ], [ 145, 22 ], [ 14, 27 ], [ 32, 29 ], [ 145, 30 ], [ 14, 35 ], [ 40, 37 ], [ 145, 38 ], [ 14, 43 ], [ 57, 45 ], [ 21, 46 ], [ 145, 47 ], [ 57, 52 ], [ 21, 53 ], [ 145, 54 ], [ 71, 59 ], [ 29, 60 ], [ 145, 61 ], [ 71, 66 ], [ 29, 67 ], [ 145, 68 ], [ 78, 73 ], [ 37, 74 ], [ 145, 75 ], [ 81, 80 ], [ 14, 84 ], [ 91, 86 ], [ 21, 87 ], [ 145, 88 ], [ 80, 90 ], [ 21, 94 ], [ 145, 95 ], [ 80, 98 ], [ 80, 100 ], [ 7, 101 ], [ 108, 103 ], [ 37, 104 ], [ 145, 105 ], [ 80, 107 ], [ 7, 109 ], [ 37, 113 ], [ 145, 114 ], [ 7, 117 ], [ 80, 118 ], [ 7, 120 ], [ 80, 121 ], [ 7, 122 ], [ 129, 124 ], [ 29, 125 ], [ 145, 126 ], [ 80, 128 ], [ 29, 132 ], [ 145, 133 ], [ 80, 136 ], [ 103, 138 ], [ 37, 139 ], [ 145, 140 ], [ 80, 142 ], [ 7, 143 ], [ 145, 145 ], [ 150, 149 ], [ 198, 157 ], [ 200, 158 ], [ 198, 164 ], [ 200, 167 ], [ 196, 176 ], [ 198, 178 ], [ 196, 183 ], [ 200, 185 ], [ 196, 188 ], [ 198, 191 ], [ 200, 192 ], [ 149, 193 ], [ 149, 194 ], [ 196, 196 ], [ 198, 198 ], [ 200, 200 ], [ 305, 202 ], [ 305, 211 ], [ 305, 212 ], [ 305, 213 ], [ 284, 215 ], [ 287, 219 ], [ 317, 222 ], [ 230, 229 ], [ 303, 233 ], [ 294, 234 ], [ 314, 236 ], [ 285, 239 ], [ 147, 240 ], [ 291, 243 ], [ 229, 245 ], [ 229, 246 ], [ 311, 248 ], [ 303, 251 ], [ 229, 253 ], [ 320, 255 ], [ 306, 258 ], [ 291, 260 ], [ 323, 262 ], [ 285, 265 ], [ 147, 266 ], [ 312, 268 ], [ 321, 269 ], [ 312, 270 ], [ 299, 272 ], [ 318, 273 ], [ 308, 275 ], [ 300, 276 ], [ 324, 276 ], [ 315, 276 ], [ 296, 278 ], [ 318, 279 ], [ 297, 282 ], [ 309, 282 ], [ 288, 282 ], [ 284, 285 ], [ 287, 288 ], [ 305, 291 ], [ 305, 294 ], [ 318, 296 ], [ 296, 297 ], [ 318, 299 ], [ 299, 300 ], [ 305, 303 ], [ 305, 306 ], [ 300, 308 ], [ 324, 308 ], [ 315, 308 ], [ 308, 309 ], [ 311, 312 ], [ 314, 315 ], [ 317, 318 ], [ 320, 321 ], [ 323, 324 ] ]
[ "class CombinationFermat:\n\n def __init__(self):\n \"\"\"O(MAX)で前計算しておく→以降comb(a,b)はO(1)で取得可能\n \"\"\"\n MOD = 10**9 + 7\n MAX = 2*10**5\n\n self.fac = [0]*MAX # self.fac[n]: (n!) mod p\n self.finv = [0]*MAX # self.finv[n]: (n!)^-1 mod p\n self.inv = [0]*MAX # inv[n]: (n)^-1 mod -p\n self.fac[0] = self.fac[1] = 1\n self.finv[0] = self.finv[1] = 1\n self.inv[1] = 1\n for i in range(2, MAX):\n self.fac[i] = self.fac[i-1] * i % MOD\n self.inv[i] = MOD - self.inv[MOD % i] * (MOD//i) % MOD\n self.finv[i] = self.finv[i-1] * self.inv[i] % MOD\n\n def comb(self, n: int, r: int) -> int:\n MOD = 10**9 + 7\n if n < r:\n return 0\n if n < 0 or r < 0:\n return 0\n return self.fac[n] * (self.finv[r] * self.finv[n-r] % MOD) % MOD\n\n\nH, W, A, B = map(int, input().split())\nc = CombinationFermat()\nans = 0\nMOD = 10**9 + 7\n\nfor i in range(H-A):\n x = c.comb(B-1+i, i)\n a = H-1-i\n b = W-1-B\n x *= c.comb(a+b, a)\n x %= MOD\n ans += x\nans %= MOD\nprint(ans)", "class CombinationFermat:\n\n def __init__(self):\n \"\"\"O(MAX)で前計算しておく→以降comb(a,b)はO(1)で取得可能\n \"\"\"\n MOD = 10**9 + 7\n MAX = 2*10**5\n\n self.fac = [0]*MAX # self.fac[n]: (n!) mod p\n self.finv = [0]*MAX # self.finv[n]: (n!)^-1 mod p\n self.inv = [0]*MAX # inv[n]: (n)^-1 mod -p\n self.fac[0] = self.fac[1] = 1\n self.finv[0] = self.finv[1] = 1\n self.inv[1] = 1\n for i in range(2, MAX):\n self.fac[i] = self.fac[i-1] * i % MOD\n self.inv[i] = MOD - self.inv[MOD % i] * (MOD//i) % MOD\n self.finv[i] = self.finv[i-1] * self.inv[i] % MOD\n\n def comb(self, n: int, r: int) -> int:\n MOD = 10**9 + 7\n if n < r:\n return 0\n if n < 0 or r < 0:\n return 0\n return self.fac[n] * (self.finv[r] * self.finv[n-r] % MOD) % MOD", "CombinationFermat", "def __init__(self):\n \"\"\"O(MAX)で前計算しておく→以降comb(a,b)はO(1)で取得可能\n \"\"\"\n MOD = 10**9 + 7\n MAX = 2*10**5\n\n self.fac = [0]*MAX # self.fac[n]: (n!) mod p\n self.finv = [0]*MAX # self.finv[n]: (n!)^-1 mod p\n self.inv = [0]*MAX # inv[n]: (n)^-1 mod -p\n self.fac[0] = self.fac[1] = 1\n self.finv[0] = self.finv[1] = 1\n self.inv[1] = 1\n for i in range(2, MAX):\n self.fac[i] = self.fac[i-1] * i % MOD\n self.inv[i] = MOD - self.inv[MOD % i] * (MOD//i) % MOD\n self.finv[i] = self.finv[i-1] * self.inv[i] % MOD\n\n ", "__init__", "\"\"\"O(MAX)で前計算しておく→以降comb(a,b)はO(1)で取得可能\n \"\"\"", "MOD = 10**9 + 7", "MOD", "10**9 + 7", "10**9", "10", "9", "7", "MAX = 2*10**5", "MAX", "2*10**5", "2", "10**5", "10", "5", "self.fac = [0]*MAX", "self.fac", "self", "fac", "[0]*MAX", "[0]", "0", "MAX", "self.finv = [0]*MAX", "self.finv", "self", "finv", "[0]*MAX", "[0]", "0", "MAX", "self.inv = [0]*MAX", "self.inv", "self", "inv", "[0]*MAX", "[0]", "0", "MAX", "self.fac[0] = self.fac[1] = 1", "self.fac[0]", "self.fac", "self", "fac", "0", "1", "= self.fac[1] = 1", "self.fac[1]", "self.fac", "self", "fac", "1", "1", "self.finv[0] = self.finv[1] = 1", "self.finv[0]", "self.finv", "self", "finv", "0", "1", "= self.finv[1] = 1", "self.finv[1]", "self.finv", "self", "finv", "1", "1", "self.inv[1] = 1", "self.inv[1]", "self.inv", "self", "inv", "1", "1", "for i in range(2, MAX):\n self.fac[i] = self.fac[i-1] * i % MOD\n self.inv[i] = MOD - self.inv[MOD % i] * (MOD//i) % MOD\n self.finv[i] = self.finv[i-1] * self.inv[i] % MOD\n\n ", "i", "range(2, MAX)", "range", "2", "MAX", "self.fac[i] = self.fac[i-1] * i % MOD", "self.fac[i]", "self.fac", "self", "fac", "i", "self.fac[i-1] * i % MOD", "self.fac[i-1] * i", "self.fac[i-1]", "self.fac", "self", "fac", "i-1", "i", "1", "i", "MOD", "self.inv[i] = MOD - self.inv[MOD % i] * (MOD//i) % MOD", "self.inv[i]", "self.inv", "self", "inv", "i", "MOD - self.inv[MOD % i] * (MOD//i) % MOD", "MOD", "self.inv[MOD % i] * (MOD//i) % MOD", "self.inv[MOD % i] * (MOD//i)", "self.inv[MOD % i]", "self.inv", "self", "inv", "MOD % i", "MOD", "i", "MOD//i", "MOD", "i", "MOD", "self.finv[i] = self.finv[i-1] * self.inv[i] % MOD", "self.finv[i]", "self.finv", "self", "finv", "i", "self.finv[i-1] * self.inv[i] % MOD", "self.finv[i-1] * self.inv[i]", "self.finv[i-1]", "self.finv", "self", "finv", "i-1", "i", "1", "self.inv[i]", "self.inv", "self", "inv", "i", "MOD", "self", "self", "def comb(self, n: int, r: int) -> int:\n MOD = 10**9 + 7\n if n < r:\n return 0\n if n < 0 or r < 0:\n return 0\n return self.fac[n] * (self.finv[r] * self.finv[n-r] % MOD) % MOD", "comb", "MOD = 10**9 + 7", "MOD", "10**9 + 7", "10**9", "10", "9", "7", "if n < r:\n return 0\n ", "n < r", "n", "r", "return 0", "0", "if n < 0 or r < 0:\n return 0\n ", "n < 0 or r < 0", "n < 0", "n", "0", "r < 0", "r", "0", "return 0", "0", "return self.fac[n] * (self.finv[r] * self.finv[n-r] % MOD) % MOD", "self.fac[n] * (self.finv[r] * self.finv[n-r] % MOD) % MOD", "self.fac[n] * (self.finv[r] * self.finv[n-r] % MOD)", "self.fac[n]", "self.fac", "self", "fac", "n", "self.finv[r] * self.finv[n-r] % MOD", "self.finv[r] * self.finv[n-r]", "self.finv[r]", "self.finv", "self", "finv", "r", "self.finv[n-r]", "self.finv", "self", "finv", "n-r", "n", "r", "MOD", "MOD", "self", "self", "n: int", "n", "r: int", "r", "H, W, A, B = map(int, input().split())", "H", "map(int, input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "c = CombinationFermat()", "c", "CombinationFermat()", "CombinationFermat", "ans = 0", "ans", "0", "MOD = 10**9 + 7", "MOD", "10**9 + 7", "10**9", "10", "9", "7", "for i in range(H-A):\n x = c.comb(B-1+i, i)\n a = H-1-i\n b = W-1-B\n x *= c.comb(a+b, a)\n x %= MOD\n ans += x", "i", "range(H-A)", "range", "H-A", "H", "A", "x = c.comb(B-1+i, i)", "x", "c.comb(B-1+i, i)", "c.comb", "c", "comb", "B-1+i", "B-1", "B", "1", "i", "i", "a = H-1-i", "a", "H-1-i", "H-1", "H", "1", "i", "b = W-1-B", "b", "W-1-B", "W-1", "W", "1", "B", "x *= c.comb(a+b, a)", "x", "c.comb(a+b, a)", "c.comb", "c", "comb", "a+b", "a", "b", "a", "x %= MOD", "x", "MOD", "ans += x", "ans", "x", "ans %= MOD", "ans", "MOD", "print(ans)", "print", "ans", "c = CombinationFermat()", "CombinationFermat()", "c", "ans = 0", "0", "ans", "B = map(int, input().split())", "map(int, input().split())", "B", "A, B = map(int, input().split())", "map(int, input().split())", "A", "ans %= MOD", "MOD", "ans", "x %= MOD", "MOD", "x", "H, W, A, B = map(int, input().split())", "map(int, input().split())", "H", "W, A, B = map(int, input().split())", "map(int, input().split())", "W", "ans += x", "x", "ans", "a = H-1-i", "H-1-i", "a", "x = c.comb(B-1+i, i)", "c.comb(B-1+i, i)", "x", "MOD = 10**9 + 7", "10**9 + 7", "MOD", "b = W-1-B", "W-1-B", "b", "x *= c.comb(a+b, a)", "c.comb(a+b, a)", "x", "class CombinationFermat:\n\n def __init__(self):\n \"\"\"O(MAX)で前計算しておく→以降comb(a,b)はO(1)で取得可能\n \"\"\"\n MOD = 10**9 + 7\n MAX = 2*10**5\n\n self.fac = [0]*MAX # self.fac[n]: (n!) mod p\n self.finv = [0]*MAX # self.finv[n]: (n!)^-1 mod p\n self.inv = [0]*MAX # inv[n]: (n)^-1 mod -p\n self.fac[0] = self.fac[1] = 1\n self.finv[0] = self.finv[1] = 1\n self.inv[1] = 1\n for i in range(2, MAX):\n self.fac[i] = self.fac[i-1] * i % MOD\n self.inv[i] = MOD - self.inv[MOD % i] * (MOD//i) % MOD\n self.finv[i] = self.finv[i-1] * self.inv[i] % MOD\n\n def comb(self, n: int, r: int) -> int:\n MOD = 10**9 + 7\n if n < r:\n return 0\n if n < 0 or r < 0:\n return 0\n return self.fac[n] * (self.finv[r] * self.finv[n-r] % MOD) % MOD", "class CombinationFermat:\n\n def __init__(self):\n \"\"\"O(MAX)で前計算しておく→以降comb(a,b)はO(1)で取得可能\n \"\"\"\n MOD = 10**9 + 7\n MAX = 2*10**5\n\n self.fac = [0]*MAX # self.fac[n]: (n!) mod p\n self.finv = [0]*MAX # self.finv[n]: (n!)^-1 mod p\n self.inv = [0]*MAX # inv[n]: (n)^-1 mod -p\n self.fac[0] = self.fac[1] = 1\n self.finv[0] = self.finv[1] = 1\n self.inv[1] = 1\n for i in range(2, MAX):\n self.fac[i] = self.fac[i-1] * i % MOD\n self.inv[i] = MOD - self.inv[MOD % i] * (MOD//i) % MOD\n self.finv[i] = self.finv[i-1] * self.inv[i] % MOD\n\n def comb(self, n: int, r: int) -> int:\n MOD = 10**9 + 7\n if n < r:\n return 0\n if n < 0 or r < 0:\n return 0\n return self.fac[n] * (self.finv[r] * self.finv[n-r] % MOD) % MOD", "CombinationFermat" ]
class CombinationFermat: def __init__(self): """O(MAX)で前計算しておく→以降comb(a,b)はO(1)で取得可能 """ MOD = 10**9 + 7 MAX = 2*10**5 self.fac = [0]*MAX # self.fac[n]: (n!) mod p self.finv = [0]*MAX # self.finv[n]: (n!)^-1 mod p self.inv = [0]*MAX # inv[n]: (n)^-1 mod -p self.fac[0] = self.fac[1] = 1 self.finv[0] = self.finv[1] = 1 self.inv[1] = 1 for i in range(2, MAX): self.fac[i] = self.fac[i-1] * i % MOD self.inv[i] = MOD - self.inv[MOD % i] * (MOD//i) % MOD self.finv[i] = self.finv[i-1] * self.inv[i] % MOD def comb(self, n: int, r: int) -> int: MOD = 10**9 + 7 if n < r: return 0 if n < 0 or r < 0: return 0 return self.fac[n] * (self.finv[r] * self.finv[n-r] % MOD) % MOD H, W, A, B = map(int, input().split()) c = CombinationFermat() ans = 0 MOD = 10**9 + 7 for i in range(H-A): x = c.comb(B-1+i, i) a = H-1-i b = W-1-B x *= c.comb(a+b, a) x %= MOD ans += x ans %= MOD print(ans)
[ 7, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 39, 17, 28, 13, 4, 13, 17, 2, 13, 13, 4, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 13, 13, 12, 13, 0, 13, 17, 42, 2, 13, 17, 14, 2, 13, 17, 0, 13, 2, 13, 13, 0, 13, 17, 29, 13, 23, 13, 23, 13, 23, 13, 0, 13, 2, 39, 17, 2, 13, 13, 0, 18, 13, 2, 2, 13, 13, 17, 4, 13, 18, 13, 2, 2, 13, 13, 17, 2, 13, 17, 13, 28, 13, 4, 13, 2, 2, 13, 13, 17, 17, 17, 0, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 2, 13, 17, 13, 12, 13, 29, 2, 2, 2, 18, 13, 13, 18, 13, 13, 18, 13, 2, 13, 13, 13, 23, 13, 23, 13, 0, 13, 17, 28, 13, 4, 13, 2, 13, 13, 0, 13, 2, 2, 4, 13, 2, 2, 2, 2, 13, 13, 17, 13, 13, 2, 13, 13, 4, 13, 2, 2, 2, 2, 2, 13, 17, 13, 13, 13, 17, 2, 13, 17, 13, 0, 13, 13, 4, 13, 13, 10, 39, 13, 10, 4, 13, 10, 12, 13, 10, 2, 13, 10, 2, 13, 10, 4, 13, 10, 4, 13, 10, 17, 13, 10, 2, 13, 10, 13, 13, 10, 12, 13, 10, 4, 13 ]
[ [ 237, 2 ], [ 237, 11 ], [ 237, 12 ], [ 237, 13 ], [ 228, 15 ], [ 204, 22 ], [ 27, 26 ], [ 220, 31 ], [ 238, 32 ], [ 205, 35 ], [ 205, 40 ], [ 26, 42 ], [ 26, 44 ], [ 229, 45 ], [ 50, 49 ], [ 72, 53 ], [ 65, 53 ], [ 72, 57 ], [ 65, 57 ], [ 61, 60 ], [ 70, 62 ], [ 60, 62 ], [ 74, 63 ], [ 66, 65 ], [ 49, 68 ], [ 70, 70 ], [ 72, 72 ], [ 74, 74 ], [ 213, 76 ], [ 220, 81 ], [ 238, 82 ], [ 91, 84 ], [ 214, 85 ], [ 220, 88 ], [ 238, 89 ], [ 235, 92 ], [ 205, 94 ], [ 220, 97 ], [ 238, 98 ], [ 229, 101 ], [ 229, 103 ], [ 106, 105 ], [ 220, 110 ], [ 238, 111 ], [ 119, 116 ], [ 214, 117 ], [ 105, 118 ], [ 214, 122 ], [ 105, 124 ], [ 105, 127 ], [ 229, 129 ], [ 205, 137 ], [ 149, 138 ], [ 214, 140 ], [ 151, 141 ], [ 214, 143 ], [ 149, 145 ], [ 151, 146 ], [ 229, 147 ], [ 149, 149 ], [ 151, 151 ], [ 225, 153 ], [ 157, 156 ], [ 238, 160 ], [ 223, 161 ], [ 216, 163 ], [ 211, 167 ], [ 220, 172 ], [ 208, 173 ], [ 223, 175 ], [ 156, 176 ], [ 223, 178 ], [ 156, 179 ], [ 211, 181 ], [ 208, 187 ], [ 238, 189 ], [ 223, 190 ], [ 156, 191 ], [ 208, 194 ], [ 229, 196 ], [ 231, 198 ], [ 229, 199 ], [ 232, 202 ], [ 217, 202 ], [ 226, 202 ], [ 204, 205 ], [ 237, 208 ], [ 213, 214 ], [ 216, 217 ], [ 237, 220 ], [ 237, 223 ], [ 225, 226 ], [ 228, 229 ], [ 229, 231 ], [ 231, 232 ], [ 237, 238 ] ]
[ "h, w, a, b = map(int, input().split())\n\nmod = 10**9+7\nfac = [1]\nfor n in range(1, h+w):\n\tfac.append(fac[n-1]*n%mod)\n\ndef modpow(a,n,mod):\n\tr=1\n\twhile n>0:\n\t\tif n&1:\tr = r*(a%mod)\n\t\ta *= a%mod\n\t\tn >>= 1\n\treturn r\n\ninvfac = [0] * (h+w)\ninvfac[h+w-1] = modpow(fac[h+w-1], mod-2, mod)\nfor n in range(h+w-2, -1, -1):\n\tinvfac[n] = invfac[n+1] * (n+1) % mod\n\ndef com(a,b):\n\treturn fac[a] * invfac[b] * invfac[a-b] % mod\n\nr=0\nfor i in range(w-b):\n\tr += com( h-a-1+b+i, b+i ) * com( a-1+w-b-i-1, a-1 ) % mod\n\tr %= mod\n\nprint(r)", "h, w, a, b = map(int, input().split())", "h", "map(int, input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "w", "a", "b", "mod = 10**9+7", "mod", "10**9+7", "10**9", "10", "9", "7", "fac = [1]", "fac", "[1]", "1", "for n in range(1, h+w):\n\tfac.append(fac[n-1]*n%mod)", "n", "range(1, h+w)", "range", "1", "h+w", "h", "w", "fac.append(fac[n-1]*n%mod)", "fac.append", "fac", "append", "fac[n-1]*n%mod", "fac[n-1]*n", "fac[n-1]", "fac", "n-1", "n", "1", "n", "mod", "def modpow(a,n,mod):\n\tr=1\n\twhile n>0:\n\t\tif n&1:\tr = r*(a%mod)\n\t\ta *= a%mod\n\t\tn >>= 1\n\treturn r", "modpow", "r=1", "r", "1", "while n>0:\n\t\tif n&1:\tr = r*(a%mod)\n\t\ta *= a%mod\n\t\tn >>= 1\n\t", "n>0", "n", "0", "if n&1:\tr = r*(a%mod)\n\t\t", "n&1", "n", "1", "a *= a%mod", "a", "a%mod", "a", "mod", "n >>= 1", "n", "1", "return r", "r", "a", "a", "n", "n", "mod", "mod", "invfac = [0] * (h+w)", "invfac", "[0] * (h+w)", "[0]", "0", "h+w", "h", "w", "invfac[h+w-1] = modpow(fac[h+w-1], mod-2, mod)", "invfac[h+w-1]", "invfac", "h+w-1", "h+w", "h", "w", "1", "modpow(fac[h+w-1], mod-2, mod)", "modpow", "fac[h+w-1]", "fac", "h+w-1", "h+w", "h", "w", "1", "mod-2", "mod", "2", "mod", "for n in range(h+w-2, -1, -1):\n\tinvfac[n] = invfac[n+1] * (n+1) % mod", "n", "range(h+w-2, -1, -1)", "range", "h+w-2", "h+w", "h", "w", "2", "-1", "-1", "invfac[n] = invfac[n+1] * (n+1) % mod", "invfac[n]", "invfac", "n", "invfac[n+1] * (n+1) % mod", "invfac[n+1] * (n+1)", "invfac[n+1]", "invfac", "n+1", "n", "1", "n+1", "n", "1", "mod", "def com(a,b):\n\treturn fac[a] * invfac[b] * invfac[a-b] % mod", "com", "return fac[a] * invfac[b] * invfac[a-b] % mod", "fac[a] * invfac[b] * invfac[a-b] % mod", "fac[a] * invfac[b] * invfac[a-b]", "fac[a] * invfac[b]", "fac[a]", "fac", "a", "invfac[b]", "invfac", "b", "invfac[a-b]", "invfac", "a-b", "a", "b", "mod", "a", "a", "b", "b", "r=0", "r", "0", "for i in range(w-b):\n\tr += com( h-a-1+b+i, b+i ) * com( a-1+w-b-i-1, a-1 ) % mod\n\tr %= mod", "i", "range(w-b)", "range", "w-b", "w", "b", "r += com( h-a-1+b+i, b+i ) * com( a-1+w-b-i-1, a-1 ) % mod", "r", "com( h-a-1+b+i, b+i ) * com( a-1+w-b-i-1, a-1 ) % mod", "com( h-a-1+b+i, b+i ) * com( a-1+w-b-i-1, a-1 )", "com( h-a-1+b+i, b+i )", "com", "h-a-1+b+i", "h-a-1+b", "h-a-1", "h-a", "h", "a", "1", "b", "i", "b+i", "b", "i", "com( a-1+w-b-i-1, a-1 )", "com", "a-1+w-b-i-1", "a-1+w-b-i", "a-1+w-b", "a-1+w", "a-1", "a", "1", "w", "b", "i", "1", "a-1", "a", "1", "mod", "r %= mod", "r", "mod", "print(r)", "print", "r", "fac = [1]", "[1]", "fac", "a, b = map(int, input().split())", "map(int, input().split())", "a", "def com(a,b):\n\treturn fac[a] * invfac[b] * invfac[a-b] % mod", "def com(a,b):\n\treturn fac[a] * invfac[b] * invfac[a-b] % mod", "com", "invfac = [0] * (h+w)", "[0] * (h+w)", "invfac", "r += com( h-a-1+b+i, b+i ) * com( a-1+w-b-i-1, a-1 ) % mod", "com( h-a-1+b+i, b+i ) * com( a-1+w-b-i-1, a-1 ) % mod", "r", "h, w, a, b = map(int, input().split())", "map(int, input().split())", "h", "b = map(int, input().split())", "map(int, input().split())", "b", "r=0", "0", "r", "mod = 10**9+7", "10**9+7", "mod", "r %= mod", "mod", "r", "def modpow(a,n,mod):\n\tr=1\n\twhile n>0:\n\t\tif n&1:\tr = r*(a%mod)\n\t\ta *= a%mod\n\t\tn >>= 1\n\treturn r", "def modpow(a,n,mod):\n\tr=1\n\twhile n>0:\n\t\tif n&1:\tr = r*(a%mod)\n\t\ta *= a%mod\n\t\tn >>= 1\n\treturn r", "modpow", "w, a, b = map(int, input().split())", "map(int, input().split())", "w" ]
h, w, a, b = map(int, input().split()) mod = 10**9+7 fac = [1] for n in range(1, h+w): fac.append(fac[n-1]*n%mod) def modpow(a,n,mod): r=1 while n>0: if n&1: r = r*(a%mod) a *= a%mod n >>= 1 return r invfac = [0] * (h+w) invfac[h+w-1] = modpow(fac[h+w-1], mod-2, mod) for n in range(h+w-2, -1, -1): invfac[n] = invfac[n+1] * (n+1) % mod def com(a,b): return fac[a] * invfac[b] * invfac[a-b] % mod r=0 for i in range(w-b): r += com( h-a-1+b+i, b+i ) * com( a-1+w-b-i-1, a-1 ) % mod r %= mod print(r)
[ 7, 15, 13, 15, 0, 13, 2, 2, 17, 17, 17, 14, 2, 13, 17, 0, 39, 13, 13, 13, 13, 4, 13, 13, 4, 18, 4, 13, 13, 0, 13, 2, 39, 17, 2, 13, 13, 0, 18, 13, 17, 17, 0, 18, 13, 17, 17, 0, 13, 2, 39, 17, 2, 13, 13, 0, 18, 13, 17, 17, 0, 18, 13, 17, 17, 28, 13, 4, 13, 17, 2, 13, 13, 0, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 13, 13, 0, 18, 13, 13, 4, 13, 18, 13, 13, 2, 13, 17, 13, 12, 13, 0, 13, 4, 13, 13, 2, 13, 13, 0, 13, 18, 13, 13, 0, 13, 2, 2, 18, 13, 13, 18, 13, 2, 13, 13, 13, 29, 2, 2, 13, 13, 13, 23, 13, 23, 13, 0, 13, 17, 28, 13, 4, 13, 2, 13, 13, 0, 13, 2, 13, 2, 13, 17, 0, 13, 2, 2, 2, 13, 13, 17, 2, 2, 13, 13, 17, 0, 13, 2, 2, 13, 2, 4, 13, 13, 2, 13, 17, 4, 13, 13, 2, 2, 13, 13, 17, 13, 4, 13, 13, 10, 17, 13, 10, 2, 13, 10, 2, 13, 10, 2, 13, 10, 2, 13, 10, 2, 13, 10, 2, 13, 10, 12, 13 ]
[ [ 198, 5 ], [ 21, 16 ], [ 204, 30 ], [ 41, 38 ], [ 205, 39 ], [ 46, 43 ], [ 205, 44 ], [ 207, 48 ], [ 59, 56 ], [ 208, 57 ], [ 64, 61 ], [ 208, 62 ], [ 67, 66 ], [ 77, 74 ], [ 205, 75 ], [ 66, 76 ], [ 205, 80 ], [ 66, 82 ], [ 66, 84 ], [ 199, 85 ], [ 90, 87 ], [ 208, 88 ], [ 66, 89 ], [ 74, 92 ], [ 205, 93 ], [ 66, 94 ], [ 199, 96 ], [ 199, 98 ], [ 103, 102 ], [ 136, 105 ], [ 134, 107 ], [ 136, 108 ], [ 111, 110 ], [ 205, 112 ], [ 134, 113 ], [ 116, 115 ], [ 208, 119 ], [ 102, 120 ], [ 136, 120 ], [ 208, 122 ], [ 134, 124 ], [ 102, 125 ], [ 136, 125 ], [ 199, 126 ], [ 110, 130 ], [ 115, 131 ], [ 199, 132 ], [ 134, 134 ], [ 136, 136 ], [ 192, 138 ], [ 142, 141 ], [ 201, 148 ], [ 141, 150 ], [ 210, 155 ], [ 141, 165 ], [ 195, 168 ], [ 193, 171 ], [ 196, 171 ], [ 214, 174 ], [ 202, 175 ], [ 214, 180 ], [ 211, 181 ], [ 141, 185 ], [ 199, 187 ], [ 196, 190 ], [ 193, 190 ], [ 192, 193 ], [ 195, 196 ], [ 198, 199 ], [ 201, 202 ], [ 204, 205 ], [ 207, 208 ], [ 210, 211 ] ]
[ "import operator as op\nfrom functools import reduce\n\nMODULUS = 10**9 + 7\n\nif __name__ == '__main__':\n [h, w, a, b] = map(int, input().split())\n\n # Taken from https://atcoder.jp/contests/abc042/submissions/3178794 for learning purposes.\n factorial = [0] * (h+w)\n factorial[0] = 1\n factorial[1] = 1\n inverse = [0] * (h+w)\n inverse[0] = 1\n inverse[1] = 1\n for i in range(2, h+w):\n factorial[i] = factorial[i-1] * i % MODULUS\n # フェルマーの小定理から(x! ** mod-2 % mod == x! ** -1 % mod)\n # powに第三引数入れると冪乗のmod付計算を高速にやってくれる\n inverse[i] = pow(factorial[i], MODULUS-2, MODULUS)\n \n # 組み合わせの数だけ返してくれる関数(自作)\n def ncr(n, r):\n # 10C7 = 10C3\n r = min(r, n-r)\n # 分子の計算\n numerator = factorial[n]\n # 分母の計算\n denominator = inverse[r] * inverse[n-r] % MODULUS\n return numerator * denominator % MODULUS\n\n res = 0\n for i in range(h-a):\n rights_and_downs_to_right_border_of_forbidden_area = i + (b-1)\n\n rights_and_downs_from_right_border_of_forbidden_area = (w - b - 1) + (h - i - 1) \n res = (res + ncr( rights_and_downs_to_right_border_of_forbidden_area, b-1 ) \\\n * ncr( rights_and_downs_from_right_border_of_forbidden_area, (h - i - 1) )) % MODULUS\n\n\n print(res)", "import operator as op", "operator", "from functools import reduce", "MODULUS = 10**9 + 7", "MODULUS", "10**9 + 7", "10**9", "10", "9", "7", "if __name__ == '__main__':\n [h, w, a, b] = map(int, input().split())\n\n # Taken from https://atcoder.jp/contests/abc042/submissions/3178794 for learning purposes.\n factorial = [0] * (h+w)\n factorial[0] = 1\n factorial[1] = 1\n inverse = [0] * (h+w)\n inverse[0] = 1\n inverse[1] = 1\n for i in range(2, h+w):\n factorial[i] = factorial[i-1] * i % MODULUS\n # フェルマーの小定理から(x! ** mod-2 % mod == x! ** -1 % mod)\n # powに第三引数入れると冪乗のmod付計算を高速にやってくれる\n inverse[i] = pow(factorial[i], MODULUS-2, MODULUS)\n \n # 組み合わせの数だけ返してくれる関数(自作)\n def ncr(n, r):\n # 10C7 = 10C3\n r = min(r, n-r)\n # 分子の計算\n numerator = factorial[n]\n # 分母の計算\n denominator = inverse[r] * inverse[n-r] % MODULUS\n return numerator * denominator % MODULUS\n\n res = 0\n for i in range(h-a):\n rights_and_downs_to_right_border_of_forbidden_area = i + (b-1)\n\n rights_and_downs_from_right_border_of_forbidden_area = (w - b - 1) + (h - i - 1) \n res = (res + ncr( rights_and_downs_to_right_border_of_forbidden_area, b-1 ) \\\n * ncr( rights_and_downs_from_right_border_of_forbidden_area, (h - i - 1) )) % MODULUS\n\n\n print(res)", "__name__ == '__main__'", "__name__", "'__main__'", "[h, w, a, b] = map(int, input().split())", "[h, w, a, b]", "h", "w", "a", "b", "map(int, input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "factorial = [0] * (h+w)", "factorial", "[0] * (h+w)", "[0]", "0", "h+w", "h", "w", "factorial[0] = 1", "factorial[0]", "factorial", "0", "1", "factorial[1] = 1", "factorial[1]", "factorial", "1", "1", "inverse = [0] * (h+w)", "inverse", "[0] * (h+w)", "[0]", "0", "h+w", "h", "w", "inverse[0] = 1", "inverse[0]", "inverse", "0", "1", "inverse[1] = 1", "inverse[1]", "inverse", "1", "1", "for i in range(2, h+w):\n factorial[i] = factorial[i-1] * i % MODULUS\n # フェルマーの小定理から(x! ** mod-2 % mod == x! ** -1 % mod)\n # powに第三引数入れると冪乗のmod付計算を高速にやってくれる\n inverse[i] = pow(factorial[i], MODULUS-2, MODULUS)\n \n # 組み合わせの数だけ返してくれる関数(自作)\n ", "i", "range(2, h+w)", "range", "2", "h+w", "h", "w", "factorial[i] = factorial[i-1] * i % MODULUS", "factorial[i]", "factorial", "i", "factorial[i-1] * i % MODULUS", "factorial[i-1] * i", "factorial[i-1]", "factorial", "i-1", "i", "1", "i", "MODULUS", "inverse[i] = pow(factorial[i], MODULUS-2, MODULUS)", "inverse[i]", "inverse", "i", "pow(factorial[i], MODULUS-2, MODULUS)", "pow", "factorial[i]", "factorial", "i", "MODULUS-2", "MODULUS", "2", "MODULUS", "def ncr(n, r):\n # 10C7 = 10C3\n r = min(r, n-r)\n # 分子の計算\n numerator = factorial[n]\n # 分母の計算\n denominator = inverse[r] * inverse[n-r] % MODULUS\n return numerator * denominator % MODULUS\n\n ", "ncr", "r = min(r, n-r)", "r", "min(r, n-r)", "min", "r", "n-r", "n", "r", "numerator = factorial[n]", "numerator", "factorial[n]", "factorial", "n", "denominator = inverse[r] * inverse[n-r] % MODULUS", "denominator", "inverse[r] * inverse[n-r] % MODULUS", "inverse[r] * inverse[n-r]", "inverse[r]", "inverse", "r", "inverse[n-r]", "inverse", "n-r", "n", "r", "MODULUS", "return numerator * denominator % MODULUS", "numerator * denominator % MODULUS", "numerator * denominator", "numerator", "denominator", "MODULUS", "n", "n", "r", "r", "res = 0", "res", "0", "for i in range(h-a):\n rights_and_downs_to_right_border_of_forbidden_area = i + (b-1)\n\n rights_and_downs_from_right_border_of_forbidden_area = (w - b - 1) + (h - i - 1) \n res = (res + ncr( rights_and_downs_to_right_border_of_forbidden_area, b-1 ) \\\n * ncr( rights_and_downs_from_right_border_of_forbidden_area, (h - i - 1) )) % MODULUS\n\n\n ", "i", "range(h-a)", "range", "h-a", "h", "a", "rights_and_downs_to_right_border_of_forbidden_area = i + (b-1)", "rights_and_downs_to_right_border_of_forbidden_area", "i + (b-1)", "i", "b-1", "b", "1", "rights_and_downs_from_right_border_of_forbidden_area = (w - b - 1) + (h - i - 1)", "rights_and_downs_from_right_border_of_forbidden_area", "(w - b - 1) + (h - i - 1)", "w - b - 1", "w - b", "w", "b", "1", "h - i - 1", "h - i", "h", "i", "1", "res = (res + ncr( rights_and_downs_to_right_border_of_forbidden_area, b-1 ) \\\n * ncr( rights_and_downs_from_right_border_of_forbidden_area, (h - i - 1) )) % MODULUS", "res", "(res + ncr( rights_and_downs_to_right_border_of_forbidden_area, b-1 ) \\\n * ncr( rights_and_downs_from_right_border_of_forbidden_area, (h - i - 1) )) % MODULUS", "res + ncr( rights_and_downs_to_right_border_of_forbidden_area, b-1 ) \\\n * ncr( rights_and_downs_from_right_border_of_forbidden_area, (h - i - 1) )", "res", "ncr( rights_and_downs_to_right_border_of_forbidden_area, b-1 ) \\\n * ncr( rights_and_downs_from_right_border_of_forbidden_area, (h - i - 1) )", "ncr( rights_and_downs_to_right_border_of_forbidden_area, b-1 )", "ncr", "rights_and_downs_to_right_border_of_forbidden_area", "b-1", "b", "1", "ncr( rights_and_downs_from_right_border_of_forbidden_area, (h - i - 1) )", "ncr", "rights_and_downs_from_right_border_of_forbidden_area", "h - i - 1", "h - i", "h", "i", "1", "MODULUS", "print(res)", "print", "res", "res = 0", "0", "res", "res = (res + ncr( rights_and_downs_to_right_border_of_forbidden_area, b-1 ) \\\n * ncr( rights_and_downs_from_right_border_of_forbidden_area, (h - i - 1) )) % MODULUS", "(res + ncr( rights_and_downs_to_right_border_of_forbidden_area, b-1 ) \\\n * ncr( rights_and_downs_from_right_border_of_forbidden_area, (h - i - 1) )) % MODULUS", "res", "MODULUS = 10**9 + 7", "10**9 + 7", "MODULUS", "rights_and_downs_to_right_border_of_forbidden_area = i + (b-1)", "i + (b-1)", "rights_and_downs_to_right_border_of_forbidden_area", "factorial = [0] * (h+w)", "[0] * (h+w)", "factorial", "inverse = [0] * (h+w)", "[0] * (h+w)", "inverse", "rights_and_downs_from_right_border_of_forbidden_area = (w - b - 1) + (h - i - 1)", "(w - b - 1) + (h - i - 1)", "rights_and_downs_from_right_border_of_forbidden_area", "def ncr(n, r):\n # 10C7 = 10C3\n r = min(r, n-r)\n # 分子の計算\n numerator = factorial[n]\n # 分母の計算\n denominator = inverse[r] * inverse[n-r] % MODULUS\n return numerator * denominator % MODULUS\n\n ", "def ncr(n, r):\n # 10C7 = 10C3\n r = min(r, n-r)\n # 分子の計算\n numerator = factorial[n]\n # 分母の計算\n denominator = inverse[r] * inverse[n-r] % MODULUS\n return numerator * denominator % MODULUS\n\n ", "ncr" ]
import operator as op from functools import reduce MODULUS = 10**9 + 7 if __name__ == '__main__': [h, w, a, b] = map(int, input().split()) # Taken from https://atcoder.jp/contests/abc042/submissions/3178794 for learning purposes. factorial = [0] * (h+w) factorial[0] = 1 factorial[1] = 1 inverse = [0] * (h+w) inverse[0] = 1 inverse[1] = 1 for i in range(2, h+w): factorial[i] = factorial[i-1] * i % MODULUS # フェルマーの小定理から(x! ** mod-2 % mod == x! ** -1 % mod) # powに第三引数入れると冪乗のmod付計算を高速にやってくれる inverse[i] = pow(factorial[i], MODULUS-2, MODULUS) # 組み合わせの数だけ返してくれる関数(自作) def ncr(n, r): # 10C7 = 10C3 r = min(r, n-r) # 分子の計算 numerator = factorial[n] # 分母の計算 denominator = inverse[r] * inverse[n-r] % MODULUS return numerator * denominator % MODULUS res = 0 for i in range(h-a): rights_and_downs_to_right_border_of_forbidden_area = i + (b-1) rights_and_downs_from_right_border_of_forbidden_area = (w - b - 1) + (h - i - 1) res = (res + ncr( rights_and_downs_to_right_border_of_forbidden_area, b-1 ) \ * ncr( rights_and_downs_from_right_border_of_forbidden_area, (h - i - 1) )) % MODULUS print(res)
[ 7, 0, 13, 2, 2, 17, 17, 17, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 17, 0, 13, 17, 28, 13, 4, 13, 2, 13, 17, 0, 13, 2, 2, 2, 13, 2, 2, 2, 2, 13, 13, 13, 17, 13, 4, 13, 2, 13, 17, 2, 13, 17, 13, 13, 0, 13, 2, 28, 13, 4, 13, 17, 2, 13, 13, 0, 13, 2, 2, 2, 2, 13, 2, 2, 13, 17, 13, 2, 13, 13, 4, 13, 2, 13, 2, 2, 2, 2, 13, 13, 13, 17, 13, 2, 13, 17, 13, 13, 0, 13, 13, 4, 13, 2, 13, 13, 10, 17, 13, 10, 4, 13, 10, 2, 13, 10, 2, 13, 10, 2, 13, 10, 4, 13, 10, 17, 13, 10, 4, 13, 10, 2, 13, 10, 13, 13, 10, 4, 13 ]
[ [ 124, 2 ], [ 142, 9 ], [ 142, 18 ], [ 142, 19 ], [ 142, 20 ], [ 112, 22 ], [ 130, 25 ], [ 29, 28 ], [ 128, 32 ], [ 136, 35 ], [ 113, 39 ], [ 119, 39 ], [ 116, 44 ], [ 128, 45 ], [ 134, 46 ], [ 28, 48 ], [ 28, 52 ], [ 125, 55 ], [ 125, 57 ], [ 125, 58 ], [ 136, 60 ], [ 64, 63 ], [ 128, 68 ], [ 143, 69 ], [ 121, 71 ], [ 119, 76 ], [ 113, 76 ], [ 122, 76 ], [ 134, 79 ], [ 63, 81 ], [ 128, 83 ], [ 63, 84 ], [ 63, 88 ], [ 116, 93 ], [ 128, 94 ], [ 134, 95 ], [ 63, 97 ], [ 125, 99 ], [ 125, 101 ], [ 125, 102 ], [ 139, 104 ], [ 122, 105 ], [ 119, 105 ], [ 113, 105 ], [ 140, 109 ], [ 137, 109 ], [ 131, 109 ], [ 125, 110 ], [ 112, 113 ], [ 142, 116 ], [ 136, 119 ], [ 121, 122 ], [ 124, 125 ], [ 142, 128 ], [ 130, 131 ], [ 142, 134 ], [ 136, 137 ], [ 122, 139 ], [ 119, 139 ], [ 113, 139 ], [ 139, 140 ], [ 142, 143 ] ]
[ "M=10**9+7\nH,W,A,B = map(int,input().split())\nC = 1\nans = 1\n\nfor I in range(H-1):\n ans = C = C*(W+H-B-2-I)*pow(I+1,M-2,M)%M\n\nfor I in range(1,H-A):\n C = C*(B-1+I)*(H-I)*pow(I*(W+H-B-1-I),M-2,M)%M\n ans+=C\n\nprint(ans%M)", "M=10**9+7", "M", "10**9+7", "10**9", "10", "9", "7", "H,W,A,B = map(int,input().split())", "H", "map(int,input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "C = 1", "C", "1", "ans = 1", "ans", "1", "for I in range(H-1):\n ans = C = C*(W+H-B-2-I)*pow(I+1,M-2,M)%M", "I", "range(H-1)", "range", "H-1", "H", "1", "ans = C = C*(W+H-B-2-I)*pow(I+1,M-2,M)%M", "ans", "C*(W+H-B-2-I)*pow(I+1,M-2,M)%M", "C*(W+H-B-2-I)*pow(I+1,M-2,M)", "C*(W+H-B-2-I)", "C", "W+H-B-2-I", "W+H-B-2", "W+H-B", "W+H", "W", "H", "B", "2", "I", "pow(I+1,M-2,M)", "pow", "I+1", "I", "1", "M-2", "M", "2", "M", "M", "= C = C*(W+H-B-2-I)*pow(I+1,M-2,M)%M", "C", "C*(W+H-B-2-I)*pow(I+1,M-2,M)%M", "for I in range(1,H-A):\n C = C*(B-1+I)*(H-I)*pow(I*(W+H-B-1-I),M-2,M)%M\n ans+=C", "I", "range(1,H-A)", "range", "1", "H-A", "H", "A", "C = C*(B-1+I)*(H-I)*pow(I*(W+H-B-1-I),M-2,M)%M", "C", "C*(B-1+I)*(H-I)*pow(I*(W+H-B-1-I),M-2,M)%M", "C*(B-1+I)*(H-I)*pow(I*(W+H-B-1-I),M-2,M)", "C*(B-1+I)*(H-I)", "C*(B-1+I)", "C", "B-1+I", "B-1", "B", "1", "I", "H-I", "H", "I", "pow(I*(W+H-B-1-I),M-2,M)", "pow", "I*(W+H-B-1-I)", "I", "W+H-B-1-I", "W+H-B-1", "W+H-B", "W+H", "W", "H", "B", "1", "I", "M-2", "M", "2", "M", "M", "ans+=C", "ans", "C", "print(ans%M)", "print", "ans%M", "ans", "M", "C = 1", "1", "C", "W,A,B = map(int,input().split())", "map(int,input().split())", "W", "C = C*(W+H-B-2-I)*pow(I+1,M-2,M)%M", "C*(W+H-B-2-I)*pow(I+1,M-2,M)%M", "C", "C = C*(B-1+I)*(H-I)*pow(I*(W+H-B-1-I),M-2,M)%M", "C*(B-1+I)*(H-I)*pow(I*(W+H-B-1-I),M-2,M)%M", "C", "M=10**9+7", "10**9+7", "M", "H,W,A,B = map(int,input().split())", "map(int,input().split())", "H", "ans = 1", "1", "ans", "B = map(int,input().split())", "map(int,input().split())", "B", "ans = C = C*(W+H-B-2-I)*pow(I+1,M-2,M)%M", "C*(W+H-B-2-I)*pow(I+1,M-2,M)%M", "ans", "ans+=C", "C", "ans", "A,B = map(int,input().split())", "map(int,input().split())", "A" ]
M=10**9+7 H,W,A,B = map(int,input().split()) C = 1 ans = 1 for I in range(H-1): ans = C = C*(W+H-B-2-I)*pow(I+1,M-2,M)%M for I in range(1,H-A): C = C*(B-1+I)*(H-I)*pow(I*(W+H-B-1-I),M-2,M)%M ans+=C print(ans%M)
[ 7, 0, 13, 2, 2, 17, 17, 17, 41, 28, 13, 4, 13, 17, 4, 17, 0, 13, 13, 41, 28, 13, 4, 13, 17, 4, 17, 0, 13, 13, 41, 28, 13, 4, 13, 17, 4, 17, 0, 13, 13, 28, 13, 4, 13, 17, 17, 0, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 13, 13, 0, 18, 13, 13, 2, 2, 13, 2, 18, 13, 2, 13, 13, 2, 13, 13, 13, 0, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 18, 13, 13, 13, 12, 13, 29, 2, 2, 2, 18, 13, 13, 18, 13, 13, 18, 13, 2, 13, 13, 13, 23, 13, 23, 13, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 17, 28, 13, 4, 13, 2, 13, 13, 0, 13, 2, 4, 13, 2, 2, 2, 2, 13, 13, 13, 13, 17, 2, 13, 17, 4, 13, 2, 2, 2, 2, 2, 13, 13, 17, 13, 13, 17, 2, 2, 13, 13, 17, 0, 13, 13, 4, 13, 13, 10, 4, 13, 10, 4, 13, 10, 2, 13, 10, 4, 13, 10, 13, 13, 10, 17, 13, 10, 13, 13, 10, 13, 13, 10, 12, 13, 10, 13, 13, 10, 2, 13, 10, 4, 13 ]
[ [ 209, 2 ], [ 11, 10 ], [ 206, 17 ], [ 22, 21 ], [ 200, 28 ], [ 33, 32 ], [ 191, 39 ], [ 43, 42 ], [ 51, 48 ], [ 207, 49 ], [ 42, 50 ], [ 207, 54 ], [ 42, 56 ], [ 42, 58 ], [ 210, 59 ], [ 64, 61 ], [ 201, 62 ], [ 42, 63 ], [ 210, 66 ], [ 201, 69 ], [ 210, 71 ], [ 42, 72 ], [ 210, 74 ], [ 42, 75 ], [ 210, 76 ], [ 81, 78 ], [ 192, 79 ], [ 42, 80 ], [ 192, 84 ], [ 42, 86 ], [ 61, 88 ], [ 201, 89 ], [ 42, 90 ], [ 210, 91 ], [ 207, 99 ], [ 111, 100 ], [ 192, 102 ], [ 113, 103 ], [ 192, 105 ], [ 111, 107 ], [ 113, 108 ], [ 210, 109 ], [ 111, 111 ], [ 113, 113 ], [ 212, 115 ], [ 212, 124 ], [ 212, 125 ], [ 212, 126 ], [ 194, 128 ], [ 132, 131 ], [ 189, 135 ], [ 180, 136 ], [ 185, 138 ], [ 204, 141 ], [ 213, 146 ], [ 189, 147 ], [ 180, 148 ], [ 131, 149 ], [ 213, 152 ], [ 204, 155 ], [ 180, 161 ], [ 131, 162 ], [ 183, 164 ], [ 213, 165 ], [ 183, 169 ], [ 213, 170 ], [ 197, 173 ], [ 210, 174 ], [ 198, 177 ], [ 186, 177 ], [ 195, 177 ], [ 212, 180 ], [ 212, 183 ], [ 185, 186 ], [ 212, 189 ], [ 191, 192 ], [ 194, 195 ], [ 210, 197 ], [ 197, 198 ], [ 200, 201 ], [ 206, 207 ], [ 209, 210 ], [ 212, 213 ] ]
[ "MOD = 10**9+7\nfac = [1 for k in range(200010)]\ninv = [1 for k in range(200010)]\nfinv = [1 for k in range(200010)]\nfor k in range(2,200010):\n fac[k] = (fac[k-1]*k)%MOD\n inv[k] = (MOD - inv[MOD%k] * (MOD // k))%MOD\n finv[k] = (finv[k - 1] * inv[k]) % MOD;\ndef nCr(n,r):\n return (fac[n]*finv[r]*finv[n-r])%MOD\n\nH, W, A, B = map(int,input().split())\nans = 0\n\nfor k in range(W-B):\n ans += nCr(A+W-B-k-2,A-1)*nCr(B+k+1+H-A-2,H-A-1)\n ans %= MOD\n\nprint(ans)", "MOD = 10**9+7", "MOD", "10**9+7", "10**9", "10", "9", "7", "1 for k in range(200010)", "for k in range(200010)", "k", "range(200010)", "range", "200010", "for k in range(200010)", "1", "fac = [1 for k in range(200010)]", "fac", "[1 for k in range(200010)]", "1 for k in range(200010)", "for k in range(200010)", "k", "range(200010)", "range", "200010", "for k in range(200010)", "1", "inv = [1 for k in range(200010)]", "inv", "[1 for k in range(200010)]", "1 for k in range(200010)", "for k in range(200010)", "k", "range(200010)", "range", "200010", "for k in range(200010)", "1", "finv = [1 for k in range(200010)]", "finv", "[1 for k in range(200010)]", "for k in range(2,200010):\n fac[k] = (fac[k-1]*k)%MOD\n inv[k] = (MOD - inv[MOD%k] * (MOD // k))%MOD\n finv[k] = (finv[k - 1] * inv[k]) % MOD;", "k", "range(2,200010)", "range", "2", "200010", "fac[k] = (fac[k-1]*k)%MOD", "fac[k]", "fac", "k", "(fac[k-1]*k)%MOD", "fac[k-1]*k", "fac[k-1]", "fac", "k-1", "k", "1", "k", "MOD", "inv[k] = (MOD - inv[MOD%k] * (MOD // k))%MOD", "inv[k]", "inv", "k", "(MOD - inv[MOD%k] * (MOD // k))%MOD", "MOD - inv[MOD%k] * (MOD // k)", "MOD", "inv[MOD%k] * (MOD // k)", "inv[MOD%k]", "inv", "MOD%k", "MOD", "k", "MOD // k", "MOD", "k", "MOD", "finv[k] = (finv[k - 1] * inv[k]) % MOD", "finv[k]", "finv", "k", "(finv[k - 1] * inv[k]) % MOD", "finv[k - 1] * inv[k]", "finv[k - 1]", "finv", "k - 1", "k", "1", "inv[k]", "inv", "k", "MOD", "def nCr(n,r):\n return (fac[n]*finv[r]*finv[n-r])%MOD", "nCr", "return (fac[n]*finv[r]*finv[n-r])%MOD", "(fac[n]*finv[r]*finv[n-r])%MOD", "fac[n]*finv[r]*finv[n-r]", "fac[n]*finv[r]", "fac[n]", "fac", "n", "finv[r]", "finv", "r", "finv[n-r]", "finv", "n-r", "n", "r", "MOD", "n", "n", "r", "r", "H, W, A, B = map(int,input().split())", "H", "map(int,input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "ans = 0", "ans", "0", "for k in range(W-B):\n ans += nCr(A+W-B-k-2,A-1)*nCr(B+k+1+H-A-2,H-A-1)\n ans %= MOD", "k", "range(W-B)", "range", "W-B", "W", "B", "ans += nCr(A+W-B-k-2,A-1)*nCr(B+k+1+H-A-2,H-A-1)", "ans", "nCr(A+W-B-k-2,A-1)*nCr(B+k+1+H-A-2,H-A-1)", "nCr(A+W-B-k-2,A-1)", "nCr", "A+W-B-k-2", "A+W-B-k", "A+W-B", "A+W", "A", "W", "B", "k", "2", "A-1", "A", "1", "nCr(B+k+1+H-A-2,H-A-1)", "nCr", "B+k+1+H-A-2", "B+k+1+H-A", "B+k+1+H", "B+k+1", "B+k", "B", "k", "1", "H", "A", "2", "H-A-1", "H-A", "H", "A", "1", "ans %= MOD", "ans", "MOD", "print(ans)", "print", "ans", "B = map(int,input().split())", "map(int,input().split())", "B", "H, W, A, B = map(int,input().split())", "map(int,input().split())", "H", "ans += nCr(A+W-B-k-2,A-1)*nCr(B+k+1+H-A-2,H-A-1)", "nCr(A+W-B-k-2,A-1)*nCr(B+k+1+H-A-2,H-A-1)", "ans", "W, A, B = map(int,input().split())", "map(int,input().split())", "W", "finv = [1 for k in range(200010)]", "[1 for k in range(200010)]", "finv", "ans = 0", "0", "ans", "ans %= MOD", "MOD", "ans", "inv = [1 for k in range(200010)]", "[1 for k in range(200010)]", "inv", "def nCr(n,r):\n return (fac[n]*finv[r]*finv[n-r])%MOD", "def nCr(n,r):\n return (fac[n]*finv[r]*finv[n-r])%MOD", "nCr", "fac = [1 for k in range(200010)]", "[1 for k in range(200010)]", "fac", "MOD = 10**9+7", "10**9+7", "MOD", "A, B = map(int,input().split())", "map(int,input().split())", "A" ]
MOD = 10**9+7 fac = [1 for k in range(200010)] inv = [1 for k in range(200010)] finv = [1 for k in range(200010)] for k in range(2,200010): fac[k] = (fac[k-1]*k)%MOD inv[k] = (MOD - inv[MOD%k] * (MOD // k))%MOD finv[k] = (finv[k - 1] * inv[k]) % MOD; def nCr(n,r): return (fac[n]*finv[r]*finv[n-r])%MOD H, W, A, B = map(int,input().split()) ans = 0 for k in range(W-B): ans += nCr(A+W-B-k-2,A-1)*nCr(B+k+1+H-A-2,H-A-1) ans %= MOD print(ans)
[ 7, 0, 13, 2, 2, 17, 17, 17, 0, 13, 39, 17, 0, 13, 39, 17, 28, 13, 4, 13, 17, 4, 18, 13, 13, 2, 2, 18, 13, 13, 2, 13, 17, 13, 4, 18, 13, 13, 4, 13, 18, 13, 2, 13, 17, 2, 13, 17, 13, 12, 13, 14, 2, 2, 2, 13, 17, 2, 13, 17, 2, 2, 13, 13, 17, 29, 17, 29, 2, 2, 2, 18, 13, 13, 18, 13, 13, 18, 13, 2, 13, 13, 13, 23, 13, 23, 13, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 4, 13, 2, 2, 13, 13, 17, 2, 13, 17, 28, 13, 4, 13, 4, 13, 13, 13, 0, 13, 2, 4, 13, 2, 2, 2, 13, 13, 13, 17, 2, 2, 13, 13, 13, 4, 13, 2, 2, 2, 13, 13, 13, 17, 2, 2, 13, 13, 13, 4, 13, 2, 13, 13, 10, 4, 13, 10, 2, 13, 10, 39, 13, 10, 4, 13, 10, 2, 13, 10, 4, 13, 10, 12, 13, 10, 4, 13, 10, 39, 13, 10, 4, 13 ]
[ [ 169, 2 ], [ 163, 9 ], [ 181, 13 ], [ 18, 17 ], [ 164, 23 ], [ 164, 28 ], [ 17, 29 ], [ 17, 31 ], [ 170, 33 ], [ 182, 36 ], [ 164, 41 ], [ 17, 43 ], [ 170, 46 ], [ 170, 48 ], [ 84, 55 ], [ 86, 58 ], [ 84, 62 ], [ 86, 63 ], [ 164, 72 ], [ 84, 73 ], [ 182, 75 ], [ 86, 76 ], [ 182, 78 ], [ 84, 80 ], [ 86, 81 ], [ 170, 82 ], [ 84, 84 ], [ 86, 86 ], [ 184, 88 ], [ 184, 97 ], [ 184, 98 ], [ 184, 99 ], [ 166, 101 ], [ 176, 103 ], [ 185, 106 ], [ 158, 107 ], [ 185, 110 ], [ 114, 113 ], [ 179, 118 ], [ 173, 119 ], [ 160, 121 ], [ 176, 124 ], [ 185, 128 ], [ 179, 129 ], [ 173, 130 ], [ 185, 134 ], [ 179, 135 ], [ 113, 136 ], [ 176, 138 ], [ 158, 142 ], [ 173, 143 ], [ 179, 144 ], [ 158, 148 ], [ 173, 149 ], [ 113, 150 ], [ 161, 154 ], [ 167, 154 ], [ 170, 155 ], [ 184, 158 ], [ 160, 161 ], [ 163, 164 ], [ 166, 167 ], [ 169, 170 ], [ 184, 173 ], [ 184, 179 ], [ 181, 182 ], [ 184, 185 ] ]
[ "mod = 10 ** 9 + 7\nfact = [1]\ninv = [1]\nfor i in range(200000):\n fact.append(fact[i] * (i + 1) % mod)\n inv.append(pow(fact[i + 1], mod - 2, mod))\ndef ncr(n, r):\n if n < 0 or r < 0 or n - r < 0:\n return 0\n return fact[n] * inv[r] * inv[n - r] % mod\nh, w, a, b = map(int, input().split())\nans = ncr(h + w - 2, h - 1)\nfor i in range(min(a, b)):\n ans -= ncr(h - a + b - 1, h - a + i) * ncr(w - b + a - 1, w - b + i)\nprint(ans % mod)", "mod = 10 ** 9 + 7", "mod", "10 ** 9 + 7", "10 ** 9", "10", "9", "7", "fact = [1]", "fact", "[1]", "1", "inv = [1]", "inv", "[1]", "1", "for i in range(200000):\n fact.append(fact[i] * (i + 1) % mod)\n inv.append(pow(fact[i + 1], mod - 2, mod))", "i", "range(200000)", "range", "200000", "fact.append(fact[i] * (i + 1) % mod)", "fact.append", "fact", "append", "fact[i] * (i + 1) % mod", "fact[i] * (i + 1)", "fact[i]", "fact", "i", "i + 1", "i", "1", "mod", "inv.append(pow(fact[i + 1], mod - 2, mod))", "inv.append", "inv", "append", "pow(fact[i + 1], mod - 2, mod)", "pow", "fact[i + 1]", "fact", "i + 1", "i", "1", "mod - 2", "mod", "2", "mod", "def ncr(n, r):\n if n < 0 or r < 0 or n - r < 0:\n return 0\n return fact[n] * inv[r] * inv[n - r] % mod", "ncr", "if n < 0 or r < 0 or n - r < 0:\n return 0\n ", "n < 0 or r < 0 or n - r < 0", "n < 0 or r < 0", "n < 0", "n", "0", "r < 0", "r", "0", "n - r < 0", "n - r", "n", "r", "0", "return 0", "0", "return fact[n] * inv[r] * inv[n - r] % mod", "fact[n] * inv[r] * inv[n - r] % mod", "fact[n] * inv[r] * inv[n - r]", "fact[n] * inv[r]", "fact[n]", "fact", "n", "inv[r]", "inv", "r", "inv[n - r]", "inv", "n - r", "n", "r", "mod", "n", "n", "r", "r", "h, w, a, b = map(int, input().split())", "h", "map(int, input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "w", "a", "b", "ans = ncr(h + w - 2, h - 1)", "ans", "ncr(h + w - 2, h - 1)", "ncr", "h + w - 2", "h + w", "h", "w", "2", "h - 1", "h", "1", "for i in range(min(a, b)):\n ans -= ncr(h - a + b - 1, h - a + i) * ncr(w - b + a - 1, w - b + i)", "i", "range(min(a, b))", "range", "min(a, b)", "min", "a", "b", "ans -= ncr(h - a + b - 1, h - a + i) * ncr(w - b + a - 1, w - b + i)", "ans", "ncr(h - a + b - 1, h - a + i) * ncr(w - b + a - 1, w - b + i)", "ncr(h - a + b - 1, h - a + i)", "ncr", "h - a + b - 1", "h - a + b", "h - a", "h", "a", "b", "1", "h - a + i", "h - a", "h", "a", "i", "ncr(w - b + a - 1, w - b + i)", "ncr", "w - b + a - 1", "w - b + a", "w - b", "w", "b", "a", "1", "w - b + i", "w - b", "w", "b", "i", "print(ans % mod)", "print", "ans % mod", "ans", "mod", "w, a, b = map(int, input().split())", "map(int, input().split())", "w", "ans -= ncr(h - a + b - 1, h - a + i) * ncr(w - b + a - 1, w - b + i)", "ncr(h - a + b - 1, h - a + i) * ncr(w - b + a - 1, w - b + i)", "ans", "fact = [1]", "[1]", "fact", "ans = ncr(h + w - 2, h - 1)", "ncr(h + w - 2, h - 1)", "ans", "mod = 10 ** 9 + 7", "10 ** 9 + 7", "mod", "b = map(int, input().split())", "map(int, input().split())", "b", "def ncr(n, r):\n if n < 0 or r < 0 or n - r < 0:\n return 0\n return fact[n] * inv[r] * inv[n - r] % mod", "def ncr(n, r):\n if n < 0 or r < 0 or n - r < 0:\n return 0\n return fact[n] * inv[r] * inv[n - r] % mod", "ncr", "a, b = map(int, input().split())", "map(int, input().split())", "a", "inv = [1]", "[1]", "inv", "h, w, a, b = map(int, input().split())", "map(int, input().split())", "h" ]
mod = 10 ** 9 + 7 fact = [1] inv = [1] for i in range(200000): fact.append(fact[i] * (i + 1) % mod) inv.append(pow(fact[i + 1], mod - 2, mod)) def ncr(n, r): if n < 0 or r < 0 or n - r < 0: return 0 return fact[n] * inv[r] * inv[n - r] % mod h, w, a, b = map(int, input().split()) ans = ncr(h + w - 2, h - 1) for i in range(min(a, b)): ans -= ncr(h - a + b - 1, h - a + i) * ncr(w - b + a - 1, w - b + i) print(ans % mod)
[ 7, 15, 13, 13, 15, 15, 15, 15, 15, 15, 15, 15, 15, 12, 13, 12, 13, 12, 13, 12, 13, 41, 28, 13, 4, 13, 13, 4, 4, 13, 12, 13, 23, 13, 4, 18, 13, 13, 2, 17, 17, 0, 13, 4, 13, 17, 0, 13, 2, 2, 17, 17, 17, 0, 13, 2, 17, 2, 17, 17, 0, 13, 2, 39, 17, 2, 13, 17, 28, 13, 4, 13, 17, 2, 13, 17, 0, 18, 13, 13, 2, 2, 13, 18, 13, 2, 13, 17, 13, 0, 13, 2, 39, 17, 2, 13, 17, 0, 18, 13, 13, 4, 13, 18, 13, 13, 2, 13, 17, 13, 28, 13, 4, 13, 13, 17, 17, 0, 18, 13, 2, 13, 17, 2, 2, 13, 18, 13, 13, 13, 12, 13, 29, 2, 2, 2, 2, 18, 13, 13, 18, 13, 13, 13, 18, 13, 2, 13, 13, 13, 23, 13, 23, 13, 0, 13, 4, 13, 13, 13, 13, 0, 13, 17, 28, 13, 4, 13, 13, 13, 0, 13, 2, 2, 4, 13, 2, 2, 2, 13, 13, 17, 13, 13, 4, 13, 2, 2, 2, 2, 13, 13, 17, 13, 17, 2, 13, 17, 13, 0, 13, 2, 2, 13, 13, 13, 4, 13, 13, 10, 12, 13, 10, 4, 13, 10, 4, 13, 10, 2, 13, 10, 12, 13, 10, 2, 13, 10, 12, 13, 10, 12, 13, 10, 4, 13, 10, 4, 13, 10, 2, 13, 10, 2, 13, 10, 2, 13, 10, 2, 13, 10, 12, 13, 10, 17, 13, 10, 4, 13, 10, 12, 13 ]
[ [ 24, 23 ], [ 253, 29 ], [ 33, 33 ], [ 213, 42 ], [ 243, 47 ], [ 246, 54 ], [ 249, 61 ], [ 247, 66 ], [ 70, 69 ], [ 247, 74 ], [ 80, 77 ], [ 250, 78 ], [ 69, 79 ], [ 69, 82 ], [ 250, 84 ], [ 69, 86 ], [ 244, 88 ], [ 240, 90 ], [ 247, 95 ], [ 101, 98 ], [ 241, 99 ], [ 247, 100 ], [ 250, 104 ], [ 247, 105 ], [ 244, 107 ], [ 244, 109 ], [ 112, 111 ], [ 247, 114 ], [ 123, 118 ], [ 241, 119 ], [ 111, 121 ], [ 111, 125 ], [ 241, 127 ], [ 111, 128 ], [ 244, 129 ], [ 77, 137 ], [ 250, 138 ], [ 151, 139 ], [ 241, 141 ], [ 153, 142 ], [ 244, 143 ], [ 241, 145 ], [ 151, 147 ], [ 153, 148 ], [ 244, 149 ], [ 151, 151 ], [ 153, 153 ], [ 258, 155 ], [ 253, 157 ], [ 258, 158 ], [ 258, 159 ], [ 258, 160 ], [ 255, 162 ], [ 166, 165 ], [ 238, 168 ], [ 259, 169 ], [ 219, 171 ], [ 223, 175 ], [ 235, 179 ], [ 217, 180 ], [ 165, 182 ], [ 165, 183 ], [ 223, 185 ], [ 259, 190 ], [ 165, 191 ], [ 217, 193 ], [ 217, 196 ], [ 244, 198 ], [ 225, 200 ], [ 256, 203 ], [ 226, 203 ], [ 220, 204 ], [ 244, 205 ], [ 226, 208 ], [ 256, 208 ], [ 213, 214 ], [ 258, 217 ], [ 219, 220 ], [ 225, 226 ], [ 258, 235 ], [ 258, 238 ], [ 240, 241 ], [ 243, 244 ], [ 246, 247 ], [ 249, 250 ], [ 255, 256 ], [ 258, 259 ] ]
[ "import sys, re\nfrom collections import deque, defaultdict, Counter\nfrom math import ceil, sqrt, hypot, factorial, pi, sin, cos, tan, asin, acos, atan, radians, degrees\nfrom itertools import accumulate, permutations, combinations, combinations_with_replacement, product, groupby\nfrom operator import itemgetter, mul\nfrom copy import deepcopy\nfrom string import ascii_lowercase, ascii_uppercase, digits\nfrom bisect import bisect, bisect_left\nfrom heapq import heappush, heappop\nfrom functools import reduce\ndef input(): return sys.stdin.readline().strip()\ndef INT(): return int(input())\ndef MAP(): return map(int, input().split())\ndef LIST(): return list(map(int, input().split()))\ndef ZIP(n): return zip(*(MAP() for _ in range(n)))\nsys.setrecursionlimit(10 ** 9)\nINF = float('inf')\nmod = 10 ** 9 + 7\n\n\nlim = 2*10**5 #必要そうな階乗の限界を入力\n\n#階乗#\nfact = [1] * (lim+1)\nfor n in range(1, lim+1):\n\tfact[n] = n * fact[n-1] % mod\n\n#階乗の逆元#\nfact_inv = [1]*(lim+1)\nfact_inv[lim] = pow(fact[lim], mod-2, mod)\nfor n in range(lim, 0, -1):\n\tfact_inv[n-1] = n*fact_inv[n]%mod\n\ndef C(n, r):\n\treturn (fact[n]*fact_inv[r]%mod)*fact_inv[n-r]%mod\n\n\nH, W, A, B = MAP()\n\nans = 0\nfor n in range(B, W):\n\tway = C(H-A-1+n, n)*C(W-n-1+A-1, A-1)%mod\n\tans = (ans+way)%mod\n\nprint(ans)\n", "import sys, re", "sys", "re", "from collections import deque, defaultdict, Counter", "from math import ceil, sqrt, hypot, factorial, pi, sin, cos, tan, asin, acos, atan, radians, degrees", "from itertools import accumulate, permutations, combinations, combinations_with_replacement, product, groupby", "from operator import itemgetter, mul", "from copy import deepcopy", "from string import ascii_lowercase, ascii_uppercase, digits", "from bisect import bisect, bisect_left", "from heapq import heappush, heappop", "from functools import reduce", "def input(): return sys.stdin.readline().strip()", "input", "def INT(): return int(input())", "INT", "def MAP(): return map(int, input().split())", "MAP", "def LIST(): return list(map(int, input().split()))", "LIST", "MAP() for _ in range(n)", "for _ in range(n)", "_", "range(n)", "range", "n", "for _ in range(n)", "MAP()", "MAP", "def ZIP(n): return zip(*(MAP() for _ in range(n)))", "ZIP", "n", "n", "sys.setrecursionlimit(10 ** 9)", "sys.setrecursionlimit", "sys", "setrecursionlimit", "10 ** 9", "10", "9", "INF = float('inf')", "INF", "float('inf')", "float", "'inf'", "mod = 10 ** 9 + 7", "mod", "10 ** 9 + 7", "10 ** 9", "10", "9", "7", "lim = 2*10**5", "lim", "2*10**5", "2", "10**5", "10", "5", "fact = [1] * (lim+1)", "fact", "[1] * (lim+1)", "[1]", "1", "lim+1", "lim", "1", "for n in range(1, lim+1):\n\tfact[n] = n * fact[n-1] % mod\n\n#階乗の逆元#", "n", "range(1, lim+1)", "range", "1", "lim+1", "lim", "1", "fact[n] = n * fact[n-1] % mod", "fact[n]", "fact", "n", "n * fact[n-1] % mod", "n * fact[n-1]", "n", "fact[n-1]", "fact", "n-1", "n", "1", "mod", "fact_inv = [1]*(lim+1)", "fact_inv", "[1]*(lim+1)", "[1]", "1", "lim+1", "lim", "1", "fact_inv[lim] = pow(fact[lim], mod-2, mod)", "fact_inv[lim]", "fact_inv", "lim", "pow(fact[lim], mod-2, mod)", "pow", "fact[lim]", "fact", "lim", "mod-2", "mod", "2", "mod", "for n in range(lim, 0, -1):\n\tfact_inv[n-1] = n*fact_inv[n]%mod", "n", "range(lim, 0, -1)", "range", "lim", "0", "-1", "fact_inv[n-1] = n*fact_inv[n]%mod", "fact_inv[n-1]", "fact_inv", "n-1", "n", "1", "n*fact_inv[n]%mod", "n*fact_inv[n]", "n", "fact_inv[n]", "fact_inv", "n", "mod", "def C(n, r):\n\treturn (fact[n]*fact_inv[r]%mod)*fact_inv[n-r]%mod", "C", "return (fact[n]*fact_inv[r]%mod)*fact_inv[n-r]%mod", "(fact[n]*fact_inv[r]%mod)*fact_inv[n-r]%mod", "(fact[n]*fact_inv[r]%mod)*fact_inv[n-r]", "fact[n]*fact_inv[r]%mod", "fact[n]*fact_inv[r]", "fact[n]", "fact", "n", "fact_inv[r]", "fact_inv", "r", "mod", "fact_inv[n-r]", "fact_inv", "n-r", "n", "r", "mod", "n", "n", "r", "r", "H, W, A, B = MAP()", "H", "MAP()", "MAP", "W", "A", "B", "ans = 0", "ans", "0", "for n in range(B, W):\n\tway = C(H-A-1+n, n)*C(W-n-1+A-1, A-1)%mod\n\tans = (ans+way)%mod", "n", "range(B, W)", "range", "B", "W", "way = C(H-A-1+n, n)*C(W-n-1+A-1, A-1)%mod", "way", "C(H-A-1+n, n)*C(W-n-1+A-1, A-1)%mod", "C(H-A-1+n, n)*C(W-n-1+A-1, A-1)", "C(H-A-1+n, n)", "C", "H-A-1+n", "H-A-1", "H-A", "H", "A", "1", "n", "n", "C(W-n-1+A-1, A-1)", "C", "W-n-1+A-1", "W-n-1+A", "W-n-1", "W-n", "W", "n", "1", "A", "1", "A-1", "A", "1", "mod", "ans = (ans+way)%mod", "ans", "(ans+way)%mod", "ans+way", "ans", "way", "mod", "print(ans)", "print", "ans", "def INT(): return int(input())", "def INT(): return int(input())", "INT", "INF = float('inf')", "float('inf')", "INF", "A, B = MAP()", "MAP()", "A", "way = C(H-A-1+n, n)*C(W-n-1+A-1, A-1)%mod", "C(H-A-1+n, n)*C(W-n-1+A-1, A-1)%mod", "way", "def C(n, r):\n\treturn (fact[n]*fact_inv[r]%mod)*fact_inv[n-r]%mod", "def C(n, r):\n\treturn (fact[n]*fact_inv[r]%mod)*fact_inv[n-r]%mod", "C", "ans = (ans+way)%mod", "(ans+way)%mod", "ans", "def LIST(): return list(map(int, input().split()))", "def LIST(): return list(map(int, input().split()))", "LIST", "def ZIP(n): return zip(*(MAP() for _ in range(n)))", "def ZIP(n): return zip(*(MAP() for _ in range(n)))", "ZIP", "H, W, A, B = MAP()", "MAP()", "H", "B = MAP()", "MAP()", "B", "fact_inv = [1]*(lim+1)", "[1]*(lim+1)", "fact_inv", "mod = 10 ** 9 + 7", "10 ** 9 + 7", "mod", "lim = 2*10**5", "2*10**5", "lim", "fact = [1] * (lim+1)", "[1] * (lim+1)", "fact", "def MAP(): return map(int, input().split())", "def MAP(): return map(int, input().split())", "MAP", "ans = 0", "0", "ans", "W, A, B = MAP()", "MAP()", "W", "def input(): return sys.stdin.readline().strip()", "def input(): return sys.stdin.readline().strip()", "input" ]
import sys, re from collections import deque, defaultdict, Counter from math import ceil, sqrt, hypot, factorial, pi, sin, cos, tan, asin, acos, atan, radians, degrees from itertools import accumulate, permutations, combinations, combinations_with_replacement, product, groupby from operator import itemgetter, mul from copy import deepcopy from string import ascii_lowercase, ascii_uppercase, digits from bisect import bisect, bisect_left from heapq import heappush, heappop from functools import reduce def input(): return sys.stdin.readline().strip() def INT(): return int(input()) def MAP(): return map(int, input().split()) def LIST(): return list(map(int, input().split())) def ZIP(n): return zip(*(MAP() for _ in range(n))) sys.setrecursionlimit(10 ** 9) INF = float('inf') mod = 10 ** 9 + 7 lim = 2*10**5 #必要そうな階乗の限界を入力 #階乗# fact = [1] * (lim+1) for n in range(1, lim+1): fact[n] = n * fact[n-1] % mod #階乗の逆元# fact_inv = [1]*(lim+1) fact_inv[lim] = pow(fact[lim], mod-2, mod) for n in range(lim, 0, -1): fact_inv[n-1] = n*fact_inv[n]%mod def C(n, r): return (fact[n]*fact_inv[r]%mod)*fact_inv[n-r]%mod H, W, A, B = MAP() ans = 0 for n in range(B, W): way = C(H-A-1+n, n)*C(W-n-1+A-1, A-1)%mod ans = (ans+way)%mod print(ans)
[ 7, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 2, 17, 2, 17, 17, 0, 13, 2, 39, 17, 13, 12, 13, 28, 13, 4, 13, 17, 13, 0, 18, 13, 13, 2, 2, 13, 18, 13, 2, 13, 17, 13, 12, 13, 0, 13, 2, 18, 13, 13, 13, 0, 13, 2, 2, 18, 13, 13, 18, 13, 2, 13, 13, 13, 0, 13, 4, 13, 13, 2, 13, 17, 13, 29, 2, 2, 13, 13, 13, 23, 13, 23, 13, 4, 13, 0, 13, 4, 13, 2, 2, 13, 13, 17, 2, 13, 17, 0, 13, 17, 28, 13, 4, 13, 17, 2, 13, 17, 0, 13, 2, 4, 13, 2, 2, 2, 2, 13, 13, 17, 13, 17, 2, 13, 17, 4, 13, 2, 2, 2, 13, 17, 13, 13, 2, 13, 13, 0, 13, 2, 13, 13, 14, 40, 2, 13, 13, 17, 4, 13, 2, 2, 13, 13, 13, 4, 13, 2, 13, 13, 10, 4, 13, 10, 17, 13, 10, 2, 13, 10, 12, 13, 10, 2, 13, 10, 2, 13, 10, 12, 13, 10, 4, 13, 10, 2, 13, 10, 4, 13, 10, 4, 13, 10, 4, 13, 10, 2, 13 ]
[ [ 207, 2 ], [ 207, 11 ], [ 207, 12 ], [ 207, 13 ], [ 198, 15 ], [ 210, 22 ], [ 189, 29 ], [ 211, 33 ], [ 38, 37 ], [ 211, 41 ], [ 46, 43 ], [ 190, 44 ], [ 37, 45 ], [ 37, 48 ], [ 190, 50 ], [ 37, 52 ], [ 199, 54 ], [ 59, 58 ], [ 190, 61 ], [ 93, 62 ], [ 199, 63 ], [ 66, 65 ], [ 190, 69 ], [ 95, 70 ], [ 190, 72 ], [ 93, 74 ], [ 95, 75 ], [ 199, 76 ], [ 79, 78 ], [ 65, 81 ], [ 208, 81 ], [ 199, 83 ], [ 199, 85 ], [ 58, 89 ], [ 196, 89 ], [ 78, 90 ], [ 199, 91 ], [ 93, 93 ], [ 95, 95 ], [ 193, 97 ], [ 204, 99 ], [ 184, 101 ], [ 175, 104 ], [ 202, 105 ], [ 175, 108 ], [ 177, 111 ], [ 115, 114 ], [ 208, 119 ], [ 180, 122 ], [ 184, 125 ], [ 175, 130 ], [ 196, 131 ], [ 114, 133 ], [ 114, 136 ], [ 184, 139 ], [ 196, 143 ], [ 202, 145 ], [ 114, 146 ], [ 202, 148 ], [ 114, 149 ], [ 186, 151 ], [ 181, 153 ], [ 178, 153 ], [ 187, 153 ], [ 199, 154 ], [ 205, 158 ], [ 187, 159 ], [ 181, 159 ], [ 178, 159 ], [ 205, 165 ], [ 187, 166 ], [ 181, 166 ], [ 178, 166 ], [ 199, 167 ], [ 205, 171 ], [ 187, 172 ], [ 181, 172 ], [ 178, 172 ], [ 207, 175 ], [ 177, 178 ], [ 180, 181 ], [ 186, 187 ], [ 189, 190 ], [ 207, 196 ], [ 198, 199 ], [ 207, 202 ], [ 204, 205 ], [ 207, 208 ], [ 210, 211 ] ]
[ "h, w, a, b = map(int, input().split())\n###############\n# 二項係数テンプレート\n# 出力制限\nmod = 10 ** 9 + 7\nMAX_N = 2 * 10 ** 5\nfactorial = [1] * MAX_N\n#事前に階乗テーブルを用意\ndef calc_factorial():\n for i in range(1, MAX_N):\n factorial[i] = i * factorial[i - 1] % mod\n\ndef comb(n, k):\n a = factorial[n] % mod\n b = (factorial[k] * factorial[n - k]) % mod\n b_ = pow(b, mod - 2, mod)\n return (a * b_) % mod\n\n\n# 階乗を用意\ncalc_factorial()\n#########\n\n# 全体の組み合わせを計算する\n# h-1(高さ)+w-1(横幅)から、h-1(高さ)個取り出す組み合わせ\nall = comb(h + w - 2, h - 1)\nsub = 0\nfor j in range(1, b + 1):\n sub += comb(h - a - 1 + j - 1, j - 1) * comb(a - 1 + w - j, w - j)\n sub = sub % mod\nif all - sub <= 0:\n print(all - sub + mod)\nelse:\n print(all - sub)", "h, w, a, b = map(int, input().split())", "h", "map(int, input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "w", "a", "b", "mod = 10 ** 9 + 7", "mod", "10 ** 9 + 7", "10 ** 9", "10", "9", "7", "MAX_N = 2 * 10 ** 5", "MAX_N", "2 * 10 ** 5", "2", "10 ** 5", "10", "5", "factorial = [1] * MAX_N", "factorial", "[1] * MAX_N", "[1]", "1", "MAX_N", "def calc_factorial():\n for i in range(1, MAX_N):\n factorial[i] = i * factorial[i - 1] % mod", "calc_factorial", "for i in range(1, MAX_N):\n factorial[i] = i * factorial[i - 1] % mod", "i", "range(1, MAX_N)", "range", "1", "MAX_N", "factorial[i] = i * factorial[i - 1] % mod", "factorial[i]", "factorial", "i", "i * factorial[i - 1] % mod", "i * factorial[i - 1]", "i", "factorial[i - 1]", "factorial", "i - 1", "i", "1", "mod", "def comb(n, k):\n a = factorial[n] % mod\n b = (factorial[k] * factorial[n - k]) % mod\n b_ = pow(b, mod - 2, mod)\n return (a * b_) % mod\n\n\n# 階乗を用意", "comb", "a = factorial[n] % mod", "a", "factorial[n] % mod", "factorial[n]", "factorial", "n", "mod", "b = (factorial[k] * factorial[n - k]) % mod", "b", "(factorial[k] * factorial[n - k]) % mod", "factorial[k] * factorial[n - k]", "factorial[k]", "factorial", "k", "factorial[n - k]", "factorial", "n - k", "n", "k", "mod", "b_ = pow(b, mod - 2, mod)", "b_", "pow(b, mod - 2, mod)", "pow", "b", "mod - 2", "mod", "2", "mod", "return (a * b_) % mod", "(a * b_) % mod", "a * b_", "a", "b_", "mod", "n", "n", "k", "k", "calc_factorial()", "calc_factorial", "all = comb(h + w - 2, h - 1)", "all", "comb(h + w - 2, h - 1)", "comb", "h + w - 2", "h + w", "h", "w", "2", "h - 1", "h", "1", "sub = 0", "sub", "0", "for j in range(1, b + 1):\n sub += comb(h - a - 1 + j - 1, j - 1) * comb(a - 1 + w - j, w - j)\n sub = sub % mod", "j", "range(1, b + 1)", "range", "1", "b + 1", "b", "1", "sub += comb(h - a - 1 + j - 1, j - 1) * comb(a - 1 + w - j, w - j)", "sub", "comb(h - a - 1 + j - 1, j - 1) * comb(a - 1 + w - j, w - j)", "comb(h - a - 1 + j - 1, j - 1)", "comb", "h - a - 1 + j - 1", "h - a - 1 + j", "h - a - 1", "h - a", "h", "a", "1", "j", "1", "j - 1", "j", "1", "comb(a - 1 + w - j, w - j)", "comb", "a - 1 + w - j", "a - 1 + w", "a - 1", "a", "1", "w", "j", "w - j", "w", "j", "sub = sub % mod", "sub", "sub % mod", "sub", "mod", "if all - sub <= 0:\n print(all - sub + mod)\nelse:\n print(all - sub)", "all - sub <= 0", "all - sub", "all", "sub", "0", "print(all - sub + mod)", "print", "all - sub + mod", "all - sub", "all", "sub", "mod", "print(all - sub)", "print", "all - sub", "all", "sub", "h, w, a, b = map(int, input().split())", "map(int, input().split())", "h", "sub = 0", "0", "sub", "sub += comb(h - a - 1 + j - 1, j - 1) * comb(a - 1 + w - j, w - j)", "comb(h - a - 1 + j - 1, j - 1) * comb(a - 1 + w - j, w - j)", "sub", "def comb(n, k):\n a = factorial[n] % mod\n b = (factorial[k] * factorial[n - k]) % mod\n b_ = pow(b, mod - 2, mod)\n return (a * b_) % mod\n\n\n# 階乗を用意", "def comb(n, k):\n a = factorial[n] % mod\n b = (factorial[k] * factorial[n - k]) % mod\n b_ = pow(b, mod - 2, mod)\n return (a * b_) % mod\n\n\n# 階乗を用意", "comb", "sub = sub % mod", "sub % mod", "sub", "factorial = [1] * MAX_N", "[1] * MAX_N", "factorial", "def calc_factorial():\n for i in range(1, MAX_N):\n factorial[i] = i * factorial[i - 1] % mod", "def calc_factorial():\n for i in range(1, MAX_N):\n factorial[i] = i * factorial[i - 1] % mod", "calc_factorial", "a, b = map(int, input().split())", "map(int, input().split())", "a", "mod = 10 ** 9 + 7", "10 ** 9 + 7", "mod", "w, a, b = map(int, input().split())", "map(int, input().split())", "w", "all = comb(h + w - 2, h - 1)", "comb(h + w - 2, h - 1)", "all", "b = map(int, input().split())", "map(int, input().split())", "b", "MAX_N = 2 * 10 ** 5", "2 * 10 ** 5", "MAX_N" ]
h, w, a, b = map(int, input().split()) ############### # 二項係数テンプレート # 出力制限 mod = 10 ** 9 + 7 MAX_N = 2 * 10 ** 5 factorial = [1] * MAX_N #事前に階乗テーブルを用意 def calc_factorial(): for i in range(1, MAX_N): factorial[i] = i * factorial[i - 1] % mod def comb(n, k): a = factorial[n] % mod b = (factorial[k] * factorial[n - k]) % mod b_ = pow(b, mod - 2, mod) return (a * b_) % mod # 階乗を用意 calc_factorial() ######### # 全体の組み合わせを計算する # h-1(高さ)+w-1(横幅)から、h-1(高さ)個取り出す組み合わせ all = comb(h + w - 2, h - 1) sub = 0 for j in range(1, b + 1): sub += comb(h - a - 1 + j - 1, j - 1) * comb(a - 1 + w - j, w - j) sub = sub % mod if all - sub <= 0: print(all - sub + mod) else: print(all - sub)
[ 7, 15, 13, 0, 13, 18, 18, 13, 13, 13, 12, 13, 0, 13, 2, 39, 17, 13, 13, 2, 39, 17, 13, 13, 2, 39, 17, 13, 28, 13, 4, 13, 17, 13, 0, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 13, 13, 0, 18, 13, 13, 2, 13, 2, 2, 18, 13, 2, 13, 13, 2, 13, 13, 13, 0, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 18, 13, 13, 13, 29, 39, 13, 13, 13, 23, 13, 23, 13, 12, 13, 14, 2, 13, 13, 29, 17, 29, 2, 2, 18, 13, 13, 2, 2, 18, 13, 13, 18, 13, 2, 13, 13, 13, 13, 23, 13, 23, 13, 23, 13, 23, 13, 23, 13, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 4, 13, 17, 13, 13, 13, 0, 13, 17, 28, 13, 4, 13, 2, 13, 13, 0, 13, 2, 4, 13, 2, 2, 13, 13, 17, 13, 13, 13, 13, 4, 13, 2, 2, 2, 2, 2, 13, 13, 17, 13, 13, 17, 2, 2, 13, 13, 17, 13, 13, 13, 0, 13, 13, 4, 13, 13, 10, 17, 13, 10, 4, 13, 10, 12, 13, 10, 4, 13, 10, 4, 13, 10, 13, 13, 10, 4, 13, 10, 18, 13, 10, 2, 13, 10, 4, 13, 10, 2, 13, 10, 12, 13, 10, 4, 13, 10, 4, 13 ]
[ [ 225, 4 ], [ 14, 13 ], [ 85, 17 ], [ 19, 18 ], [ 85, 22 ], [ 24, 23 ], [ 85, 27 ], [ 30, 29 ], [ 85, 33 ], [ 38, 35 ], [ 13, 36 ], [ 29, 37 ], [ 13, 41 ], [ 29, 43 ], [ 29, 45 ], [ 87, 46 ], [ 51, 48 ], [ 23, 49 ], [ 29, 50 ], [ 87, 52 ], [ 23, 56 ], [ 87, 58 ], [ 29, 59 ], [ 87, 61 ], [ 29, 62 ], [ 87, 63 ], [ 68, 65 ], [ 18, 66 ], [ 29, 67 ], [ 18, 71 ], [ 29, 73 ], [ 48, 75 ], [ 23, 76 ], [ 29, 77 ], [ 87, 78 ], [ 85, 85 ], [ 87, 87 ], [ 115, 92 ], [ 117, 93 ], [ 121, 100 ], [ 115, 101 ], [ 123, 105 ], [ 117, 106 ], [ 123, 108 ], [ 115, 110 ], [ 117, 111 ], [ 119, 112 ], [ 119, 113 ], [ 115, 115 ], [ 117, 117 ], [ 119, 119 ], [ 121, 121 ], [ 123, 123 ], [ 243, 125 ], [ 226, 132 ], [ 243, 134 ], [ 243, 135 ], [ 243, 136 ], [ 234, 138 ], [ 222, 145 ], [ 211, 147 ], [ 235, 149 ], [ 222, 150 ], [ 222, 151 ], [ 204, 153 ], [ 157, 156 ], [ 232, 160 ], [ 217, 161 ], [ 228, 163 ], [ 238, 166 ], [ 156, 169 ], [ 241, 170 ], [ 156, 172 ], [ 235, 173 ], [ 214, 174 ], [ 208, 175 ], [ 238, 177 ], [ 232, 183 ], [ 156, 184 ], [ 244, 186 ], [ 241, 187 ], [ 244, 191 ], [ 241, 192 ], [ 235, 194 ], [ 214, 195 ], [ 208, 196 ], [ 219, 198 ], [ 235, 199 ], [ 220, 202 ], [ 229, 202 ], [ 205, 202 ], [ 204, 205 ], [ 222, 208 ], [ 222, 214 ], [ 243, 217 ], [ 235, 219 ], [ 219, 220 ], [ 222, 223 ], [ 225, 226 ], [ 228, 229 ], [ 243, 232 ], [ 234, 235 ], [ 243, 241 ], [ 243, 244 ] ]
[ "# python3 (3.4.3)\nimport sys\ninput = sys.stdin.readline\n\n# functions\ndef init_fact(n,mod):\n fact,finv,inv = [1]*n,[1]*n,[1]*n\n for i in range(2,n):\n fact[i] = (fact[i-1]*i) % mod\n inv[i] = mod - inv[mod%i] * (mod//i)%mod\n finv[i] = finv[i-1] * inv[i] % mod\n return (fact,finv,inv)\n\ndef nCr(n,r,mod,fact,finv):\n if n<r:\n return 0\n else:\n return fact[n] * (finv[r] * finv[n-r] % mod) % mod\n\n# main\nH,W,A,B = map(int,input().split())\n\nmodulo = 10**9+7\nfact,finv,inv = init_fact(200000,modulo)\n\nans = 0\nfor i in range(H-A):\n ans += nCr(i+B-1,i,modulo,fact,finv) * nCr(H-i-1+W-B-1,W-B-1,modulo,fact,finv)\n ans %= modulo\n\nprint(ans)", "import sys", "sys", "input = sys.stdin.readline", "input", "sys.stdin.readline", "sys.stdin", "sys", "stdin", "readline", "def init_fact(n,mod):\n fact,finv,inv = [1]*n,[1]*n,[1]*n\n for i in range(2,n):\n fact[i] = (fact[i-1]*i) % mod\n inv[i] = mod - inv[mod%i] * (mod//i)%mod\n finv[i] = finv[i-1] * inv[i] % mod\n return (fact,finv,inv)", "init_fact", "fact,finv,inv = [1]*n,[1]*n,[1]*n", "fact", "[1]*n", "[1]", "1", "n", "finv", "[1]*n", "[1]", "1", "n", "inv", "[1]*n", "[1]", "1", "n", "for i in range(2,n):\n fact[i] = (fact[i-1]*i) % mod\n inv[i] = mod - inv[mod%i] * (mod//i)%mod\n finv[i] = finv[i-1] * inv[i] % mod\n ", "i", "range(2,n)", "range", "2", "n", "fact[i] = (fact[i-1]*i) % mod", "fact[i]", "fact", "i", "(fact[i-1]*i) % mod", "fact[i-1]*i", "fact[i-1]", "fact", "i-1", "i", "1", "i", "mod", "inv[i] = mod - inv[mod%i] * (mod//i)%mod", "inv[i]", "inv", "i", "mod - inv[mod%i] * (mod//i)%mod", "mod", "inv[mod%i] * (mod//i)%mod", "inv[mod%i] * (mod//i)", "inv[mod%i]", "inv", "mod%i", "mod", "i", "mod//i", "mod", "i", "mod", "finv[i] = finv[i-1] * inv[i] % mod", "finv[i]", "finv", "i", "finv[i-1] * inv[i] % mod", "finv[i-1] * inv[i]", "finv[i-1]", "finv", "i-1", "i", "1", "inv[i]", "inv", "i", "mod", "return (fact,finv,inv)", "(fact,finv,inv)", "fact", "finv", "inv", "n", "n", "mod", "mod", "def nCr(n,r,mod,fact,finv):\n if n<r:\n return 0\n else:\n return fact[n] * (finv[r] * finv[n-r] % mod) % mod\n\n# main", "nCr", "if n<r:\n return 0\n else:\n return fact[n] * (finv[r] * finv[n-r] % mod) % mod\n\n# main", "n<r", "n", "r", "return 0", "0", "return fact[n] * (finv[r] * finv[n-r] % mod) % mod", "fact[n] * (finv[r] * finv[n-r] % mod) % mod", "fact[n] * (finv[r] * finv[n-r] % mod)", "fact[n]", "fact", "n", "finv[r] * finv[n-r] % mod", "finv[r] * finv[n-r]", "finv[r]", "finv", "r", "finv[n-r]", "finv", "n-r", "n", "r", "mod", "mod", "n", "n", "r", "r", "mod", "mod", "fact", "fact", "finv", "finv", "H,W,A,B = map(int,input().split())", "H", "map(int,input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "modulo = 10**9+7", "modulo", "10**9+7", "10**9", "10", "9", "7", "fact,finv,inv = init_fact(200000,modulo)", "fact", "init_fact(200000,modulo)", "init_fact", "200000", "modulo", "finv", "inv", "ans = 0", "ans", "0", "for i in range(H-A):\n ans += nCr(i+B-1,i,modulo,fact,finv) * nCr(H-i-1+W-B-1,W-B-1,modulo,fact,finv)\n ans %= modulo", "i", "range(H-A)", "range", "H-A", "H", "A", "ans += nCr(i+B-1,i,modulo,fact,finv) * nCr(H-i-1+W-B-1,W-B-1,modulo,fact,finv)", "ans", "nCr(i+B-1,i,modulo,fact,finv) * nCr(H-i-1+W-B-1,W-B-1,modulo,fact,finv)", "nCr(i+B-1,i,modulo,fact,finv)", "nCr", "i+B-1", "i+B", "i", "B", "1", "i", "modulo", "fact", "finv", "nCr(H-i-1+W-B-1,W-B-1,modulo,fact,finv)", "nCr", "H-i-1+W-B-1", "H-i-1+W-B", "H-i-1+W", "H-i-1", "H-i", "H", "i", "1", "W", "B", "1", "W-B-1", "W-B", "W", "B", "1", "modulo", "fact", "finv", "ans %= modulo", "ans", "modulo", "print(ans)", "print", "ans", "ans = 0", "0", "ans", "finv,inv = init_fact(200000,modulo)", "init_fact(200000,modulo)", "finv", "def init_fact(n,mod):\n fact,finv,inv = [1]*n,[1]*n,[1]*n\n for i in range(2,n):\n fact[i] = (fact[i-1]*i) % mod\n inv[i] = mod - inv[mod%i] * (mod//i)%mod\n finv[i] = finv[i-1] * inv[i] % mod\n return (fact,finv,inv)", "def init_fact(n,mod):\n fact,finv,inv = [1]*n,[1]*n,[1]*n\n for i in range(2,n):\n fact[i] = (fact[i-1]*i) % mod\n inv[i] = mod - inv[mod%i] * (mod//i)%mod\n finv[i] = finv[i-1] * inv[i] % mod\n return (fact,finv,inv)", "init_fact", "fact,finv,inv = init_fact(200000,modulo)", "init_fact(200000,modulo)", "fact", "A,B = map(int,input().split())", "map(int,input().split())", "A", "ans %= modulo", "modulo", "ans", "inv = init_fact(200000,modulo)", "init_fact(200000,modulo)", "inv", "input = sys.stdin.readline", "sys.stdin.readline", "input", "ans += nCr(i+B-1,i,modulo,fact,finv) * nCr(H-i-1+W-B-1,W-B-1,modulo,fact,finv)", "nCr(i+B-1,i,modulo,fact,finv) * nCr(H-i-1+W-B-1,W-B-1,modulo,fact,finv)", "ans", "H,W,A,B = map(int,input().split())", "map(int,input().split())", "H", "modulo = 10**9+7", "10**9+7", "modulo", "def nCr(n,r,mod,fact,finv):\n if n<r:\n return 0\n else:\n return fact[n] * (finv[r] * finv[n-r] % mod) % mod\n\n# main", "def nCr(n,r,mod,fact,finv):\n if n<r:\n return 0\n else:\n return fact[n] * (finv[r] * finv[n-r] % mod) % mod\n\n# main", "nCr", "B = map(int,input().split())", "map(int,input().split())", "B", "W,A,B = map(int,input().split())", "map(int,input().split())", "W" ]
# python3 (3.4.3) import sys input = sys.stdin.readline # functions def init_fact(n,mod): fact,finv,inv = [1]*n,[1]*n,[1]*n for i in range(2,n): fact[i] = (fact[i-1]*i) % mod inv[i] = mod - inv[mod%i] * (mod//i)%mod finv[i] = finv[i-1] * inv[i] % mod return (fact,finv,inv) def nCr(n,r,mod,fact,finv): if n<r: return 0 else: return fact[n] * (finv[r] * finv[n-r] % mod) % mod # main H,W,A,B = map(int,input().split()) modulo = 10**9+7 fact,finv,inv = init_fact(200000,modulo) ans = 0 for i in range(H-A): ans += nCr(i+B-1,i,modulo,fact,finv) * nCr(H-i-1+W-B-1,W-B-1,modulo,fact,finv) ans %= modulo print(ans)
[ 7, 15, 13, 13, 13, 15, 15, 15, 15, 15, 15, 15, 12, 13, 14, 13, 4, 13, 31, 13, 23, 12, 13, 12, 13, 12, 13, 12, 13, 12, 13, 12, 13, 12, 13, 12, 13, 12, 13, 23, 13, 23, 13, 4, 18, 13, 13, 2, 17, 17, 0, 13, 18, 13, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 39, 17, 17, 17, 17, 17, 17, 17, 17, 0, 13, 39, 17, 17, 17, 17, 17, 17, 17, 17, 0, 13, 17, 12, 13, 14, 2, 2, 13, 17, 2, 13, 13, 29, 17, 0, 13, 4, 13, 13, 2, 13, 13, 29, 2, 2, 2, 18, 13, 13, 18, 13, 13, 18, 13, 2, 13, 13, 13, 23, 13, 23, 13, 0, 13, 2, 2, 17, 2, 17, 17, 17, 0, 13, 39, 17, 17, 0, 13, 39, 17, 17, 0, 13, 39, 17, 17, 28, 13, 4, 13, 17, 2, 13, 17, 4, 18, 13, 13, 2, 2, 18, 13, 17, 13, 13, 4, 18, 13, 13, 2, 2, 40, 18, 13, 2, 13, 13, 2, 13, 13, 13, 4, 18, 13, 13, 2, 2, 18, 13, 17, 18, 13, 17, 13, 0, 13, 4, 13, 13, 13, 13, 0, 13, 17, 28, 13, 4, 13, 17, 2, 2, 13, 13, 17, 4, 13, 13, 2, 2, 13, 13, 17, 2, 13, 17, 2, 2, 2, 2, 13, 13, 13, 13, 17, 2, 13, 13, 4, 13, 4, 13, 2, 2, 13, 13, 17, 2, 13, 17, 4, 13, 2, 2, 2, 2, 13, 13, 13, 13, 17, 2, 13, 13, 0, 13, 2, 2, 4, 13, 2, 2, 13, 13, 17, 2, 13, 17, 4, 13, 2, 2, 2, 2, 13, 13, 13, 13, 17, 2, 13, 13, 13, 0, 13, 13, 4, 13, 13, 10, 39, 13, 10, 13, 13, 10, 12, 13, 10, 12, 13, 10, 12, 13, 10, 39, 13, 10, 4, 13, 10, 2, 13, 10, 17, 13, 10, 18, 13, 10, 4, 13, 10, 4, 13, 10, 12, 13, 10, 12, 13, 10, 39, 13, 10, 12, 13, 10, 12, 13, 10, 39, 13, 10, 4, 13, 10, 2, 13, 10, 12, 13, 10, 2, 13, 10, 12, 13, 10, 12, 13, 10, 17, 13, 10, 12, 13, 10, 39, 13 ]
[ [ 40, 40 ], [ 42, 42 ], [ 331, 51 ], [ 367, 56 ], [ 346, 63 ], [ 319, 74 ], [ 376, 85 ], [ 126, 92 ], [ 124, 95 ], [ 126, 96 ], [ 101, 100 ], [ 126, 103 ], [ 124, 105 ], [ 126, 106 ], [ 124, 113 ], [ 100, 116 ], [ 126, 116 ], [ 124, 120 ], [ 100, 121 ], [ 126, 121 ], [ 368, 122 ], [ 124, 124 ], [ 126, 126 ], [ 325, 128 ], [ 355, 137 ], [ 304, 142 ], [ 382, 147 ], [ 153, 152 ], [ 326, 157 ], [ 356, 161 ], [ 356, 166 ], [ 152, 168 ], [ 368, 169 ], [ 383, 172 ], [ 383, 178 ], [ 368, 180 ], [ 152, 181 ], [ 368, 183 ], [ 152, 184 ], [ 368, 185 ], [ 305, 188 ], [ 305, 193 ], [ 383, 196 ], [ 368, 198 ], [ 358, 200 ], [ 341, 202 ], [ 358, 203 ], [ 358, 204 ], [ 358, 205 ], [ 328, 207 ], [ 211, 210 ], [ 338, 216 ], [ 323, 217 ], [ 380, 220 ], [ 210, 221 ], [ 335, 224 ], [ 210, 225 ], [ 210, 228 ], [ 359, 234 ], [ 335, 235 ], [ 338, 236 ], [ 210, 237 ], [ 338, 240 ], [ 210, 241 ], [ 380, 243 ], [ 311, 245 ], [ 335, 248 ], [ 210, 249 ], [ 210, 252 ], [ 311, 255 ], [ 359, 260 ], [ 335, 261 ], [ 338, 262 ], [ 210, 263 ], [ 338, 266 ], [ 210, 267 ], [ 361, 269 ], [ 311, 273 ], [ 335, 276 ], [ 210, 277 ], [ 210, 280 ], [ 311, 283 ], [ 359, 288 ], [ 335, 289 ], [ 338, 290 ], [ 210, 291 ], [ 338, 294 ], [ 210, 295 ], [ 368, 296 ], [ 307, 298 ], [ 368, 299 ], [ 308, 302 ], [ 362, 302 ], [ 329, 302 ], [ 304, 305 ], [ 368, 307 ], [ 307, 308 ], [ 319, 320 ], [ 358, 323 ], [ 325, 326 ], [ 328, 329 ], [ 331, 332 ], [ 358, 335 ], [ 358, 338 ], [ 346, 347 ], [ 355, 356 ], [ 358, 359 ], [ 361, 362 ], [ 367, 368 ], [ 376, 377 ], [ 382, 383 ] ]
[ "import sys, re, os\nfrom collections import deque, defaultdict, Counter\nfrom math import ceil, sqrt, hypot, factorial, pi, sin, cos, radians, acos, atan, asin, log, log10\nfrom itertools import permutations, combinations, product, accumulate\nfrom operator import itemgetter, mul\nfrom copy import deepcopy\nfrom string import ascii_lowercase, ascii_uppercase, digits\nfrom fractions import gcd\ndef debug(*args):\n if debugmode:\n print(*args)\ndef input(): return sys.stdin.readline().strip()\ndef STR(): return input()\ndef INT(): return int(input())\ndef FLOAT(): return float(input())\ndef MAP(): return map(int, input().split())\ndef S_MAP(): return map(str, input().split())\ndef LIST(): return list(map(int, input().split()))\ndef S_LIST(): return list(map(str, input().split()))\ndef lcm(a, b): return a * b // gcd(a, b)\nsys.setrecursionlimit(10 ** 9)\ninf = sys.maxsize\nmod = 10 ** 9 + 7\ndx = [0, 0, 1, -1, 1, -1, -1, 1]\ndy = [1, -1, 0, 0, 1, -1, 1, -1]\ndebugmode = False\n\n#コンビネーション\ndef cmb(n, r):\n if (r < 0) or (n < r):\n return 0\n r = min(r, n - r)\n return fact[n] * factinv[r] * factinv[n-r] % mod\n\nN = 2 * 10 ** 5 + 100 # N は必要分だけ用意する\nfact = [1, 1] # fact[n] = (n! mod p)\nfactinv = [1, 1] # factinv[n] = ((n!)^(-1) mod p)\ninv = [0, 1] # factinv 計算用\n\nfor i in range(2, N + 1):\n fact.append((fact[-1] * i) % mod)\n inv.append((-inv[mod % i] * (mod // i)) % mod)\n factinv.append((factinv[-1] * inv[-1]) % mod)\n\n\nh, w, a, b = MAP()\nans = 0\nfor i in range(1, h - a + 1):\n debug(i, b + i - 2, i - 1, w - b + h - i - 1, h - i)\n debug(cmb(b + i - 2, i - 1), cmb(w - b + h - i - 1, h - i))\n ans += cmb(b + i - 2, i - 1) * cmb(w - b + h - i - 1, h - i) % mod\n ans %= mod\nprint(ans)\n", "import sys, re, os", "sys", "re", "os", "from collections import deque, defaultdict, Counter", "from math import ceil, sqrt, hypot, factorial, pi, sin, cos, radians, acos, atan, asin, log, log10", "from itertools import permutations, combinations, product, accumulate", "from operator import itemgetter, mul", "from copy import deepcopy", "from string import ascii_lowercase, ascii_uppercase, digits", "from fractions import gcd", "def debug(*args):\n if debugmode:\n print(*args)", "debug", "if debugmode:\n print(*args)", "debugmode", "print(*args)", "print", "*args", "args", "*args", "def input(): return sys.stdin.readline().strip()", "input", "def STR(): return input()", "STR", "def INT(): return int(input())", "INT", "def FLOAT(): return float(input())", "FLOAT", "def MAP(): return map(int, input().split())", "MAP", "def S_MAP(): return map(str, input().split())", "S_MAP", "def LIST(): return list(map(int, input().split()))", "LIST", "def S_LIST(): return list(map(str, input().split()))", "S_LIST", "def lcm(a, b): return a * b // gcd(a, b)", "lcm", "a", "a", "b", "b", "sys.setrecursionlimit(10 ** 9)", "sys.setrecursionlimit", "sys", "setrecursionlimit", "10 ** 9", "10", "9", "inf = sys.maxsize", "inf", "sys.maxsize", "sys", "maxsize", "mod = 10 ** 9 + 7", "mod", "10 ** 9 + 7", "10 ** 9", "10", "9", "7", "dx = [0, 0, 1, -1, 1, -1, -1, 1]", "dx", "[0, 0, 1, -1, 1, -1, -1, 1]", "0", "0", "1", "-1", "1", "-1", "-1", "1", "dy = [1, -1, 0, 0, 1, -1, 1, -1]", "dy", "[1, -1, 0, 0, 1, -1, 1, -1]", "1", "-1", "0", "0", "1", "-1", "1", "-1", "debugmode = False", "debugmode", "False", "def cmb(n, r):\n if (r < 0) or (n < r):\n return 0\n r = min(r, n - r)\n return fact[n] * factinv[r] * factinv[n-r] % mod", "cmb", "if (r < 0) or (n < r):\n return 0\n ", "(r < 0) or (n < r)", "r < 0", "r", "0", "n < r", "n", "r", "return 0", "0", "r = min(r, n - r)", "r", "min(r, n - r)", "min", "r", "n - r", "n", "r", "return fact[n] * factinv[r] * factinv[n-r] % mod", "fact[n] * factinv[r] * factinv[n-r] % mod", "fact[n] * factinv[r] * factinv[n-r]", "fact[n] * factinv[r]", "fact[n]", "fact", "n", "factinv[r]", "factinv", "r", "factinv[n-r]", "factinv", "n-r", "n", "r", "mod", "n", "n", "r", "r", "N = 2 * 10 ** 5 + 100", "N", "2 * 10 ** 5 + 100", "2 * 10 ** 5", "2", "10 ** 5", "10", "5", "100", "fact = [1, 1]", "fact", "[1, 1]", "1", "1", "factinv = [1, 1]", "factinv", "[1, 1]", "1", "1", "inv = [0, 1]", "inv", "[0, 1]", "0", "1", "for i in range(2, N + 1):\n fact.append((fact[-1] * i) % mod)\n inv.append((-inv[mod % i] * (mod // i)) % mod)\n factinv.append((factinv[-1] * inv[-1]) % mod)", "i", "range(2, N + 1)", "range", "2", "N + 1", "N", "1", "fact.append((fact[-1] * i) % mod)", "fact.append", "fact", "append", "(fact[-1] * i) % mod", "fact[-1] * i", "fact[-1]", "fact", "-1", "i", "mod", "inv.append((-inv[mod % i] * (mod // i)) % mod)", "inv.append", "inv", "append", "(-inv[mod % i] * (mod // i)) % mod", "-inv[mod % i] * (mod // i)", "-inv[mod % i]", "inv[mod % i]", "inv", "mod % i", "mod", "i", "mod // i", "mod", "i", "mod", "factinv.append((factinv[-1] * inv[-1]) % mod)", "factinv.append", "factinv", "append", "(factinv[-1] * inv[-1]) % mod", "factinv[-1] * inv[-1]", "factinv[-1]", "factinv", "-1", "inv[-1]", "inv", "-1", "mod", "h, w, a, b = MAP()", "h", "MAP()", "MAP", "w", "a", "b", "ans = 0", "ans", "0", "for i in range(1, h - a + 1):\n debug(i, b + i - 2, i - 1, w - b + h - i - 1, h - i)\n debug(cmb(b + i - 2, i - 1), cmb(w - b + h - i - 1, h - i))\n ans += cmb(b + i - 2, i - 1) * cmb(w - b + h - i - 1, h - i) % mod\n ans %= mod", "i", "range(1, h - a + 1)", "range", "1", "h - a + 1", "h - a", "h", "a", "1", "debug(i, b + i - 2, i - 1, w - b + h - i - 1, h - i)", "debug", "i", "b + i - 2", "b + i", "b", "i", "2", "i - 1", "i", "1", "w - b + h - i - 1", "w - b + h - i", "w - b + h", "w - b", "w", "b", "h", "i", "1", "h - i", "h", "i", "debug(cmb(b + i - 2, i - 1), cmb(w - b + h - i - 1, h - i))", "debug", "cmb(b + i - 2, i - 1)", "cmb", "b + i - 2", "b + i", "b", "i", "2", "i - 1", "i", "1", "cmb(w - b + h - i - 1, h - i)", "cmb", "w - b + h - i - 1", "w - b + h - i", "w - b + h", "w - b", "w", "b", "h", "i", "1", "h - i", "h", "i", "ans += cmb(b + i - 2, i - 1) * cmb(w - b + h - i - 1, h - i) % mod", "ans", "cmb(b + i - 2, i - 1) * cmb(w - b + h - i - 1, h - i) % mod", "cmb(b + i - 2, i - 1) * cmb(w - b + h - i - 1, h - i)", "cmb(b + i - 2, i - 1)", "cmb", "b + i - 2", "b + i", "b", "i", "2", "i - 1", "i", "1", "cmb(w - b + h - i - 1, h - i)", "cmb", "w - b + h - i - 1", "w - b + h - i", "w - b + h", "w - b", "w", "b", "h", "i", "1", "h - i", "h", "i", "mod", "ans %= mod", "ans", "mod", "print(ans)", "print", "ans", "factinv = [1, 1]", "[1, 1]", "factinv", "ans %= mod", "mod", "ans", "def cmb(n, r):\n if (r < 0) or (n < r):\n return 0\n r = min(r, n - r)\n return fact[n] * factinv[r] * factinv[n-r] % mod", "def cmb(n, r):\n if (r < 0) or (n < r):\n return 0\n r = min(r, n - r)\n return fact[n] * factinv[r] * factinv[n-r] % mod", "cmb", "def INT(): return int(input())", "def INT(): return int(input())", "INT", "def FLOAT(): return float(input())", "def FLOAT(): return float(input())", "FLOAT", "dy = [1, -1, 0, 0, 1, -1, 1, -1]", "[1, -1, 0, 0, 1, -1, 1, -1]", "dy", "a, b = MAP()", "MAP()", "a", "N = 2 * 10 ** 5 + 100", "2 * 10 ** 5 + 100", "N", "ans = 0", "0", "ans", "inf = sys.maxsize", "sys.maxsize", "inf", "b = MAP()", "MAP()", "b", "h, w, a, b = MAP()", "MAP()", "h", "def MAP(): return map(int, input().split())", "def MAP(): return map(int, input().split())", "MAP", "def S_MAP(): return map(str, input().split())", "def S_MAP(): return map(str, input().split())", "S_MAP", "dx = [0, 0, 1, -1, 1, -1, -1, 1]", "[0, 0, 1, -1, 1, -1, -1, 1]", "dx", "def STR(): return input()", "def STR(): return input()", "STR", "def S_LIST(): return list(map(str, input().split()))", "def S_LIST(): return list(map(str, input().split()))", "S_LIST", "fact = [1, 1]", "[1, 1]", "fact", "w, a, b = MAP()", "MAP()", "w", "ans += cmb(b + i - 2, i - 1) * cmb(w - b + h - i - 1, h - i) % mod", "cmb(b + i - 2, i - 1) * cmb(w - b + h - i - 1, h - i) % mod", "ans", "def input(): return sys.stdin.readline().strip()", "def input(): return sys.stdin.readline().strip()", "input", "mod = 10 ** 9 + 7", "10 ** 9 + 7", "mod", "def lcm(a, b): return a * b // gcd(a, b)", "def lcm(a, b): return a * b // gcd(a, b)", "lcm", "def LIST(): return list(map(int, input().split()))", "def LIST(): return list(map(int, input().split()))", "LIST", "debugmode = False", "False", "debugmode", "def debug(*args):\n if debugmode:\n print(*args)", "def debug(*args):\n if debugmode:\n print(*args)", "debug", "inv = [0, 1]", "[0, 1]", "inv" ]
import sys, re, os from collections import deque, defaultdict, Counter from math import ceil, sqrt, hypot, factorial, pi, sin, cos, radians, acos, atan, asin, log, log10 from itertools import permutations, combinations, product, accumulate from operator import itemgetter, mul from copy import deepcopy from string import ascii_lowercase, ascii_uppercase, digits from fractions import gcd def debug(*args): if debugmode: print(*args) def input(): return sys.stdin.readline().strip() def STR(): return input() def INT(): return int(input()) def FLOAT(): return float(input()) def MAP(): return map(int, input().split()) def S_MAP(): return map(str, input().split()) def LIST(): return list(map(int, input().split())) def S_LIST(): return list(map(str, input().split())) def lcm(a, b): return a * b // gcd(a, b) sys.setrecursionlimit(10 ** 9) inf = sys.maxsize mod = 10 ** 9 + 7 dx = [0, 0, 1, -1, 1, -1, -1, 1] dy = [1, -1, 0, 0, 1, -1, 1, -1] debugmode = False #コンビネーション def cmb(n, r): if (r < 0) or (n < r): return 0 r = min(r, n - r) return fact[n] * factinv[r] * factinv[n-r] % mod N = 2 * 10 ** 5 + 100 # N は必要分だけ用意する fact = [1, 1] # fact[n] = (n! mod p) factinv = [1, 1] # factinv[n] = ((n!)^(-1) mod p) inv = [0, 1] # factinv 計算用 for i in range(2, N + 1): fact.append((fact[-1] * i) % mod) inv.append((-inv[mod % i] * (mod // i)) % mod) factinv.append((factinv[-1] * inv[-1]) % mod) h, w, a, b = MAP() ans = 0 for i in range(1, h - a + 1): debug(i, b + i - 2, i - 1, w - b + h - i - 1, h - i) debug(cmb(b + i - 2, i - 1), cmb(w - b + h - i - 1, h - i)) ans += cmb(b + i - 2, i - 1) * cmb(w - b + h - i - 1, h - i) % mod ans %= mod print(ans)
[ 7, 0, 13, 2, 2, 17, 2, 17, 17, 17, 0, 13, 2, 2, 17, 17, 17, 0, 13, 2, 39, 17, 2, 13, 17, 28, 13, 4, 13, 17, 2, 13, 17, 0, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 13, 13, 0, 13, 2, 39, 17, 2, 13, 17, 0, 18, 13, 13, 4, 13, 18, 13, 13, 2, 13, 17, 13, 28, 13, 4, 13, 2, 13, 17, 17, 17, 0, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 2, 13, 17, 13, 12, 13, 14, 2, 2, 2, 13, 17, 2, 13, 17, 2, 13, 13, 29, 17, 29, 2, 2, 2, 2, 18, 13, 13, 18, 13, 13, 13, 18, 13, 2, 13, 13, 13, 23, 13, 23, 13, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 4, 13, 2, 2, 13, 13, 17, 2, 13, 17, 28, 13, 4, 13, 13, 0, 13, 2, 2, 13, 2, 4, 13, 2, 2, 2, 13, 13, 13, 17, 13, 4, 13, 2, 2, 2, 13, 13, 13, 17, 2, 13, 17, 13, 4, 13, 13, 10, 12, 13, 10, 4, 13, 10, 2, 13, 10, 2, 13, 10, 4, 13, 10, 2, 13, 10, 2, 13, 10, 2, 13, 10, 4, 13, 10, 4, 13, 10, 4, 13 ]
[ [ 207, 2 ], [ 213, 11 ], [ 201, 18 ], [ 208, 23 ], [ 27, 26 ], [ 208, 31 ], [ 37, 34 ], [ 202, 35 ], [ 26, 36 ], [ 202, 40 ], [ 26, 42 ], [ 26, 44 ], [ 214, 45 ], [ 210, 47 ], [ 208, 52 ], [ 58, 55 ], [ 211, 56 ], [ 208, 57 ], [ 202, 61 ], [ 208, 62 ], [ 214, 64 ], [ 214, 66 ], [ 69, 68 ], [ 208, 72 ], [ 80, 77 ], [ 211, 78 ], [ 68, 79 ], [ 211, 83 ], [ 68, 85 ], [ 68, 88 ], [ 214, 90 ], [ 126, 97 ], [ 128, 100 ], [ 128, 103 ], [ 126, 104 ], [ 202, 113 ], [ 126, 114 ], [ 211, 116 ], [ 128, 117 ], [ 214, 118 ], [ 211, 120 ], [ 126, 122 ], [ 128, 123 ], [ 214, 124 ], [ 126, 126 ], [ 128, 128 ], [ 219, 130 ], [ 219, 139 ], [ 219, 140 ], [ 219, 141 ], [ 222, 143 ], [ 193, 145 ], [ 217, 148 ], [ 205, 149 ], [ 217, 152 ], [ 156, 155 ], [ 196, 158 ], [ 198, 160 ], [ 223, 163 ], [ 199, 163 ], [ 193, 166 ], [ 217, 170 ], [ 220, 171 ], [ 155, 172 ], [ 155, 174 ], [ 193, 176 ], [ 220, 180 ], [ 205, 181 ], [ 155, 182 ], [ 220, 185 ], [ 214, 187 ], [ 199, 190 ], [ 223, 190 ], [ 219, 196 ], [ 198, 199 ], [ 201, 202 ], [ 219, 205 ], [ 207, 208 ], [ 210, 211 ], [ 213, 214 ], [ 219, 217 ], [ 219, 220 ], [ 222, 223 ] ]
[ "N=2*10**5+3\nmod=10**9+7\nfac=[1]*(N+1)\nfor i in range(1,N+1):\n fac[i]=fac[i-1]*i%mod\ninv_fac=[1]*(N+1)\ninv_fac[N]=pow(fac[N],mod-2,mod)\nfor i in range(N-1,0,-1):\n inv_fac[i]=inv_fac[i+1]*(i+1)%mod\ndef nCr(n,r):\n if n<0 or r<0 or r>n:\n return 0\n return fac[n]*inv_fac[r]%mod*inv_fac[n-r]%mod\nh,w,a,b=map(int,input().split())\nans=nCr(h+w-2,h-1)\nfor i in range(b):\n ans=(ans-nCr(h-a+i-1,i)*nCr(a+w-i-2,a-1))%mod\nprint(ans)", "N=2*10**5+3", "N", "2*10**5+3", "2*10**5", "2", "10**5", "10", "5", "3", "mod=10**9+7", "mod", "10**9+7", "10**9", "10", "9", "7", "fac=[1]*(N+1)", "fac", "[1]*(N+1)", "[1]", "1", "N+1", "N", "1", "for i in range(1,N+1):\n fac[i]=fac[i-1]*i%mod", "i", "range(1,N+1)", "range", "1", "N+1", "N", "1", "fac[i]=fac[i-1]*i%mod", "fac[i]", "fac", "i", "fac[i-1]*i%mod", "fac[i-1]*i", "fac[i-1]", "fac", "i-1", "i", "1", "i", "mod", "inv_fac=[1]*(N+1)", "inv_fac", "[1]*(N+1)", "[1]", "1", "N+1", "N", "1", "inv_fac[N]=pow(fac[N],mod-2,mod)", "inv_fac[N]", "inv_fac", "N", "pow(fac[N],mod-2,mod)", "pow", "fac[N]", "fac", "N", "mod-2", "mod", "2", "mod", "for i in range(N-1,0,-1):\n inv_fac[i]=inv_fac[i+1]*(i+1)%mod", "i", "range(N-1,0,-1)", "range", "N-1", "N", "1", "0", "-1", "inv_fac[i]=inv_fac[i+1]*(i+1)%mod", "inv_fac[i]", "inv_fac", "i", "inv_fac[i+1]*(i+1)%mod", "inv_fac[i+1]*(i+1)", "inv_fac[i+1]", "inv_fac", "i+1", "i", "1", "i+1", "i", "1", "mod", "def nCr(n,r):\n if n<0 or r<0 or r>n:\n return 0\n return fac[n]*inv_fac[r]%mod*inv_fac[n-r]%mod", "nCr", "if n<0 or r<0 or r>n:\n return 0\n ", "n<0 or r<0 or r>n", "n<0 or r<0", "n<0", "n", "0", "r<0", "r", "0", "r>n", "r", "n", "return 0", "0", "return fac[n]*inv_fac[r]%mod*inv_fac[n-r]%mod", "fac[n]*inv_fac[r]%mod*inv_fac[n-r]%mod", "fac[n]*inv_fac[r]%mod*inv_fac[n-r]", "fac[n]*inv_fac[r]%mod", "fac[n]*inv_fac[r]", "fac[n]", "fac", "n", "inv_fac[r]", "inv_fac", "r", "mod", "inv_fac[n-r]", "inv_fac", "n-r", "n", "r", "mod", "n", "n", "r", "r", "h,w,a,b=map(int,input().split())", "h", "map(int,input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "w", "a", "b", "ans=nCr(h+w-2,h-1)", "ans", "nCr(h+w-2,h-1)", "nCr", "h+w-2", "h+w", "h", "w", "2", "h-1", "h", "1", "for i in range(b):\n ans=(ans-nCr(h-a+i-1,i)*nCr(a+w-i-2,a-1))%mod", "i", "range(b)", "range", "b", "ans=(ans-nCr(h-a+i-1,i)*nCr(a+w-i-2,a-1))%mod", "ans", "(ans-nCr(h-a+i-1,i)*nCr(a+w-i-2,a-1))%mod", "ans-nCr(h-a+i-1,i)*nCr(a+w-i-2,a-1)", "ans", "nCr(h-a+i-1,i)*nCr(a+w-i-2,a-1)", "nCr(h-a+i-1,i)", "nCr", "h-a+i-1", "h-a+i", "h-a", "h", "a", "i", "1", "i", "nCr(a+w-i-2,a-1)", "nCr", "a+w-i-2", "a+w-i", "a+w", "a", "w", "i", "2", "a-1", "a", "1", "mod", "print(ans)", "print", "ans", "def nCr(n,r):\n if n<0 or r<0 or r>n:\n return 0\n return fac[n]*inv_fac[r]%mod*inv_fac[n-r]%mod", "def nCr(n,r):\n if n<0 or r<0 or r>n:\n return 0\n return fac[n]*inv_fac[r]%mod*inv_fac[n-r]%mod", "nCr", "b=map(int,input().split())", "map(int,input().split())", "b", "ans=(ans-nCr(h-a+i-1,i)*nCr(a+w-i-2,a-1))%mod", "(ans-nCr(h-a+i-1,i)*nCr(a+w-i-2,a-1))%mod", "ans", "fac=[1]*(N+1)", "[1]*(N+1)", "fac", "w,a,b=map(int,input().split())", "map(int,input().split())", "w", "N=2*10**5+3", "2*10**5+3", "N", "inv_fac=[1]*(N+1)", "[1]*(N+1)", "inv_fac", "mod=10**9+7", "10**9+7", "mod", "h,w,a,b=map(int,input().split())", "map(int,input().split())", "h", "a,b=map(int,input().split())", "map(int,input().split())", "a", "ans=nCr(h+w-2,h-1)", "nCr(h+w-2,h-1)", "ans" ]
N=2*10**5+3 mod=10**9+7 fac=[1]*(N+1) for i in range(1,N+1): fac[i]=fac[i-1]*i%mod inv_fac=[1]*(N+1) inv_fac[N]=pow(fac[N],mod-2,mod) for i in range(N-1,0,-1): inv_fac[i]=inv_fac[i+1]*(i+1)%mod def nCr(n,r): if n<0 or r<0 or r>n: return 0 return fac[n]*inv_fac[r]%mod*inv_fac[n-r]%mod h,w,a,b=map(int,input().split()) ans=nCr(h+w-2,h-1) for i in range(b): ans=(ans-nCr(h-a+i-1,i)*nCr(a+w-i-2,a-1))%mod print(ans)
[ 7, 0, 13, 2, 2, 17, 17, 17, 0, 13, 39, 17, 17, 0, 13, 39, 17, 17, 0, 13, 39, 17, 17, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 13, 13, 28, 13, 4, 13, 17, 2, 13, 17, 4, 18, 13, 13, 2, 2, 18, 13, 17, 13, 13, 4, 18, 13, 13, 2, 2, 40, 18, 13, 2, 13, 13, 2, 13, 13, 13, 4, 18, 13, 13, 2, 2, 18, 13, 17, 18, 13, 17, 13, 12, 13, 29, 2, 2, 2, 18, 13, 13, 18, 13, 13, 18, 13, 2, 13, 13, 13, 23, 13, 23, 13, 0, 13, 17, 42, 2, 2, 13, 13, 2, 13, 13, 0, 13, 2, 2, 13, 2, 4, 13, 2, 2, 2, 13, 17, 13, 13, 13, 4, 13, 2, 2, 2, 13, 17, 13, 13, 13, 13, 0, 13, 17, 0, 13, 17, 4, 13, 13, 10, 39, 13, 10, 17, 13, 10, 39, 13, 10, 17, 13, 10, 4, 13, 10, 2, 13, 10, 2, 13, 10, 17, 13, 10, 4, 13, 10, 39, 13, 10, 2, 13, 10, 12, 13, 10, 4, 13, 10, 4, 13 ]
[ [ 189, 2 ], [ 159, 9 ], [ 186, 14 ], [ 165, 19 ], [ 198, 24 ], [ 198, 33 ], [ 198, 34 ], [ 198, 35 ], [ 174, 37 ], [ 196, 39 ], [ 172, 40 ], [ 43, 42 ], [ 175, 47 ], [ 160, 51 ], [ 160, 56 ], [ 42, 58 ], [ 190, 59 ], [ 166, 62 ], [ 166, 68 ], [ 190, 70 ], [ 42, 71 ], [ 190, 73 ], [ 42, 74 ], [ 190, 75 ], [ 187, 78 ], [ 187, 83 ], [ 166, 86 ], [ 190, 88 ], [ 160, 96 ], [ 108, 97 ], [ 187, 99 ], [ 110, 100 ], [ 187, 102 ], [ 108, 104 ], [ 110, 105 ], [ 190, 106 ], [ 108, 108 ], [ 110, 110 ], [ 162, 112 ], [ 199, 117 ], [ 181, 117 ], [ 196, 118 ], [ 184, 120 ], [ 169, 120 ], [ 172, 121 ], [ 177, 123 ], [ 163, 126 ], [ 178, 126 ], [ 193, 129 ], [ 196, 133 ], [ 199, 135 ], [ 181, 135 ], [ 184, 136 ], [ 169, 136 ], [ 184, 137 ], [ 169, 137 ], [ 193, 139 ], [ 172, 143 ], [ 184, 145 ], [ 169, 145 ], [ 199, 146 ], [ 181, 146 ], [ 199, 147 ], [ 181, 147 ], [ 190, 148 ], [ 180, 150 ], [ 168, 153 ], [ 178, 157 ], [ 163, 157 ], [ 159, 160 ], [ 162, 163 ], [ 165, 166 ], [ 168, 169 ], [ 198, 172 ], [ 174, 175 ], [ 177, 178 ], [ 180, 181 ], [ 198, 184 ], [ 186, 187 ], [ 189, 190 ], [ 198, 196 ], [ 198, 199 ] ]
[ "mod=10**9+7\ng1=[1,1]\ng2=[1,1]\ninverse=[0,1]\nh,w,a,b=map(int,input().split())\nn=h+w\nfor i in range(2,n+1):\n g1.append((g1[-1]*i)%mod)\n inverse.append((-inverse[mod % i]*(mod//i))%mod)\n g2.append((g2[-1]*inverse[-1])%mod)\ndef cmb(n,r):\n return g1[n]*g2[r]*g2[n-r]%mod\n \nans=0\nwhile a<h and b<w:\n ans=(ans+cmb(h-1-a+b,b)*cmb(w-1-b+a,a))%mod\n a+=1\n b+=1\nprint(ans)", "mod=10**9+7", "mod", "10**9+7", "10**9", "10", "9", "7", "g1=[1,1]", "g1", "[1,1]", "1", "1", "g2=[1,1]", "g2", "[1,1]", "1", "1", "inverse=[0,1]", "inverse", "[0,1]", "0", "1", "h,w,a,b=map(int,input().split())", "h", "map(int,input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "w", "a", "b", "n=h+w", "n", "h+w", "h", "w", "for i in range(2,n+1):\n g1.append((g1[-1]*i)%mod)\n inverse.append((-inverse[mod % i]*(mod//i))%mod)\n g2.append((g2[-1]*inverse[-1])%mod)", "i", "range(2,n+1)", "range", "2", "n+1", "n", "1", "g1.append((g1[-1]*i)%mod)", "g1.append", "g1", "append", "(g1[-1]*i)%mod", "g1[-1]*i", "g1[-1]", "g1", "-1", "i", "mod", "inverse.append((-inverse[mod % i]*(mod//i))%mod)", "inverse.append", "inverse", "append", "(-inverse[mod % i]*(mod//i))%mod", "-inverse[mod % i]*(mod//i)", "-inverse[mod % i]", "inverse[mod % i]", "inverse", "mod % i", "mod", "i", "mod//i", "mod", "i", "mod", "g2.append((g2[-1]*inverse[-1])%mod)", "g2.append", "g2", "append", "(g2[-1]*inverse[-1])%mod", "g2[-1]*inverse[-1]", "g2[-1]", "g2", "-1", "inverse[-1]", "inverse", "-1", "mod", "def cmb(n,r):\n return g1[n]*g2[r]*g2[n-r]%mod\n ", "cmb", "return g1[n]*g2[r]*g2[n-r]%mod", "g1[n]*g2[r]*g2[n-r]%mod", "g1[n]*g2[r]*g2[n-r]", "g1[n]*g2[r]", "g1[n]", "g1", "n", "g2[r]", "g2", "r", "g2[n-r]", "g2", "n-r", "n", "r", "mod", "n", "n", "r", "r", "ans=0", "ans", "0", "while a<h and b<w:\n ans=(ans+cmb(h-1-a+b,b)*cmb(w-1-b+a,a))%mod\n a+=1\n b+=1", "a<h and b<w", "a<h", "a", "h", "b<w", "b", "w", "ans=(ans+cmb(h-1-a+b,b)*cmb(w-1-b+a,a))%mod", "ans", "(ans+cmb(h-1-a+b,b)*cmb(w-1-b+a,a))%mod", "ans+cmb(h-1-a+b,b)*cmb(w-1-b+a,a)", "ans", "cmb(h-1-a+b,b)*cmb(w-1-b+a,a)", "cmb(h-1-a+b,b)", "cmb", "h-1-a+b", "h-1-a", "h-1", "h", "1", "a", "b", "b", "cmb(w-1-b+a,a)", "cmb", "w-1-b+a", "w-1-b", "w-1", "w", "1", "b", "a", "a", "mod", "a+=1", "a", "1", "b+=1", "b", "1", "print(ans)", "print", "ans", "g1=[1,1]", "[1,1]", "g1", "ans=0", "0", "ans", "inverse=[0,1]", "[0,1]", "inverse", "b+=1", "1", "b", "w,a,b=map(int,input().split())", "map(int,input().split())", "w", "n=h+w", "h+w", "n", "ans=(ans+cmb(h-1-a+b,b)*cmb(w-1-b+a,a))%mod", "(ans+cmb(h-1-a+b,b)*cmb(w-1-b+a,a))%mod", "ans", "a+=1", "1", "a", "b=map(int,input().split())", "map(int,input().split())", "b", "g2=[1,1]", "[1,1]", "g2", "mod=10**9+7", "10**9+7", "mod", "def cmb(n,r):\n return g1[n]*g2[r]*g2[n-r]%mod\n ", "def cmb(n,r):\n return g1[n]*g2[r]*g2[n-r]%mod\n ", "cmb", "h,w,a,b=map(int,input().split())", "map(int,input().split())", "h", "a,b=map(int,input().split())", "map(int,input().split())", "a" ]
mod=10**9+7 g1=[1,1] g2=[1,1] inverse=[0,1] h,w,a,b=map(int,input().split()) n=h+w for i in range(2,n+1): g1.append((g1[-1]*i)%mod) inverse.append((-inverse[mod % i]*(mod//i))%mod) g2.append((g2[-1]*inverse[-1])%mod) def cmb(n,r): return g1[n]*g2[r]*g2[n-r]%mod ans=0 while a<h and b<w: ans=(ans+cmb(h-1-a+b,b)*cmb(w-1-b+a,a))%mod a+=1 b+=1 print(ans)
[ 7, 15, 15, 13, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 17, 13, 13, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 4, 13, 2, 2, 2, 13, 13, 13, 17, 2, 13, 13, 12, 13, 0, 13, 17, 42, 13, 14, 2, 13, 17, 0, 13, 2, 2, 13, 13, 13, 0, 13, 2, 2, 13, 13, 13, 0, 13, 17, 29, 13, 23, 13, 23, 13, 12, 13, 14, 2, 2, 13, 17, 2, 13, 13, 29, 17, 29, 2, 2, 2, 2, 18, 13, 13, 18, 13, 2, 13, 13, 13, 18, 13, 13, 13, 23, 13, 23, 13, 0, 13, 2, 39, 17, 13, 0, 13, 4, 13, 17, 13, 0, 13, 2, 39, 17, 13, 0, 13, 4, 13, 17, 13, 28, 13, 4, 13, 17, 13, 0, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 13, 13, 0, 18, 13, 13, 4, 13, 18, 13, 13, 2, 13, 17, 0, 13, 17, 28, 13, 4, 13, 13, 13, 0, 13, 2, 2, 13, 13, 17, 0, 13, 13, 0, 13, 2, 13, 17, 0, 13, 2, 2, 13, 13, 17, 0, 13, 2, 2, 4, 13, 2, 13, 13, 13, 4, 13, 2, 13, 13, 13, 13, 0, 13, 2, 2, 13, 13, 13, 4, 13, 4, 13, 13, 10, 2, 13, 10, 12, 13, 10, 2, 13, 10, 13, 13, 10, 2, 13, 10, 2, 13, 10, 4, 13, 10, 2, 13, 10, 2, 13, 10, 4, 13, 10, 12, 13, 10, 4, 13, 10, 2, 13, 10, 2, 13, 10, 4, 13, 10, 4, 13, 10, 4, 13, 10, 4, 13, 10, 17, 13 ]
[ [ 268, 5 ], [ 268, 15 ], [ 268, 16 ], [ 268, 17 ], [ 259, 19 ], [ 271, 26 ], [ 251, 32 ], [ 257, 33 ], [ 269, 34 ], [ 269, 37 ], [ 257, 38 ], [ 43, 42 ], [ 72, 48 ], [ 65, 48 ], [ 52, 51 ], [ 42, 54 ], [ 51, 54 ], [ 70, 55 ], [ 58, 55 ], [ 260, 56 ], [ 59, 58 ], [ 70, 61 ], [ 58, 61 ], [ 70, 62 ], [ 58, 62 ], [ 260, 63 ], [ 66, 65 ], [ 51, 68 ], [ 42, 68 ], [ 70, 70 ], [ 72, 72 ], [ 106, 78 ], [ 104, 81 ], [ 106, 82 ], [ 104, 92 ], [ 104, 96 ], [ 106, 97 ], [ 260, 98 ], [ 106, 101 ], [ 260, 102 ], [ 104, 104 ], [ 106, 106 ], [ 235, 108 ], [ 272, 112 ], [ 274, 114 ], [ 236, 118 ], [ 262, 120 ], [ 272, 124 ], [ 241, 126 ], [ 263, 130 ], [ 133, 132 ], [ 272, 136 ], [ 141, 138 ], [ 275, 139 ], [ 236, 139 ], [ 132, 140 ], [ 275, 144 ], [ 236, 144 ], [ 132, 146 ], [ 132, 148 ], [ 260, 149 ], [ 154, 151 ], [ 242, 152 ], [ 263, 152 ], [ 132, 153 ], [ 254, 155 ], [ 138, 156 ], [ 275, 157 ], [ 236, 157 ], [ 132, 158 ], [ 260, 160 ], [ 277, 163 ], [ 167, 166 ], [ 266, 169 ], [ 257, 170 ], [ 244, 172 ], [ 251, 175 ], [ 269, 176 ], [ 232, 179 ], [ 166, 180 ], [ 238, 182 ], [ 269, 184 ], [ 247, 187 ], [ 257, 190 ], [ 166, 191 ], [ 223, 194 ], [ 227, 198 ], [ 233, 200 ], [ 245, 201 ], [ 233, 202 ], [ 227, 204 ], [ 248, 206 ], [ 239, 207 ], [ 248, 208 ], [ 260, 209 ], [ 229, 211 ], [ 278, 214 ], [ 230, 214 ], [ 224, 215 ], [ 260, 216 ], [ 230, 221 ], [ 278, 221 ], [ 223, 224 ], [ 229, 230 ], [ 166, 232 ], [ 232, 233 ], [ 235, 236 ], [ 238, 239 ], [ 241, 242 ], [ 244, 245 ], [ 247, 248 ], [ 268, 251 ], [ 268, 257 ], [ 259, 260 ], [ 262, 263 ], [ 268, 266 ], [ 268, 269 ], [ 271, 272 ], [ 274, 275 ], [ 277, 278 ] ]
[ "from array import *\nimport time\nh, w, a, b = map(int, input().split(' '))\nMOD = 10**9 + 7\nMAX = max(h+w-a-1, a+w)\n\n\ndef modpow(a, b):\n res = 1\n while b:\n if (b & 1):\n res = (res * a) % MOD\n a = (a * a) % MOD\n b >>= 1\n return res\n\n\ndef nCr(n, r):\n if r == 0 or n == r:\n return 1\n return (((f[n] * ivf[n-r]) % MOD) * ivf[r]) % MOD\n\n\nf = [1] * MAX\nf = array('q', f)\nivf = [0] * MAX\nivf = array('q', ivf)\nfor i in range(1, MAX):\n f[i] = (f[i-1] * i) % MOD\n ivf[i] = modpow(f[i], MOD-2)\nr = 0\nfor i in range(b, w):\n y1 = h - a - 1\n x1 = i\n y2 = a - 1\n x2 = w - i - 1\n p = (nCr(x1 + y1, x1) * nCr(x2 + y2, x2)) % MOD\n r = (r + p) % MOD\nprint(int(r))", "from array import *", "import time", "time", "h, w, a, b = map(int, input().split(' '))", "h", "map(int, input().split(' '))", "map", "int", "input().split(' ')", "().split", "()", "input", "split", "' '", "w", "a", "b", "MOD = 10**9 + 7", "MOD", "10**9 + 7", "10**9", "10", "9", "7", "MAX = max(h+w-a-1, a+w)", "MAX", "max(h+w-a-1, a+w)", "max", "h+w-a-1", "h+w-a", "h+w", "h", "w", "a", "1", "a+w", "a", "w", "def modpow(a, b):\n res = 1\n while b:\n if (b & 1):\n res = (res * a) % MOD\n a = (a * a) % MOD\n b >>= 1\n return res", "modpow", "res = 1", "res", "1", "while b:\n if (b & 1):\n res = (res * a) % MOD\n a = (a * a) % MOD\n b >>= 1\n ", "b", "if (b & 1):\n res = (res * a) % MOD\n ", "b & 1", "b", "1", "res = (res * a) % MOD", "res", "(res * a) % MOD", "res * a", "res", "a", "MOD", "a = (a * a) % MOD", "a", "(a * a) % MOD", "a * a", "a", "a", "MOD", "b >>= 1", "b", "1", "return res", "res", "a", "a", "b", "b", "def nCr(n, r):\n if r == 0 or n == r:\n return 1\n return (((f[n] * ivf[n-r]) % MOD) * ivf[r]) % MOD", "nCr", "if r == 0 or n == r:\n return 1\n ", "r == 0 or n == r", "r == 0", "r", "0", "n == r", "n", "r", "return 1", "1", "return (((f[n] * ivf[n-r]) % MOD) * ivf[r]) % MOD", "(((f[n] * ivf[n-r]) % MOD) * ivf[r]) % MOD", "((f[n] * ivf[n-r]) % MOD) * ivf[r]", "(f[n] * ivf[n-r]) % MOD", "f[n] * ivf[n-r]", "f[n]", "f", "n", "ivf[n-r]", "ivf", "n-r", "n", "r", "MOD", "ivf[r]", "ivf", "r", "MOD", "n", "n", "r", "r", "f = [1] * MAX", "f", "[1] * MAX", "[1]", "1", "MAX", "f = array('q', f)", "f", "array('q', f)", "array", "'q'", "f", "ivf = [0] * MAX", "ivf", "[0] * MAX", "[0]", "0", "MAX", "ivf = array('q', ivf)", "ivf", "array('q', ivf)", "array", "'q'", "ivf", "for i in range(1, MAX):\n f[i] = (f[i-1] * i) % MOD\n ivf[i] = modpow(f[i], MOD-2)", "i", "range(1, MAX)", "range", "1", "MAX", "f[i] = (f[i-1] * i) % MOD", "f[i]", "f", "i", "(f[i-1] * i) % MOD", "f[i-1] * i", "f[i-1]", "f", "i-1", "i", "1", "i", "MOD", "ivf[i] = modpow(f[i], MOD-2)", "ivf[i]", "ivf", "i", "modpow(f[i], MOD-2)", "modpow", "f[i]", "f", "i", "MOD-2", "MOD", "2", "r = 0", "r", "0", "for i in range(b, w):\n y1 = h - a - 1\n x1 = i\n y2 = a - 1\n x2 = w - i - 1\n p = (nCr(x1 + y1, x1) * nCr(x2 + y2, x2)) % MOD\n r = (r + p) % MOD", "i", "range(b, w)", "range", "b", "w", "y1 = h - a - 1", "y1", "h - a - 1", "h - a", "h", "a", "1", "x1 = i", "x1", "i", "y2 = a - 1", "y2", "a - 1", "a", "1", "x2 = w - i - 1", "x2", "w - i - 1", "w - i", "w", "i", "1", "p = (nCr(x1 + y1, x1) * nCr(x2 + y2, x2)) % MOD", "p", "(nCr(x1 + y1, x1) * nCr(x2 + y2, x2)) % MOD", "nCr(x1 + y1, x1) * nCr(x2 + y2, x2)", "nCr(x1 + y1, x1)", "nCr", "x1 + y1", "x1", "y1", "x1", "nCr(x2 + y2, x2)", "nCr", "x2 + y2", "x2", "y2", "x2", "MOD", "r = (r + p) % MOD", "r", "(r + p) % MOD", "r + p", "r", "p", "MOD", "print(int(r))", "print", "int(r)", "int", "r", "p = (nCr(x1 + y1, x1) * nCr(x2 + y2, x2)) % MOD", "(nCr(x1 + y1, x1) * nCr(x2 + y2, x2)) % MOD", "p", "def nCr(n, r):\n if r == 0 or n == r:\n return 1\n return (((f[n] * ivf[n-r]) % MOD) * ivf[r]) % MOD", "def nCr(n, r):\n if r == 0 or n == r:\n return 1\n return (((f[n] * ivf[n-r]) % MOD) * ivf[r]) % MOD", "nCr", "r = (r + p) % MOD", "(r + p) % MOD", "r", "x1 = i", "i", "x1", "f = [1] * MAX", "[1] * MAX", "f", "y2 = a - 1", "a - 1", "y2", "ivf = array('q', ivf)", "array('q', ivf)", "ivf", "y1 = h - a - 1", "h - a - 1", "y1", "x2 = w - i - 1", "w - i - 1", "x2", "h, w, a, b = map(int, input().split(' '))", "map(int, input().split(' '))", "h", "def modpow(a, b):\n res = 1\n while b:\n if (b & 1):\n res = (res * a) % MOD\n a = (a * a) % MOD\n b >>= 1\n return res", "def modpow(a, b):\n res = 1\n while b:\n if (b & 1):\n res = (res * a) % MOD\n a = (a * a) % MOD\n b >>= 1\n return res", "modpow", "w, a, b = map(int, input().split(' '))", "map(int, input().split(' '))", "w", "MOD = 10**9 + 7", "10**9 + 7", "MOD", "ivf = [0] * MAX", "[0] * MAX", "ivf", "b = map(int, input().split(' '))", "map(int, input().split(' '))", "b", "a, b = map(int, input().split(' '))", "map(int, input().split(' '))", "a", "MAX = max(h+w-a-1, a+w)", "max(h+w-a-1, a+w)", "MAX", "f = array('q', f)", "array('q', f)", "f", "r = 0", "0", "r" ]
from array import * import time h, w, a, b = map(int, input().split(' ')) MOD = 10**9 + 7 MAX = max(h+w-a-1, a+w) def modpow(a, b): res = 1 while b: if (b & 1): res = (res * a) % MOD a = (a * a) % MOD b >>= 1 return res def nCr(n, r): if r == 0 or n == r: return 1 return (((f[n] * ivf[n-r]) % MOD) * ivf[r]) % MOD f = [1] * MAX f = array('q', f) ivf = [0] * MAX ivf = array('q', ivf) for i in range(1, MAX): f[i] = (f[i-1] * i) % MOD ivf[i] = modpow(f[i], MOD-2) r = 0 for i in range(b, w): y1 = h - a - 1 x1 = i y2 = a - 1 x2 = w - i - 1 p = (nCr(x1 + y1, x1) * nCr(x2 + y2, x2)) % MOD r = (r + p) % MOD print(int(r))
[ 7, 12, 13, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 17, 0, 13, 39, 17, 28, 13, 4, 13, 2, 13, 13, 4, 18, 13, 13, 2, 2, 18, 13, 13, 2, 13, 17, 13, 12, 13, 29, 2, 2, 18, 13, 13, 4, 13, 18, 13, 13, 2, 13, 17, 13, 4, 13, 18, 13, 2, 13, 13, 2, 13, 17, 13, 23, 13, 23, 13, 23, 13, 28, 13, 4, 13, 2, 13, 13, 0, 13, 2, 4, 13, 2, 2, 13, 13, 17, 2, 13, 17, 13, 4, 13, 2, 2, 2, 2, 2, 13, 17, 13, 13, 13, 17, 2, 2, 13, 13, 17, 13, 4, 13, 2, 13, 13, 14, 2, 13, 17, 4, 13, 10, 12, 13 ]
[ [ 5, 4 ], [ 5, 13 ], [ 5, 14 ], [ 5, 15 ], [ 18, 17 ], [ 25, 24 ], [ 28, 27 ], [ 32, 31 ], [ 4, 35 ], [ 13, 36 ], [ 27, 39 ], [ 27, 44 ], [ 31, 45 ], [ 31, 47 ], [ 17, 49 ], [ 27, 56 ], [ 79, 57 ], [ 27, 61 ], [ 81, 62 ], [ 83, 64 ], [ 83, 66 ], [ 27, 70 ], [ 79, 72 ], [ 81, 73 ], [ 83, 75 ], [ 83, 77 ], [ 79, 79 ], [ 81, 81 ], [ 83, 83 ], [ 86, 85 ], [ 4, 89 ], [ 14, 90 ], [ 93, 92 ], [ 51, 95 ], [ 85, 98 ], [ 15, 99 ], [ 15, 102 ], [ 17, 104 ], [ 51, 106 ], [ 4, 112 ], [ 85, 114 ], [ 13, 115 ], [ 15, 116 ], [ 13, 120 ], [ 15, 121 ], [ 17, 123 ], [ 92, 127 ], [ 24, 127 ], [ 17, 128 ], [ 137, 134 ] ]
[ "def main():\n H, W, A, B = map(int, input().split())\n mod = 10**9 + 7\n ans = 0\n\n # 予め階乗を計算しておく\n f = [1]\n for i in range(H+W):\n f.append(f[i]*(i+1)%mod)\n\n # 組み合わせ関数\n def comb_mod(n, r, p):\n return f[n] * pow(f[r], p-2, p) * pow(f[n-r], p-2, p)\n\n for i in range(H-A):\n ans += comb_mod(i+B-1,B-1,mod) * comb_mod(H-1-i+W-B-1,W-B-1,mod)\n\n print(ans%mod)\n\nif __name__ == '__main__':\n main()", "def main():\n H, W, A, B = map(int, input().split())\n mod = 10**9 + 7\n ans = 0\n\n # 予め階乗を計算しておく\n f = [1]\n for i in range(H+W):\n f.append(f[i]*(i+1)%mod)\n\n # 組み合わせ関数\n def comb_mod(n, r, p):\n return f[n] * pow(f[r], p-2, p) * pow(f[n-r], p-2, p)\n\n for i in range(H-A):\n ans += comb_mod(i+B-1,B-1,mod) * comb_mod(H-1-i+W-B-1,W-B-1,mod)\n\n print(ans%mod)", "main", "H, W, A, B = map(int, input().split())", "H", "map(int, input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "mod = 10**9 + 7", "mod", "10**9 + 7", "10**9", "10", "9", "7", "ans = 0", "ans", "0", "f = [1]", "f", "[1]", "1", "for i in range(H+W):\n f.append(f[i]*(i+1)%mod)\n\n # 組み合わせ関数\n ", "i", "range(H+W)", "range", "H+W", "H", "W", "f.append(f[i]*(i+1)%mod)", "f.append", "f", "append", "f[i]*(i+1)%mod", "f[i]*(i+1)", "f[i]", "f", "i", "i+1", "i", "1", "mod", "def comb_mod(n, r, p):\n return f[n] * pow(f[r], p-2, p) * pow(f[n-r], p-2, p)\n\n ", "comb_mod", "return f[n] * pow(f[r], p-2, p) * pow(f[n-r], p-2, p)", "f[n] * pow(f[r], p-2, p) * pow(f[n-r], p-2, p)", "f[n] * pow(f[r], p-2, p)", "f[n]", "f", "n", "pow(f[r], p-2, p)", "pow", "f[r]", "f", "r", "p-2", "p", "2", "p", "pow(f[n-r], p-2, p)", "pow", "f[n-r]", "f", "n-r", "n", "r", "p-2", "p", "2", "p", "n", "n", "r", "r", "p", "p", "for i in range(H-A):\n ans += comb_mod(i+B-1,B-1,mod) * comb_mod(H-1-i+W-B-1,W-B-1,mod)\n\n ", "i", "range(H-A)", "range", "H-A", "H", "A", "ans += comb_mod(i+B-1,B-1,mod) * comb_mod(H-1-i+W-B-1,W-B-1,mod)", "ans", "comb_mod(i+B-1,B-1,mod) * comb_mod(H-1-i+W-B-1,W-B-1,mod)", "comb_mod(i+B-1,B-1,mod)", "comb_mod", "i+B-1", "i+B", "i", "B", "1", "B-1", "B", "1", "mod", "comb_mod(H-1-i+W-B-1,W-B-1,mod)", "comb_mod", "H-1-i+W-B-1", "H-1-i+W-B", "H-1-i+W", "H-1-i", "H-1", "H", "1", "i", "W", "B", "1", "W-B-1", "W-B", "W", "B", "1", "mod", "print(ans%mod)", "print", "ans%mod", "ans", "mod", "if __name__ == '__main__':\n main()", "__name__ == '__main__'", "__name__", "'__main__'", "main()", "main", "def main():\n H, W, A, B = map(int, input().split())\n mod = 10**9 + 7\n ans = 0\n\n # 予め階乗を計算しておく\n f = [1]\n for i in range(H+W):\n f.append(f[i]*(i+1)%mod)\n\n # 組み合わせ関数\n def comb_mod(n, r, p):\n return f[n] * pow(f[r], p-2, p) * pow(f[n-r], p-2, p)\n\n for i in range(H-A):\n ans += comb_mod(i+B-1,B-1,mod) * comb_mod(H-1-i+W-B-1,W-B-1,mod)\n\n print(ans%mod)", "def main():\n H, W, A, B = map(int, input().split())\n mod = 10**9 + 7\n ans = 0\n\n # 予め階乗を計算しておく\n f = [1]\n for i in range(H+W):\n f.append(f[i]*(i+1)%mod)\n\n # 組み合わせ関数\n def comb_mod(n, r, p):\n return f[n] * pow(f[r], p-2, p) * pow(f[n-r], p-2, p)\n\n for i in range(H-A):\n ans += comb_mod(i+B-1,B-1,mod) * comb_mod(H-1-i+W-B-1,W-B-1,mod)\n\n print(ans%mod)", "main" ]
def main(): H, W, A, B = map(int, input().split()) mod = 10**9 + 7 ans = 0 # 予め階乗を計算しておく f = [1] for i in range(H+W): f.append(f[i]*(i+1)%mod) # 組み合わせ関数 def comb_mod(n, r, p): return f[n] * pow(f[r], p-2, p) * pow(f[n-r], p-2, p) for i in range(H-A): ans += comb_mod(i+B-1,B-1,mod) * comb_mod(H-1-i+W-B-1,W-B-1,mod) print(ans%mod) if __name__ == '__main__': main()
[ 7, 6, 13, 12, 13, 0, 18, 13, 13, 13, 0, 18, 13, 13, 13, 0, 18, 13, 13, 39, 17, 17, 0, 18, 13, 13, 39, 17, 17, 0, 18, 13, 13, 39, 17, 17, 28, 13, 4, 13, 17, 2, 13, 17, 4, 18, 18, 13, 13, 13, 2, 2, 18, 18, 13, 13, 17, 13, 13, 4, 18, 18, 13, 13, 13, 2, 2, 40, 18, 18, 13, 13, 2, 13, 13, 2, 13, 13, 13, 4, 18, 18, 13, 13, 13, 2, 2, 18, 18, 13, 13, 17, 18, 18, 13, 13, 17, 13, 23, 13, 23, 13, 23, 13, 12, 13, 14, 2, 2, 13, 17, 2, 13, 13, 29, 17, 0, 13, 4, 13, 13, 2, 13, 13, 29, 2, 2, 2, 18, 18, 13, 13, 13, 18, 18, 13, 13, 13, 18, 18, 13, 13, 2, 13, 13, 18, 13, 13, 23, 13, 23, 13, 23, 13, 12, 13, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 4, 13, 2, 13, 13, 13, 0, 13, 17, 28, 13, 4, 13, 17, 2, 2, 13, 13, 17, 0, 13, 4, 18, 13, 13, 2, 2, 13, 17, 2, 13, 17, 2, 13, 17, 0, 13, 4, 18, 13, 13, 2, 2, 13, 13, 2, 2, 13, 13, 17, 2, 13, 13, 0, 13, 2, 2, 13, 13, 13, 4, 13, 13, 14, 2, 13, 17, 4, 13, 10, 12, 13, 10, 6, 13 ]
[ [ 9, 6 ], [ 99, 7 ], [ 101, 8 ], [ 101, 9 ], [ 14, 11 ], [ 99, 12 ], [ 103, 13 ], [ 103, 14 ], [ 19, 16 ], [ 99, 17 ], [ 26, 23 ], [ 99, 24 ], [ 33, 30 ], [ 99, 31 ], [ 38, 37 ], [ 101, 42 ], [ 16, 46 ], [ 99, 47 ], [ 16, 53 ], [ 99, 54 ], [ 37, 57 ], [ 103, 58 ], [ 30, 61 ], [ 99, 62 ], [ 30, 69 ], [ 99, 70 ], [ 103, 73 ], [ 37, 74 ], [ 103, 76 ], [ 37, 77 ], [ 103, 78 ], [ 23, 81 ], [ 99, 82 ], [ 23, 88 ], [ 99, 89 ], [ 30, 93 ], [ 99, 94 ], [ 103, 97 ], [ 99, 99 ], [ 101, 101 ], [ 103, 103 ], [ 153, 109 ], [ 151, 112 ], [ 153, 113 ], [ 118, 117 ], [ 153, 120 ], [ 151, 122 ], [ 153, 123 ], [ 149, 130 ], [ 151, 132 ], [ 149, 135 ], [ 117, 137 ], [ 153, 137 ], [ 149, 140 ], [ 151, 143 ], [ 117, 144 ], [ 153, 144 ], [ 149, 146 ], [ 149, 149 ], [ 151, 151 ], [ 153, 153 ], [ 158, 157 ], [ 158, 166 ], [ 158, 167 ], [ 158, 168 ], [ 171, 170 ], [ 178, 177 ], [ 157, 181 ], [ 166, 182 ], [ 170, 183 ], [ 186, 185 ], [ 189, 188 ], [ 157, 194 ], [ 167, 195 ], [ 199, 198 ], [ 177, 201 ], [ 105, 202 ], [ 188, 205 ], [ 168, 208 ], [ 188, 211 ], [ 215, 214 ], [ 177, 217 ], [ 105, 218 ], [ 157, 221 ], [ 188, 222 ], [ 166, 225 ], [ 168, 226 ], [ 157, 229 ], [ 188, 230 ], [ 233, 232 ], [ 185, 235 ], [ 232, 235 ], [ 214, 236 ], [ 198, 236 ], [ 170, 237 ], [ 232, 240 ], [ 185, 240 ], [ 249, 246 ] ]
[ "class Combination():\n # コンストラクタ\n def __init__(self, N:int, P:int):\n self.N = N\n self.P = P\n\n # fact[i] = (i! mod P)\n self.fact = [1, 1] \n # factinv[i] = ((i!)^(-1) mod P)\n self.factinv = [1, 1]\n # factinv 計算用\n self.inv = [0, 1] \n\n for i in range(2, N+1):\n self.fact.append((self.fact[-1] * i) % P)\n self.inv.append((-self.inv[P % i] * (P // i)) % P)\n self.factinv.append((self.factinv[-1] * self.inv[-1]) % P)\n \n # nCk (mod P) (ただし、n<=N)\n def getComb(self, n:int, k:int):\n if (k < 0) or (n < k):\n return 0\n k = min(k, n - k)\n return self.fact[n] * self.factinv[k] * self.factinv[n-k] % self.P\n\ndef main():\n H,W,A,B = map(int,input().split())\n MOD = 10**9 + 7\n\n COMB = Combination(H+W, MOD)\n\n # (1,1) -> (i,B-1) -> (i,B+1) -> (H,W)\n\n ans = 0\n for i in range(1,H-A+1):\n tmp = COMB.getComb((i-1)+(B-1), i-1)\n tmp *= COMB.getComb((H-i)+(W-B-1), H-i)\n ans = (ans + tmp) % MOD\n\n print(ans)\n\nif __name__ == \"__main__\":\n main()", "class Combination():\n # コンストラクタ\n def __init__(self, N:int, P:int):\n self.N = N\n self.P = P\n\n # fact[i] = (i! mod P)\n self.fact = [1, 1] \n # factinv[i] = ((i!)^(-1) mod P)\n self.factinv = [1, 1]\n # factinv 計算用\n self.inv = [0, 1] \n\n for i in range(2, N+1):\n self.fact.append((self.fact[-1] * i) % P)\n self.inv.append((-self.inv[P % i] * (P // i)) % P)\n self.factinv.append((self.factinv[-1] * self.inv[-1]) % P)\n \n # nCk (mod P) (ただし、n<=N)\n def getComb(self, n:int, k:int):\n if (k < 0) or (n < k):\n return 0\n k = min(k, n - k)\n return self.fact[n] * self.factinv[k] * self.factinv[n-k] % self.P", "Combination", "def __init__(self, N:int, P:int):\n self.N = N\n self.P = P\n\n # fact[i] = (i! mod P)\n self.fact = [1, 1] \n # factinv[i] = ((i!)^(-1) mod P)\n self.factinv = [1, 1]\n # factinv 計算用\n self.inv = [0, 1] \n\n for i in range(2, N+1):\n self.fact.append((self.fact[-1] * i) % P)\n self.inv.append((-self.inv[P % i] * (P // i)) % P)\n self.factinv.append((self.factinv[-1] * self.inv[-1]) % P)\n \n # nCk (mod P) (ただし、n<=N)\n ", "__init__", "self.N = N", "self.N", "self", "N", "N", "self.P = P", "self.P", "self", "P", "P", "self.fact = [1, 1]", "self.fact", "self", "fact", "[1, 1]", "1", "1", "self.factinv = [1, 1]", "self.factinv", "self", "factinv", "[1, 1]", "1", "1", "self.inv = [0, 1]", "self.inv", "self", "inv", "[0, 1]", "0", "1", "for i in range(2, N+1):\n self.fact.append((self.fact[-1] * i) % P)\n self.inv.append((-self.inv[P % i] * (P // i)) % P)\n self.factinv.append((self.factinv[-1] * self.inv[-1]) % P)\n \n # nCk (mod P) (ただし、n<=N)\n ", "i", "range(2, N+1)", "range", "2", "N+1", "N", "1", "self.fact.append((self.fact[-1] * i) % P)", "self.fact.append", "self.fact", "self", "fact", "append", "(self.fact[-1] * i) % P", "self.fact[-1] * i", "self.fact[-1]", "self.fact", "self", "fact", "-1", "i", "P", "self.inv.append((-self.inv[P % i] * (P // i)) % P)", "self.inv.append", "self.inv", "self", "inv", "append", "(-self.inv[P % i] * (P // i)) % P", "-self.inv[P % i] * (P // i)", "-self.inv[P % i]", "self.inv[P % i]", "self.inv", "self", "inv", "P % i", "P", "i", "P // i", "P", "i", "P", "self.factinv.append((self.factinv[-1] * self.inv[-1]) % P)", "self.factinv.append", "self.factinv", "self", "factinv", "append", "(self.factinv[-1] * self.inv[-1]) % P", "self.factinv[-1] * self.inv[-1]", "self.factinv[-1]", "self.factinv", "self", "factinv", "-1", "self.inv[-1]", "self.inv", "self", "inv", "-1", "P", "self", "self", "N:int", "N", "P:int", "P", "def getComb(self, n:int, k:int):\n if (k < 0) or (n < k):\n return 0\n k = min(k, n - k)\n return self.fact[n] * self.factinv[k] * self.factinv[n-k] % self.P", "getComb", "if (k < 0) or (n < k):\n return 0\n ", "(k < 0) or (n < k)", "k < 0", "k", "0", "n < k", "n", "k", "return 0", "0", "k = min(k, n - k)", "k", "min(k, n - k)", "min", "k", "n - k", "n", "k", "return self.fact[n] * self.factinv[k] * self.factinv[n-k] % self.P", "self.fact[n] * self.factinv[k] * self.factinv[n-k] % self.P", "self.fact[n] * self.factinv[k] * self.factinv[n-k]", "self.fact[n] * self.factinv[k]", "self.fact[n]", "self.fact", "self", "fact", "n", "self.factinv[k]", "self.factinv", "self", "factinv", "k", "self.factinv[n-k]", "self.factinv", "self", "factinv", "n-k", "n", "k", "self.P", "self", "P", "self", "self", "n:int", "n", "k:int", "k", "def main():\n H,W,A,B = map(int,input().split())\n MOD = 10**9 + 7\n\n COMB = Combination(H+W, MOD)\n\n # (1,1) -> (i,B-1) -> (i,B+1) -> (H,W)\n\n ans = 0\n for i in range(1,H-A+1):\n tmp = COMB.getComb((i-1)+(B-1), i-1)\n tmp *= COMB.getComb((H-i)+(W-B-1), H-i)\n ans = (ans + tmp) % MOD\n\n print(ans)", "main", "H,W,A,B = map(int,input().split())", "H", "map(int,input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "MOD = 10**9 + 7", "MOD", "10**9 + 7", "10**9", "10", "9", "7", "COMB = Combination(H+W, MOD)", "COMB", "Combination(H+W, MOD)", "Combination", "H+W", "H", "W", "MOD", "ans = 0", "ans", "0", "for i in range(1,H-A+1):\n tmp = COMB.getComb((i-1)+(B-1), i-1)\n tmp *= COMB.getComb((H-i)+(W-B-1), H-i)\n ans = (ans + tmp) % MOD\n\n ", "i", "range(1,H-A+1)", "range", "1", "H-A+1", "H-A", "H", "A", "1", "tmp = COMB.getComb((i-1)+(B-1), i-1)", "tmp", "COMB.getComb((i-1)+(B-1), i-1)", "COMB.getComb", "COMB", "getComb", "(i-1)+(B-1)", "i-1", "i", "1", "B-1", "B", "1", "i-1", "i", "1", "tmp *= COMB.getComb((H-i)+(W-B-1), H-i)", "tmp", "COMB.getComb((H-i)+(W-B-1), H-i)", "COMB.getComb", "COMB", "getComb", "(H-i)+(W-B-1)", "H-i", "H", "i", "W-B-1", "W-B", "W", "B", "1", "H-i", "H", "i", "ans = (ans + tmp) % MOD", "ans", "(ans + tmp) % MOD", "ans + tmp", "ans", "tmp", "MOD", "print(ans)", "print", "ans", "if __name__ == \"__main__\":\n main()", "__name__ == \"__main__\"", "__name__", "\"__main__\"", "main()", "main", "def main():\n H,W,A,B = map(int,input().split())\n MOD = 10**9 + 7\n\n COMB = Combination(H+W, MOD)\n\n # (1,1) -> (i,B-1) -> (i,B+1) -> (H,W)\n\n ans = 0\n for i in range(1,H-A+1):\n tmp = COMB.getComb((i-1)+(B-1), i-1)\n tmp *= COMB.getComb((H-i)+(W-B-1), H-i)\n ans = (ans + tmp) % MOD\n\n print(ans)", "def main():\n H,W,A,B = map(int,input().split())\n MOD = 10**9 + 7\n\n COMB = Combination(H+W, MOD)\n\n # (1,1) -> (i,B-1) -> (i,B+1) -> (H,W)\n\n ans = 0\n for i in range(1,H-A+1):\n tmp = COMB.getComb((i-1)+(B-1), i-1)\n tmp *= COMB.getComb((H-i)+(W-B-1), H-i)\n ans = (ans + tmp) % MOD\n\n print(ans)", "main", "class Combination():\n # コンストラクタ\n def __init__(self, N:int, P:int):\n self.N = N\n self.P = P\n\n # fact[i] = (i! mod P)\n self.fact = [1, 1] \n # factinv[i] = ((i!)^(-1) mod P)\n self.factinv = [1, 1]\n # factinv 計算用\n self.inv = [0, 1] \n\n for i in range(2, N+1):\n self.fact.append((self.fact[-1] * i) % P)\n self.inv.append((-self.inv[P % i] * (P // i)) % P)\n self.factinv.append((self.factinv[-1] * self.inv[-1]) % P)\n \n # nCk (mod P) (ただし、n<=N)\n def getComb(self, n:int, k:int):\n if (k < 0) or (n < k):\n return 0\n k = min(k, n - k)\n return self.fact[n] * self.factinv[k] * self.factinv[n-k] % self.P", "class Combination():\n # コンストラクタ\n def __init__(self, N:int, P:int):\n self.N = N\n self.P = P\n\n # fact[i] = (i! mod P)\n self.fact = [1, 1] \n # factinv[i] = ((i!)^(-1) mod P)\n self.factinv = [1, 1]\n # factinv 計算用\n self.inv = [0, 1] \n\n for i in range(2, N+1):\n self.fact.append((self.fact[-1] * i) % P)\n self.inv.append((-self.inv[P % i] * (P // i)) % P)\n self.factinv.append((self.factinv[-1] * self.inv[-1]) % P)\n \n # nCk (mod P) (ただし、n<=N)\n def getComb(self, n:int, k:int):\n if (k < 0) or (n < k):\n return 0\n k = min(k, n - k)\n return self.fact[n] * self.factinv[k] * self.factinv[n-k] % self.P", "Combination" ]
class Combination(): # コンストラクタ def __init__(self, N:int, P:int): self.N = N self.P = P # fact[i] = (i! mod P) self.fact = [1, 1] # factinv[i] = ((i!)^(-1) mod P) self.factinv = [1, 1] # factinv 計算用 self.inv = [0, 1] for i in range(2, N+1): self.fact.append((self.fact[-1] * i) % P) self.inv.append((-self.inv[P % i] * (P // i)) % P) self.factinv.append((self.factinv[-1] * self.inv[-1]) % P) # nCk (mod P) (ただし、n<=N) def getComb(self, n:int, k:int): if (k < 0) or (n < k): return 0 k = min(k, n - k) return self.fact[n] * self.factinv[k] * self.factinv[n-k] % self.P def main(): H,W,A,B = map(int,input().split()) MOD = 10**9 + 7 COMB = Combination(H+W, MOD) # (1,1) -> (i,B-1) -> (i,B+1) -> (H,W) ans = 0 for i in range(1,H-A+1): tmp = COMB.getComb((i-1)+(B-1), i-1) tmp *= COMB.getComb((H-i)+(W-B-1), H-i) ans = (ans + tmp) % MOD print(ans) if __name__ == "__main__": main()
[ 7, 15, 13, 0, 13, 17, 0, 13, 39, 17, 17, 0, 13, 39, 17, 17, 0, 13, 39, 17, 17, 28, 13, 4, 13, 17, 2, 2, 17, 2, 17, 17, 17, 4, 18, 13, 13, 2, 2, 18, 13, 17, 13, 13, 4, 18, 13, 13, 2, 2, 40, 18, 13, 2, 13, 13, 2, 13, 13, 13, 4, 18, 13, 13, 2, 2, 18, 13, 17, 18, 13, 17, 13, 12, 13, 14, 2, 2, 13, 17, 2, 13, 13, 0, 13, 4, 13, 13, 2, 13, 13, 29, 2, 2, 2, 18, 13, 13, 18, 13, 13, 18, 13, 2, 13, 13, 13, 23, 13, 23, 13, 23, 13, 12, 13, 14, 2, 2, 13, 17, 2, 13, 17, 23, 13, 23, 13, 23, 13, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 17, 28, 13, 4, 13, 17, 2, 2, 13, 13, 17, 4, 13, 13, 10, 39, 13, 10, 39, 13, 10, 12, 13, 10, 17, 13, 10, 4, 13, 10, 39, 13, 10, 4, 13, 10, 4, 13, 10, 17, 13, 10, 12, 13, 10, 4, 13 ]
[ [ 183, 4 ], [ 159, 7 ], [ 162, 12 ], [ 174, 17 ], [ 23, 22 ], [ 160, 35 ], [ 160, 40 ], [ 22, 42 ], [ 184, 43 ], [ 175, 46 ], [ 175, 52 ], [ 184, 54 ], [ 22, 55 ], [ 184, 57 ], [ 22, 58 ], [ 184, 59 ], [ 163, 62 ], [ 163, 67 ], [ 175, 70 ], [ 184, 72 ], [ 110, 78 ], [ 110, 81 ], [ 108, 82 ], [ 85, 84 ], [ 110, 87 ], [ 108, 89 ], [ 110, 90 ], [ 160, 96 ], [ 108, 97 ], [ 163, 99 ], [ 84, 100 ], [ 110, 100 ], [ 163, 102 ], [ 108, 104 ], [ 84, 105 ], [ 110, 105 ], [ 112, 106 ], [ 108, 108 ], [ 110, 110 ], [ 112, 112 ], [ 124, 118 ], [ 126, 121 ], [ 124, 124 ], [ 126, 126 ], [ 128, 128 ], [ 189, 130 ], [ 189, 139 ], [ 189, 140 ], [ 189, 141 ], [ 168, 143 ], [ 147, 146 ], [ 172, 152 ], [ 178, 153 ], [ 169, 157 ], [ 159, 160 ], [ 162, 163 ], [ 168, 169 ], [ 189, 172 ], [ 174, 175 ], [ 189, 178 ], [ 189, 181 ], [ 183, 184 ], [ 189, 190 ] ]
[ "import math\np=1000000007\ng1=[1,1]\ng2=[1,1]\ninverse=[0,1]\nfor i in range(2,2*(10**5)+1):\n g1.append((g1[-1]*i)%p)\n inverse.append((-inverse[p%i]*(p//i))%p)\n g2.append((g2[-1]*inverse[-1])%p)\ndef cmb2(n, r, mod):\n if (r<0 or r>n):return 0\n r = min(r,n-r)\n return g1[n]*g2[r]*g2[n-r]%mod\ndef chwp(h,w,p):\n if h==1 or w==1:return 1\n else:return cmb2(h+w-2,h-1,p)\nh,w,a,b= map(int,input().split())\nans=0\nfor i in range(1,h-a+1):ans=(ans+chwp(i,b,p)*chwp(h-i+1,w-b,p))%p\nprint(ans)", "import math", "math", "p=1000000007", "p", "1000000007", "g1=[1,1]", "g1", "[1,1]", "1", "1", "g2=[1,1]", "g2", "[1,1]", "1", "1", "inverse=[0,1]", "inverse", "[0,1]", "0", "1", "for i in range(2,2*(10**5)+1):\n g1.append((g1[-1]*i)%p)\n inverse.append((-inverse[p%i]*(p//i))%p)\n g2.append((g2[-1]*inverse[-1])%p)", "i", "range(2,2*(10**5)+1)", "range", "2", "2*(10**5)+1", "2*(10**5)", "2", "10**5", "10", "5", "1", "g1.append((g1[-1]*i)%p)", "g1.append", "g1", "append", "(g1[-1]*i)%p", "g1[-1]*i", "g1[-1]", "g1", "-1", "i", "p", "inverse.append((-inverse[p%i]*(p//i))%p)", "inverse.append", "inverse", "append", "(-inverse[p%i]*(p//i))%p", "-inverse[p%i]*(p//i)", "-inverse[p%i]", "inverse[p%i]", "inverse", "p%i", "p", "i", "p//i", "p", "i", "p", "g2.append((g2[-1]*inverse[-1])%p)", "g2.append", "g2", "append", "(g2[-1]*inverse[-1])%p", "g2[-1]*inverse[-1]", "g2[-1]", "g2", "-1", "inverse[-1]", "inverse", "-1", "p", "def cmb2(n, r, mod):\n if (r<0 or r>n):return 0\n r = min(r,n-r)\n return g1[n]*g2[r]*g2[n-r]%mod", "cmb2", "if (r<0 or r>n):return 0\n ", "r<0 or r>n", "r<0", "r", "0", "r>n", "r", "n", "r = min(r,n-r)", "r", "min(r,n-r)", "min", "r", "n-r", "n", "r", "return g1[n]*g2[r]*g2[n-r]%mod", "g1[n]*g2[r]*g2[n-r]%mod", "g1[n]*g2[r]*g2[n-r]", "g1[n]*g2[r]", "g1[n]", "g1", "n", "g2[r]", "g2", "r", "g2[n-r]", "g2", "n-r", "n", "r", "mod", "n", "n", "r", "r", "mod", "mod", "def chwp(h,w,p):\n if h==1 or w==1:return 1\n else:return cmb2(h+w-2,h-1,p)", "chwp", "if h==1 or w==1:return 1\n else:return cmb2(h+w-2,h-1,p)", "h==1 or w==1", "h==1", "h", "1", "w==1", "w", "1", "h", "h", "w", "w", "p", "p", "h,w,a,b= map(int,input().split())", "h", "map(int,input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "w", "a", "b", "ans=0", "ans", "0", "for i in range(1,h-a+1):ans=(ans+chwp(i,b,p)*chwp(h-i+1,w-b,p))%p", "i", "range(1,h-a+1)", "range", "1", "h-a+1", "h-a", "h", "a", "1", "print(ans)", "print", "ans", "g1=[1,1]", "[1,1]", "g1", "g2=[1,1]", "[1,1]", "g2", "def chwp(h,w,p):\n if h==1 or w==1:return 1\n else:return cmb2(h+w-2,h-1,p)", "def chwp(h,w,p):\n if h==1 or w==1:return 1\n else:return cmb2(h+w-2,h-1,p)", "chwp", "ans=0", "0", "ans", "h,w,a,b= map(int,input().split())", "map(int,input().split())", "h", "inverse=[0,1]", "[0,1]", "inverse", "a,b= map(int,input().split())", "map(int,input().split())", "a", "b= map(int,input().split())", "map(int,input().split())", "b", "p=1000000007", "1000000007", "p", "def cmb2(n, r, mod):\n if (r<0 or r>n):return 0\n r = min(r,n-r)\n return g1[n]*g2[r]*g2[n-r]%mod", "def cmb2(n, r, mod):\n if (r<0 or r>n):return 0\n r = min(r,n-r)\n return g1[n]*g2[r]*g2[n-r]%mod", "cmb2", "w,a,b= map(int,input().split())", "map(int,input().split())", "w" ]
import math p=1000000007 g1=[1,1] g2=[1,1] inverse=[0,1] for i in range(2,2*(10**5)+1): g1.append((g1[-1]*i)%p) inverse.append((-inverse[p%i]*(p//i))%p) g2.append((g2[-1]*inverse[-1])%p) def cmb2(n, r, mod): if (r<0 or r>n):return 0 r = min(r,n-r) return g1[n]*g2[r]*g2[n-r]%mod def chwp(h,w,p): if h==1 or w==1:return 1 else:return cmb2(h+w-2,h-1,p) h,w,a,b= map(int,input().split()) ans=0 for i in range(1,h-a+1):ans=(ans+chwp(i,b,p)*chwp(h-i+1,w-b,p))%p print(ans)
[ 7, 12, 13, 14, 2, 2, 13, 17, 2, 13, 13, 29, 17, 0, 13, 4, 13, 13, 2, 13, 13, 29, 2, 2, 2, 18, 13, 13, 18, 13, 13, 18, 13, 2, 13, 13, 13, 23, 13, 23, 13, 23, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 2, 17, 17, 0, 13, 39, 17, 17, 0, 13, 39, 17, 17, 0, 13, 39, 17, 17, 28, 13, 4, 13, 17, 2, 13, 17, 4, 18, 13, 13, 2, 2, 18, 13, 17, 13, 13, 4, 18, 13, 13, 2, 2, 40, 18, 13, 2, 13, 13, 2, 13, 13, 13, 4, 18, 13, 13, 2, 2, 18, 13, 17, 18, 13, 17, 13, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 17, 28, 13, 4, 13, 2, 13, 13, 0, 13, 2, 4, 13, 2, 2, 2, 13, 13, 17, 13, 13, 13, 4, 13, 2, 2, 2, 2, 13, 13, 17, 13, 17, 2, 13, 17, 13, 0, 13, 17, 4, 13, 2, 13, 13, 10, 4, 13, 10, 2, 13, 10, 2, 13, 10, 4, 13, 10, 39, 13, 10, 2, 13, 10, 4, 13, 10, 39, 13, 10, 17, 13, 10, 4, 13, 10, 17, 13, 10, 12, 13, 10, 39, 13 ]
[ [ 40, 6 ], [ 38, 9 ], [ 40, 10 ], [ 15, 14 ], [ 40, 17 ], [ 38, 19 ], [ 40, 20 ], [ 38, 27 ], [ 14, 30 ], [ 40, 30 ], [ 38, 34 ], [ 14, 35 ], [ 40, 35 ], [ 42, 36 ], [ 38, 38 ], [ 40, 40 ], [ 42, 42 ], [ 182, 44 ], [ 185, 51 ], [ 215, 56 ], [ 191, 61 ], [ 200, 66 ], [ 72, 71 ], [ 186, 76 ], [ 216, 80 ], [ 216, 85 ], [ 71, 87 ], [ 183, 88 ], [ 201, 91 ], [ 201, 97 ], [ 183, 99 ], [ 71, 100 ], [ 183, 102 ], [ 71, 103 ], [ 183, 104 ], [ 192, 107 ], [ 192, 112 ], [ 201, 115 ], [ 183, 117 ], [ 206, 119 ], [ 206, 128 ], [ 206, 129 ], [ 206, 130 ], [ 209, 132 ], [ 136, 135 ], [ 189, 139 ], [ 207, 140 ], [ 194, 142 ], [ 213, 145 ], [ 180, 149 ], [ 198, 150 ], [ 207, 152 ], [ 204, 152 ], [ 207, 153 ], [ 204, 153 ], [ 183, 154 ], [ 213, 156 ], [ 189, 161 ], [ 207, 162 ], [ 204, 162 ], [ 198, 164 ], [ 198, 167 ], [ 183, 169 ], [ 203, 171 ], [ 195, 176 ], [ 210, 176 ], [ 183, 177 ], [ 206, 180 ], [ 182, 183 ], [ 185, 186 ], [ 206, 189 ], [ 191, 192 ], [ 194, 195 ], [ 206, 198 ], [ 200, 201 ], [ 203, 204 ], [ 206, 207 ], [ 209, 210 ], [ 215, 216 ] ]
[ "def nCr(n, r, mod):\n if r < 0 or n < r:\n return 0\n r = min(r, n - r)\n return fact[n] * factinv[r] * factinv[n - r] % mod\n\n\nmod = 10 ** 9 + 7\nN = 10 ** 6\nfact = [1, 1]\nfactinv = [1, 1]\ninv = [0, 1]\n\nfor i in range(2, N + 1):\n fact.append((fact[-1] * i) % mod)\n inv.append((-inv[mod % i] * (mod // i)) % mod)\n factinv.append((factinv[-1] * inv[-1]) % mod)\n\n\nh, w, a, b = map(int, input().split())\n\nans = 0\n\nfor i in range(w - b):\n ans += nCr(h - a - 1 + b, b, mod) * nCr(w - b - 1 + a - 1, a - 1, mod)\n b += 1\n\nprint(ans % mod)", "def nCr(n, r, mod):\n if r < 0 or n < r:\n return 0\n r = min(r, n - r)\n return fact[n] * factinv[r] * factinv[n - r] % mod", "nCr", "if r < 0 or n < r:\n return 0\n ", "r < 0 or n < r", "r < 0", "r", "0", "n < r", "n", "r", "return 0", "0", "r = min(r, n - r)", "r", "min(r, n - r)", "min", "r", "n - r", "n", "r", "return fact[n] * factinv[r] * factinv[n - r] % mod", "fact[n] * factinv[r] * factinv[n - r] % mod", "fact[n] * factinv[r] * factinv[n - r]", "fact[n] * factinv[r]", "fact[n]", "fact", "n", "factinv[r]", "factinv", "r", "factinv[n - r]", "factinv", "n - r", "n", "r", "mod", "n", "n", "r", "r", "mod", "mod", "mod = 10 ** 9 + 7", "mod", "10 ** 9 + 7", "10 ** 9", "10", "9", "7", "N = 10 ** 6", "N", "10 ** 6", "10", "6", "fact = [1, 1]", "fact", "[1, 1]", "1", "1", "factinv = [1, 1]", "factinv", "[1, 1]", "1", "1", "inv = [0, 1]", "inv", "[0, 1]", "0", "1", "for i in range(2, N + 1):\n fact.append((fact[-1] * i) % mod)\n inv.append((-inv[mod % i] * (mod // i)) % mod)\n factinv.append((factinv[-1] * inv[-1]) % mod)", "i", "range(2, N + 1)", "range", "2", "N + 1", "N", "1", "fact.append((fact[-1] * i) % mod)", "fact.append", "fact", "append", "(fact[-1] * i) % mod", "fact[-1] * i", "fact[-1]", "fact", "-1", "i", "mod", "inv.append((-inv[mod % i] * (mod // i)) % mod)", "inv.append", "inv", "append", "(-inv[mod % i] * (mod // i)) % mod", "-inv[mod % i] * (mod // i)", "-inv[mod % i]", "inv[mod % i]", "inv", "mod % i", "mod", "i", "mod // i", "mod", "i", "mod", "factinv.append((factinv[-1] * inv[-1]) % mod)", "factinv.append", "factinv", "append", "(factinv[-1] * inv[-1]) % mod", "factinv[-1] * inv[-1]", "factinv[-1]", "factinv", "-1", "inv[-1]", "inv", "-1", "mod", "h, w, a, b = map(int, input().split())", "h", "map(int, input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "w", "a", "b", "ans = 0", "ans", "0", "for i in range(w - b):\n ans += nCr(h - a - 1 + b, b, mod) * nCr(w - b - 1 + a - 1, a - 1, mod)\n b += 1", "i", "range(w - b)", "range", "w - b", "w", "b", "ans += nCr(h - a - 1 + b, b, mod) * nCr(w - b - 1 + a - 1, a - 1, mod)", "ans", "nCr(h - a - 1 + b, b, mod) * nCr(w - b - 1 + a - 1, a - 1, mod)", "nCr(h - a - 1 + b, b, mod)", "nCr", "h - a - 1 + b", "h - a - 1", "h - a", "h", "a", "1", "b", "b", "mod", "nCr(w - b - 1 + a - 1, a - 1, mod)", "nCr", "w - b - 1 + a - 1", "w - b - 1 + a", "w - b - 1", "w - b", "w", "b", "1", "a", "1", "a - 1", "a", "1", "mod", "b += 1", "b", "1", "print(ans % mod)", "print", "ans % mod", "ans", "mod", "h, w, a, b = map(int, input().split())", "map(int, input().split())", "h", "mod = 10 ** 9 + 7", "10 ** 9 + 7", "mod", "N = 10 ** 6", "10 ** 6", "N", "w, a, b = map(int, input().split())", "map(int, input().split())", "w", "factinv = [1, 1]", "[1, 1]", "factinv", "ans += nCr(h - a - 1 + b, b, mod) * nCr(w - b - 1 + a - 1, a - 1, mod)", "nCr(h - a - 1 + b, b, mod) * nCr(w - b - 1 + a - 1, a - 1, mod)", "ans", "a, b = map(int, input().split())", "map(int, input().split())", "a", "inv = [0, 1]", "[0, 1]", "inv", "b += 1", "1", "b", "b = map(int, input().split())", "map(int, input().split())", "b", "ans = 0", "0", "ans", "def nCr(n, r, mod):\n if r < 0 or n < r:\n return 0\n r = min(r, n - r)\n return fact[n] * factinv[r] * factinv[n - r] % mod", "def nCr(n, r, mod):\n if r < 0 or n < r:\n return 0\n r = min(r, n - r)\n return fact[n] * factinv[r] * factinv[n - r] % mod", "nCr", "fact = [1, 1]", "[1, 1]", "fact" ]
def nCr(n, r, mod): if r < 0 or n < r: return 0 r = min(r, n - r) return fact[n] * factinv[r] * factinv[n - r] % mod mod = 10 ** 9 + 7 N = 10 ** 6 fact = [1, 1] factinv = [1, 1] inv = [0, 1] for i in range(2, N + 1): fact.append((fact[-1] * i) % mod) inv.append((-inv[mod % i] * (mod // i)) % mod) factinv.append((factinv[-1] * inv[-1]) % mod) h, w, a, b = map(int, input().split()) ans = 0 for i in range(w - b): ans += nCr(h - a - 1 + b, b, mod) * nCr(w - b - 1 + a - 1, a - 1, mod) b += 1 print(ans % mod)
[ 7, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 13, 13, 12, 13, 14, 2, 13, 17, 14, 2, 13, 17, 14, 2, 2, 13, 17, 17, 23, 13, 23, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 39, 17, 28, 13, 4, 13, 17, 13, 4, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 13, 13, 0, 13, 2, 39, 17, 13, 0, 18, 13, 2, 13, 17, 4, 13, 18, 13, 2, 13, 17, 2, 13, 17, 28, 13, 4, 13, 2, 13, 17, 17, 17, 0, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 2, 13, 17, 13, 12, 13, 29, 2, 2, 2, 18, 13, 13, 18, 13, 13, 18, 13, 2, 13, 13, 13, 23, 13, 23, 13, 0, 13, 17, 28, 13, 4, 13, 17, 2, 2, 13, 13, 17, 0, 13, 2, 4, 13, 2, 2, 13, 13, 17, 2, 13, 17, 4, 13, 2, 2, 2, 2, 13, 13, 13, 13, 17, 2, 2, 13, 13, 17, 0, 13, 13, 4, 13, 13, 10, 4, 13, 10, 2, 13, 10, 12, 13, 10, 13, 13, 10, 4, 13, 10, 4, 13, 10, 12, 13, 10, 4, 13, 10, 17, 13, 10, 2, 13, 10, 39, 13, 10, 2, 13, 10, 2, 13 ]
[ [ 207, 2 ], [ 207, 11 ], [ 207, 12 ], [ 207, 13 ], [ 189, 15 ], [ 187, 17 ], [ 208, 18 ], [ 38, 23 ], [ 38, 27 ], [ 38, 32 ], [ 36, 36 ], [ 38, 38 ], [ 222, 40 ], [ 216, 47 ], [ 52, 51 ], [ 190, 55 ], [ 217, 58 ], [ 217, 63 ], [ 51, 65 ], [ 51, 67 ], [ 223, 68 ], [ 213, 70 ], [ 190, 74 ], [ 81, 76 ], [ 214, 77 ], [ 190, 79 ], [ 193, 82 ], [ 217, 84 ], [ 190, 86 ], [ 223, 89 ], [ 93, 92 ], [ 190, 96 ], [ 104, 101 ], [ 214, 102 ], [ 92, 103 ], [ 214, 107 ], [ 92, 109 ], [ 92, 112 ], [ 223, 114 ], [ 217, 122 ], [ 134, 123 ], [ 214, 125 ], [ 136, 126 ], [ 214, 128 ], [ 134, 130 ], [ 136, 131 ], [ 223, 132 ], [ 134, 134 ], [ 136, 136 ], [ 210, 138 ], [ 142, 141 ], [ 187, 147 ], [ 199, 148 ], [ 219, 151 ], [ 205, 154 ], [ 202, 157 ], [ 141, 158 ], [ 202, 161 ], [ 205, 164 ], [ 187, 169 ], [ 141, 170 ], [ 208, 171 ], [ 202, 172 ], [ 208, 176 ], [ 202, 177 ], [ 195, 180 ], [ 223, 181 ], [ 196, 184 ], [ 220, 184 ], [ 211, 184 ], [ 207, 187 ], [ 189, 190 ], [ 223, 195 ], [ 195, 196 ], [ 207, 199 ], [ 207, 202 ], [ 207, 208 ], [ 210, 211 ], [ 213, 214 ], [ 216, 217 ], [ 219, 220 ], [ 222, 223 ] ]
[ "h, w, a, b = map(int, input().split())\n\nN = h + w\n\ndef power(x, y):\n if y == 0 : return 1\n elif y == 1 : return x % mod\n elif y % 2 == 0 : return power(x, y // 2) ** 2 % mod\n else : return power(x, y // 2) ** 2 * x % mod\n\nmod = 10 ** 9 + 7\n\nfactorial = [1]\nfor i in range(1, N):\n factorial.append(factorial[i - 1] * i % mod)\n\ninverseFactorial = [0] * N\ninverseFactorial[N - 1] = power(factorial[N - 1], mod - 2)\nfor i in range(N - 2, -1, -1):\n inverseFactorial[i] = inverseFactorial[i + 1] * (i + 1) % mod\n\ndef comb(x, y):\n return factorial[x] * inverseFactorial[y] * inverseFactorial[x - y] % mod\n\n\n\nans = 0\nfor i in range(1, h - a + 1):\n ans += comb(b + i - 2, b - 1) * comb(h - i + w - b - 1, w - b - 1)\n # print(i, ans)\n ans %= mod\nprint(ans)", "h, w, a, b = map(int, input().split())", "h", "map(int, input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "w", "a", "b", "N = h + w", "N", "h + w", "h", "w", "def power(x, y):\n if y == 0 : return 1\n elif y == 1 : return x % mod\n elif y % 2 == 0 : return power(x, y // 2) ** 2 % mod\n else : return power(x, y // 2) ** 2 * x % mod", "power", "if y == 0 : return 1\n elif y == 1 : return x % mod\n elif y % 2 == 0 : return power(x, y // 2) ** 2 % mod\n else : return power(x, y // 2) ** 2 * x % mod", "y == 0", "y", "0", "elif y == 1 : return x % mod\n ", "y == 1", "y", "1", "elif y % 2 == 0 : return power(x, y // 2) ** 2 % mod\n ", "y % 2 == 0", "y % 2", "y", "2", "0", "x", "x", "y", "y", "mod = 10 ** 9 + 7", "mod", "10 ** 9 + 7", "10 ** 9", "10", "9", "7", "factorial = [1]", "factorial", "[1]", "1", "for i in range(1, N):\n factorial.append(factorial[i - 1] * i % mod)", "i", "range(1, N)", "range", "1", "N", "factorial.append(factorial[i - 1] * i % mod)", "factorial.append", "factorial", "append", "factorial[i - 1] * i % mod", "factorial[i - 1] * i", "factorial[i - 1]", "factorial", "i - 1", "i", "1", "i", "mod", "inverseFactorial = [0] * N", "inverseFactorial", "[0] * N", "[0]", "0", "N", "inverseFactorial[N - 1] = power(factorial[N - 1], mod - 2)", "inverseFactorial[N - 1]", "inverseFactorial", "N - 1", "N", "1", "power(factorial[N - 1], mod - 2)", "power", "factorial[N - 1]", "factorial", "N - 1", "N", "1", "mod - 2", "mod", "2", "for i in range(N - 2, -1, -1):\n inverseFactorial[i] = inverseFactorial[i + 1] * (i + 1) % mod", "i", "range(N - 2, -1, -1)", "range", "N - 2", "N", "2", "-1", "-1", "inverseFactorial[i] = inverseFactorial[i + 1] * (i + 1) % mod", "inverseFactorial[i]", "inverseFactorial", "i", "inverseFactorial[i + 1] * (i + 1) % mod", "inverseFactorial[i + 1] * (i + 1)", "inverseFactorial[i + 1]", "inverseFactorial", "i + 1", "i", "1", "i + 1", "i", "1", "mod", "def comb(x, y):\n return factorial[x] * inverseFactorial[y] * inverseFactorial[x - y] % mod", "comb", "return factorial[x] * inverseFactorial[y] * inverseFactorial[x - y] % mod", "factorial[x] * inverseFactorial[y] * inverseFactorial[x - y] % mod", "factorial[x] * inverseFactorial[y] * inverseFactorial[x - y]", "factorial[x] * inverseFactorial[y]", "factorial[x]", "factorial", "x", "inverseFactorial[y]", "inverseFactorial", "y", "inverseFactorial[x - y]", "inverseFactorial", "x - y", "x", "y", "mod", "x", "x", "y", "y", "ans = 0", "ans", "0", "for i in range(1, h - a + 1):\n ans += comb(b + i - 2, b - 1) * comb(h - i + w - b - 1, w - b - 1)\n # print(i, ans)\n ans %= mod", "i", "range(1, h - a + 1)", "range", "1", "h - a + 1", "h - a", "h", "a", "1", "ans += comb(b + i - 2, b - 1) * comb(h - i + w - b - 1, w - b - 1)", "ans", "comb(b + i - 2, b - 1) * comb(h - i + w - b - 1, w - b - 1)", "comb(b + i - 2, b - 1)", "comb", "b + i - 2", "b + i", "b", "i", "2", "b - 1", "b", "1", "comb(h - i + w - b - 1, w - b - 1)", "comb", "h - i + w - b - 1", "h - i + w - b", "h - i + w", "h - i", "h", "i", "w", "b", "1", "w - b - 1", "w - b", "w", "b", "1", "ans %= mod", "ans", "mod", "print(ans)", "print", "ans", "h, w, a, b = map(int, input().split())", "map(int, input().split())", "h", "N = h + w", "h + w", "N", "def power(x, y):\n if y == 0 : return 1\n elif y == 1 : return x % mod\n elif y % 2 == 0 : return power(x, y // 2) ** 2 % mod\n else : return power(x, y // 2) ** 2 * x % mod", "def power(x, y):\n if y == 0 : return 1\n elif y == 1 : return x % mod\n elif y % 2 == 0 : return power(x, y // 2) ** 2 % mod\n else : return power(x, y // 2) ** 2 * x % mod", "power", "ans %= mod", "mod", "ans", "a, b = map(int, input().split())", "map(int, input().split())", "a", "b = map(int, input().split())", "map(int, input().split())", "b", "def comb(x, y):\n return factorial[x] * inverseFactorial[y] * inverseFactorial[x - y] % mod", "def comb(x, y):\n return factorial[x] * inverseFactorial[y] * inverseFactorial[x - y] % mod", "comb", "w, a, b = map(int, input().split())", "map(int, input().split())", "w", "ans = 0", "0", "ans", "inverseFactorial = [0] * N", "[0] * N", "inverseFactorial", "factorial = [1]", "[1]", "factorial", "ans += comb(b + i - 2, b - 1) * comb(h - i + w - b - 1, w - b - 1)", "comb(b + i - 2, b - 1) * comb(h - i + w - b - 1, w - b - 1)", "ans", "mod = 10 ** 9 + 7", "10 ** 9 + 7", "mod" ]
h, w, a, b = map(int, input().split()) N = h + w def power(x, y): if y == 0 : return 1 elif y == 1 : return x % mod elif y % 2 == 0 : return power(x, y // 2) ** 2 % mod else : return power(x, y // 2) ** 2 * x % mod mod = 10 ** 9 + 7 factorial = [1] for i in range(1, N): factorial.append(factorial[i - 1] * i % mod) inverseFactorial = [0] * N inverseFactorial[N - 1] = power(factorial[N - 1], mod - 2) for i in range(N - 2, -1, -1): inverseFactorial[i] = inverseFactorial[i + 1] * (i + 1) % mod def comb(x, y): return factorial[x] * inverseFactorial[y] * inverseFactorial[x - y] % mod ans = 0 for i in range(1, h - a + 1): ans += comb(b + i - 2, b - 1) * comb(h - i + w - b - 1, w - b - 1) # print(i, ans) ans %= mod print(ans)
[ 7, 12, 13, 0, 13, 2, 39, 17, 2, 13, 17, 0, 13, 17, 28, 13, 4, 13, 17, 2, 13, 17, 0, 13, 2, 2, 13, 13, 13, 0, 18, 13, 13, 13, 29, 13, 23, 13, 12, 13, 0, 13, 2, 39, 17, 2, 13, 17, 0, 18, 13, 13, 4, 13, 18, 13, 13, 2, 13, 17, 13, 0, 13, 18, 13, 13, 28, 13, 4, 13, 2, 13, 17, 17, 17, 0, 13, 2, 2, 13, 2, 13, 17, 13, 0, 18, 13, 13, 13, 29, 13, 23, 13, 12, 13, 29, 2, 2, 18, 13, 13, 18, 13, 2, 13, 13, 18, 13, 13, 23, 13, 23, 13, 12, 13, 41, 0, 13, 4, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 4, 13, 2, 13, 13, 0, 13, 4, 13, 2, 13, 13, 0, 13, 2, 2, 13, 13, 17, 13, 2, 2, 13, 13, 17, 13, 2, 13, 17, 0, 13, 2, 4, 13, 2, 4, 13, 2, 13, 13, 13, 4, 13, 2, 13, 13, 13, 13, 4, 13, 13, 14, 2, 13, 17, 4, 13, 10, 12, 13, 10, 12, 13, 10, 12, 13, 10, 12, 13 ]
[ [ 5, 4 ], [ 37, 9 ], [ 13, 12 ], [ 16, 15 ], [ 37, 20 ], [ 24, 23 ], [ 12, 26 ], [ 23, 26 ], [ 15, 27 ], [ 33, 30 ], [ 4, 31 ], [ 15, 32 ], [ 23, 33 ], [ 12, 33 ], [ 4, 35 ], [ 37, 37 ], [ 42, 41 ], [ 92, 46 ], [ 52, 49 ], [ 41, 50 ], [ 92, 51 ], [ 92, 56 ], [ 63, 62 ], [ 49, 63 ], [ 41, 64 ], [ 92, 65 ], [ 68, 67 ], [ 92, 71 ], [ 77, 76 ], [ 62, 79 ], [ 76, 79 ], [ 67, 81 ], [ 88, 85 ], [ 41, 86 ], [ 67, 87 ], [ 76, 88 ], [ 62, 88 ], [ 41, 90 ], [ 92, 92 ], [ 110, 100 ], [ 110, 104 ], [ 112, 105 ], [ 112, 108 ], [ 110, 110 ], [ 112, 112 ], [ 118, 117 ], [ 118, 128 ], [ 118, 129 ], [ 118, 130 ], [ 133, 132 ], [ 140, 139 ], [ 205, 141 ], [ 117, 143 ], [ 128, 144 ], [ 147, 146 ], [ 202, 148 ], [ 117, 150 ], [ 128, 151 ], [ 154, 153 ], [ 117, 156 ], [ 129, 157 ], [ 160, 159 ], [ 128, 162 ], [ 129, 163 ], [ 166, 165 ], [ 129, 167 ], [ 171, 170 ], [ 208, 176 ], [ 153, 178 ], [ 208, 182 ], [ 159, 184 ], [ 165, 186 ], [ 132, 187 ], [ 170, 190 ], [ 199, 196 ] ]
[ "# ARC058D - いろはちゃんとマス目 / Iroha and a Grid (ABC042D)\ndef get_fact(lim):\n # compute a toble of factorials (1-idx)\n fact = [1] * (lim + 1)\n x = 1\n for i in range(1, lim + 1):\n x = (x * i) % MOD\n fact[i] = x\n return fact\n\n\ndef get_inv(lim):\n # compute a toble of inverse factorials (1-idx)\n inv = [1] * (lim + 1)\n inv[lim] = pow(fact[lim], MOD - 2, MOD)\n x = inv[lim]\n for i in range(lim - 1, 0, -1):\n x = (x * (i + 1)) % MOD\n inv[i] = x\n return inv\n\n\ndef comb(n: int, r: int) -> int:\n # compute nCr (n! / r!(n - r)!)\n return fact[n] * inv[n - r] * inv[r]\n\n\ndef main():\n global MOD, fact, inv\n H, W, A, B = tuple(map(int, input().split()))\n MOD = 10 ** 9 + 7\n fact = get_fact(H + W)\n inv = get_inv(H + W)\n x, y, a = H - A - 1, W + A - 2, A - 1 # fixed variables\n ans = sum(comb(x + i, i) * comb(y - i, a) for i in range(B, W)) % MOD\n print(ans)\n\n\nif __name__ == \"__main__\":\n main()", "def get_fact(lim):\n # compute a toble of factorials (1-idx)\n fact = [1] * (lim + 1)\n x = 1\n for i in range(1, lim + 1):\n x = (x * i) % MOD\n fact[i] = x\n return fact", "get_fact", "fact = [1] * (lim + 1)", "fact", "[1] * (lim + 1)", "[1]", "1", "lim + 1", "lim", "1", "x = 1", "x", "1", "for i in range(1, lim + 1):\n x = (x * i) % MOD\n fact[i] = x\n ", "i", "range(1, lim + 1)", "range", "1", "lim + 1", "lim", "1", "x = (x * i) % MOD", "x", "(x * i) % MOD", "x * i", "x", "i", "MOD", "fact[i] = x", "fact[i]", "fact", "i", "x", "return fact", "fact", "lim", "lim", "def get_inv(lim):\n # compute a toble of inverse factorials (1-idx)\n inv = [1] * (lim + 1)\n inv[lim] = pow(fact[lim], MOD - 2, MOD)\n x = inv[lim]\n for i in range(lim - 1, 0, -1):\n x = (x * (i + 1)) % MOD\n inv[i] = x\n return inv", "get_inv", "inv = [1] * (lim + 1)", "inv", "[1] * (lim + 1)", "[1]", "1", "lim + 1", "lim", "1", "inv[lim] = pow(fact[lim], MOD - 2, MOD)", "inv[lim]", "inv", "lim", "pow(fact[lim], MOD - 2, MOD)", "pow", "fact[lim]", "fact", "lim", "MOD - 2", "MOD", "2", "MOD", "x = inv[lim]", "x", "inv[lim]", "inv", "lim", "for i in range(lim - 1, 0, -1):\n x = (x * (i + 1)) % MOD\n inv[i] = x\n ", "i", "range(lim - 1, 0, -1)", "range", "lim - 1", "lim", "1", "0", "-1", "x = (x * (i + 1)) % MOD", "x", "(x * (i + 1)) % MOD", "x * (i + 1)", "x", "i + 1", "i", "1", "MOD", "inv[i] = x", "inv[i]", "inv", "i", "x", "return inv", "inv", "lim", "lim", "def comb(n: int, r: int) -> int:\n # compute nCr (n! / r!(n - r)!)\n return fact[n] * inv[n - r] * inv[r]", "comb", "return fact[n] * inv[n - r] * inv[r]", "fact[n] * inv[n - r] * inv[r]", "fact[n] * inv[n - r]", "fact[n]", "fact", "n", "inv[n - r]", "inv", "n - r", "n", "r", "inv[r]", "inv", "r", "n: int", "n", "r: int", "r", "def main():\n global MOD, fact, inv\n H, W, A, B = tuple(map(int, input().split()))\n MOD = 10 ** 9 + 7\n fact = get_fact(H + W)\n inv = get_inv(H + W)\n x, y, a = H - A - 1, W + A - 2, A - 1 # fixed variables\n ans = sum(comb(x + i, i) * comb(y - i, a) for i in range(B, W)) % MOD\n print(ans)", "main", "global MOD, fact, inv", "H, W, A, B = tuple(map(int, input().split()))", "H", "tuple(map(int, input().split()))", "tuple", "map(int, input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "MOD = 10 ** 9 + 7", "MOD", "10 ** 9 + 7", "10 ** 9", "10", "9", "7", "fact = get_fact(H + W)", "fact", "get_fact(H + W)", "get_fact", "H + W", "H", "W", "inv = get_inv(H + W)", "inv", "get_inv(H + W)", "get_inv", "H + W", "H", "W", "x, y, a = H - A - 1, W + A - 2, A - 1", "x", "H - A - 1", "H - A", "H", "A", "1", "y", "W + A - 2", "W + A", "W", "A", "2", "a", "A - 1", "A", "1", "ans = sum(comb(x + i, i) * comb(y - i, a) for i in range(B, W)) % MOD", "ans", "sum(comb(x + i, i) * comb(y - i, a) for i in range(B, W)) % MOD", "sum(comb(x + i, i) * comb(y - i, a) for i in range(B, W))", "sum", "comb(x + i, i) * comb(y - i, a)", "comb(x + i, i)", "comb", "x + i", "x", "i", "i", "comb(y - i, a)", "comb", "y - i", "y", "i", "a", "MOD", "print(ans)", "print", "ans", "if __name__ == \"__main__\":\n main()", "__name__ == \"__main__\"", "__name__", "\"__main__\"", "main()", "main", "def main():\n global MOD, fact, inv\n H, W, A, B = tuple(map(int, input().split()))\n MOD = 10 ** 9 + 7\n fact = get_fact(H + W)\n inv = get_inv(H + W)\n x, y, a = H - A - 1, W + A - 2, A - 1 # fixed variables\n ans = sum(comb(x + i, i) * comb(y - i, a) for i in range(B, W)) % MOD\n print(ans)", "def main():\n global MOD, fact, inv\n H, W, A, B = tuple(map(int, input().split()))\n MOD = 10 ** 9 + 7\n fact = get_fact(H + W)\n inv = get_inv(H + W)\n x, y, a = H - A - 1, W + A - 2, A - 1 # fixed variables\n ans = sum(comb(x + i, i) * comb(y - i, a) for i in range(B, W)) % MOD\n print(ans)", "main", "def get_inv(lim):\n # compute a toble of inverse factorials (1-idx)\n inv = [1] * (lim + 1)\n inv[lim] = pow(fact[lim], MOD - 2, MOD)\n x = inv[lim]\n for i in range(lim - 1, 0, -1):\n x = (x * (i + 1)) % MOD\n inv[i] = x\n return inv", "def get_inv(lim):\n # compute a toble of inverse factorials (1-idx)\n inv = [1] * (lim + 1)\n inv[lim] = pow(fact[lim], MOD - 2, MOD)\n x = inv[lim]\n for i in range(lim - 1, 0, -1):\n x = (x * (i + 1)) % MOD\n inv[i] = x\n return inv", "get_inv", "def get_fact(lim):\n # compute a toble of factorials (1-idx)\n fact = [1] * (lim + 1)\n x = 1\n for i in range(1, lim + 1):\n x = (x * i) % MOD\n fact[i] = x\n return fact", "def get_fact(lim):\n # compute a toble of factorials (1-idx)\n fact = [1] * (lim + 1)\n x = 1\n for i in range(1, lim + 1):\n x = (x * i) % MOD\n fact[i] = x\n return fact", "get_fact", "def comb(n: int, r: int) -> int:\n # compute nCr (n! / r!(n - r)!)\n return fact[n] * inv[n - r] * inv[r]", "def comb(n: int, r: int) -> int:\n # compute nCr (n! / r!(n - r)!)\n return fact[n] * inv[n - r] * inv[r]", "comb" ]
# ARC058D - いろはちゃんとマス目 / Iroha and a Grid (ABC042D) def get_fact(lim): # compute a toble of factorials (1-idx) fact = [1] * (lim + 1) x = 1 for i in range(1, lim + 1): x = (x * i) % MOD fact[i] = x return fact def get_inv(lim): # compute a toble of inverse factorials (1-idx) inv = [1] * (lim + 1) inv[lim] = pow(fact[lim], MOD - 2, MOD) x = inv[lim] for i in range(lim - 1, 0, -1): x = (x * (i + 1)) % MOD inv[i] = x return inv def comb(n: int, r: int) -> int: # compute nCr (n! / r!(n - r)!) return fact[n] * inv[n - r] * inv[r] def main(): global MOD, fact, inv H, W, A, B = tuple(map(int, input().split())) MOD = 10 ** 9 + 7 fact = get_fact(H + W) inv = get_inv(H + W) x, y, a = H - A - 1, W + A - 2, A - 1 # fixed variables ans = sum(comb(x + i, i) * comb(y - i, a) for i in range(B, W)) % MOD print(ans) if __name__ == "__main__": main()
[ 7, 0, 13, 2, 2, 17, 17, 17, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 39, 17, 2, 2, 13, 13, 17, 0, 18, 13, 17, 17, 0, 18, 13, 17, 17, 28, 13, 4, 13, 17, 2, 2, 13, 13, 17, 0, 18, 13, 13, 2, 2, 13, 18, 13, 2, 13, 17, 13, 0, 13, 2, 39, 17, 2, 2, 13, 13, 17, 0, 18, 13, 2, 13, 13, 4, 13, 18, 13, 2, 13, 13, 2, 13, 17, 13, 28, 13, 4, 13, 2, 2, 13, 13, 17, 17, 17, 0, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 2, 13, 17, 13, 12, 13, 14, 2, 2, 13, 13, 13, 29, 4, 13, 13, 2, 13, 13, 14, 2, 13, 17, 29, 17, 14, 2, 13, 17, 29, 17, 14, 2, 13, 17, 29, 13, 29, 2, 2, 2, 18, 13, 13, 18, 13, 13, 18, 13, 2, 13, 13, 13, 23, 13, 23, 13, 0, 13, 17, 28, 13, 4, 13, 13, 13, 0, 13, 2, 2, 13, 2, 4, 13, 2, 2, 2, 13, 17, 13, 13, 13, 4, 13, 2, 2, 2, 13, 17, 13, 13, 2, 13, 17, 13, 4, 13, 13, 10, 4, 13, 10, 4, 13, 10, 12, 13, 10, 17, 13, 10, 4, 13, 10, 2, 13, 10, 2, 13, 10, 2, 13, 10, 4, 13, 10, 2, 13 ]
[ [ 230, 2 ], [ 236, 9 ], [ 236, 18 ], [ 236, 19 ], [ 236, 20 ], [ 227, 22 ], [ 225, 28 ], [ 237, 29 ], [ 35, 32 ], [ 228, 33 ], [ 40, 37 ], [ 228, 38 ], [ 43, 42 ], [ 225, 48 ], [ 237, 49 ], [ 55, 52 ], [ 228, 53 ], [ 42, 54 ], [ 42, 57 ], [ 228, 59 ], [ 42, 61 ], [ 231, 63 ], [ 233, 65 ], [ 225, 71 ], [ 237, 72 ], [ 80, 75 ], [ 234, 76 ], [ 225, 78 ], [ 237, 79 ], [ 228, 83 ], [ 225, 85 ], [ 237, 86 ], [ 231, 88 ], [ 231, 90 ], [ 93, 92 ], [ 225, 97 ], [ 237, 98 ], [ 106, 103 ], [ 234, 104 ], [ 92, 105 ], [ 234, 109 ], [ 92, 111 ], [ 92, 114 ], [ 231, 116 ], [ 167, 122 ], [ 169, 123 ], [ 169, 124 ], [ 167, 128 ], [ 167, 130 ], [ 169, 131 ], [ 169, 134 ], [ 169, 140 ], [ 169, 146 ], [ 167, 149 ], [ 228, 155 ], [ 167, 156 ], [ 234, 158 ], [ 169, 159 ], [ 234, 161 ], [ 167, 163 ], [ 169, 164 ], [ 231, 165 ], [ 167, 167 ], [ 169, 169 ], [ 221, 171 ], [ 175, 174 ], [ 216, 177 ], [ 237, 178 ], [ 239, 180 ], [ 222, 183 ], [ 240, 183 ], [ 219, 186 ], [ 225, 190 ], [ 213, 192 ], [ 174, 193 ], [ 174, 194 ], [ 219, 196 ], [ 237, 200 ], [ 213, 202 ], [ 174, 203 ], [ 213, 205 ], [ 231, 207 ], [ 240, 210 ], [ 222, 210 ], [ 236, 213 ], [ 236, 216 ], [ 221, 222 ], [ 236, 225 ], [ 227, 228 ], [ 230, 231 ], [ 233, 234 ], [ 236, 237 ], [ 239, 240 ] ]
[ "mod = 10 ** 9 + 7\n\nH, W, A, B = map(int, input().split())\n\nfact = [-1] * (H + W + 1)\nfact[0] = 1\nfact[1] = 1\nfor x in range(2, H + W + 1):\n fact[x] = x * fact[x - 1] % mod\n\ninvs = [-1] * (H + W + 1)\ninvs[H + W] = pow(fact[H + W], mod - 2, mod)\nfor x in range(H + W - 1, 0, -1):\n invs[x] = invs[x + 1] * (x + 1) % mod\n\n\ndef combination(n, r):\n if n - r < r:\n return combination(n, n - r)\n if r < 0:\n return 0\n if r == 0:\n return 1\n if r == 1:\n return n\n return fact[n] * invs[r] * invs[n - r] % mod\n\n\nret = 0\nfor c in range(B, W):\n ret = (ret + combination(H - 1 - A + c, c) * combination(W - 2 + A - c, A - 1)) % mod\nprint(ret)\n\n# 左下にA*Bの入れない区画\n# S->{aa,bb,cc,dd,ee,ff,gg}->G\n# S->aはcombination(H - 1 - A + c, c):aの座標(H-1-A,c),通る列番号cを選ぶ\n# a->aは1通り\n# a->Gはcombination(W - 2 + A - c, A - 1):aの座標(H-A,c),Gの座標(H-1,W-1)この距離からA-1を選ぶ\n# S**********\n# * *\n# * *\n# * *\n# ****abcdefg\n# * abcdefg\n# * * *\n# * * *\n# **********G", "mod = 10 ** 9 + 7", "mod", "10 ** 9 + 7", "10 ** 9", "10", "9", "7", "H, W, A, B = map(int, input().split())", "H", "map(int, input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "fact = [-1] * (H + W + 1)", "fact", "[-1] * (H + W + 1)", "[-1]", "-1", "H + W + 1", "H + W", "H", "W", "1", "fact[0] = 1", "fact[0]", "fact", "0", "1", "fact[1] = 1", "fact[1]", "fact", "1", "1", "for x in range(2, H + W + 1):\n fact[x] = x * fact[x - 1] % mod", "x", "range(2, H + W + 1)", "range", "2", "H + W + 1", "H + W", "H", "W", "1", "fact[x] = x * fact[x - 1] % mod", "fact[x]", "fact", "x", "x * fact[x - 1] % mod", "x * fact[x - 1]", "x", "fact[x - 1]", "fact", "x - 1", "x", "1", "mod", "invs = [-1] * (H + W + 1)", "invs", "[-1] * (H + W + 1)", "[-1]", "-1", "H + W + 1", "H + W", "H", "W", "1", "invs[H + W] = pow(fact[H + W], mod - 2, mod)", "invs[H + W]", "invs", "H + W", "H", "W", "pow(fact[H + W], mod - 2, mod)", "pow", "fact[H + W]", "fact", "H + W", "H", "W", "mod - 2", "mod", "2", "mod", "for x in range(H + W - 1, 0, -1):\n invs[x] = invs[x + 1] * (x + 1) % mod", "x", "range(H + W - 1, 0, -1)", "range", "H + W - 1", "H + W", "H", "W", "1", "0", "-1", "invs[x] = invs[x + 1] * (x + 1) % mod", "invs[x]", "invs", "x", "invs[x + 1] * (x + 1) % mod", "invs[x + 1] * (x + 1)", "invs[x + 1]", "invs", "x + 1", "x", "1", "x + 1", "x", "1", "mod", "def combination(n, r):\n if n - r < r:\n return combination(n, n - r)\n if r < 0:\n return 0\n if r == 0:\n return 1\n if r == 1:\n return n\n return fact[n] * invs[r] * invs[n - r] % mod", "combination", "if n - r < r:\n return combination(n, n - r)\n ", "n - r < r", "n - r", "n", "r", "r", "return combination(n, n - r)", "combination(n, n - r)", "combination", "n", "n - r", "n", "r", "if r < 0:\n return 0\n ", "r < 0", "r", "0", "return 0", "0", "if r == 0:\n return 1\n ", "r == 0", "r", "0", "return 1", "1", "if r == 1:\n return n\n ", "r == 1", "r", "1", "return n", "n", "return fact[n] * invs[r] * invs[n - r] % mod", "fact[n] * invs[r] * invs[n - r] % mod", "fact[n] * invs[r] * invs[n - r]", "fact[n] * invs[r]", "fact[n]", "fact", "n", "invs[r]", "invs", "r", "invs[n - r]", "invs", "n - r", "n", "r", "mod", "n", "n", "r", "r", "ret = 0", "ret", "0", "for c in range(B, W):\n ret = (ret + combination(H - 1 - A + c, c) * combination(W - 2 + A - c, A - 1)) % mod", "c", "range(B, W)", "range", "B", "W", "ret = (ret + combination(H - 1 - A + c, c) * combination(W - 2 + A - c, A - 1)) % mod", "ret", "(ret + combination(H - 1 - A + c, c) * combination(W - 2 + A - c, A - 1)) % mod", "ret + combination(H - 1 - A + c, c) * combination(W - 2 + A - c, A - 1)", "ret", "combination(H - 1 - A + c, c) * combination(W - 2 + A - c, A - 1)", "combination(H - 1 - A + c, c)", "combination", "H - 1 - A + c", "H - 1 - A", "H - 1", "H", "1", "A", "c", "c", "combination(W - 2 + A - c, A - 1)", "combination", "W - 2 + A - c", "W - 2 + A", "W - 2", "W", "2", "A", "c", "A - 1", "A", "1", "mod", "print(ret)", "print", "ret", "A, B = map(int, input().split())", "map(int, input().split())", "A", "B = map(int, input().split())", "map(int, input().split())", "B", "def combination(n, r):\n if n - r < r:\n return combination(n, n - r)\n if r < 0:\n return 0\n if r == 0:\n return 1\n if r == 1:\n return n\n return fact[n] * invs[r] * invs[n - r] % mod", "def combination(n, r):\n if n - r < r:\n return combination(n, n - r)\n if r < 0:\n return 0\n if r == 0:\n return 1\n if r == 1:\n return n\n return fact[n] * invs[r] * invs[n - r] % mod", "combination", "ret = 0", "0", "ret", "H, W, A, B = map(int, input().split())", "map(int, input().split())", "H", "fact = [-1] * (H + W + 1)", "[-1] * (H + W + 1)", "fact", "mod = 10 ** 9 + 7", "10 ** 9 + 7", "mod", "invs = [-1] * (H + W + 1)", "[-1] * (H + W + 1)", "invs", "W, A, B = map(int, input().split())", "map(int, input().split())", "W", "ret = (ret + combination(H - 1 - A + c, c) * combination(W - 2 + A - c, A - 1)) % mod", "(ret + combination(H - 1 - A + c, c) * combination(W - 2 + A - c, A - 1)) % mod", "ret" ]
mod = 10 ** 9 + 7 H, W, A, B = map(int, input().split()) fact = [-1] * (H + W + 1) fact[0] = 1 fact[1] = 1 for x in range(2, H + W + 1): fact[x] = x * fact[x - 1] % mod invs = [-1] * (H + W + 1) invs[H + W] = pow(fact[H + W], mod - 2, mod) for x in range(H + W - 1, 0, -1): invs[x] = invs[x + 1] * (x + 1) % mod def combination(n, r): if n - r < r: return combination(n, n - r) if r < 0: return 0 if r == 0: return 1 if r == 1: return n return fact[n] * invs[r] * invs[n - r] % mod ret = 0 for c in range(B, W): ret = (ret + combination(H - 1 - A + c, c) * combination(W - 2 + A - c, A - 1)) % mod print(ret) # 左下にA*Bの入れない区画 # S->{aa,bb,cc,dd,ee,ff,gg}->G # S->aはcombination(H - 1 - A + c, c):aの座標(H-1-A,c),通る列番号cを選ぶ # a->aは1通り # a->Gはcombination(W - 2 + A - c, A - 1):aの座標(H-A,c),Gの座標(H-1,W-1)この距離からA-1を選ぶ # S********** # * * # * * # * * # ****abcdefg # * abcdefg # * * * # * * * # **********G
[ 7, 15, 13, 12, 13, 0, 13, 17, 0, 13, 4, 13, 17, 4, 18, 13, 13, 2, 17, 17, 12, 13, 12, 13, 12, 13, 12, 13, 12, 13, 12, 13, 12, 13, 12, 13, 17, 0, 13, 2, 39, 17, 2, 13, 17, 28, 13, 4, 13, 17, 2, 13, 17, 0, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 13, 13, 29, 13, 23, 13, 23, 13, 12, 13, 17, 0, 13, 18, 13, 13, 0, 13, 2, 2, 18, 13, 2, 13, 13, 18, 13, 13, 13, 29, 2, 2, 13, 4, 13, 13, 2, 13, 17, 13, 13, 23, 13, 23, 13, 23, 13, 23, 13, 0, 13, 4, 13, 13, 13, 13, 0, 13, 4, 13, 2, 2, 17, 13, 2, 17, 13, 13, 0, 13, 17, 28, 13, 4, 13, 13, 13, 0, 13, 2, 2, 13, 2, 4, 13, 2, 2, 2, 13, 17, 13, 13, 2, 2, 13, 17, 13, 13, 13, 4, 13, 2, 2, 2, 2, 13, 17, 13, 17, 13, 2, 13, 17, 13, 13, 13, 4, 13, 13, 14, 2, 13, 17, 4, 13, 10, 12, 13 ]
[ [ 7, 6 ], [ 10, 9 ], [ 39, 38 ], [ 69, 43 ], [ 47, 46 ], [ 69, 51 ], [ 57, 54 ], [ 38, 55 ], [ 46, 56 ], [ 38, 60 ], [ 46, 62 ], [ 46, 64 ], [ 71, 65 ], [ 38, 67 ], [ 69, 69 ], [ 71, 71 ], [ 77, 76 ], [ 112, 78 ], [ 106, 79 ], [ 82, 81 ], [ 112, 85 ], [ 106, 87 ], [ 108, 88 ], [ 112, 90 ], [ 108, 91 ], [ 110, 92 ], [ 76, 96 ], [ 81, 99 ], [ 110, 101 ], [ 110, 103 ], [ 110, 104 ], [ 106, 106 ], [ 108, 108 ], [ 110, 110 ], [ 112, 112 ], [ 115, 114 ], [ 25, 116 ], [ 115, 117 ], [ 115, 118 ], [ 115, 119 ], [ 122, 121 ], [ 35, 123 ], [ 114, 127 ], [ 117, 130 ], [ 6, 131 ], [ 134, 133 ], [ 137, 136 ], [ 119, 139 ], [ 117, 140 ], [ 143, 142 ], [ 133, 145 ], [ 142, 145 ], [ 73, 148 ], [ 114, 152 ], [ 118, 154 ], [ 136, 155 ], [ 114, 158 ], [ 118, 160 ], [ 6, 161 ], [ 121, 162 ], [ 73, 164 ], [ 118, 169 ], [ 117, 171 ], [ 136, 173 ], [ 118, 175 ], [ 6, 177 ], [ 121, 178 ], [ 6, 179 ], [ 142, 182 ], [ 133, 182 ], [ 191, 188 ] ]
[ "#!/usr/bin/env python3\n\nimport sys\n# import math\n# from string import ascii_lowercase, ascii_upper_case, ascii_letters, digits, hexdigits\n# import re # re.compile(pattern) => ptn obj; p.search(s), p.match(s), p.finditer(s) => match obj; p.sub(after, s)\n# from operator import itemgetter # itemgetter(1), itemgetter('key')\n# from collections import deque # deque class. deque(L): dq.append(x), dq.appendleft(x), dq.pop(), dq.popleft(), dq.rotate()\n# from collections import defaultdict # subclass of dict. defaultdict(facroty)\n# from collections import Counter # subclass of dict. Counter(iter): c.elements(), c.most_common(n), c.subtract(iter)\n# from heapq import heapify, heappush, heappop # built-in list. heapify(L) changes list in-place to min-heap in O(n), heappush(heapL, x) and heappop(heapL) in O(lgn).\n# from heapq import nlargest, nsmallest # nlargest(n, iter[, key]) returns k-largest-list in O(n+klgn).\n# from itertools import count, cycle, repeat # count(start[,step]), cycle(iter), repeat(elm[,n])\n# from itertools import groupby # [(k, list(g)) for k, g in groupby('000112')] returns [('0',['0','0','0']), ('1',['1','1']), ('2',['2'])]\n# from itertools import starmap # starmap(pow, [[2,5], [3,2]]) returns [32, 9]\n# from itertools import product, permutations # product(iter, repeat=n), permutations(iter[,r])\n# from itertools import combinations, combinations_with_replacement\n# from itertools import accumulate # accumulate(iter[, f])\n# from functools import reduce # reduce(f, iter[, init])\n# from functools import lru_cache # @lrucache ...arguments of functions should be able to be keys of dict (e.g. list is not allowed)\n# from bisect import bisect_left, bisect_right # bisect_left(a, x, lo=0, hi=len(a)) returns i such that all(val<x for val in a[lo:i]) and all(val>-=x for val in a[i:hi]).\n# from copy import deepcopy # to copy multi-dimentional matrix without reference\n# from fractions import gcd # for Python 3.4 (previous contest @AtCoder)\n\n\ndef main():\n mod = 1000000007 # 10^9+7\n inf = float('inf') # sys.float_info.max = 1.79...e+308\n # inf = 2 ** 64 - 1 # (for fast JIT compile in PyPy) 1.84...e+19\n sys.setrecursionlimit(10**6) # 1000 -> 1000000\n def input(): return sys.stdin.readline().rstrip()\n def ii(): return int(input())\n def mi(): return map(int, input().split())\n def mi_0(): return map(lambda x: int(x)-1, input().split())\n def lmi(): return list(map(int, input().split()))\n def lmi_0(): return list(map(lambda x: int(x)-1, input().split()))\n def li(): return list(input())\n \n \n def make_factorial_table(size, mod):\n '''\n fact_mod[i] は i! % mod を表す。fact_mod[0] ~ facto_mod[size] まで計算可能なテーブルを返す\n >>> make_factorial_table(20, 10**9+7)\n [1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 227020758, 178290591, 674358851, 789741546, 425606191, 660911389, 557316307, 146326063]\n '''\n fact_mod = [1] * (size + 1)\n for i in range(1, size + 1):\n fact_mod[i] = (fact_mod[i - 1] * i) % mod\n return fact_mod\n\n def combination(n, r, mod, fact_table):\n '''\n フェルマーの小定理 \n a ^ p-1 ≡ 1 (mod p)\n a ^ p-2 ≡ 1/a (mod p) (逆元)\n nCr = (n!) / ((n-r)! * r!) だが、mod p の世界ではこの分母を逆元を用いて計算しておくことが可能\n \n >>> m = 1000000007\n >>> fact_table = make_factorial_table(100, m)\n >>> combination(10, 5, m, fact_table)\n 252\n >>> combination(100, 50, m, fact_table)\n 538992043\n '''\n numerator = fact_table[n]\n denominator = (fact_table[n-r] * fact_table[r]) % mod\n # pow はすでに繰り返し二乗法で効率的に実装されている\n return (numerator * pow(denominator, mod-2, mod)) % mod\n\n h, w, a, b = mi()\n # sigma {k = b to w-1} h-1-a+kCh-1-a * a-1+w-1-kCa-1\n # sample 2 だと {k=4to6} 6+kC6 * 2+6-kC2 = (10C6 * 4C2 + 11C6 * 3C2 + 12C6 * 2C2)\n fact_table = make_factorial_table(2 * h + 2 * w, mod)\n ans = 0\n for k in range(b, w):\n # print(f\"{h-1-a+k} {h-1-a} / {a-1+w-1-k} {a-1}\")\n ans = (ans + combination(h-1-a+k, h-1-a, mod, fact_table) * combination(a-1+w-1-k, a-1, mod, fact_table)) % mod\n print(ans)\n\n\nif __name__ == \"__main__\":\n main()", "import sys", "sys", "def main():\n mod = 1000000007 # 10^9+7\n inf = float('inf') # sys.float_info.max = 1.79...e+308\n # inf = 2 ** 64 - 1 # (for fast JIT compile in PyPy) 1.84...e+19\n sys.setrecursionlimit(10**6) # 1000 -> 1000000\n def input(): return sys.stdin.readline().rstrip()\n def ii(): return int(input())\n def mi(): return map(int, input().split())\n def mi_0(): return map(lambda x: int(x)-1, input().split())\n def lmi(): return list(map(int, input().split()))\n def lmi_0(): return list(map(lambda x: int(x)-1, input().split()))\n def li(): return list(input())\n \n \n def make_factorial_table(size, mod):\n '''\n fact_mod[i] は i! % mod を表す。fact_mod[0] ~ facto_mod[size] まで計算可能なテーブルを返す\n >>> make_factorial_table(20, 10**9+7)\n [1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 227020758, 178290591, 674358851, 789741546, 425606191, 660911389, 557316307, 146326063]\n '''\n fact_mod = [1] * (size + 1)\n for i in range(1, size + 1):\n fact_mod[i] = (fact_mod[i - 1] * i) % mod\n return fact_mod\n\n def combination(n, r, mod, fact_table):\n '''\n フェルマーの小定理 \n a ^ p-1 ≡ 1 (mod p)\n a ^ p-2 ≡ 1/a (mod p) (逆元)\n nCr = (n!) / ((n-r)! * r!) だが、mod p の世界ではこの分母を逆元を用いて計算しておくことが可能\n \n >>> m = 1000000007\n >>> fact_table = make_factorial_table(100, m)\n >>> combination(10, 5, m, fact_table)\n 252\n >>> combination(100, 50, m, fact_table)\n 538992043\n '''\n numerator = fact_table[n]\n denominator = (fact_table[n-r] * fact_table[r]) % mod\n # pow はすでに繰り返し二乗法で効率的に実装されている\n return (numerator * pow(denominator, mod-2, mod)) % mod\n\n h, w, a, b = mi()\n # sigma {k = b to w-1} h-1-a+kCh-1-a * a-1+w-1-kCa-1\n # sample 2 だと {k=4to6} 6+kC6 * 2+6-kC2 = (10C6 * 4C2 + 11C6 * 3C2 + 12C6 * 2C2)\n fact_table = make_factorial_table(2 * h + 2 * w, mod)\n ans = 0\n for k in range(b, w):\n # print(f\"{h-1-a+k} {h-1-a} / {a-1+w-1-k} {a-1}\")\n ans = (ans + combination(h-1-a+k, h-1-a, mod, fact_table) * combination(a-1+w-1-k, a-1, mod, fact_table)) % mod\n print(ans)", "main", "mod = 1000000007", "mod", "1000000007", "inf = float('inf')", "inf", "float('inf')", "float", "'inf'", "sys.setrecursionlimit(10**6)", "sys.setrecursionlimit", "sys", "setrecursionlimit", "10**6", "10", "6", "def input(): return sys.stdin.readline().rstrip()\n ", "input", "def ii(): return int(input())\n ", "ii", "def mi(): return map(int, input().split())\n ", "mi", "def mi_0(): return map(lambda x: int(x)-1, input().split())\n ", "mi_0", "def lmi(): return list(map(int, input().split()))\n ", "lmi", "def lmi_0(): return list(map(lambda x: int(x)-1, input().split()))\n ", "lmi_0", "def li(): return list(input())\n \n \n ", "li", "def make_factorial_table(size, mod):\n '''\n fact_mod[i] は i! % mod を表す。fact_mod[0] ~ facto_mod[size] まで計算可能なテーブルを返す\n >>> make_factorial_table(20, 10**9+7)\n [1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 227020758, 178290591, 674358851, 789741546, 425606191, 660911389, 557316307, 146326063]\n '''\n fact_mod = [1] * (size + 1)\n for i in range(1, size + 1):\n fact_mod[i] = (fact_mod[i - 1] * i) % mod\n return fact_mod\n\n ", "make_factorial_table", "'''\n fact_mod[i] は i! % mod を表す。fact_mod[0] ~ facto_mod[size] まで計算可能なテーブルを返す\n >>> make_factorial_table(20, 10**9+7)\n [1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 227020758, 178290591, 674358851, 789741546, 425606191, 660911389, 557316307, 146326063]\n '''", "fact_mod = [1] * (size + 1)", "fact_mod", "[1] * (size + 1)", "[1]", "1", "size + 1", "size", "1", "for i in range(1, size + 1):\n fact_mod[i] = (fact_mod[i - 1] * i) % mod\n ", "i", "range(1, size + 1)", "range", "1", "size + 1", "size", "1", "fact_mod[i] = (fact_mod[i - 1] * i) % mod", "fact_mod[i]", "fact_mod", "i", "(fact_mod[i - 1] * i) % mod", "fact_mod[i - 1] * i", "fact_mod[i - 1]", "fact_mod", "i - 1", "i", "1", "i", "mod", "return fact_mod", "fact_mod", "size", "size", "mod", "mod", "def combination(n, r, mod, fact_table):\n '''\n フェルマーの小定理 \n a ^ p-1 ≡ 1 (mod p)\n a ^ p-2 ≡ 1/a (mod p) (逆元)\n nCr = (n!) / ((n-r)! * r!) だが、mod p の世界ではこの分母を逆元を用いて計算しておくことが可能\n \n >>> m = 1000000007\n >>> fact_table = make_factorial_table(100, m)\n >>> combination(10, 5, m, fact_table)\n 252\n >>> combination(100, 50, m, fact_table)\n 538992043\n '''\n numerator = fact_table[n]\n denominator = (fact_table[n-r] * fact_table[r]) % mod\n # pow はすでに繰り返し二乗法で効率的に実装されている\n return (numerator * pow(denominator, mod-2, mod)) % mod\n\n ", "combination", "'''\n フェルマーの小定理 \n a ^ p-1 ≡ 1 (mod p)\n a ^ p-2 ≡ 1/a (mod p) (逆元)\n nCr = (n!) / ((n-r)! * r!) だが、mod p の世界ではこの分母を逆元を用いて計算しておくことが可能\n \n >>> m = 1000000007\n >>> fact_table = make_factorial_table(100, m)\n >>> combination(10, 5, m, fact_table)\n 252\n >>> combination(100, 50, m, fact_table)\n 538992043\n '''", "numerator = fact_table[n]", "numerator", "fact_table[n]", "fact_table", "n", "denominator = (fact_table[n-r] * fact_table[r]) % mod", "denominator", "(fact_table[n-r] * fact_table[r]) % mod", "fact_table[n-r] * fact_table[r]", "fact_table[n-r]", "fact_table", "n-r", "n", "r", "fact_table[r]", "fact_table", "r", "mod", "return (numerator * pow(denominator, mod-2, mod)) % mod", "(numerator * pow(denominator, mod-2, mod)) % mod", "numerator * pow(denominator, mod-2, mod)", "numerator", "pow(denominator, mod-2, mod)", "pow", "denominator", "mod-2", "mod", "2", "mod", "mod", "n", "n", "r", "r", "mod", "mod", "fact_table", "fact_table", "h, w, a, b = mi()", "h", "mi()", "mi", "w", "a", "b", "fact_table = make_factorial_table(2 * h + 2 * w, mod)", "fact_table", "make_factorial_table(2 * h + 2 * w, mod)", "make_factorial_table", "2 * h + 2 * w", "2 * h", "2", "h", "2 * w", "2", "w", "mod", "ans = 0", "ans", "0", "for k in range(b, w):\n # print(f\"{h-1-a+k} {h-1-a} / {a-1+w-1-k} {a-1}\")\n ans = (ans + combination(h-1-a+k, h-1-a, mod, fact_table) * combination(a-1+w-1-k, a-1, mod, fact_table)) % mod\n ", "k", "range(b, w)", "range", "b", "w", "ans = (ans + combination(h-1-a+k, h-1-a, mod, fact_table) * combination(a-1+w-1-k, a-1, mod, fact_table)) % mod", "ans", "(ans + combination(h-1-a+k, h-1-a, mod, fact_table) * combination(a-1+w-1-k, a-1, mod, fact_table)) % mod", "ans + combination(h-1-a+k, h-1-a, mod, fact_table) * combination(a-1+w-1-k, a-1, mod, fact_table)", "ans", "combination(h-1-a+k, h-1-a, mod, fact_table) * combination(a-1+w-1-k, a-1, mod, fact_table)", "combination(h-1-a+k, h-1-a, mod, fact_table)", "combination", "h-1-a+k", "h-1-a", "h-1", "h", "1", "a", "k", "h-1-a", "h-1", "h", "1", "a", "mod", "fact_table", "combination(a-1+w-1-k, a-1, mod, fact_table)", "combination", "a-1+w-1-k", "a-1+w-1", "a-1+w", "a-1", "a", "1", "w", "1", "k", "a-1", "a", "1", "mod", "fact_table", "mod", "print(ans)", "print", "ans", "if __name__ == \"__main__\":\n main()", "__name__ == \"__main__\"", "__name__", "\"__main__\"", "main()", "main", "def main():\n mod = 1000000007 # 10^9+7\n inf = float('inf') # sys.float_info.max = 1.79...e+308\n # inf = 2 ** 64 - 1 # (for fast JIT compile in PyPy) 1.84...e+19\n sys.setrecursionlimit(10**6) # 1000 -> 1000000\n def input(): return sys.stdin.readline().rstrip()\n def ii(): return int(input())\n def mi(): return map(int, input().split())\n def mi_0(): return map(lambda x: int(x)-1, input().split())\n def lmi(): return list(map(int, input().split()))\n def lmi_0(): return list(map(lambda x: int(x)-1, input().split()))\n def li(): return list(input())\n \n \n def make_factorial_table(size, mod):\n '''\n fact_mod[i] は i! % mod を表す。fact_mod[0] ~ facto_mod[size] まで計算可能なテーブルを返す\n >>> make_factorial_table(20, 10**9+7)\n [1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 227020758, 178290591, 674358851, 789741546, 425606191, 660911389, 557316307, 146326063]\n '''\n fact_mod = [1] * (size + 1)\n for i in range(1, size + 1):\n fact_mod[i] = (fact_mod[i - 1] * i) % mod\n return fact_mod\n\n def combination(n, r, mod, fact_table):\n '''\n フェルマーの小定理 \n a ^ p-1 ≡ 1 (mod p)\n a ^ p-2 ≡ 1/a (mod p) (逆元)\n nCr = (n!) / ((n-r)! * r!) だが、mod p の世界ではこの分母を逆元を用いて計算しておくことが可能\n \n >>> m = 1000000007\n >>> fact_table = make_factorial_table(100, m)\n >>> combination(10, 5, m, fact_table)\n 252\n >>> combination(100, 50, m, fact_table)\n 538992043\n '''\n numerator = fact_table[n]\n denominator = (fact_table[n-r] * fact_table[r]) % mod\n # pow はすでに繰り返し二乗法で効率的に実装されている\n return (numerator * pow(denominator, mod-2, mod)) % mod\n\n h, w, a, b = mi()\n # sigma {k = b to w-1} h-1-a+kCh-1-a * a-1+w-1-kCa-1\n # sample 2 だと {k=4to6} 6+kC6 * 2+6-kC2 = (10C6 * 4C2 + 11C6 * 3C2 + 12C6 * 2C2)\n fact_table = make_factorial_table(2 * h + 2 * w, mod)\n ans = 0\n for k in range(b, w):\n # print(f\"{h-1-a+k} {h-1-a} / {a-1+w-1-k} {a-1}\")\n ans = (ans + combination(h-1-a+k, h-1-a, mod, fact_table) * combination(a-1+w-1-k, a-1, mod, fact_table)) % mod\n print(ans)", "def main():\n mod = 1000000007 # 10^9+7\n inf = float('inf') # sys.float_info.max = 1.79...e+308\n # inf = 2 ** 64 - 1 # (for fast JIT compile in PyPy) 1.84...e+19\n sys.setrecursionlimit(10**6) # 1000 -> 1000000\n def input(): return sys.stdin.readline().rstrip()\n def ii(): return int(input())\n def mi(): return map(int, input().split())\n def mi_0(): return map(lambda x: int(x)-1, input().split())\n def lmi(): return list(map(int, input().split()))\n def lmi_0(): return list(map(lambda x: int(x)-1, input().split()))\n def li(): return list(input())\n \n \n def make_factorial_table(size, mod):\n '''\n fact_mod[i] は i! % mod を表す。fact_mod[0] ~ facto_mod[size] まで計算可能なテーブルを返す\n >>> make_factorial_table(20, 10**9+7)\n [1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 227020758, 178290591, 674358851, 789741546, 425606191, 660911389, 557316307, 146326063]\n '''\n fact_mod = [1] * (size + 1)\n for i in range(1, size + 1):\n fact_mod[i] = (fact_mod[i - 1] * i) % mod\n return fact_mod\n\n def combination(n, r, mod, fact_table):\n '''\n フェルマーの小定理 \n a ^ p-1 ≡ 1 (mod p)\n a ^ p-2 ≡ 1/a (mod p) (逆元)\n nCr = (n!) / ((n-r)! * r!) だが、mod p の世界ではこの分母を逆元を用いて計算しておくことが可能\n \n >>> m = 1000000007\n >>> fact_table = make_factorial_table(100, m)\n >>> combination(10, 5, m, fact_table)\n 252\n >>> combination(100, 50, m, fact_table)\n 538992043\n '''\n numerator = fact_table[n]\n denominator = (fact_table[n-r] * fact_table[r]) % mod\n # pow はすでに繰り返し二乗法で効率的に実装されている\n return (numerator * pow(denominator, mod-2, mod)) % mod\n\n h, w, a, b = mi()\n # sigma {k = b to w-1} h-1-a+kCh-1-a * a-1+w-1-kCa-1\n # sample 2 だと {k=4to6} 6+kC6 * 2+6-kC2 = (10C6 * 4C2 + 11C6 * 3C2 + 12C6 * 2C2)\n fact_table = make_factorial_table(2 * h + 2 * w, mod)\n ans = 0\n for k in range(b, w):\n # print(f\"{h-1-a+k} {h-1-a} / {a-1+w-1-k} {a-1}\")\n ans = (ans + combination(h-1-a+k, h-1-a, mod, fact_table) * combination(a-1+w-1-k, a-1, mod, fact_table)) % mod\n print(ans)", "main" ]
#!/usr/bin/env python3 import sys # import math # from string import ascii_lowercase, ascii_upper_case, ascii_letters, digits, hexdigits # import re # re.compile(pattern) => ptn obj; p.search(s), p.match(s), p.finditer(s) => match obj; p.sub(after, s) # from operator import itemgetter # itemgetter(1), itemgetter('key') # from collections import deque # deque class. deque(L): dq.append(x), dq.appendleft(x), dq.pop(), dq.popleft(), dq.rotate() # from collections import defaultdict # subclass of dict. defaultdict(facroty) # from collections import Counter # subclass of dict. Counter(iter): c.elements(), c.most_common(n), c.subtract(iter) # from heapq import heapify, heappush, heappop # built-in list. heapify(L) changes list in-place to min-heap in O(n), heappush(heapL, x) and heappop(heapL) in O(lgn). # from heapq import nlargest, nsmallest # nlargest(n, iter[, key]) returns k-largest-list in O(n+klgn). # from itertools import count, cycle, repeat # count(start[,step]), cycle(iter), repeat(elm[,n]) # from itertools import groupby # [(k, list(g)) for k, g in groupby('000112')] returns [('0',['0','0','0']), ('1',['1','1']), ('2',['2'])] # from itertools import starmap # starmap(pow, [[2,5], [3,2]]) returns [32, 9] # from itertools import product, permutations # product(iter, repeat=n), permutations(iter[,r]) # from itertools import combinations, combinations_with_replacement # from itertools import accumulate # accumulate(iter[, f]) # from functools import reduce # reduce(f, iter[, init]) # from functools import lru_cache # @lrucache ...arguments of functions should be able to be keys of dict (e.g. list is not allowed) # from bisect import bisect_left, bisect_right # bisect_left(a, x, lo=0, hi=len(a)) returns i such that all(val<x for val in a[lo:i]) and all(val>-=x for val in a[i:hi]). # from copy import deepcopy # to copy multi-dimentional matrix without reference # from fractions import gcd # for Python 3.4 (previous contest @AtCoder) def main(): mod = 1000000007 # 10^9+7 inf = float('inf') # sys.float_info.max = 1.79...e+308 # inf = 2 ** 64 - 1 # (for fast JIT compile in PyPy) 1.84...e+19 sys.setrecursionlimit(10**6) # 1000 -> 1000000 def input(): return sys.stdin.readline().rstrip() def ii(): return int(input()) def mi(): return map(int, input().split()) def mi_0(): return map(lambda x: int(x)-1, input().split()) def lmi(): return list(map(int, input().split())) def lmi_0(): return list(map(lambda x: int(x)-1, input().split())) def li(): return list(input()) def make_factorial_table(size, mod): ''' fact_mod[i] は i! % mod を表す。fact_mod[0] ~ facto_mod[size] まで計算可能なテーブルを返す >>> make_factorial_table(20, 10**9+7) [1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 227020758, 178290591, 674358851, 789741546, 425606191, 660911389, 557316307, 146326063] ''' fact_mod = [1] * (size + 1) for i in range(1, size + 1): fact_mod[i] = (fact_mod[i - 1] * i) % mod return fact_mod def combination(n, r, mod, fact_table): ''' フェルマーの小定理 a ^ p-1 ≡ 1 (mod p) a ^ p-2 ≡ 1/a (mod p) (逆元) nCr = (n!) / ((n-r)! * r!) だが、mod p の世界ではこの分母を逆元を用いて計算しておくことが可能 >>> m = 1000000007 >>> fact_table = make_factorial_table(100, m) >>> combination(10, 5, m, fact_table) 252 >>> combination(100, 50, m, fact_table) 538992043 ''' numerator = fact_table[n] denominator = (fact_table[n-r] * fact_table[r]) % mod # pow はすでに繰り返し二乗法で効率的に実装されている return (numerator * pow(denominator, mod-2, mod)) % mod h, w, a, b = mi() # sigma {k = b to w-1} h-1-a+kCh-1-a * a-1+w-1-kCa-1 # sample 2 だと {k=4to6} 6+kC6 * 2+6-kC2 = (10C6 * 4C2 + 11C6 * 3C2 + 12C6 * 2C2) fact_table = make_factorial_table(2 * h + 2 * w, mod) ans = 0 for k in range(b, w): # print(f"{h-1-a+k} {h-1-a} / {a-1+w-1-k} {a-1}") ans = (ans + combination(h-1-a+k, h-1-a, mod, fact_table) * combination(a-1+w-1-k, a-1, mod, fact_table)) % mod print(ans) if __name__ == "__main__": main()
[ 7, 0, 13, 2, 2, 17, 17, 17, 0, 13, 2, 17, 17, 0, 13, 39, 17, 17, 0, 13, 39, 17, 17, 0, 13, 39, 17, 17, 28, 13, 4, 13, 17, 2, 13, 17, 4, 18, 13, 13, 2, 2, 18, 13, 17, 13, 13, 4, 18, 13, 13, 2, 2, 40, 18, 13, 2, 13, 13, 2, 13, 13, 13, 4, 18, 13, 13, 2, 2, 18, 13, 17, 18, 13, 17, 13, 12, 13, 14, 2, 2, 13, 17, 2, 13, 13, 29, 17, 0, 13, 4, 13, 13, 2, 13, 13, 29, 2, 2, 2, 18, 13, 13, 18, 13, 13, 18, 13, 2, 13, 13, 13, 23, 13, 23, 13, 23, 13, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 14, 2, 13, 2, 13, 17, 0, 13, 17, 0, 13, 4, 13, 2, 2, 13, 17, 2, 13, 17, 2, 13, 17, 13, 28, 13, 4, 13, 13, 0, 13, 2, 13, 13, 0, 13, 2, 13, 17, 0, 13, 13, 0, 13, 2, 13, 13, 0, 13, 2, 2, 4, 13, 2, 2, 13, 17, 2, 13, 17, 2, 13, 17, 13, 4, 13, 2, 2, 13, 17, 2, 13, 17, 2, 13, 17, 13, 13, 0, 13, 2, 2, 13, 13, 13, 0, 13, 2, 2, 13, 13, 13, 4, 13, 13, 0, 13, 17, 28, 13, 4, 13, 13, 13, 0, 13, 2, 13, 13, 0, 13, 2, 13, 17, 0, 13, 13, 0, 13, 2, 13, 13, 0, 13, 2, 4, 13, 2, 2, 13, 17, 2, 13, 17, 2, 13, 17, 13, 4, 13, 2, 2, 13, 17, 2, 13, 17, 2, 13, 17, 13, 0, 13, 2, 2, 13, 13, 13, 0, 13, 13, 4, 13, 13, 10, 12, 13, 10, 4, 13, 10, 2, 13, 10, 39, 13, 10, 2, 13, 10, 13, 13, 10, 39, 13, 10, 4, 13, 10, 2, 13, 10, 17, 13, 10, 2, 13, 10, 2, 13, 10, 2, 13, 10, 4, 13, 10, 2, 13, 10, 17, 13, 10, 2, 13, 10, 2, 13, 10, 2, 13, 10, 39, 13, 10, 4, 13, 10, 4, 13, 10, 13, 13, 10, 2, 13, 10, 13, 13, 10, 2, 13, 10, 2, 13 ]
[ [ 365, 2 ], [ 344, 9 ], [ 353, 14 ], [ 305, 19 ], [ 314, 24 ], [ 30, 29 ], [ 345, 34 ], [ 354, 38 ], [ 354, 43 ], [ 29, 45 ], [ 366, 46 ], [ 315, 49 ], [ 315, 55 ], [ 366, 57 ], [ 29, 58 ], [ 366, 60 ], [ 29, 61 ], [ 366, 62 ], [ 306, 65 ], [ 306, 70 ], [ 315, 73 ], [ 366, 75 ], [ 115, 81 ], [ 113, 84 ], [ 115, 85 ], [ 90, 89 ], [ 115, 92 ], [ 113, 94 ], [ 115, 95 ], [ 354, 101 ], [ 113, 102 ], [ 306, 104 ], [ 89, 105 ], [ 115, 105 ], [ 306, 107 ], [ 113, 109 ], [ 89, 110 ], [ 115, 110 ], [ 117, 111 ], [ 113, 113 ], [ 115, 115 ], [ 117, 117 ], [ 356, 119 ], [ 356, 128 ], [ 356, 129 ], [ 356, 130 ], [ 318, 133 ], [ 336, 135 ], [ 323, 138 ], [ 359, 141 ], [ 297, 143 ], [ 300, 146 ], [ 336, 149 ], [ 300, 152 ], [ 366, 154 ], [ 157, 156 ], [ 318, 159 ], [ 308, 161 ], [ 300, 163 ], [ 357, 164 ], [ 347, 166 ], [ 156, 168 ], [ 311, 171 ], [ 357, 172 ], [ 329, 174 ], [ 336, 176 ], [ 156, 177 ], [ 302, 179 ], [ 297, 183 ], [ 309, 186 ], [ 348, 189 ], [ 309, 192 ], [ 366, 194 ], [ 297, 196 ], [ 312, 199 ], [ 330, 202 ], [ 312, 205 ], [ 366, 207 ], [ 366, 208 ], [ 332, 210 ], [ 324, 213 ], [ 333, 213 ], [ 303, 214 ], [ 366, 215 ], [ 320, 217 ], [ 360, 220 ], [ 333, 221 ], [ 324, 221 ], [ 366, 222 ], [ 321, 225 ], [ 341, 227 ], [ 231, 230 ], [ 318, 233 ], [ 336, 234 ], [ 350, 236 ], [ 300, 238 ], [ 357, 239 ], [ 326, 241 ], [ 230, 243 ], [ 362, 246 ], [ 357, 247 ], [ 371, 249 ], [ 336, 251 ], [ 230, 252 ], [ 374, 254 ], [ 297, 257 ], [ 351, 260 ], [ 327, 263 ], [ 351, 266 ], [ 366, 268 ], [ 297, 270 ], [ 363, 273 ], [ 372, 276 ], [ 363, 279 ], [ 366, 281 ], [ 338, 283 ], [ 342, 286 ], [ 339, 286 ], [ 375, 287 ], [ 366, 288 ], [ 368, 290 ], [ 366, 291 ], [ 369, 294 ], [ 339, 294 ], [ 321, 294 ], [ 342, 294 ], [ 356, 300 ], [ 302, 303 ], [ 305, 306 ], [ 308, 309 ], [ 357, 311 ], [ 311, 312 ], [ 314, 315 ], [ 356, 318 ], [ 320, 321 ], [ 323, 324 ], [ 326, 327 ], [ 329, 330 ], [ 332, 333 ], [ 356, 336 ], [ 338, 339 ], [ 341, 342 ], [ 344, 345 ], [ 347, 348 ], [ 350, 351 ], [ 353, 354 ], [ 356, 357 ], [ 359, 360 ], [ 357, 362 ], [ 362, 363 ], [ 365, 366 ], [ 366, 368 ], [ 368, 369 ], [ 371, 372 ], [ 374, 375 ] ]
[ "mod = 10 ** 9 + 7\nN = 10 ** 6\nfact = [1, 1]\nfactinv = [1, 1]\ninv = [0, 1]\n\nfor i in range(2, N + 1):\n fact.append(fact[-1] * i % mod)\n inv.append((-inv[mod % i] * (mod // i)) % mod)\n factinv.append((factinv[-1] * inv[-1]) % mod)\n\ndef combi_mod(n, r, p):\n if (r < 0) or (n < r):\n return 0\n r = min(r, n - r)\n return fact[n] * factinv[r] * factinv[n - r] % p\n\n\nH, W, A, B = map(int, input().split())\n\nif B < W / 2:\n not_ans = 0\n total = combi_mod((H - 1) + (W - 1), H-1, mod)\n for i in range(B):\n sq1h = H - A\n sq1w = i + 1\n sq2h = A\n sq2w = W - i\n n = combi_mod((sq1h -1) + (sq1w - 1), (sq1h -1), mod) * combi_mod((sq2h - 1) + (sq2w - 1), (sq2h - 1), mod) % mod\n not_ans = (not_ans + n) % mod\n ans = (total - not_ans) % mod\n print(ans)\n \nelse:\n ans = 0\n for i in range(B, W):\n sq1h = H - A\n sq1w = i + 1\n sq2h = A\n sq2w = W - i\n n = combi_mod((sq1h - 1) + (sq1w - 1), (sq1h - 1), mod) * combi_mod((sq2h - 1) + (sq2w - 1), (sq2h - 1), mod)\n ans = (ans + n) % mod\n ans %= mod\n print(ans)", "mod = 10 ** 9 + 7", "mod", "10 ** 9 + 7", "10 ** 9", "10", "9", "7", "N = 10 ** 6", "N", "10 ** 6", "10", "6", "fact = [1, 1]", "fact", "[1, 1]", "1", "1", "factinv = [1, 1]", "factinv", "[1, 1]", "1", "1", "inv = [0, 1]", "inv", "[0, 1]", "0", "1", "for i in range(2, N + 1):\n fact.append(fact[-1] * i % mod)\n inv.append((-inv[mod % i] * (mod // i)) % mod)\n factinv.append((factinv[-1] * inv[-1]) % mod)", "i", "range(2, N + 1)", "range", "2", "N + 1", "N", "1", "fact.append(fact[-1] * i % mod)", "fact.append", "fact", "append", "fact[-1] * i % mod", "fact[-1] * i", "fact[-1]", "fact", "-1", "i", "mod", "inv.append((-inv[mod % i] * (mod // i)) % mod)", "inv.append", "inv", "append", "(-inv[mod % i] * (mod // i)) % mod", "-inv[mod % i] * (mod // i)", "-inv[mod % i]", "inv[mod % i]", "inv", "mod % i", "mod", "i", "mod // i", "mod", "i", "mod", "factinv.append((factinv[-1] * inv[-1]) % mod)", "factinv.append", "factinv", "append", "(factinv[-1] * inv[-1]) % mod", "factinv[-1] * inv[-1]", "factinv[-1]", "factinv", "-1", "inv[-1]", "inv", "-1", "mod", "def combi_mod(n, r, p):\n if (r < 0) or (n < r):\n return 0\n r = min(r, n - r)\n return fact[n] * factinv[r] * factinv[n - r] % p", "combi_mod", "if (r < 0) or (n < r):\n return 0\n ", "(r < 0) or (n < r)", "r < 0", "r", "0", "n < r", "n", "r", "return 0", "0", "r = min(r, n - r)", "r", "min(r, n - r)", "min", "r", "n - r", "n", "r", "return fact[n] * factinv[r] * factinv[n - r] % p", "fact[n] * factinv[r] * factinv[n - r] % p", "fact[n] * factinv[r] * factinv[n - r]", "fact[n] * factinv[r]", "fact[n]", "fact", "n", "factinv[r]", "factinv", "r", "factinv[n - r]", "factinv", "n - r", "n", "r", "p", "n", "n", "r", "r", "p", "p", "H, W, A, B = map(int, input().split())", "H", "map(int, input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "if B < W / 2:\n not_ans = 0\n total = combi_mod((H - 1) + (W - 1), H-1, mod)\n for i in range(B):\n sq1h = H - A\n sq1w = i + 1\n sq2h = A\n sq2w = W - i\n n = combi_mod((sq1h -1) + (sq1w - 1), (sq1h -1), mod) * combi_mod((sq2h - 1) + (sq2w - 1), (sq2h - 1), mod) % mod\n not_ans = (not_ans + n) % mod\n ans = (total - not_ans) % mod\n print(ans)\n \nelse:\n ans = 0\n for i in range(B, W):\n sq1h = H - A\n sq1w = i + 1\n sq2h = A\n sq2w = W - i\n n = combi_mod((sq1h - 1) + (sq1w - 1), (sq1h - 1), mod) * combi_mod((sq2h - 1) + (sq2w - 1), (sq2h - 1), mod)\n ans = (ans + n) % mod\n ans %= mod\n print(ans)", "B < W / 2", "B", "W / 2", "W", "2", "not_ans = 0", "not_ans", "0", "total = combi_mod((H - 1) + (W - 1), H-1, mod)", "total", "combi_mod((H - 1) + (W - 1), H-1, mod)", "combi_mod", "(H - 1) + (W - 1)", "H - 1", "H", "1", "W - 1", "W", "1", "H-1", "H", "1", "mod", "for i in range(B):\n sq1h = H - A\n sq1w = i + 1\n sq2h = A\n sq2w = W - i\n n = combi_mod((sq1h -1) + (sq1w - 1), (sq1h -1), mod) * combi_mod((sq2h - 1) + (sq2w - 1), (sq2h - 1), mod) % mod\n not_ans = (not_ans + n) % mod\n ", "i", "range(B)", "range", "B", "sq1h = H - A", "sq1h", "H - A", "H", "A", "sq1w = i + 1", "sq1w", "i + 1", "i", "1", "sq2h = A", "sq2h", "A", "sq2w = W - i", "sq2w", "W - i", "W", "i", "n = combi_mod((sq1h -1) + (sq1w - 1), (sq1h -1), mod) * combi_mod((sq2h - 1) + (sq2w - 1), (sq2h - 1), mod) % mod", "n", "combi_mod((sq1h -1) + (sq1w - 1), (sq1h -1), mod) * combi_mod((sq2h - 1) + (sq2w - 1), (sq2h - 1), mod) % mod", "combi_mod((sq1h -1) + (sq1w - 1), (sq1h -1), mod) * combi_mod((sq2h - 1) + (sq2w - 1), (sq2h - 1), mod)", "combi_mod((sq1h -1) + (sq1w - 1), (sq1h -1), mod)", "combi_mod", "(sq1h -1) + (sq1w - 1)", "sq1h -1", "sq1h", "1", "sq1w - 1", "sq1w", "1", "sq1h -1", "sq1h", "1", "mod", "combi_mod((sq2h - 1) + (sq2w - 1), (sq2h - 1), mod)", "combi_mod", "(sq2h - 1) + (sq2w - 1)", "sq2h - 1", "sq2h", "1", "sq2w - 1", "sq2w", "1", "sq2h - 1", "sq2h", "1", "mod", "mod", "not_ans = (not_ans + n) % mod", "not_ans", "(not_ans + n) % mod", "not_ans + n", "not_ans", "n", "mod", "ans = (total - not_ans) % mod", "ans", "(total - not_ans) % mod", "total - not_ans", "total", "not_ans", "mod", "print(ans)", "print", "ans", "ans = 0", "ans", "0", "for i in range(B, W):\n sq1h = H - A\n sq1w = i + 1\n sq2h = A\n sq2w = W - i\n n = combi_mod((sq1h - 1) + (sq1w - 1), (sq1h - 1), mod) * combi_mod((sq2h - 1) + (sq2w - 1), (sq2h - 1), mod)\n ans = (ans + n) % mod\n ", "i", "range(B, W)", "range", "B", "W", "sq1h = H - A", "sq1h", "H - A", "H", "A", "sq1w = i + 1", "sq1w", "i + 1", "i", "1", "sq2h = A", "sq2h", "A", "sq2w = W - i", "sq2w", "W - i", "W", "i", "n = combi_mod((sq1h - 1) + (sq1w - 1), (sq1h - 1), mod) * combi_mod((sq2h - 1) + (sq2w - 1), (sq2h - 1), mod)", "n", "combi_mod((sq1h - 1) + (sq1w - 1), (sq1h - 1), mod) * combi_mod((sq2h - 1) + (sq2w - 1), (sq2h - 1), mod)", "combi_mod((sq1h - 1) + (sq1w - 1), (sq1h - 1), mod)", "combi_mod", "(sq1h - 1) + (sq1w - 1)", "sq1h - 1", "sq1h", "1", "sq1w - 1", "sq1w", "1", "sq1h - 1", "sq1h", "1", "mod", "combi_mod((sq2h - 1) + (sq2w - 1), (sq2h - 1), mod)", "combi_mod", "(sq2h - 1) + (sq2w - 1)", "sq2h - 1", "sq2h", "1", "sq2w - 1", "sq2w", "1", "sq2h - 1", "sq2h", "1", "mod", "ans = (ans + n) % mod", "ans", "(ans + n) % mod", "ans + n", "ans", "n", "mod", "ans %= mod", "ans", "mod", "print(ans)", "print", "ans", "def combi_mod(n, r, p):\n if (r < 0) or (n < r):\n return 0\n r = min(r, n - r)\n return fact[n] * factinv[r] * factinv[n - r] % p", "def combi_mod(n, r, p):\n if (r < 0) or (n < r):\n return 0\n r = min(r, n - r)\n return fact[n] * factinv[r] * factinv[n - r] % p", "combi_mod", "H, W, A, B = map(int, input().split())", "map(int, input().split())", "H", "n = combi_mod((sq1h -1) + (sq1w - 1), (sq1h -1), mod) * combi_mod((sq2h - 1) + (sq2w - 1), (sq2h - 1), mod) % mod", "combi_mod((sq1h -1) + (sq1w - 1), (sq1h -1), mod) * combi_mod((sq2h - 1) + (sq2w - 1), (sq2h - 1), mod) % mod", "n", "factinv = [1, 1]", "[1, 1]", "factinv", "sq1h = H - A", "H - A", "sq1h", "sq2h = A", "A", "sq2h", "inv = [0, 1]", "[0, 1]", "inv", "B = map(int, input().split())", "map(int, input().split())", "B", "ans = (total - not_ans) % mod", "(total - not_ans) % mod", "ans", "not_ans = 0", "0", "not_ans", "sq1w = i + 1", "i + 1", "sq1w", "sq2w = W - i", "W - i", "sq2w", "not_ans = (not_ans + n) % mod", "(not_ans + n) % mod", "not_ans", "W, A, B = map(int, input().split())", "map(int, input().split())", "W", "ans = (ans + n) % mod", "(ans + n) % mod", "ans", "ans = 0", "0", "ans", "N = 10 ** 6", "10 ** 6", "N", "sq1w = i + 1", "i + 1", "sq1w", "sq1h = H - A", "H - A", "sq1h", "fact = [1, 1]", "[1, 1]", "fact", "A, B = map(int, input().split())", "map(int, input().split())", "A", "total = combi_mod((H - 1) + (W - 1), H-1, mod)", "combi_mod((H - 1) + (W - 1), H-1, mod)", "total", "sq2h = A", "A", "sq2h", "mod = 10 ** 9 + 7", "10 ** 9 + 7", "mod", "ans %= mod", "mod", "ans", "sq2w = W - i", "W - i", "sq2w", "n = combi_mod((sq1h - 1) + (sq1w - 1), (sq1h - 1), mod) * combi_mod((sq2h - 1) + (sq2w - 1), (sq2h - 1), mod)", "combi_mod((sq1h - 1) + (sq1w - 1), (sq1h - 1), mod) * combi_mod((sq2h - 1) + (sq2w - 1), (sq2h - 1), mod)", "n" ]
mod = 10 ** 9 + 7 N = 10 ** 6 fact = [1, 1] factinv = [1, 1] inv = [0, 1] for i in range(2, N + 1): fact.append(fact[-1] * i % mod) inv.append((-inv[mod % i] * (mod // i)) % mod) factinv.append((factinv[-1] * inv[-1]) % mod) def combi_mod(n, r, p): if (r < 0) or (n < r): return 0 r = min(r, n - r) return fact[n] * factinv[r] * factinv[n - r] % p H, W, A, B = map(int, input().split()) if B < W / 2: not_ans = 0 total = combi_mod((H - 1) + (W - 1), H-1, mod) for i in range(B): sq1h = H - A sq1w = i + 1 sq2h = A sq2w = W - i n = combi_mod((sq1h -1) + (sq1w - 1), (sq1h -1), mod) * combi_mod((sq2h - 1) + (sq2w - 1), (sq2h - 1), mod) % mod not_ans = (not_ans + n) % mod ans = (total - not_ans) % mod print(ans) else: ans = 0 for i in range(B, W): sq1h = H - A sq1w = i + 1 sq2h = A sq2w = W - i n = combi_mod((sq1h - 1) + (sq1w - 1), (sq1h - 1), mod) * combi_mod((sq2h - 1) + (sq2w - 1), (sq2h - 1), mod) ans = (ans + n) % mod ans %= mod print(ans)
[ 7, 15, 15, 12, 13, 14, 2, 2, 13, 17, 2, 13, 13, 29, 17, 0, 13, 4, 13, 13, 2, 13, 13, 29, 2, 2, 2, 18, 13, 13, 18, 13, 13, 18, 13, 2, 13, 13, 13, 23, 13, 23, 13, 23, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 2, 17, 17, 0, 13, 39, 17, 17, 0, 13, 39, 17, 17, 0, 13, 39, 17, 17, 28, 13, 4, 13, 17, 2, 13, 17, 4, 18, 13, 13, 2, 2, 18, 13, 17, 13, 13, 4, 18, 13, 13, 2, 2, 40, 18, 13, 2, 13, 13, 2, 13, 13, 13, 4, 18, 13, 13, 2, 2, 18, 13, 17, 18, 13, 17, 13, 17, 0, 13, 4, 18, 4, 13, 13, 0, 13, 4, 13, 18, 13, 17, 0, 13, 4, 13, 18, 13, 17, 0, 13, 4, 13, 18, 13, 17, 0, 13, 4, 13, 18, 13, 17, 0, 13, 17, 28, 13, 4, 13, 2, 13, 13, 0, 13, 4, 13, 2, 2, 2, 2, 13, 13, 13, 17, 13, 2, 2, 13, 13, 17, 13, 0, 13, 4, 13, 2, 2, 2, 2, 13, 13, 13, 17, 13, 2, 13, 17, 13, 0, 13, 2, 2, 13, 2, 2, 13, 13, 13, 13, 4, 13, 13, 10, 2, 13, 10, 4, 13, 10, 4, 13, 10, 39, 13, 10, 4, 13, 10, 39, 13, 10, 4, 13, 10, 4, 13, 10, 4, 13, 10, 2, 13, 10, 17, 13, 10, 12, 13, 10, 39, 13, 10, 2, 13, 10, 4, 13 ]
[ [ 42, 8 ], [ 40, 11 ], [ 42, 12 ], [ 17, 16 ], [ 42, 19 ], [ 40, 21 ], [ 42, 22 ], [ 40, 29 ], [ 16, 32 ], [ 42, 32 ], [ 40, 36 ], [ 16, 37 ], [ 42, 37 ], [ 44, 38 ], [ 40, 40 ], [ 42, 42 ], [ 44, 44 ], [ 217, 46 ], [ 244, 53 ], [ 232, 58 ], [ 226, 63 ], [ 253, 68 ], [ 74, 73 ], [ 245, 78 ], [ 233, 82 ], [ 233, 87 ], [ 73, 89 ], [ 218, 90 ], [ 254, 93 ], [ 254, 99 ], [ 218, 101 ], [ 73, 102 ], [ 218, 104 ], [ 73, 105 ], [ 218, 106 ], [ 227, 109 ], [ 227, 114 ], [ 254, 117 ], [ 218, 119 ], [ 259, 122 ], [ 220, 129 ], [ 260, 133 ], [ 235, 136 ], [ 260, 140 ], [ 241, 143 ], [ 260, 147 ], [ 223, 150 ], [ 260, 154 ], [ 247, 157 ], [ 161, 160 ], [ 236, 164 ], [ 224, 165 ], [ 238, 167 ], [ 251, 169 ], [ 221, 174 ], [ 242, 175 ], [ 224, 176 ], [ 160, 178 ], [ 221, 181 ], [ 242, 182 ], [ 218, 184 ], [ 229, 186 ], [ 251, 188 ], [ 236, 193 ], [ 242, 194 ], [ 224, 195 ], [ 160, 197 ], [ 242, 199 ], [ 218, 201 ], [ 256, 203 ], [ 248, 206 ], [ 257, 206 ], [ 239, 209 ], [ 230, 210 ], [ 218, 211 ], [ 218, 212 ], [ 257, 215 ], [ 248, 215 ], [ 217, 218 ], [ 220, 221 ], [ 223, 224 ], [ 226, 227 ], [ 229, 230 ], [ 232, 233 ], [ 235, 236 ], [ 238, 239 ], [ 241, 242 ], [ 244, 245 ], [ 247, 248 ], [ 253, 254 ], [ 256, 257 ], [ 259, 260 ] ]
[ "from operator import mul\nfrom functools import reduce\n\ndef cmb(n, r, p):\n if (r < 0) or (n < r):\n return 0\n r = min(r, n - r)\n return fact[n] * factinv[r] * factinv[n-r] % p\n\np = 10 ** 9 + 7\nN = 10 ** 6\nfact = [1, 1] # fact[n] = (n! mod p)\nfactinv = [1, 1] # factinv[n] = ((n!)^(-1) mod p)\ninv = [0, 1]\n\nfor i in range(2, N + 1):\n fact.append((fact[-1] * i) % p)\n inv.append((-inv[p % i] * (p // i)) % p)\n factinv.append((factinv[-1] * inv[-1]) % p)\n\n#kari1 = '2 3 1 1' #2\n#kari1 = '10 7 3 4' #3570\n#kari1 = '100000 100000 99999 99999' #1\n#kari1 = '100000 100000 44444 55555' #738162020\n\n\"\"\"\nin1 = kari1.split()\n\"\"\"\nin1 = input().split()\n\nH = int(in1[0])\nW = int(in1[1])\nA = int(in1[2])\nB = int(in1[3])\n\nallCNT = 0\nfor idx1 in range(W - B):\n beforeCNT = cmb(H - A + B - 1 + idx1, H - A - 1, p)\n afterCNT = cmb(W + A - B - 2 - idx1, A - 1, p)\n allCNT = (allCNT + (beforeCNT * afterCNT) % p) % p\n\nprint(allCNT)", "from operator import mul", "from functools import reduce", "def cmb(n, r, p):\n if (r < 0) or (n < r):\n return 0\n r = min(r, n - r)\n return fact[n] * factinv[r] * factinv[n-r] % p", "cmb", "if (r < 0) or (n < r):\n return 0\n ", "(r < 0) or (n < r)", "r < 0", "r", "0", "n < r", "n", "r", "return 0", "0", "r = min(r, n - r)", "r", "min(r, n - r)", "min", "r", "n - r", "n", "r", "return fact[n] * factinv[r] * factinv[n-r] % p", "fact[n] * factinv[r] * factinv[n-r] % p", "fact[n] * factinv[r] * factinv[n-r]", "fact[n] * factinv[r]", "fact[n]", "fact", "n", "factinv[r]", "factinv", "r", "factinv[n-r]", "factinv", "n-r", "n", "r", "p", "n", "n", "r", "r", "p", "p", "p = 10 ** 9 + 7", "p", "10 ** 9 + 7", "10 ** 9", "10", "9", "7", "N = 10 ** 6", "N", "10 ** 6", "10", "6", "fact = [1, 1]", "fact", "[1, 1]", "1", "1", "factinv = [1, 1]", "factinv", "[1, 1]", "1", "1", "inv = [0, 1]", "inv", "[0, 1]", "0", "1", "for i in range(2, N + 1):\n fact.append((fact[-1] * i) % p)\n inv.append((-inv[p % i] * (p // i)) % p)\n factinv.append((factinv[-1] * inv[-1]) % p)\n\n#kari1 = '2 3 1 1' #2\n#kari1 = '10 7 3 4' #3570\n#kari1 = '100000 100000 99999 99999' #1\n#kari1 = '100000 100000 44444 55555' #738162020", "i", "range(2, N + 1)", "range", "2", "N + 1", "N", "1", "fact.append((fact[-1] * i) % p)", "fact.append", "fact", "append", "(fact[-1] * i) % p", "fact[-1] * i", "fact[-1]", "fact", "-1", "i", "p", "inv.append((-inv[p % i] * (p // i)) % p)", "inv.append", "inv", "append", "(-inv[p % i] * (p // i)) % p", "-inv[p % i] * (p // i)", "-inv[p % i]", "inv[p % i]", "inv", "p % i", "p", "i", "p // i", "p", "i", "p", "factinv.append((factinv[-1] * inv[-1]) % p)", "factinv.append", "factinv", "append", "(factinv[-1] * inv[-1]) % p", "factinv[-1] * inv[-1]", "factinv[-1]", "factinv", "-1", "inv[-1]", "inv", "-1", "p", "\"\"\"\nin1 = kari1.split()\n\"\"\"", "in1 = input().split()", "in1", "input().split()", "().split", "()", "input", "split", "H = int(in1[0])", "H", "int(in1[0])", "int", "in1[0]", "in1", "0", "W = int(in1[1])", "W", "int(in1[1])", "int", "in1[1]", "in1", "1", "A = int(in1[2])", "A", "int(in1[2])", "int", "in1[2]", "in1", "2", "B = int(in1[3])", "B", "int(in1[3])", "int", "in1[3]", "in1", "3", "allCNT = 0", "allCNT", "0", "for idx1 in range(W - B):\n beforeCNT = cmb(H - A + B - 1 + idx1, H - A - 1, p)\n afterCNT = cmb(W + A - B - 2 - idx1, A - 1, p)\n allCNT = (allCNT + (beforeCNT * afterCNT) % p) % p", "idx1", "range(W - B)", "range", "W - B", "W", "B", "beforeCNT = cmb(H - A + B - 1 + idx1, H - A - 1, p)", "beforeCNT", "cmb(H - A + B - 1 + idx1, H - A - 1, p)", "cmb", "H - A + B - 1 + idx1", "H - A + B - 1", "H - A + B", "H - A", "H", "A", "B", "1", "idx1", "H - A - 1", "H - A", "H", "A", "1", "p", "afterCNT = cmb(W + A - B - 2 - idx1, A - 1, p)", "afterCNT", "cmb(W + A - B - 2 - idx1, A - 1, p)", "cmb", "W + A - B - 2 - idx1", "W + A - B - 2", "W + A - B", "W + A", "W", "A", "B", "2", "idx1", "A - 1", "A", "1", "p", "allCNT = (allCNT + (beforeCNT * afterCNT) % p) % p", "allCNT", "(allCNT + (beforeCNT * afterCNT) % p) % p", "allCNT + (beforeCNT * afterCNT) % p", "allCNT", "(beforeCNT * afterCNT) % p", "beforeCNT * afterCNT", "beforeCNT", "afterCNT", "p", "p", "print(allCNT)", "print", "allCNT", "p = 10 ** 9 + 7", "10 ** 9 + 7", "p", "H = int(in1[0])", "int(in1[0])", "H", "B = int(in1[3])", "int(in1[3])", "B", "factinv = [1, 1]", "[1, 1]", "factinv", "afterCNT = cmb(W + A - B - 2 - idx1, A - 1, p)", "cmb(W + A - B - 2 - idx1, A - 1, p)", "afterCNT", "fact = [1, 1]", "[1, 1]", "fact", "W = int(in1[1])", "int(in1[1])", "W", "beforeCNT = cmb(H - A + B - 1 + idx1, H - A - 1, p)", "cmb(H - A + B - 1 + idx1, H - A - 1, p)", "beforeCNT", "A = int(in1[2])", "int(in1[2])", "A", "N = 10 ** 6", "10 ** 6", "N", "allCNT = 0", "0", "allCNT", "def cmb(n, r, p):\n if (r < 0) or (n < r):\n return 0\n r = min(r, n - r)\n return fact[n] * factinv[r] * factinv[n-r] % p", "def cmb(n, r, p):\n if (r < 0) or (n < r):\n return 0\n r = min(r, n - r)\n return fact[n] * factinv[r] * factinv[n-r] % p", "cmb", "inv = [0, 1]", "[0, 1]", "inv", "allCNT = (allCNT + (beforeCNT * afterCNT) % p) % p", "(allCNT + (beforeCNT * afterCNT) % p) % p", "allCNT", "in1 = input().split()", "input().split()", "in1" ]
from operator import mul from functools import reduce def cmb(n, r, p): if (r < 0) or (n < r): return 0 r = min(r, n - r) return fact[n] * factinv[r] * factinv[n-r] % p p = 10 ** 9 + 7 N = 10 ** 6 fact = [1, 1] # fact[n] = (n! mod p) factinv = [1, 1] # factinv[n] = ((n!)^(-1) mod p) inv = [0, 1] for i in range(2, N + 1): fact.append((fact[-1] * i) % p) inv.append((-inv[p % i] * (p // i)) % p) factinv.append((factinv[-1] * inv[-1]) % p) #kari1 = '2 3 1 1' #2 #kari1 = '10 7 3 4' #3570 #kari1 = '100000 100000 99999 99999' #1 #kari1 = '100000 100000 44444 55555' #738162020 """ in1 = kari1.split() """ in1 = input().split() H = int(in1[0]) W = int(in1[1]) A = int(in1[2]) B = int(in1[3]) allCNT = 0 for idx1 in range(W - B): beforeCNT = cmb(H - A + B - 1 + idx1, H - A - 1, p) afterCNT = cmb(W + A - B - 2 - idx1, A - 1, p) allCNT = (allCNT + (beforeCNT * afterCNT) % p) % p print(allCNT)
[ 7, 15, 13, 4, 18, 13, 13, 2, 17, 17, 12, 13, 0, 13, 17, 13, 17, 12, 13, 41, 14, 2, 13, 17, 0, 13, 17, 0, 13, 17, 29, 13, 0, 13, 4, 13, 13, 2, 13, 13, 0, 13, 2, 13, 13, 0, 13, 13, 0, 13, 2, 13, 2, 13, 13, 0, 13, 13, 29, 13, 23, 13, 23, 13, 0, 13, 4, 13, 13, 13, 29, 39, 13, 13, 13, 23, 13, 23, 13, 0, 13, 2, 39, 17, 17, 0, 13, 2, 39, 17, 17, 0, 13, 2, 2, 17, 17, 17, 12, 13, 0, 13, 18, 13, 13, 0, 13, 2, 2, 13, 18, 13, 2, 13, 13, 13, 0, 13, 2, 2, 13, 18, 13, 13, 13, 29, 13, 23, 13, 23, 13, 0, 18, 13, 17, 17, 28, 13, 4, 13, 17, 2, 17, 17, 0, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 13, 13, 28, 13, 4, 13, 2, 17, 17, 0, 13, 4, 13, 18, 13, 13, 13, 13, 13, 42, 2, 13, 17, 0, 13, 13, 0, 18, 13, 13, 2, 13, 13, 41, 28, 13, 4, 18, 4, 13, 13, 4, 4, 13, 13, 0, 13, 13, 13, 13, 13, 0, 13, 17, 28, 13, 4, 13, 13, 13, 0, 13, 4, 13, 2, 2, 2, 13, 13, 17, 13, 2, 2, 13, 13, 17, 0, 13, 2, 2, 13, 4, 13, 2, 2, 13, 17, 2, 2, 13, 13, 17, 2, 13, 17, 13, 0, 13, 2, 2, 13, 13, 13, 4, 13, 13, 10, 13, 13, 10, 13, 13, 10, 2, 13, 10, 13, 13, 10, 4, 13, 10, 2, 13, 10, 4, 13, 10, 12, 13, 10, 13, 13, 10, 2, 13, 10, 4, 13, 10, 4, 13, 10, 17, 13, 10, 2, 13, 10, 13, 13, 10, 12, 13, 10, 2, 13 ]
[ [ 14, 13 ], [ 16, 15 ], [ 63, 22 ], [ 26, 25 ], [ 29, 28 ], [ 61, 31 ], [ 34, 33 ], [ 63, 36 ], [ 61, 38 ], [ 63, 39 ], [ 42, 41 ], [ 61, 43 ], [ 63, 44 ], [ 47, 46 ], [ 28, 47 ], [ 50, 49 ], [ 25, 51 ], [ 41, 53 ], [ 28, 54 ], [ 57, 56 ], [ 46, 57 ], [ 33, 59 ], [ 61, 61 ], [ 63, 63 ], [ 66, 65 ], [ 18, 67 ], [ 76, 68 ], [ 78, 69 ], [ 76, 76 ], [ 78, 78 ], [ 289, 80 ], [ 301, 86 ], [ 277, 92 ], [ 102, 101 ], [ 290, 103 ], [ 128, 104 ], [ 107, 106 ], [ 101, 109 ], [ 302, 111 ], [ 128, 113 ], [ 130, 114 ], [ 278, 115 ], [ 118, 117 ], [ 106, 120 ], [ 101, 120 ], [ 302, 122 ], [ 130, 123 ], [ 278, 124 ], [ 117, 126 ], [ 106, 126 ], [ 101, 126 ], [ 128, 128 ], [ 130, 130 ], [ 135, 132 ], [ 290, 133 ], [ 138, 137 ], [ 148, 145 ], [ 290, 146 ], [ 137, 147 ], [ 290, 151 ], [ 137, 153 ], [ 137, 155 ], [ 278, 156 ], [ 159, 158 ], [ 295, 165 ], [ 308, 167 ], [ 145, 168 ], [ 290, 169 ], [ 158, 170 ], [ 278, 171 ], [ 295, 172 ], [ 295, 173 ], [ 293, 176 ], [ 272, 176 ], [ 271, 179 ], [ 278, 180 ], [ 185, 182 ], [ 302, 183 ], [ 158, 184 ], [ 272, 186 ], [ 293, 186 ], [ 278, 187 ], [ 191, 190 ], [ 190, 199 ], [ 304, 201 ], [ 304, 203 ], [ 304, 204 ], [ 304, 205 ], [ 298, 207 ], [ 211, 210 ], [ 287, 213 ], [ 263, 214 ], [ 274, 216 ], [ 284, 218 ], [ 266, 222 ], [ 305, 223 ], [ 210, 225 ], [ 266, 228 ], [ 305, 229 ], [ 268, 232 ], [ 275, 235 ], [ 269, 235 ], [ 284, 237 ], [ 305, 240 ], [ 263, 244 ], [ 210, 245 ], [ 305, 248 ], [ 278, 250 ], [ 310, 252 ], [ 299, 255 ], [ 311, 255 ], [ 269, 256 ], [ 275, 256 ], [ 278, 257 ], [ 311, 260 ], [ 299, 260 ], [ 304, 263 ], [ 304, 266 ], [ 268, 269 ], [ 278, 271 ], [ 271, 272 ], [ 274, 275 ], [ 277, 278 ], [ 295, 281 ], [ 304, 287 ], [ 289, 290 ], [ 295, 293 ], [ 295, 296 ], [ 298, 299 ], [ 301, 302 ], [ 304, 305 ], [ 310, 311 ] ]
[ "import sys\n\nsys.setrecursionlimit(10 ** 9)\n\n\ndef extgcd(a, b):\n x, y = 0, 0\n\n def f(a, b):\n nonlocal x, y\n if b == 0:\n x = 1\n y = 0\n\n return a\n\n g = f(b, a % b)\n q = a // b\n next_x = y\n y = x - q * y\n x = next_x\n return g\n\n g = f(a, b)\n return x, y, g\n\n\nfact = [0] * 200010\ninvfact = [0] * 200010\nmod = 10 ** 9 + 7\n\n\ndef nCr(n, r):\n ret = fact[n]\n ret = (ret * invfact[n - r]) % mod\n ret = (ret * invfact[r]) % mod\n return ret\n\n\nfact[0] = 1\nfor i in range(1, 200000 + 1):\n fact[i] = (fact[i - 1] * i) % mod\nfor i in range(200000 + 1):\n x, y, g = extgcd(fact[i], mod)\n while x < 0:\n x += mod\n invfact[i] = x % mod\n\nH, W, A, B = [int(_) for _ in input().split()]\n\nans = 0\nfor i in range(B, W):\n tmp = nCr((H - A - 1) + i, H - A - 1)\n tmp = tmp * nCr((A - 1) + (W - i - 1), A - 1) % mod\n ans = (ans + tmp) % mod\nprint(ans)", "import sys", "sys", "sys.setrecursionlimit(10 ** 9)", "sys.setrecursionlimit", "sys", "setrecursionlimit", "10 ** 9", "10", "9", "def extgcd(a, b):\n x, y = 0, 0\n\n def f(a, b):\n nonlocal x, y\n if b == 0:\n x = 1\n y = 0\n\n return a\n\n g = f(b, a % b)\n q = a // b\n next_x = y\n y = x - q * y\n x = next_x\n return g\n\n g = f(a, b)\n return x, y, g", "extgcd", "x, y = 0, 0", "x", "0", "y", "0", "def f(a, b):\n nonlocal x, y\n if b == 0:\n x = 1\n y = 0\n\n return a\n\n g = f(b, a % b)\n q = a // b\n next_x = y\n y = x - q * y\n x = next_x\n return g\n\n ", "f", "nonlocal x, y", "if b == 0:\n x = 1\n y = 0\n\n return a\n\n ", "b == 0", "b", "0", "x = 1", "x", "1", "y = 0", "y", "0", "return a", "a", "g = f(b, a % b)", "g", "f(b, a % b)", "f", "b", "a % b", "a", "b", "q = a // b", "q", "a // b", "a", "b", "next_x = y", "next_x", "y", "y = x - q * y", "y", "x - q * y", "x", "q * y", "q", "y", "x = next_x", "x", "next_x", "return g", "g", "a", "a", "b", "b", "g = f(a, b)", "g", "f(a, b)", "f", "a", "b", "return x, y, g", "return x, y, g", "x", "y", "g", "a", "a", "b", "b", "fact = [0] * 200010", "fact", "[0] * 200010", "[0]", "0", "200010", "invfact = [0] * 200010", "invfact", "[0] * 200010", "[0]", "0", "200010", "mod = 10 ** 9 + 7", "mod", "10 ** 9 + 7", "10 ** 9", "10", "9", "7", "def nCr(n, r):\n ret = fact[n]\n ret = (ret * invfact[n - r]) % mod\n ret = (ret * invfact[r]) % mod\n return ret", "nCr", "ret = fact[n]", "ret", "fact[n]", "fact", "n", "ret = (ret * invfact[n - r]) % mod", "ret", "(ret * invfact[n - r]) % mod", "ret * invfact[n - r]", "ret", "invfact[n - r]", "invfact", "n - r", "n", "r", "mod", "ret = (ret * invfact[r]) % mod", "ret", "(ret * invfact[r]) % mod", "ret * invfact[r]", "ret", "invfact[r]", "invfact", "r", "mod", "return ret", "ret", "n", "n", "r", "r", "fact[0] = 1", "fact[0]", "fact", "0", "1", "for i in range(1, 200000 + 1):\n fact[i] = (fact[i - 1] * i) % mod", "i", "range(1, 200000 + 1)", "range", "1", "200000 + 1", "200000", "1", "fact[i] = (fact[i - 1] * i) % mod", "fact[i]", "fact", "i", "(fact[i - 1] * i) % mod", "fact[i - 1] * i", "fact[i - 1]", "fact", "i - 1", "i", "1", "i", "mod", "for i in range(200000 + 1):\n x, y, g = extgcd(fact[i], mod)\n while x < 0:\n x += mod\n invfact[i] = x % mod", "i", "range(200000 + 1)", "range", "200000 + 1", "200000", "1", "x, y, g = extgcd(fact[i], mod)", "x", "extgcd(fact[i], mod)", "extgcd", "fact[i]", "fact", "i", "mod", "y", "g", "while x < 0:\n x += mod\n ", "x < 0", "x", "0", "x += mod", "x", "mod", "invfact[i] = x % mod", "invfact[i]", "invfact", "i", "x % mod", "x", "mod", "int(_) for _ in input().split()", "for _ in input().split()", "_", "input().split()", "().split", "()", "input", "split", "for _ in input().split()", "int(_)", "int", "_", "H, W, A, B = [int(_) for _ in input().split()]", "H", "[int(_) for _ in input().split()]", "W", "A", "B", "ans = 0", "ans", "0", "for i in range(B, W):\n tmp = nCr((H - A - 1) + i, H - A - 1)\n tmp = tmp * nCr((A - 1) + (W - i - 1), A - 1) % mod\n ans = (ans + tmp) % mod", "i", "range(B, W)", "range", "B", "W", "tmp = nCr((H - A - 1) + i, H - A - 1)", "tmp", "nCr((H - A - 1) + i, H - A - 1)", "nCr", "(H - A - 1) + i", "H - A - 1", "H - A", "H", "A", "1", "i", "H - A - 1", "H - A", "H", "A", "1", "tmp = tmp * nCr((A - 1) + (W - i - 1), A - 1) % mod", "tmp", "tmp * nCr((A - 1) + (W - i - 1), A - 1) % mod", "tmp * nCr((A - 1) + (W - i - 1), A - 1)", "tmp", "nCr((A - 1) + (W - i - 1), A - 1)", "nCr", "(A - 1) + (W - i - 1)", "A - 1", "A", "1", "W - i - 1", "W - i", "W", "i", "1", "A - 1", "A", "1", "mod", "ans = (ans + tmp) % mod", "ans", "(ans + tmp) % mod", "ans + tmp", "ans", "tmp", "mod", "print(ans)", "print", "ans", "W, A, B = [int(_) for _ in input().split()]", "[int(_) for _ in input().split()]", "W", "H, W, A, B = [int(_) for _ in input().split()]", "[int(_) for _ in input().split()]", "H", "tmp = tmp * nCr((A - 1) + (W - i - 1), A - 1) % mod", "tmp * nCr((A - 1) + (W - i - 1), A - 1) % mod", "tmp", "x += mod", "mod", "x", "tmp = nCr((H - A - 1) + i, H - A - 1)", "nCr((H - A - 1) + i, H - A - 1)", "tmp", "mod = 10 ** 9 + 7", "10 ** 9 + 7", "mod", "y, g = extgcd(fact[i], mod)", "extgcd(fact[i], mod)", "y", "def nCr(n, r):\n ret = fact[n]\n ret = (ret * invfact[n - r]) % mod\n ret = (ret * invfact[r]) % mod\n return ret", "def nCr(n, r):\n ret = fact[n]\n ret = (ret * invfact[n - r]) % mod\n ret = (ret * invfact[r]) % mod\n return ret", "nCr", "B = [int(_) for _ in input().split()]", "[int(_) for _ in input().split()]", "B", "fact = [0] * 200010", "[0] * 200010", "fact", "x, y, g = extgcd(fact[i], mod)", "extgcd(fact[i], mod)", "x", "g = extgcd(fact[i], mod)", "extgcd(fact[i], mod)", "g", "ans = 0", "0", "ans", "invfact = [0] * 200010", "[0] * 200010", "invfact", "A, B = [int(_) for _ in input().split()]", "[int(_) for _ in input().split()]", "A", "def extgcd(a, b):\n x, y = 0, 0\n\n def f(a, b):\n nonlocal x, y\n if b == 0:\n x = 1\n y = 0\n\n return a\n\n g = f(b, a % b)\n q = a // b\n next_x = y\n y = x - q * y\n x = next_x\n return g\n\n g = f(a, b)\n return x, y, g", "def extgcd(a, b):\n x, y = 0, 0\n\n def f(a, b):\n nonlocal x, y\n if b == 0:\n x = 1\n y = 0\n\n return a\n\n g = f(b, a % b)\n q = a // b\n next_x = y\n y = x - q * y\n x = next_x\n return g\n\n g = f(a, b)\n return x, y, g", "extgcd", "ans = (ans + tmp) % mod", "(ans + tmp) % mod", "ans" ]
import sys sys.setrecursionlimit(10 ** 9) def extgcd(a, b): x, y = 0, 0 def f(a, b): nonlocal x, y if b == 0: x = 1 y = 0 return a g = f(b, a % b) q = a // b next_x = y y = x - q * y x = next_x return g g = f(a, b) return x, y, g fact = [0] * 200010 invfact = [0] * 200010 mod = 10 ** 9 + 7 def nCr(n, r): ret = fact[n] ret = (ret * invfact[n - r]) % mod ret = (ret * invfact[r]) % mod return ret fact[0] = 1 for i in range(1, 200000 + 1): fact[i] = (fact[i - 1] * i) % mod for i in range(200000 + 1): x, y, g = extgcd(fact[i], mod) while x < 0: x += mod invfact[i] = x % mod H, W, A, B = [int(_) for _ in input().split()] ans = 0 for i in range(B, W): tmp = nCr((H - A - 1) + i, H - A - 1) tmp = tmp * nCr((A - 1) + (W - i - 1), A - 1) % mod ans = (ans + tmp) % mod print(ans)
[ 7, 0, 13, 2, 2, 17, 17, 17, 0, 13, 17, 0, 13, 17, 0, 13, 39, 17, 0, 13, 39, 17, 28, 13, 4, 13, 17, 13, 4, 18, 13, 13, 2, 2, 18, 13, 17, 13, 13, 28, 13, 4, 13, 17, 13, 4, 18, 13, 13, 4, 13, 18, 13, 13, 2, 13, 17, 13, 12, 13, 14, 2, 2, 13, 17, 2, 13, 17, 29, 17, 29, 2, 2, 2, 18, 13, 13, 18, 13, 2, 13, 13, 18, 13, 13, 13, 23, 13, 23, 13, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 17, 13, 13, 13, 0, 13, 4, 13, 2, 2, 13, 13, 17, 2, 13, 17, 0, 13, 2, 2, 2, 13, 13, 13, 17, 28, 13, 4, 13, 17, 2, 4, 13, 13, 13, 17, 0, 13, 2, 2, 13, 2, 2, 4, 13, 13, 2, 13, 13, 4, 13, 2, 2, 2, 13, 13, 17, 13, 2, 2, 2, 13, 13, 13, 17, 13, 13, 4, 13, 13, 10, 17, 13, 10, 4, 13, 10, 12, 13, 10, 39, 13, 10, 4, 13, 10, 17, 13, 10, 4, 13, 10, 2, 13, 10, 2, 13, 10, 39, 13, 10, 4, 13, 10, 4, 13, 10, 2, 13 ]
[ [ 207, 2 ], [ 186, 9 ], [ 171, 12 ], [ 180, 15 ], [ 198, 19 ], [ 24, 23 ], [ 172, 27 ], [ 181, 30 ], [ 181, 35 ], [ 23, 37 ], [ 208, 38 ], [ 41, 40 ], [ 172, 44 ], [ 199, 47 ], [ 181, 52 ], [ 40, 53 ], [ 208, 55 ], [ 208, 57 ], [ 87, 63 ], [ 89, 66 ], [ 181, 75 ], [ 87, 76 ], [ 199, 78 ], [ 87, 80 ], [ 89, 81 ], [ 199, 83 ], [ 89, 84 ], [ 208, 85 ], [ 87, 87 ], [ 89, 89 ], [ 204, 91 ], [ 204, 101 ], [ 204, 102 ], [ 204, 103 ], [ 183, 105 ], [ 178, 107 ], [ 202, 110 ], [ 205, 111 ], [ 202, 114 ], [ 195, 117 ], [ 202, 121 ], [ 175, 122 ], [ 190, 123 ], [ 127, 126 ], [ 175, 133 ], [ 190, 134 ], [ 192, 137 ], [ 184, 140 ], [ 193, 140 ], [ 178, 144 ], [ 196, 145 ], [ 190, 147 ], [ 126, 148 ], [ 178, 150 ], [ 202, 154 ], [ 205, 155 ], [ 196, 157 ], [ 205, 161 ], [ 190, 162 ], [ 126, 163 ], [ 208, 165 ], [ 208, 166 ], [ 193, 169 ], [ 184, 169 ], [ 171, 172 ], [ 204, 175 ], [ 180, 181 ], [ 183, 184 ], [ 186, 187 ], [ 204, 190 ], [ 192, 193 ], [ 195, 196 ], [ 198, 199 ], [ 204, 202 ], [ 204, 205 ], [ 207, 208 ] ]
[ "mod = 10**9+7\nmod2 = 998244353\nrng = 200001\nfctr = [1]\nfinv = [1]\nfor i in range(1,rng):\n fctr.append(fctr[-1]*i%mod)\nfor i in range(1,rng):\n finv.append(pow(fctr[i],mod-2,mod))\ndef cmb(n,k):\n if n<0 or k<0:\n return 0\n else:\n return fctr[n]*finv[n-k]*finv[k]%mod\nh,w,a,b = map(int, input().split(' '))\nans = cmb(h+w-2,h-1)\nx = h-a+b-1\nfor i in range(1,min(a,b)+1):\n ans = (ans-(cmb(x,b-i)*cmb(h+w-2-x,w-b+i-1))%mod)%mod\nprint(ans)", "mod = 10**9+7", "mod", "10**9+7", "10**9", "10", "9", "7", "mod2 = 998244353", "mod2", "998244353", "rng = 200001", "rng", "200001", "fctr = [1]", "fctr", "[1]", "1", "finv = [1]", "finv", "[1]", "1", "for i in range(1,rng):\n fctr.append(fctr[-1]*i%mod)", "i", "range(1,rng)", "range", "1", "rng", "fctr.append(fctr[-1]*i%mod)", "fctr.append", "fctr", "append", "fctr[-1]*i%mod", "fctr[-1]*i", "fctr[-1]", "fctr", "-1", "i", "mod", "for i in range(1,rng):\n finv.append(pow(fctr[i],mod-2,mod))", "i", "range(1,rng)", "range", "1", "rng", "finv.append(pow(fctr[i],mod-2,mod))", "finv.append", "finv", "append", "pow(fctr[i],mod-2,mod)", "pow", "fctr[i]", "fctr", "i", "mod-2", "mod", "2", "mod", "def cmb(n,k):\n if n<0 or k<0:\n return 0\n else:\n return fctr[n]*finv[n-k]*finv[k]%mod", "cmb", "if n<0 or k<0:\n return 0\n else:\n return fctr[n]*finv[n-k]*finv[k]%mod", "n<0 or k<0", "n<0", "n", "0", "k<0", "k", "0", "return 0", "0", "return fctr[n]*finv[n-k]*finv[k]%mod", "fctr[n]*finv[n-k]*finv[k]%mod", "fctr[n]*finv[n-k]*finv[k]", "fctr[n]*finv[n-k]", "fctr[n]", "fctr", "n", "finv[n-k]", "finv", "n-k", "n", "k", "finv[k]", "finv", "k", "mod", "n", "n", "k", "k", "h,w,a,b = map(int, input().split(' '))", "h", "map(int, input().split(' '))", "map", "int", "input().split(' ')", "().split", "()", "input", "split", "' '", "w", "a", "b", "ans = cmb(h+w-2,h-1)", "ans", "cmb(h+w-2,h-1)", "cmb", "h+w-2", "h+w", "h", "w", "2", "h-1", "h", "1", "x = h-a+b-1", "x", "h-a+b-1", "h-a+b", "h-a", "h", "a", "b", "1", "for i in range(1,min(a,b)+1):\n ans = (ans-(cmb(x,b-i)*cmb(h+w-2-x,w-b+i-1))%mod)%mod", "i", "range(1,min(a,b)+1)", "range", "1", "min(a,b)+1", "min(a,b)", "min", "a", "b", "1", "ans = (ans-(cmb(x,b-i)*cmb(h+w-2-x,w-b+i-1))%mod)%mod", "ans", "(ans-(cmb(x,b-i)*cmb(h+w-2-x,w-b+i-1))%mod)%mod", "ans-(cmb(x,b-i)*cmb(h+w-2-x,w-b+i-1))%mod", "ans", "(cmb(x,b-i)*cmb(h+w-2-x,w-b+i-1))%mod", "cmb(x,b-i)*cmb(h+w-2-x,w-b+i-1)", "cmb(x,b-i)", "cmb", "x", "b-i", "b", "i", "cmb(h+w-2-x,w-b+i-1)", "cmb", "h+w-2-x", "h+w-2", "h+w", "h", "w", "2", "x", "w-b+i-1", "w-b+i", "w-b", "w", "b", "i", "1", "mod", "mod", "print(ans)", "print", "ans", "rng = 200001", "200001", "rng", "a,b = map(int, input().split(' '))", "map(int, input().split(' '))", "a", "def cmb(n,k):\n if n<0 or k<0:\n return 0\n else:\n return fctr[n]*finv[n-k]*finv[k]%mod", "def cmb(n,k):\n if n<0 or k<0:\n return 0\n else:\n return fctr[n]*finv[n-k]*finv[k]%mod", "cmb", "fctr = [1]", "[1]", "fctr", "ans = cmb(h+w-2,h-1)", "cmb(h+w-2,h-1)", "ans", "mod2 = 998244353", "998244353", "mod2", "b = map(int, input().split(' '))", "map(int, input().split(' '))", "b", "ans = (ans-(cmb(x,b-i)*cmb(h+w-2-x,w-b+i-1))%mod)%mod", "(ans-(cmb(x,b-i)*cmb(h+w-2-x,w-b+i-1))%mod)%mod", "ans", "x = h-a+b-1", "h-a+b-1", "x", "finv = [1]", "[1]", "finv", "h,w,a,b = map(int, input().split(' '))", "map(int, input().split(' '))", "h", "w,a,b = map(int, input().split(' '))", "map(int, input().split(' '))", "w", "mod = 10**9+7", "10**9+7", "mod" ]
mod = 10**9+7 mod2 = 998244353 rng = 200001 fctr = [1] finv = [1] for i in range(1,rng): fctr.append(fctr[-1]*i%mod) for i in range(1,rng): finv.append(pow(fctr[i],mod-2,mod)) def cmb(n,k): if n<0 or k<0: return 0 else: return fctr[n]*finv[n-k]*finv[k]%mod h,w,a,b = map(int, input().split(' ')) ans = cmb(h+w-2,h-1) x = h-a+b-1 for i in range(1,min(a,b)+1): ans = (ans-(cmb(x,b-i)*cmb(h+w-2-x,w-b+i-1))%mod)%mod print(ans)
[ 7, 15, 13, 0, 13, 18, 18, 13, 13, 13, 0, 13, 2, 2, 17, 17, 17, 12, 13, 29, 2, 2, 2, 18, 13, 13, 18, 13, 13, 18, 13, 2, 13, 13, 13, 23, 13, 23, 13, 23, 13, 23, 13, 12, 13, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 39, 17, 28, 13, 4, 13, 17, 2, 2, 13, 13, 17, 4, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 13, 13, 0, 13, 2, 39, 17, 2, 2, 13, 13, 17, 0, 18, 13, 2, 13, 13, 4, 13, 18, 13, 2, 13, 13, 2, 13, 17, 13, 28, 13, 4, 13, 2, 13, 13, 17, 17, 0, 18, 13, 2, 13, 17, 2, 2, 18, 13, 13, 13, 13, 0, 13, 17, 28, 13, 4, 13, 2, 13, 13, 0, 13, 2, 2, 2, 2, 13, 13, 17, 13, 13, 0, 13, 2, 2, 13, 13, 17, 0, 13, 2, 2, 2, 2, 2, 13, 17, 13, 13, 17, 13, 0, 13, 2, 13, 17, 0, 13, 2, 2, 4, 13, 13, 13, 13, 13, 4, 13, 13, 13, 13, 13, 13, 4, 13, 2, 13, 13, 14, 2, 13, 17, 4, 13, 10, 12, 13, 10, 18, 13, 10, 2, 13, 10, 12, 13 ]
[ [ 212, 4 ], [ 215, 11 ], [ 36, 24 ], [ 40, 25 ], [ 38, 27 ], [ 42, 28 ], [ 38, 30 ], [ 40, 32 ], [ 42, 33 ], [ 216, 34 ], [ 36, 36 ], [ 38, 38 ], [ 40, 40 ], [ 42, 42 ], [ 47, 46 ], [ 213, 53 ], [ 47, 55 ], [ 47, 56 ], [ 47, 57 ], [ 60, 59 ], [ 64, 63 ], [ 46, 69 ], [ 55, 70 ], [ 59, 74 ], [ 59, 79 ], [ 63, 81 ], [ 63, 83 ], [ 216, 84 ], [ 87, 86 ], [ 46, 92 ], [ 55, 93 ], [ 101, 96 ], [ 86, 97 ], [ 46, 99 ], [ 55, 100 ], [ 59, 104 ], [ 46, 106 ], [ 55, 107 ], [ 216, 109 ], [ 216, 111 ], [ 114, 113 ], [ 46, 117 ], [ 55, 118 ], [ 127, 122 ], [ 86, 123 ], [ 113, 125 ], [ 86, 130 ], [ 113, 131 ], [ 113, 132 ], [ 216, 133 ], [ 136, 135 ], [ 139, 138 ], [ 55, 142 ], [ 57, 143 ], [ 146, 145 ], [ 46, 150 ], [ 56, 151 ], [ 57, 153 ], [ 138, 154 ], [ 157, 156 ], [ 46, 159 ], [ 56, 160 ], [ 164, 163 ], [ 56, 169 ], [ 55, 171 ], [ 57, 172 ], [ 138, 174 ], [ 177, 176 ], [ 56, 178 ], [ 182, 181 ], [ 219, 185 ], [ 59, 186 ], [ 86, 187 ], [ 145, 188 ], [ 156, 189 ], [ 219, 191 ], [ 59, 192 ], [ 86, 193 ], [ 163, 194 ], [ 176, 195 ], [ 216, 196 ], [ 181, 200 ], [ 135, 200 ], [ 216, 201 ], [ 210, 207 ], [ 212, 213 ], [ 215, 216 ] ]
[ "import sys\ninput=sys.stdin.readline\n\nmod = 10**9+7\ndef nCr(fact, inv, n, r):\n return fact[n] * inv[r] * inv[n-r] % mod\n\ndef main():\n H,W,A,B = map(int,input().split())\n fact = [1]\n for i in range(1, H+W+1):\n fact.append(fact[i-1] * i % mod)\n \n inv = [0] * (H+W+1)\n inv[H+W] = pow(fact[H+W], mod-2, mod) # フェルマーの小定理より a**(mod-2)はaの逆元\n for i in range(H+W, 0, -1):\n inv[i-1] = inv[i] * i % mod\n\n ans = 0\n for i in range(W-B):\n n0 = H-A-1+B+i\n r0 = H-A-1\n n1 = A-1+W-B-1-i\n r1 = A-1\n ans += nCr(fact, inv, n0, r0) * nCr(fact, inv, n1, r1) % mod\n print(ans%mod)\n\nif __name__ == '__main__':\n main()", "import sys", "sys", "input=sys.stdin.readline", "input", "sys.stdin.readline", "sys.stdin", "sys", "stdin", "readline", "mod = 10**9+7", "mod", "10**9+7", "10**9", "10", "9", "7", "def nCr(fact, inv, n, r):\n return fact[n] * inv[r] * inv[n-r] % mod", "nCr", "return fact[n] * inv[r] * inv[n-r] % mod", "fact[n] * inv[r] * inv[n-r] % mod", "fact[n] * inv[r] * inv[n-r]", "fact[n] * inv[r]", "fact[n]", "fact", "n", "inv[r]", "inv", "r", "inv[n-r]", "inv", "n-r", "n", "r", "mod", "fact", "fact", "inv", "inv", "n", "n", "r", "r", "def main():\n H,W,A,B = map(int,input().split())\n fact = [1]\n for i in range(1, H+W+1):\n fact.append(fact[i-1] * i % mod)\n \n inv = [0] * (H+W+1)\n inv[H+W] = pow(fact[H+W], mod-2, mod) # フェルマーの小定理より a**(mod-2)はaの逆元\n for i in range(H+W, 0, -1):\n inv[i-1] = inv[i] * i % mod\n\n ans = 0\n for i in range(W-B):\n n0 = H-A-1+B+i\n r0 = H-A-1\n n1 = A-1+W-B-1-i\n r1 = A-1\n ans += nCr(fact, inv, n0, r0) * nCr(fact, inv, n1, r1) % mod\n print(ans%mod)", "main", "H,W,A,B = map(int,input().split())", "H", "map(int,input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "fact = [1]", "fact", "[1]", "1", "for i in range(1, H+W+1):\n fact.append(fact[i-1] * i % mod)\n \n ", "i", "range(1, H+W+1)", "range", "1", "H+W+1", "H+W", "H", "W", "1", "fact.append(fact[i-1] * i % mod)", "fact.append", "fact", "append", "fact[i-1] * i % mod", "fact[i-1] * i", "fact[i-1]", "fact", "i-1", "i", "1", "i", "mod", "inv = [0] * (H+W+1)", "inv", "[0] * (H+W+1)", "[0]", "0", "H+W+1", "H+W", "H", "W", "1", "inv[H+W] = pow(fact[H+W], mod-2, mod)", "inv[H+W]", "inv", "H+W", "H", "W", "pow(fact[H+W], mod-2, mod)", "pow", "fact[H+W]", "fact", "H+W", "H", "W", "mod-2", "mod", "2", "mod", "for i in range(H+W, 0, -1):\n inv[i-1] = inv[i] * i % mod\n\n ", "i", "range(H+W, 0, -1)", "range", "H+W", "H", "W", "0", "-1", "inv[i-1] = inv[i] * i % mod", "inv[i-1]", "inv", "i-1", "i", "1", "inv[i] * i % mod", "inv[i] * i", "inv[i]", "inv", "i", "i", "mod", "ans = 0", "ans", "0", "for i in range(W-B):\n n0 = H-A-1+B+i\n r0 = H-A-1\n n1 = A-1+W-B-1-i\n r1 = A-1\n ans += nCr(fact, inv, n0, r0) * nCr(fact, inv, n1, r1) % mod\n ", "i", "range(W-B)", "range", "W-B", "W", "B", "n0 = H-A-1+B+i", "n0", "H-A-1+B+i", "H-A-1+B", "H-A-1", "H-A", "H", "A", "1", "B", "i", "r0 = H-A-1", "r0", "H-A-1", "H-A", "H", "A", "1", "n1 = A-1+W-B-1-i", "n1", "A-1+W-B-1-i", "A-1+W-B-1", "A-1+W-B", "A-1+W", "A-1", "A", "1", "W", "B", "1", "i", "r1 = A-1", "r1", "A-1", "A", "1", "ans += nCr(fact, inv, n0, r0) * nCr(fact, inv, n1, r1) % mod", "ans", "nCr(fact, inv, n0, r0) * nCr(fact, inv, n1, r1) % mod", "nCr(fact, inv, n0, r0) * nCr(fact, inv, n1, r1)", "nCr(fact, inv, n0, r0)", "nCr", "fact", "inv", "n0", "r0", "nCr(fact, inv, n1, r1)", "nCr", "fact", "inv", "n1", "r1", "mod", "print(ans%mod)", "print", "ans%mod", "ans", "mod", "if __name__ == '__main__':\n main()", "__name__ == '__main__'", "__name__", "'__main__'", "main()", "main", "def main():\n H,W,A,B = map(int,input().split())\n fact = [1]\n for i in range(1, H+W+1):\n fact.append(fact[i-1] * i % mod)\n \n inv = [0] * (H+W+1)\n inv[H+W] = pow(fact[H+W], mod-2, mod) # フェルマーの小定理より a**(mod-2)はaの逆元\n for i in range(H+W, 0, -1):\n inv[i-1] = inv[i] * i % mod\n\n ans = 0\n for i in range(W-B):\n n0 = H-A-1+B+i\n r0 = H-A-1\n n1 = A-1+W-B-1-i\n r1 = A-1\n ans += nCr(fact, inv, n0, r0) * nCr(fact, inv, n1, r1) % mod\n print(ans%mod)", "def main():\n H,W,A,B = map(int,input().split())\n fact = [1]\n for i in range(1, H+W+1):\n fact.append(fact[i-1] * i % mod)\n \n inv = [0] * (H+W+1)\n inv[H+W] = pow(fact[H+W], mod-2, mod) # フェルマーの小定理より a**(mod-2)はaの逆元\n for i in range(H+W, 0, -1):\n inv[i-1] = inv[i] * i % mod\n\n ans = 0\n for i in range(W-B):\n n0 = H-A-1+B+i\n r0 = H-A-1\n n1 = A-1+W-B-1-i\n r1 = A-1\n ans += nCr(fact, inv, n0, r0) * nCr(fact, inv, n1, r1) % mod\n print(ans%mod)", "main", "input=sys.stdin.readline", "sys.stdin.readline", "input", "mod = 10**9+7", "10**9+7", "mod", "def nCr(fact, inv, n, r):\n return fact[n] * inv[r] * inv[n-r] % mod", "def nCr(fact, inv, n, r):\n return fact[n] * inv[r] * inv[n-r] % mod", "nCr" ]
import sys input=sys.stdin.readline mod = 10**9+7 def nCr(fact, inv, n, r): return fact[n] * inv[r] * inv[n-r] % mod def main(): H,W,A,B = map(int,input().split()) fact = [1] for i in range(1, H+W+1): fact.append(fact[i-1] * i % mod) inv = [0] * (H+W+1) inv[H+W] = pow(fact[H+W], mod-2, mod) # フェルマーの小定理より a**(mod-2)はaの逆元 for i in range(H+W, 0, -1): inv[i-1] = inv[i] * i % mod ans = 0 for i in range(W-B): n0 = H-A-1+B+i r0 = H-A-1 n1 = A-1+W-B-1-i r1 = A-1 ans += nCr(fact, inv, n0, r0) * nCr(fact, inv, n1, r1) % mod print(ans%mod) if __name__ == '__main__': main()
[ 7, 12, 13, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 4, 13, 17, 17, 17, 0, 13, 17, 0, 13, 39, 13, 28, 13, 4, 13, 17, 2, 2, 13, 13, 17, 0, 13, 2, 2, 13, 13, 13, 4, 18, 13, 13, 13, 0, 13, 4, 13, 2, 2, 13, 13, 17, 13, 0, 13, 39, 13, 28, 13, 4, 13, 2, 2, 13, 13, 17, 17, 17, 0, 13, 2, 2, 13, 13, 13, 4, 18, 13, 13, 13, 0, 13, 18, 13, 39, 17, 0, 13, 2, 2, 2, 18, 13, 2, 2, 13, 13, 17, 18, 13, 2, 13, 17, 18, 13, 2, 13, 17, 13, 0, 13, 17, 28, 13, 4, 13, 13, 0, 13, 2, 2, 2, 18, 13, 2, 2, 2, 13, 17, 13, 13, 18, 13, 13, 18, 13, 2, 2, 13, 17, 13, 13, 0, 13, 2, 2, 2, 18, 13, 2, 2, 2, 2, 13, 17, 13, 17, 13, 18, 13, 2, 13, 17, 18, 13, 2, 2, 13, 17, 13, 13, 0, 13, 2, 13, 13, 0, 13, 13, 29, 2, 2, 13, 13, 13, 12, 13, 14, 2, 13, 17, 14, 2, 13, 17, 14, 2, 2, 13, 17, 17, 14, 2, 2, 13, 17, 17, 23, 13, 23, 13, 23, 13, 12, 13, 0, 13, 17, 28, 13, 4, 13, 17, 2, 13, 17, 0, 13, 2, 2, 13, 13, 13, 29, 4, 13, 13, 2, 13, 17, 13, 23, 13, 23, 13, 14, 2, 13, 17, 4, 13, 4, 13, 10, 12, 13, 10, 12, 13, 10, 12, 13 ]
[ [ 5, 4 ], [ 5, 13 ], [ 5, 14 ], [ 5, 15 ], [ 18, 17 ], [ 26, 25 ], [ 29, 28 ], [ 33, 32 ], [ 4, 38 ], [ 13, 39 ], [ 43, 42 ], [ 25, 45 ], [ 42, 45 ], [ 32, 46 ], [ 17, 47 ], [ 28, 50 ], [ 42, 52 ], [ 25, 52 ], [ 55, 54 ], [ 4, 59 ], [ 13, 60 ], [ 17, 62 ], [ 65, 64 ], [ 69, 68 ], [ 4, 73 ], [ 13, 74 ], [ 80, 79 ], [ 54, 82 ], [ 42, 82 ], [ 25, 82 ], [ 79, 82 ], [ 68, 83 ], [ 17, 84 ], [ 64, 87 ], [ 79, 89 ], [ 54, 89 ], [ 42, 89 ], [ 25, 89 ], [ 92, 91 ], [ 64, 93 ], [ 98, 97 ], [ 28, 102 ], [ 4, 105 ], [ 13, 106 ], [ 91, 109 ], [ 64, 109 ], [ 4, 111 ], [ 91, 114 ], [ 64, 114 ], [ 13, 116 ], [ 17, 118 ], [ 121, 120 ], [ 124, 123 ], [ 15, 126 ], [ 129, 128 ], [ 28, 133 ], [ 4, 137 ], [ 14, 139 ], [ 123, 140 ], [ 91, 142 ], [ 64, 142 ], [ 123, 143 ], [ 91, 145 ], [ 64, 145 ], [ 4, 148 ], [ 14, 150 ], [ 17, 151 ], [ 154, 153 ], [ 28, 158 ], [ 14, 163 ], [ 13, 165 ], [ 123, 167 ], [ 91, 169 ], [ 64, 169 ], [ 14, 171 ], [ 91, 174 ], [ 64, 174 ], [ 13, 177 ], [ 123, 179 ], [ 17, 180 ], [ 183, 182 ], [ 128, 184 ], [ 153, 185 ], [ 188, 187 ], [ 17, 188 ], [ 97, 192 ], [ 187, 193 ], [ 182, 193 ], [ 120, 193 ], [ 17, 194 ], [ 220, 199 ], [ 220, 203 ], [ 220, 208 ], [ 220, 214 ], [ 218, 218 ], [ 220, 220 ], [ 222, 222 ], [ 227, 226 ], [ 230, 229 ], [ 252, 234 ], [ 238, 237 ], [ 226, 240 ], [ 237, 240 ], [ 229, 241 ], [ 254, 242 ], [ 268, 245 ], [ 237, 246 ], [ 226, 246 ], [ 254, 248 ], [ 254, 250 ], [ 252, 252 ], [ 254, 254 ], [ 271, 262 ] ]
[ "def main():\n\n H, W, A, B = map(int, input().split())\n mod = pow(10, 9) + 7\n\n v = 1\n fs = [v]\n for i in range(1, H+W-1):\n v = (v * i) % mod\n fs.append(v)\n\n v = invfactorial(H+W-2, mod)\n invfs = [v]\n for i in range(H+W-2, 0, -1):\n v = (v * i) % mod\n invfs.append(v)\n invfs = invfs[::-1]\n\n tot = (fs[H+W-2] * invfs[H-1] * invfs[W-1] ) % mod\n subtract = 0\n for b in range(B):\n v1 = (fs[H-1-A+b]*invfs[b]*invfs[H-1-A]) % mod\n v2 = (fs[A-1+W-1-b] * invfs[A-1] * invfs[W-1-b]) % mod\n subtract += v1 * v2\n subtract %= mod\n # print(tot, subtract)\n return (tot - subtract) % mod\n\n\ndef powquick(x, y, mod):\n if y == 0: return 1\n elif y == 1: return x % mod\n elif y % 2 == 0: return pow(powquick(x, y // 2, mod) , 2) % mod\n elif y % 2 == 1: return (x * pow(powquick(x, y // 2, mod), 2)) % mod\n\ndef invfactorial(x, mod):\n v = 1\n for i in range(1, x+1):\n v = (v * i) % mod\n return powquick(v, mod-2, mod)\n\n\n\nif __name__ == '__main__':\n print(main())", "def main():\n\n H, W, A, B = map(int, input().split())\n mod = pow(10, 9) + 7\n\n v = 1\n fs = [v]\n for i in range(1, H+W-1):\n v = (v * i) % mod\n fs.append(v)\n\n v = invfactorial(H+W-2, mod)\n invfs = [v]\n for i in range(H+W-2, 0, -1):\n v = (v * i) % mod\n invfs.append(v)\n invfs = invfs[::-1]\n\n tot = (fs[H+W-2] * invfs[H-1] * invfs[W-1] ) % mod\n subtract = 0\n for b in range(B):\n v1 = (fs[H-1-A+b]*invfs[b]*invfs[H-1-A]) % mod\n v2 = (fs[A-1+W-1-b] * invfs[A-1] * invfs[W-1-b]) % mod\n subtract += v1 * v2\n subtract %= mod\n # print(tot, subtract)\n return (tot - subtract) % mod", "main", "H, W, A, B = map(int, input().split())", "H", "map(int, input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "mod = pow(10, 9) + 7", "mod", "pow(10, 9) + 7", "pow(10, 9)", "pow", "10", "9", "7", "v = 1", "v", "1", "fs = [v]", "fs", "[v]", "v", "for i in range(1, H+W-1):\n v = (v * i) % mod\n fs.append(v)\n\n ", "i", "range(1, H+W-1)", "range", "1", "H+W-1", "H+W", "H", "W", "1", "v = (v * i) % mod", "v", "(v * i) % mod", "v * i", "v", "i", "mod", "fs.append(v)", "fs.append", "fs", "append", "v", "v = invfactorial(H+W-2, mod)", "v", "invfactorial(H+W-2, mod)", "invfactorial", "H+W-2", "H+W", "H", "W", "2", "mod", "invfs = [v]", "invfs", "[v]", "v", "for i in range(H+W-2, 0, -1):\n v = (v * i) % mod\n invfs.append(v)\n ", "i", "range(H+W-2, 0, -1)", "range", "H+W-2", "H+W", "H", "W", "2", "0", "-1", "v = (v * i) % mod", "v", "(v * i) % mod", "v * i", "v", "i", "mod", "invfs.append(v)", "invfs.append", "invfs", "append", "v", "invfs = invfs[::-1]", "invfs", "invfs[::-1]", "invfs", "::-1", "-1", "tot = (fs[H+W-2] * invfs[H-1] * invfs[W-1] ) % mod", "tot", "(fs[H+W-2] * invfs[H-1] * invfs[W-1] ) % mod", "fs[H+W-2] * invfs[H-1] * invfs[W-1]", "fs[H+W-2] * invfs[H-1]", "fs[H+W-2]", "fs", "H+W-2", "H+W", "H", "W", "2", "invfs[H-1]", "invfs", "H-1", "H", "1", "invfs[W-1]", "invfs", "W-1", "W", "1", "mod", "subtract = 0", "subtract", "0", "for b in range(B):\n v1 = (fs[H-1-A+b]*invfs[b]*invfs[H-1-A]) % mod\n v2 = (fs[A-1+W-1-b] * invfs[A-1] * invfs[W-1-b]) % mod\n subtract += v1 * v2\n subtract %= mod\n # print(tot, subtract)\n ", "b", "range(B)", "range", "B", "v1 = (fs[H-1-A+b]*invfs[b]*invfs[H-1-A]) % mod", "v1", "(fs[H-1-A+b]*invfs[b]*invfs[H-1-A]) % mod", "fs[H-1-A+b]*invfs[b]*invfs[H-1-A]", "fs[H-1-A+b]*invfs[b]", "fs[H-1-A+b]", "fs", "H-1-A+b", "H-1-A", "H-1", "H", "1", "A", "b", "invfs[b]", "invfs", "b", "invfs[H-1-A]", "invfs", "H-1-A", "H-1", "H", "1", "A", "mod", "v2 = (fs[A-1+W-1-b] * invfs[A-1] * invfs[W-1-b]) % mod", "v2", "(fs[A-1+W-1-b] * invfs[A-1] * invfs[W-1-b]) % mod", "fs[A-1+W-1-b] * invfs[A-1] * invfs[W-1-b]", "fs[A-1+W-1-b] * invfs[A-1]", "fs[A-1+W-1-b]", "fs", "A-1+W-1-b", "A-1+W-1", "A-1+W", "A-1", "A", "1", "W", "1", "b", "invfs[A-1]", "invfs", "A-1", "A", "1", "invfs[W-1-b]", "invfs", "W-1-b", "W-1", "W", "1", "b", "mod", "subtract += v1 * v2", "subtract", "v1 * v2", "v1", "v2", "subtract %= mod", "subtract", "mod", "return (tot - subtract) % mod", "(tot - subtract) % mod", "tot - subtract", "tot", "subtract", "mod", "def powquick(x, y, mod):\n if y == 0: return 1\n elif y == 1: return x % mod\n elif y % 2 == 0: return pow(powquick(x, y // 2, mod) , 2) % mod\n elif y % 2 == 1: return (x * pow(powquick(x, y // 2, mod), 2)) % mod", "powquick", "if y == 0: return 1\n elif y == 1: return x % mod\n elif y % 2 == 0: return pow(powquick(x, y // 2, mod) , 2) % mod\n elif y % 2 == 1: return (x * pow(powquick(x, y // 2, mod), 2)) % mod", "y == 0", "y", "0", "elif y == 1: return x % mod\n ", "y == 1", "y", "1", "elif y % 2 == 0: return pow(powquick(x, y // 2, mod) , 2) % mod\n ", "y % 2 == 0", "y % 2", "y", "2", "0", "elif y % 2 == 1: return (x * pow(powquick(x, y // 2, mod), 2)) %", "y % 2 == 1", "y % 2", "y", "2", "1", "x", "x", "y", "y", "mod", "mod", "def invfactorial(x, mod):\n v = 1\n for i in range(1, x+1):\n v = (v * i) % mod\n return powquick(v, mod-2, mod)", "invfactorial", "v = 1", "v", "1", "for i in range(1, x+1):\n v = (v * i) % mod\n ", "i", "range(1, x+1)", "range", "1", "x+1", "x", "1", "v = (v * i) % mod", "v", "(v * i) % mod", "v * i", "v", "i", "mod", "return powquick(v, mod-2, mod)", "powquick(v, mod-2, mod)", "powquick", "v", "mod-2", "mod", "2", "mod", "x", "x", "mod", "mod", "if __name__ == '__main__':\n print(main())", "__name__ == '__main__'", "__name__", "'__main__'", "print(main())", "print", "main()", "main", "def invfactorial(x, mod):\n v = 1\n for i in range(1, x+1):\n v = (v * i) % mod\n return powquick(v, mod-2, mod)", "def invfactorial(x, mod):\n v = 1\n for i in range(1, x+1):\n v = (v * i) % mod\n return powquick(v, mod-2, mod)", "invfactorial", "def powquick(x, y, mod):\n if y == 0: return 1\n elif y == 1: return x % mod\n elif y % 2 == 0: return pow(powquick(x, y // 2, mod) , 2) % mod\n elif y % 2 == 1: return (x * pow(powquick(x, y // 2, mod), 2)) % mod", "def powquick(x, y, mod):\n if y == 0: return 1\n elif y == 1: return x % mod\n elif y % 2 == 0: return pow(powquick(x, y // 2, mod) , 2) % mod\n elif y % 2 == 1: return (x * pow(powquick(x, y // 2, mod), 2)) % mod", "powquick", "def main():\n\n H, W, A, B = map(int, input().split())\n mod = pow(10, 9) + 7\n\n v = 1\n fs = [v]\n for i in range(1, H+W-1):\n v = (v * i) % mod\n fs.append(v)\n\n v = invfactorial(H+W-2, mod)\n invfs = [v]\n for i in range(H+W-2, 0, -1):\n v = (v * i) % mod\n invfs.append(v)\n invfs = invfs[::-1]\n\n tot = (fs[H+W-2] * invfs[H-1] * invfs[W-1] ) % mod\n subtract = 0\n for b in range(B):\n v1 = (fs[H-1-A+b]*invfs[b]*invfs[H-1-A]) % mod\n v2 = (fs[A-1+W-1-b] * invfs[A-1] * invfs[W-1-b]) % mod\n subtract += v1 * v2\n subtract %= mod\n # print(tot, subtract)\n return (tot - subtract) % mod", "def main():\n\n H, W, A, B = map(int, input().split())\n mod = pow(10, 9) + 7\n\n v = 1\n fs = [v]\n for i in range(1, H+W-1):\n v = (v * i) % mod\n fs.append(v)\n\n v = invfactorial(H+W-2, mod)\n invfs = [v]\n for i in range(H+W-2, 0, -1):\n v = (v * i) % mod\n invfs.append(v)\n invfs = invfs[::-1]\n\n tot = (fs[H+W-2] * invfs[H-1] * invfs[W-1] ) % mod\n subtract = 0\n for b in range(B):\n v1 = (fs[H-1-A+b]*invfs[b]*invfs[H-1-A]) % mod\n v2 = (fs[A-1+W-1-b] * invfs[A-1] * invfs[W-1-b]) % mod\n subtract += v1 * v2\n subtract %= mod\n # print(tot, subtract)\n return (tot - subtract) % mod", "main" ]
def main(): H, W, A, B = map(int, input().split()) mod = pow(10, 9) + 7 v = 1 fs = [v] for i in range(1, H+W-1): v = (v * i) % mod fs.append(v) v = invfactorial(H+W-2, mod) invfs = [v] for i in range(H+W-2, 0, -1): v = (v * i) % mod invfs.append(v) invfs = invfs[::-1] tot = (fs[H+W-2] * invfs[H-1] * invfs[W-1] ) % mod subtract = 0 for b in range(B): v1 = (fs[H-1-A+b]*invfs[b]*invfs[H-1-A]) % mod v2 = (fs[A-1+W-1-b] * invfs[A-1] * invfs[W-1-b]) % mod subtract += v1 * v2 subtract %= mod # print(tot, subtract) return (tot - subtract) % mod def powquick(x, y, mod): if y == 0: return 1 elif y == 1: return x % mod elif y % 2 == 0: return pow(powquick(x, y // 2, mod) , 2) % mod elif y % 2 == 1: return (x * pow(powquick(x, y // 2, mod), 2)) % mod def invfactorial(x, mod): v = 1 for i in range(1, x+1): v = (v * i) % mod return powquick(v, mod-2, mod) if __name__ == '__main__': print(main())
[ 7, 15, 13, 15, 13, 15, 13, 4, 18, 13, 13, 17, 15, 15, 15, 15, 15, 15, 15, 0, 13, 2, 2, 17, 17, 17, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 39, 17, 2, 17, 17, 28, 13, 4, 13, 17, 2, 17, 17, 0, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 13, 13, 12, 13, 29, 2, 2, 2, 18, 13, 13, 4, 13, 18, 13, 13, 2, 13, 17, 13, 4, 13, 18, 13, 2, 13, 13, 2, 13, 17, 13, 13, 23, 13, 23, 13, 0, 13, 17, 28, 13, 4, 13, 13, 13, 0, 13, 2, 2, 4, 13, 2, 2, 2, 13, 13, 17, 13, 13, 4, 13, 2, 2, 2, 2, 13, 17, 13, 13, 17, 2, 13, 17, 13, 0, 13, 13, 0, 13, 13, 4, 13, 13, 10, 4, 13, 10, 2, 13, 10, 2, 13, 10, 4, 13, 10, 12, 13, 10, 13, 13, 10, 4, 13, 10, 2, 13, 10, 4, 13, 10, 13, 13, 10, 17, 13 ]
[ [ 156, 20 ], [ 174, 27 ], [ 174, 36 ], [ 174, 37 ], [ 174, 38 ], [ 153, 40 ], [ 49, 48 ], [ 59, 56 ], [ 154, 57 ], [ 48, 58 ], [ 154, 62 ], [ 48, 64 ], [ 48, 66 ], [ 157, 67 ], [ 154, 75 ], [ 99, 76 ], [ 154, 80 ], [ 101, 81 ], [ 157, 83 ], [ 157, 85 ], [ 154, 89 ], [ 99, 91 ], [ 101, 92 ], [ 157, 94 ], [ 157, 96 ], [ 157, 97 ], [ 99, 99 ], [ 101, 101 ], [ 180, 103 ], [ 107, 106 ], [ 169, 109 ], [ 151, 110 ], [ 171, 112 ], [ 163, 116 ], [ 160, 120 ], [ 175, 121 ], [ 106, 123 ], [ 106, 124 ], [ 163, 126 ], [ 175, 131 ], [ 151, 133 ], [ 106, 134 ], [ 175, 137 ], [ 157, 139 ], [ 177, 141 ], [ 172, 142 ], [ 165, 144 ], [ 157, 145 ], [ 166, 148 ], [ 178, 148 ], [ 181, 148 ], [ 174, 151 ], [ 153, 154 ], [ 156, 157 ], [ 174, 160 ], [ 157, 165 ], [ 165, 166 ], [ 174, 169 ], [ 171, 172 ], [ 174, 175 ], [ 172, 177 ], [ 177, 178 ], [ 180, 181 ] ]
[ "#!/usr/bin/env python3\n#ABC42 D\n\nimport sys\nimport math\nimport bisect\nsys.setrecursionlimit(1000000000)\nfrom heapq import heappush, heappop\nfrom collections import defaultdict\nfrom itertools import accumulate\nfrom collections import Counter\nfrom collections import deque\nfrom operator import itemgetter\nfrom itertools import permutations\nmod = 10**9 + 7\n\nh,w,a,b = map(int,input().split())\n\nfact = [1]*(200000+1)\nfor i in range(1,200000+1):\n fact[i] = fact[i-1]*(i) % mod\n\ndef comb(n,r):\n return fact[n] * pow(fact[r],mod-2,mod) * pow(fact[n-r],mod-2,mod) % mod\nans = 0\nfor i in range(b,w):\n x = comb(h-a-1+i,i)*comb(a-1+w-i-1,a-1) % mod\n ans += x\n ans %= mod\nprint(ans)", "import sys", "sys", "import math", "math", "import bisect", "bisect", "sys.setrecursionlimit(1000000000)", "sys.setrecursionlimit", "sys", "setrecursionlimit", "1000000000", "from heapq import heappush, heappop", "from collections import defaultdict", "from itertools import accumulate", "from collections import Counter", "from collections import deque", "from operator import itemgetter", "from itertools import permutations", "mod = 10**9 + 7", "mod", "10**9 + 7", "10**9", "10", "9", "7", "h,w,a,b = map(int,input().split())", "h", "map(int,input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "w", "a", "b", "fact = [1]*(200000+1)", "fact", "[1]*(200000+1)", "[1]", "1", "200000+1", "200000", "1", "for i in range(1,200000+1):\n fact[i] = fact[i-1]*(i) % mod", "i", "range(1,200000+1)", "range", "1", "200000+1", "200000", "1", "fact[i] = fact[i-1]*(i) % mod", "fact[i]", "fact", "i", "fact[i-1]*(i) % mod", "fact[i-1]*(i)", "fact[i-1]", "fact", "i-1", "i", "1", "i", "mod", "def comb(n,r):\n return fact[n] * pow(fact[r],mod-2,mod) * pow(fact[n-r],mod-2,mod) % mod", "comb", "return fact[n] * pow(fact[r],mod-2,mod) * pow(fact[n-r],mod-2,mod) % mod", "fact[n] * pow(fact[r],mod-2,mod) * pow(fact[n-r],mod-2,mod) % mod", "fact[n] * pow(fact[r],mod-2,mod) * pow(fact[n-r],mod-2,mod)", "fact[n] * pow(fact[r],mod-2,mod)", "fact[n]", "fact", "n", "pow(fact[r],mod-2,mod)", "pow", "fact[r]", "fact", "r", "mod-2", "mod", "2", "mod", "pow(fact[n-r],mod-2,mod)", "pow", "fact[n-r]", "fact", "n-r", "n", "r", "mod-2", "mod", "2", "mod", "mod", "n", "n", "r", "r", "ans = 0", "ans", "0", "for i in range(b,w):\n x = comb(h-a-1+i,i)*comb(a-1+w-i-1,a-1) % mod\n ans += x\n ans %= mod", "i", "range(b,w)", "range", "b", "w", "x = comb(h-a-1+i,i)*comb(a-1+w-i-1,a-1) % mod", "x", "comb(h-a-1+i,i)*comb(a-1+w-i-1,a-1) % mod", "comb(h-a-1+i,i)*comb(a-1+w-i-1,a-1)", "comb(h-a-1+i,i)", "comb", "h-a-1+i", "h-a-1", "h-a", "h", "a", "1", "i", "i", "comb(a-1+w-i-1,a-1)", "comb", "a-1+w-i-1", "a-1+w-i", "a-1+w", "a-1", "a", "1", "w", "i", "1", "a-1", "a", "1", "mod", "ans += x", "ans", "x", "ans %= mod", "ans", "mod", "print(ans)", "print", "ans", "w,a,b = map(int,input().split())", "map(int,input().split())", "w", "fact = [1]*(200000+1)", "[1]*(200000+1)", "fact", "mod = 10**9 + 7", "10**9 + 7", "mod", "h,w,a,b = map(int,input().split())", "map(int,input().split())", "h", "def comb(n,r):\n return fact[n] * pow(fact[r],mod-2,mod) * pow(fact[n-r],mod-2,mod) % mod", "def comb(n,r):\n return fact[n] * pow(fact[r],mod-2,mod) * pow(fact[n-r],mod-2,mod) % mod", "comb", "ans %= mod", "mod", "ans", "b = map(int,input().split())", "map(int,input().split())", "b", "x = comb(h-a-1+i,i)*comb(a-1+w-i-1,a-1) % mod", "comb(h-a-1+i,i)*comb(a-1+w-i-1,a-1) % mod", "x", "a,b = map(int,input().split())", "map(int,input().split())", "a", "ans += x", "x", "ans", "ans = 0", "0", "ans" ]
#!/usr/bin/env python3 #ABC42 D import sys import math import bisect sys.setrecursionlimit(1000000000) from heapq import heappush, heappop from collections import defaultdict from itertools import accumulate from collections import Counter from collections import deque from operator import itemgetter from itertools import permutations mod = 10**9 + 7 h,w,a,b = map(int,input().split()) fact = [1]*(200000+1) for i in range(1,200000+1): fact[i] = fact[i-1]*(i) % mod def comb(n,r): return fact[n] * pow(fact[r],mod-2,mod) * pow(fact[n-r],mod-2,mod) % mod ans = 0 for i in range(b,w): x = comb(h-a-1+i,i)*comb(a-1+w-i-1,a-1) % mod ans += x ans %= mod print(ans)
[ 7, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 17, 0, 13, 39, 17, 0, 13, 39, 17, 28, 13, 4, 13, 17, 17, 4, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 13, 13, 4, 18, 13, 13, 4, 13, 18, 13, 13, 2, 13, 17, 13, 0, 13, 17, 28, 13, 4, 13, 2, 13, 17, 2, 13, 17, 0, 13, 2, 2, 2, 2, 2, 2, 18, 13, 2, 2, 2, 13, 13, 13, 17, 18, 13, 2, 2, 13, 13, 17, 18, 13, 2, 13, 17, 18, 13, 2, 2, 2, 13, 13, 13, 17, 18, 13, 2, 13, 17, 18, 13, 2, 13, 13, 13, 0, 13, 13, 4, 13, 13, 10, 4, 13, 10, 4, 13, 10, 4, 13, 10, 39, 13, 10, 4, 13, 10, 2, 13, 10, 17, 13, 10, 17, 13, 10, 39, 13, 10, 13, 13 ]
[ [ 138, 2 ], [ 138, 11 ], [ 138, 12 ], [ 138, 13 ], [ 147, 15 ], [ 135, 18 ], [ 150, 22 ], [ 27, 26 ], [ 136, 33 ], [ 136, 38 ], [ 26, 40 ], [ 26, 42 ], [ 148, 43 ], [ 151, 46 ], [ 136, 51 ], [ 26, 52 ], [ 148, 54 ], [ 148, 56 ], [ 144, 58 ], [ 62, 61 ], [ 127, 65 ], [ 139, 68 ], [ 141, 71 ], [ 136, 79 ], [ 133, 83 ], [ 130, 84 ], [ 61, 85 ], [ 151, 88 ], [ 133, 91 ], [ 130, 92 ], [ 151, 95 ], [ 61, 97 ], [ 136, 100 ], [ 130, 104 ], [ 139, 105 ], [ 61, 106 ], [ 151, 109 ], [ 130, 111 ], [ 151, 114 ], [ 139, 116 ], [ 61, 117 ], [ 148, 118 ], [ 153, 120 ], [ 148, 121 ], [ 154, 124 ], [ 142, 124 ], [ 145, 124 ], [ 138, 127 ], [ 138, 130 ], [ 138, 133 ], [ 135, 136 ], [ 138, 139 ], [ 141, 142 ], [ 144, 145 ], [ 147, 148 ], [ 150, 151 ], [ 148, 153 ], [ 153, 154 ] ]
[ "h,w,a,b = map(int,input().split())\n\nMOD = 1000000007\nfac = [1]\ninv = [1]\nfor i in range(1,200010):\n\tfac.append(fac[i-1]*i%MOD)\n\tinv.append(pow(fac[i],MOD-2,MOD))\n\nans = 0\n\nfor i in range(b+1,w+1):\n\tans += fac[h-a+i-2]*inv[h-a-1]*inv[i-1]*fac[a+w-i-1]*inv[a-1]*inv[w-i]%MOD\n\tans %= MOD\n\nprint(ans)", "h,w,a,b = map(int,input().split())", "h", "map(int,input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "w", "a", "b", "MOD = 1000000007", "MOD", "1000000007", "fac = [1]", "fac", "[1]", "1", "inv = [1]", "inv", "[1]", "1", "for i in range(1,200010):\n\tfac.append(fac[i-1]*i%MOD)\n\tinv.append(pow(fac[i],MOD-2,MOD))", "i", "range(1,200010)", "range", "1", "200010", "fac.append(fac[i-1]*i%MOD)", "fac.append", "fac", "append", "fac[i-1]*i%MOD", "fac[i-1]*i", "fac[i-1]", "fac", "i-1", "i", "1", "i", "MOD", "inv.append(pow(fac[i],MOD-2,MOD))", "inv.append", "inv", "append", "pow(fac[i],MOD-2,MOD)", "pow", "fac[i]", "fac", "i", "MOD-2", "MOD", "2", "MOD", "ans = 0", "ans", "0", "for i in range(b+1,w+1):\n\tans += fac[h-a+i-2]*inv[h-a-1]*inv[i-1]*fac[a+w-i-1]*inv[a-1]*inv[w-i]%MOD\n\tans %= MOD", "i", "range(b+1,w+1)", "range", "b+1", "b", "1", "w+1", "w", "1", "ans += fac[h-a+i-2]*inv[h-a-1]*inv[i-1]*fac[a+w-i-1]*inv[a-1]*inv[w-i]%MOD", "ans", "fac[h-a+i-2]*inv[h-a-1]*inv[i-1]*fac[a+w-i-1]*inv[a-1]*inv[w-i]%MOD", "fac[h-a+i-2]*inv[h-a-1]*inv[i-1]*fac[a+w-i-1]*inv[a-1]*inv[w-i]", "fac[h-a+i-2]*inv[h-a-1]*inv[i-1]*fac[a+w-i-1]*inv[a-1]", "fac[h-a+i-2]*inv[h-a-1]*inv[i-1]*fac[a+w-i-1]", "fac[h-a+i-2]*inv[h-a-1]*inv[i-1]", "fac[h-a+i-2]*inv[h-a-1]", "fac[h-a+i-2]", "fac", "h-a+i-2", "h-a+i", "h-a", "h", "a", "i", "2", "inv[h-a-1]", "inv", "h-a-1", "h-a", "h", "a", "1", "inv[i-1]", "inv", "i-1", "i", "1", "fac[a+w-i-1]", "fac", "a+w-i-1", "a+w-i", "a+w", "a", "w", "i", "1", "inv[a-1]", "inv", "a-1", "a", "1", "inv[w-i]", "inv", "w-i", "w", "i", "MOD", "ans %= MOD", "ans", "MOD", "print(ans)", "print", "ans", "b = map(int,input().split())", "map(int,input().split())", "b", "a,b = map(int,input().split())", "map(int,input().split())", "a", "h,w,a,b = map(int,input().split())", "map(int,input().split())", "h", "fac = [1]", "[1]", "fac", "w,a,b = map(int,input().split())", "map(int,input().split())", "w", "ans += fac[h-a+i-2]*inv[h-a-1]*inv[i-1]*fac[a+w-i-1]*inv[a-1]*inv[w-i]%MOD", "fac[h-a+i-2]*inv[h-a-1]*inv[i-1]*fac[a+w-i-1]*inv[a-1]*inv[w-i]%MOD", "ans", "ans = 0", "0", "ans", "MOD = 1000000007", "1000000007", "MOD", "inv = [1]", "[1]", "inv", "ans %= MOD", "MOD", "ans" ]
h,w,a,b = map(int,input().split()) MOD = 1000000007 fac = [1] inv = [1] for i in range(1,200010): fac.append(fac[i-1]*i%MOD) inv.append(pow(fac[i],MOD-2,MOD)) ans = 0 for i in range(b+1,w+1): ans += fac[h-a+i-2]*inv[h-a-1]*inv[i-1]*fac[a+w-i-1]*inv[a-1]*inv[w-i]%MOD ans %= MOD print(ans)
[ 7, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 17, 2, 17, 17, 0, 13, 2, 2, 17, 17, 17, 0, 13, 2, 39, 17, 2, 13, 17, 0, 13, 2, 39, 17, 2, 13, 17, 28, 13, 4, 13, 17, 2, 13, 17, 0, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 13, 13, 0, 18, 13, 13, 4, 13, 18, 13, 13, 2, 13, 17, 13, 28, 13, 4, 13, 13, 17, 17, 0, 18, 13, 2, 13, 17, 2, 2, 18, 13, 13, 13, 13, 12, 13, 14, 2, 2, 13, 17, 2, 13, 13, 29, 17, 0, 13, 18, 13, 13, 0, 13, 18, 13, 13, 0, 13, 13, 0, 13, 18, 13, 2, 13, 13, 0, 13, 13, 29, 13, 23, 13, 23, 13, 0, 13, 17, 0, 13, 2, 2, 17, 17, 17, 28, 13, 4, 13, 17, 2, 2, 13, 13, 17, 0, 13, 2, 2, 4, 13, 2, 2, 13, 13, 17, 4, 13, 2, 13, 17, 2, 13, 17, 4, 13, 2, 2, 2, 2, 13, 13, 13, 13, 17, 4, 13, 2, 13, 13, 2, 2, 13, 13, 17, 13, 0, 13, 2, 13, 13, 4, 13, 13, 10, 4, 13, 10, 2, 13, 10, 4, 13, 10, 17, 13, 10, 4, 13, 10, 2, 13, 10, 12, 13, 10, 2, 13, 10, 2, 13, 10, 4, 13, 10, 2, 13, 10, 2, 13, 10, 2, 13 ]
[ [ 236, 2 ], [ 236, 11 ], [ 236, 12 ], [ 236, 13 ], [ 224, 15 ], [ 242, 22 ], [ 233, 29 ], [ 225, 34 ], [ 212, 37 ], [ 225, 42 ], [ 46, 45 ], [ 225, 50 ], [ 56, 53 ], [ 234, 54 ], [ 45, 55 ], [ 234, 59 ], [ 45, 61 ], [ 45, 63 ], [ 243, 64 ], [ 69, 66 ], [ 213, 67 ], [ 225, 68 ], [ 234, 72 ], [ 225, 73 ], [ 243, 75 ], [ 243, 77 ], [ 80, 79 ], [ 225, 82 ], [ 91, 86 ], [ 213, 87 ], [ 79, 89 ], [ 213, 94 ], [ 79, 95 ], [ 79, 96 ], [ 243, 97 ], [ 138, 103 ], [ 138, 106 ], [ 136, 107 ], [ 112, 111 ], [ 234, 113 ], [ 136, 114 ], [ 117, 116 ], [ 213, 118 ], [ 138, 119 ], [ 122, 121 ], [ 243, 122 ], [ 125, 124 ], [ 213, 126 ], [ 136, 128 ], [ 138, 129 ], [ 132, 131 ], [ 243, 132 ], [ 131, 134 ], [ 124, 134 ], [ 121, 134 ], [ 116, 134 ], [ 111, 134 ], [ 136, 136 ], [ 138, 138 ], [ 218, 140 ], [ 230, 143 ], [ 151, 150 ], [ 216, 156 ], [ 222, 157 ], [ 239, 160 ], [ 228, 164 ], [ 150, 167 ], [ 210, 168 ], [ 150, 173 ], [ 210, 176 ], [ 228, 179 ], [ 216, 184 ], [ 150, 185 ], [ 237, 186 ], [ 210, 187 ], [ 216, 192 ], [ 150, 193 ], [ 237, 196 ], [ 210, 197 ], [ 231, 199 ], [ 245, 201 ], [ 240, 203 ], [ 219, 203 ], [ 246, 203 ], [ 231, 204 ], [ 246, 207 ], [ 240, 207 ], [ 219, 207 ], [ 236, 210 ], [ 212, 213 ], [ 236, 216 ], [ 218, 219 ], [ 236, 222 ], [ 224, 225 ], [ 230, 231 ], [ 233, 234 ], [ 236, 237 ], [ 239, 240 ], [ 242, 243 ], [ 245, 246 ] ]
[ "h,w,a,b=map(int,input().split())\n\nU = 2*10**5\nMOD = 10**9+7\n \nfact = [1]*(U+1)\nfact_inv = [1]*(U+1)\n \nfor i in range(1,U+1):\n fact[i] = (fact[i-1]*i)%MOD\nfact_inv[U] = pow(fact[U],MOD-2,MOD)\n \nfor i in range(U,0,-1):\n\tfact_inv[i-1] = (fact_inv[i]*i)%MOD\n \ndef comb(n,k):\n if k < 0 or k > n:\n return 0\n x = fact[n]\n x *= fact_inv[k]\n x %= MOD\n x *= fact_inv[n-k]\n x %= MOD\n return x\nans=0\nmod=10**9+7\nfor i in range(1,h-a+1):\n ans+=(comb(i+b-2,min(i-1,b-1))*comb(h-i+w-b-1,min(h-i,w-b-1)))%mod\n ans=ans%mod\nprint(ans)\n\n", "h,w,a,b=map(int,input().split())", "h", "map(int,input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "w", "a", "b", "U = 2*10**5", "U", "2*10**5", "2", "10**5", "10", "5", "MOD = 10**9+7", "MOD", "10**9+7", "10**9", "10", "9", "7", "fact = [1]*(U+1)", "fact", "[1]*(U+1)", "[1]", "1", "U+1", "U", "1", "fact_inv = [1]*(U+1)", "fact_inv", "[1]*(U+1)", "[1]", "1", "U+1", "U", "1", "for i in range(1,U+1):\n fact[i] = (fact[i-1]*i)%MOD", "i", "range(1,U+1)", "range", "1", "U+1", "U", "1", "fact[i] = (fact[i-1]*i)%MOD", "fact[i]", "fact", "i", "(fact[i-1]*i)%MOD", "fact[i-1]*i", "fact[i-1]", "fact", "i-1", "i", "1", "i", "MOD", "fact_inv[U] = pow(fact[U],MOD-2,MOD)", "fact_inv[U]", "fact_inv", "U", "pow(fact[U],MOD-2,MOD)", "pow", "fact[U]", "fact", "U", "MOD-2", "MOD", "2", "MOD", "for i in range(U,0,-1):\n\tfact_inv[i-1] = (fact_inv[i]*i)%MOD\n ", "i", "range(U,0,-1)", "range", "U", "0", "-1", "fact_inv[i-1] = (fact_inv[i]*i)%MOD", "fact_inv[i-1]", "fact_inv", "i-1", "i", "1", "(fact_inv[i]*i)%MOD", "fact_inv[i]*i", "fact_inv[i]", "fact_inv", "i", "i", "MOD", "def comb(n,k):\n if k < 0 or k > n:\n return 0\n x = fact[n]\n x *= fact_inv[k]\n x %= MOD\n x *= fact_inv[n-k]\n x %= MOD\n return x", "comb", "if k < 0 or k > n:\n return 0\n ", "k < 0 or k > n", "k < 0", "k", "0", "k > n", "k", "n", "return 0", "0", "x = fact[n]", "x", "fact[n]", "fact", "n", "x *= fact_inv[k]", "x", "fact_inv[k]", "fact_inv", "k", "x %= MOD", "x", "MOD", "x *= fact_inv[n-k]", "x", "fact_inv[n-k]", "fact_inv", "n-k", "n", "k", "x %= MOD", "x", "MOD", "return x", "x", "n", "n", "k", "k", "ans=0", "ans", "0", "mod=10**9+7", "mod", "10**9+7", "10**9", "10", "9", "7", "for i in range(1,h-a+1):\n ans+=(comb(i+b-2,min(i-1,b-1))*comb(h-i+w-b-1,min(h-i,w-b-1)))%mod\n ans=ans%mod", "i", "range(1,h-a+1)", "range", "1", "h-a+1", "h-a", "h", "a", "1", "ans+=(comb(i+b-2,min(i-1,b-1))*comb(h-i+w-b-1,min(h-i,w-b-1)))%mod", "ans", "(comb(i+b-2,min(i-1,b-1))*comb(h-i+w-b-1,min(h-i,w-b-1)))%mod", "comb(i+b-2,min(i-1,b-1))*comb(h-i+w-b-1,min(h-i,w-b-1))", "comb(i+b-2,min(i-1,b-1))", "comb", "i+b-2", "i+b", "i", "b", "2", "min(i-1,b-1)", "min", "i-1", "i", "1", "b-1", "b", "1", "comb(h-i+w-b-1,min(h-i,w-b-1))", "comb", "h-i+w-b-1", "h-i+w-b", "h-i+w", "h-i", "h", "i", "w", "b", "1", "min(h-i,w-b-1)", "min", "h-i", "h", "i", "w-b-1", "w-b", "w", "b", "1", "mod", "ans=ans%mod", "ans", "ans%mod", "ans", "mod", "print(ans)", "print", "ans", "b=map(int,input().split())", "map(int,input().split())", "b", "fact_inv = [1]*(U+1)", "[1]*(U+1)", "fact_inv", "h,w,a,b=map(int,input().split())", "map(int,input().split())", "h", "ans=0", "0", "ans", "a,b=map(int,input().split())", "map(int,input().split())", "a", "U = 2*10**5", "2*10**5", "U", "def comb(n,k):\n if k < 0 or k > n:\n return 0\n x = fact[n]\n x *= fact_inv[k]\n x %= MOD\n x *= fact_inv[n-k]\n x %= MOD\n return x", "def comb(n,k):\n if k < 0 or k > n:\n return 0\n x = fact[n]\n x *= fact_inv[k]\n x %= MOD\n x *= fact_inv[n-k]\n x %= MOD\n return x", "comb", "mod=10**9+7", "10**9+7", "mod", "fact = [1]*(U+1)", "[1]*(U+1)", "fact", "w,a,b=map(int,input().split())", "map(int,input().split())", "w", "ans+=(comb(i+b-2,min(i-1,b-1))*comb(h-i+w-b-1,min(h-i,w-b-1)))%mod", "(comb(i+b-2,min(i-1,b-1))*comb(h-i+w-b-1,min(h-i,w-b-1)))%mod", "ans", "MOD = 10**9+7", "10**9+7", "MOD", "ans=ans%mod", "ans%mod", "ans" ]
h,w,a,b=map(int,input().split()) U = 2*10**5 MOD = 10**9+7 fact = [1]*(U+1) fact_inv = [1]*(U+1) for i in range(1,U+1): fact[i] = (fact[i-1]*i)%MOD fact_inv[U] = pow(fact[U],MOD-2,MOD) for i in range(U,0,-1): fact_inv[i-1] = (fact_inv[i]*i)%MOD def comb(n,k): if k < 0 or k > n: return 0 x = fact[n] x *= fact_inv[k] x %= MOD x *= fact_inv[n-k] x %= MOD return x ans=0 mod=10**9+7 for i in range(1,h-a+1): ans+=(comb(i+b-2,min(i-1,b-1))*comb(h-i+w-b-1,min(h-i,w-b-1)))%mod ans=ans%mod print(ans)
[ 7, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 17, 0, 13, 4, 13, 2, 13, 13, 2, 13, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 2, 39, 17, 2, 2, 13, 13, 17, 0, 18, 13, 17, 17, 28, 13, 4, 13, 17, 2, 2, 13, 13, 17, 0, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 13, 13, 0, 13, 2, 39, 17, 2, 2, 13, 13, 17, 0, 18, 13, 2, 13, 13, 4, 13, 18, 13, 2, 13, 13, 2, 13, 17, 13, 28, 13, 4, 13, 2, 13, 13, 17, 17, 0, 18, 13, 2, 13, 17, 2, 2, 18, 13, 13, 13, 13, 12, 13, 29, 2, 2, 2, 18, 13, 13, 18, 13, 13, 18, 13, 2, 13, 13, 13, 23, 13, 23, 13, 0, 13, 4, 13, 2, 2, 2, 13, 13, 17, 13, 13, 0, 13, 4, 13, 2, 2, 2, 13, 13, 13, 17, 13, 0, 13, 2, 13, 13, 0, 13, 13, 28, 13, 4, 13, 17, 13, 0, 13, 2, 4, 13, 2, 2, 2, 13, 13, 17, 13, 2, 13, 13, 4, 13, 2, 2, 2, 13, 13, 13, 17, 2, 13, 13, 0, 13, 13, 4, 13, 4, 13, 13, 10, 2, 13, 10, 2, 13, 10, 2, 13, 10, 2, 13, 10, 4, 13, 10, 13, 13, 10, 4, 13, 10, 2, 13, 10, 17, 13, 10, 12, 13, 10, 4, 13, 10, 4, 13, 10, 4, 13, 10, 4, 13, 10, 4, 13, 10, 13, 13 ]
[ [ 259, 2 ], [ 259, 11 ], [ 259, 12 ], [ 259, 13 ], [ 241, 15 ], [ 250, 18 ], [ 260, 22 ], [ 254, 23 ], [ 230, 25 ], [ 257, 26 ], [ 217, 28 ], [ 220, 35 ], [ 230, 41 ], [ 260, 42 ], [ 48, 45 ], [ 221, 46 ], [ 51, 50 ], [ 230, 56 ], [ 260, 57 ], [ 63, 60 ], [ 221, 61 ], [ 50, 62 ], [ 221, 66 ], [ 50, 68 ], [ 50, 70 ], [ 218, 71 ], [ 223, 73 ], [ 230, 79 ], [ 260, 80 ], [ 88, 83 ], [ 224, 84 ], [ 230, 86 ], [ 260, 87 ], [ 221, 91 ], [ 230, 93 ], [ 260, 94 ], [ 218, 96 ], [ 218, 98 ], [ 101, 100 ], [ 230, 104 ], [ 260, 105 ], [ 114, 109 ], [ 224, 110 ], [ 100, 112 ], [ 224, 117 ], [ 100, 118 ], [ 100, 119 ], [ 218, 120 ], [ 221, 128 ], [ 140, 129 ], [ 224, 131 ], [ 142, 132 ], [ 224, 134 ], [ 140, 136 ], [ 142, 137 ], [ 218, 138 ], [ 140, 140 ], [ 142, 142 ], [ 247, 144 ], [ 245, 146 ], [ 230, 150 ], [ 257, 151 ], [ 254, 153 ], [ 254, 154 ], [ 235, 156 ], [ 245, 158 ], [ 257, 162 ], [ 260, 163 ], [ 254, 164 ], [ 257, 166 ], [ 226, 168 ], [ 248, 170 ], [ 236, 171 ], [ 262, 173 ], [ 227, 174 ], [ 177, 176 ], [ 251, 180 ], [ 238, 182 ], [ 245, 185 ], [ 230, 189 ], [ 257, 190 ], [ 254, 192 ], [ 254, 194 ], [ 176, 195 ], [ 245, 197 ], [ 257, 201 ], [ 260, 202 ], [ 254, 203 ], [ 257, 206 ], [ 176, 207 ], [ 232, 209 ], [ 218, 210 ], [ 233, 215 ], [ 239, 215 ], [ 263, 215 ], [ 242, 215 ], [ 217, 218 ], [ 220, 221 ], [ 223, 224 ], [ 226, 227 ], [ 259, 230 ], [ 218, 232 ], [ 232, 233 ], [ 235, 236 ], [ 238, 239 ], [ 241, 242 ], [ 247, 248 ], [ 250, 251 ], [ 259, 254 ], [ 259, 257 ], [ 259, 260 ], [ 227, 262 ], [ 262, 263 ] ]
[ "h, w, a, b = map(int, input().split())\nres = 0\nkai = min(w - b, h - a)\nmod = 10 ** 9 + 7\n\nkaijo = [0] * (h + w + 1)\nkaijo[0] = 1\nfor i in range(1, h + w + 1):\n kaijo[i] = (kaijo[i - 1] * i) % mod\ngyaku = [0] * (h + w + 1)\ngyaku[h + w] = pow(kaijo[h + w], mod - 2, mod)\nfor i in range(h + w, 0, -1):\n gyaku[i - 1] = (gyaku[i] * i) % mod\n\n\ndef conb(x, k):\n return (kaijo[x] * gyaku[k] * gyaku[x - k]) % mod\n\n\nconb1 = conb(h - a - 1 + b, b)\nconb2 = conb(a + w - b - 1, a)\ncombi = conb1 * conb2\nres = combi\n\nfor i in range(1, kai):\n res += conb(h - a - 1 + b, b + i) * conb(a + w - b - 1, a + i)\n\nres %= mod\nprint(int(res))", "h, w, a, b = map(int, input().split())", "h", "map(int, input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "w", "a", "b", "res = 0", "res", "0", "kai = min(w - b, h - a)", "kai", "min(w - b, h - a)", "min", "w - b", "w", "b", "h - a", "h", "a", "mod = 10 ** 9 + 7", "mod", "10 ** 9 + 7", "10 ** 9", "10", "9", "7", "kaijo = [0] * (h + w + 1)", "kaijo", "[0] * (h + w + 1)", "[0]", "0", "h + w + 1", "h + w", "h", "w", "1", "kaijo[0] = 1", "kaijo[0]", "kaijo", "0", "1", "for i in range(1, h + w + 1):\n kaijo[i] = (kaijo[i - 1] * i) % mod", "i", "range(1, h + w + 1)", "range", "1", "h + w + 1", "h + w", "h", "w", "1", "kaijo[i] = (kaijo[i - 1] * i) % mod", "kaijo[i]", "kaijo", "i", "(kaijo[i - 1] * i) % mod", "kaijo[i - 1] * i", "kaijo[i - 1]", "kaijo", "i - 1", "i", "1", "i", "mod", "gyaku = [0] * (h + w + 1)", "gyaku", "[0] * (h + w + 1)", "[0]", "0", "h + w + 1", "h + w", "h", "w", "1", "gyaku[h + w] = pow(kaijo[h + w], mod - 2, mod)", "gyaku[h + w]", "gyaku", "h + w", "h", "w", "pow(kaijo[h + w], mod - 2, mod)", "pow", "kaijo[h + w]", "kaijo", "h + w", "h", "w", "mod - 2", "mod", "2", "mod", "for i in range(h + w, 0, -1):\n gyaku[i - 1] = (gyaku[i] * i) % mod", "i", "range(h + w, 0, -1)", "range", "h + w", "h", "w", "0", "-1", "gyaku[i - 1] = (gyaku[i] * i) % mod", "gyaku[i - 1]", "gyaku", "i - 1", "i", "1", "(gyaku[i] * i) % mod", "gyaku[i] * i", "gyaku[i]", "gyaku", "i", "i", "mod", "def conb(x, k):\n return (kaijo[x] * gyaku[k] * gyaku[x - k]) % mod", "conb", "return (kaijo[x] * gyaku[k] * gyaku[x - k]) % mod", "(kaijo[x] * gyaku[k] * gyaku[x - k]) % mod", "kaijo[x] * gyaku[k] * gyaku[x - k]", "kaijo[x] * gyaku[k]", "kaijo[x]", "kaijo", "x", "gyaku[k]", "gyaku", "k", "gyaku[x - k]", "gyaku", "x - k", "x", "k", "mod", "x", "x", "k", "k", "conb1 = conb(h - a - 1 + b, b)", "conb1", "conb(h - a - 1 + b, b)", "conb", "h - a - 1 + b", "h - a - 1", "h - a", "h", "a", "1", "b", "b", "conb2 = conb(a + w - b - 1, a)", "conb2", "conb(a + w - b - 1, a)", "conb", "a + w - b - 1", "a + w - b", "a + w", "a", "w", "b", "1", "a", "combi = conb1 * conb2", "combi", "conb1 * conb2", "conb1", "conb2", "res = combi", "res", "combi", "for i in range(1, kai):\n res += conb(h - a - 1 + b, b + i) * conb(a + w - b - 1, a + i)", "i", "range(1, kai)", "range", "1", "kai", "res += conb(h - a - 1 + b, b + i) * conb(a + w - b - 1, a + i)", "res", "conb(h - a - 1 + b, b + i) * conb(a + w - b - 1, a + i)", "conb(h - a - 1 + b, b + i)", "conb", "h - a - 1 + b", "h - a - 1", "h - a", "h", "a", "1", "b", "b + i", "b", "i", "conb(a + w - b - 1, a + i)", "conb", "a + w - b - 1", "a + w - b", "a + w", "a", "w", "b", "1", "a + i", "a", "i", "res %= mod", "res", "mod", "print(int(res))", "print", "int(res)", "int", "res", "mod = 10 ** 9 + 7", "10 ** 9 + 7", "mod", "kaijo = [0] * (h + w + 1)", "[0] * (h + w + 1)", "kaijo", "gyaku = [0] * (h + w + 1)", "[0] * (h + w + 1)", "gyaku", "combi = conb1 * conb2", "conb1 * conb2", "combi", "h, w, a, b = map(int, input().split())", "map(int, input().split())", "h", "res %= mod", "mod", "res", "conb2 = conb(a + w - b - 1, a)", "conb(a + w - b - 1, a)", "conb2", "res += conb(h - a - 1 + b, b + i) * conb(a + w - b - 1, a + i)", "conb(h - a - 1 + b, b + i) * conb(a + w - b - 1, a + i)", "res", "res = 0", "0", "res", "def conb(x, k):\n return (kaijo[x] * gyaku[k] * gyaku[x - k]) % mod", "def conb(x, k):\n return (kaijo[x] * gyaku[k] * gyaku[x - k]) % mod", "conb", "conb1 = conb(h - a - 1 + b, b)", "conb(h - a - 1 + b, b)", "conb1", "kai = min(w - b, h - a)", "min(w - b, h - a)", "kai", "b = map(int, input().split())", "map(int, input().split())", "b", "a, b = map(int, input().split())", "map(int, input().split())", "a", "w, a, b = map(int, input().split())", "map(int, input().split())", "w", "res = combi", "combi", "res" ]
h, w, a, b = map(int, input().split()) res = 0 kai = min(w - b, h - a) mod = 10 ** 9 + 7 kaijo = [0] * (h + w + 1) kaijo[0] = 1 for i in range(1, h + w + 1): kaijo[i] = (kaijo[i - 1] * i) % mod gyaku = [0] * (h + w + 1) gyaku[h + w] = pow(kaijo[h + w], mod - 2, mod) for i in range(h + w, 0, -1): gyaku[i - 1] = (gyaku[i] * i) % mod def conb(x, k): return (kaijo[x] * gyaku[k] * gyaku[x - k]) % mod conb1 = conb(h - a - 1 + b, b) conb2 = conb(a + w - b - 1, a) combi = conb1 * conb2 res = combi for i in range(1, kai): res += conb(h - a - 1 + b, b + i) * conb(a + w - b - 1, a + i) res %= mod print(int(res))
[ 7, 6, 13, 12, 13, 0, 18, 13, 13, 39, 17, 28, 13, 4, 13, 17, 2, 13, 17, 4, 18, 18, 13, 13, 13, 2, 2, 18, 18, 13, 13, 17, 13, 13, 0, 18, 13, 13, 39, 4, 13, 18, 18, 13, 13, 17, 2, 13, 17, 13, 28, 13, 18, 4, 13, 17, 2, 13, 17, 39, 17, 4, 18, 18, 13, 13, 13, 2, 2, 18, 18, 13, 13, 17, 13, 13, 4, 18, 18, 13, 13, 13, 23, 13, 23, 13, 23, 13, 12, 13, 29, 18, 18, 13, 13, 13, 23, 13, 23, 13, 12, 13, 29, 18, 18, 13, 13, 13, 23, 13, 23, 13, 12, 13, 29, 2, 2, 2, 2, 18, 18, 13, 13, 13, 18, 18, 13, 13, 2, 13, 13, 13, 18, 18, 13, 13, 13, 13, 23, 13, 23, 13, 23, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 4, 13, 2, 13, 13, 13, 0, 13, 17, 28, 13, 4, 13, 13, 13, 0, 13, 2, 2, 13, 2, 4, 18, 13, 13, 2, 2, 2, 13, 13, 17, 13, 13, 4, 18, 13, 13, 2, 2, 2, 2, 13, 17, 13, 13, 17, 2, 2, 13, 13, 17, 13, 4, 13, 13, 10, 4, 13, 10, 4, 13, 10, 17, 13, 10, 4, 13, 10, 4, 13, 10, 2, 13, 10, 4, 13, 10, 2, 13, 10, 6, 13 ]
[ [ 9, 6 ], [ 83, 7 ], [ 13, 12 ], [ 85, 17 ], [ 6, 21 ], [ 83, 22 ], [ 6, 28 ], [ 83, 29 ], [ 12, 32 ], [ 87, 33 ], [ 38, 35 ], [ 83, 36 ], [ 6, 42 ], [ 83, 43 ], [ 87, 47 ], [ 87, 49 ], [ 52, 51 ], [ 85, 57 ], [ 35, 63 ], [ 83, 64 ], [ 51, 65 ], [ 35, 70 ], [ 83, 71 ], [ 51, 72 ], [ 51, 74 ], [ 87, 75 ], [ 35, 78 ], [ 83, 79 ], [ 83, 83 ], [ 85, 85 ], [ 87, 87 ], [ 97, 93 ], [ 99, 95 ], [ 97, 97 ], [ 99, 99 ], [ 109, 105 ], [ 111, 106 ], [ 111, 107 ], [ 109, 109 ], [ 111, 111 ], [ 139, 121 ], [ 141, 123 ], [ 139, 126 ], [ 141, 129 ], [ 143, 130 ], [ 139, 134 ], [ 143, 136 ], [ 139, 139 ], [ 141, 141 ], [ 143, 143 ], [ 237, 145 ], [ 240, 152 ], [ 240, 161 ], [ 240, 162 ], [ 240, 163 ], [ 234, 165 ], [ 223, 169 ], [ 232, 170 ], [ 238, 171 ], [ 228, 173 ], [ 177, 176 ], [ 241, 179 ], [ 232, 180 ], [ 243, 182 ], [ 229, 185 ], [ 244, 185 ], [ 235, 189 ], [ 113, 190 ], [ 223, 194 ], [ 226, 195 ], [ 176, 197 ], [ 176, 198 ], [ 235, 201 ], [ 113, 202 ], [ 226, 207 ], [ 232, 209 ], [ 176, 210 ], [ 232, 214 ], [ 176, 215 ], [ 238, 217 ], [ 244, 220 ], [ 229, 220 ], [ 240, 223 ], [ 240, 226 ], [ 228, 229 ], [ 240, 232 ], [ 234, 235 ], [ 237, 238 ], [ 240, 241 ], [ 243, 244 ] ]
[ "class Factorial:\n def __init__(self,n,mod):\n self.f=[1]\n for i in range(1,n+1):\n self.f.append(self.f[-1]*i%mod)\n self.i=[pow(self.f[-1],mod-2,mod)]\n for i in range(1,n+1)[::-1]:\n self.i.append(self.i[-1]*i%mod)\n self.i.reverse()\n def factorial(self,i):\n return self.f[i]\n def ifactorial(self,i):\n return self.i[i]\n def comb(self,n,k):\n return self.f[n]*self.i[n-k]%mod*self.i[k]%mod\nmod=10**9+7\nh,w,a,b=map(int,input().split())\nf=Factorial(h+w,mod)\nans=0\nfor i in range(b,w):\n ans=(ans+f.comb(h-a-1+i,i)*f.comb(a-1+w-i-1,w-i-1))%mod\nprint(ans)", "class Factorial:\n def __init__(self,n,mod):\n self.f=[1]\n for i in range(1,n+1):\n self.f.append(self.f[-1]*i%mod)\n self.i=[pow(self.f[-1],mod-2,mod)]\n for i in range(1,n+1)[::-1]:\n self.i.append(self.i[-1]*i%mod)\n self.i.reverse()\n def factorial(self,i):\n return self.f[i]\n def ifactorial(self,i):\n return self.i[i]\n def comb(self,n,k):\n return self.f[n]*self.i[n-k]%mod*self.i[k]%mod", "Factorial", "def __init__(self,n,mod):\n self.f=[1]\n for i in range(1,n+1):\n self.f.append(self.f[-1]*i%mod)\n self.i=[pow(self.f[-1],mod-2,mod)]\n for i in range(1,n+1)[::-1]:\n self.i.append(self.i[-1]*i%mod)\n self.i.reverse()\n ", "__init__", "self.f=[1]", "self.f", "self", "f", "[1]", "1", "for i in range(1,n+1):\n self.f.append(self.f[-1]*i%mod)\n ", "i", "range(1,n+1)", "range", "1", "n+1", "n", "1", "self.f.append(self.f[-1]*i%mod)", "self.f.append", "self.f", "self", "f", "append", "self.f[-1]*i%mod", "self.f[-1]*i", "self.f[-1]", "self.f", "self", "f", "-1", "i", "mod", "self.i=[pow(self.f[-1],mod-2,mod)]", "self.i", "self", "i", "[pow(self.f[-1],mod-2,mod)]", "pow(self.f[-1],mod-2,mod)", "pow", "self.f[-1]", "self.f", "self", "f", "-1", "mod-2", "mod", "2", "mod", "for i in range(1,n+1)[::-1]:\n self.i.append(self.i[-1]*i%mod)\n ", "i", "range(1,n+1)[::-1]", "(1,n+1)", "range", "1", "n+1", "n", "1", "::-1", "-1", "self.i.append(self.i[-1]*i%mod)", "self.i.append", "self.i", "self", "i", "append", "self.i[-1]*i%mod", "self.i[-1]*i", "self.i[-1]", "self.i", "self", "i", "-1", "i", "mod", "self.i.reverse()", "self.i.reverse", "self.i", "self", "i", "reverse", "self", "self", "n", "n", "mod", "mod", "def factorial(self,i):\n return self.f[i]\n ", "factorial", "return self.f[i]", "self.f[i]", "self.f", "self", "f", "i", "self", "self", "i", "i", "def ifactorial(self,i):\n return self.i[i]\n ", "ifactorial", "return self.i[i]", "self.i[i]", "self.i", "self", "i", "i", "self", "self", "i", "i", "def comb(self,n,k):\n return self.f[n]*self.i[n-k]%mod*self.i[k]%mod", "comb", "return self.f[n]*self.i[n-k]%mod*self.i[k]%mod", "self.f[n]*self.i[n-k]%mod*self.i[k]%mod", "self.f[n]*self.i[n-k]%mod*self.i[k]", "self.f[n]*self.i[n-k]%mod", "self.f[n]*self.i[n-k]", "self.f[n]", "self.f", "self", "f", "n", "self.i[n-k]", "self.i", "self", "i", "n-k", "n", "k", "mod", "self.i[k]", "self.i", "self", "i", "k", "mod", "self", "self", "n", "n", "k", "k", "mod=10**9+7", "mod", "10**9+7", "10**9", "10", "9", "7", "h,w,a,b=map(int,input().split())", "h", "map(int,input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "w", "a", "b", "f=Factorial(h+w,mod)", "f", "Factorial(h+w,mod)", "Factorial", "h+w", "h", "w", "mod", "ans=0", "ans", "0", "for i in range(b,w):\n ans=(ans+f.comb(h-a-1+i,i)*f.comb(a-1+w-i-1,w-i-1))%mod", "i", "range(b,w)", "range", "b", "w", "ans=(ans+f.comb(h-a-1+i,i)*f.comb(a-1+w-i-1,w-i-1))%mod", "ans", "(ans+f.comb(h-a-1+i,i)*f.comb(a-1+w-i-1,w-i-1))%mod", "ans+f.comb(h-a-1+i,i)*f.comb(a-1+w-i-1,w-i-1)", "ans", "f.comb(h-a-1+i,i)*f.comb(a-1+w-i-1,w-i-1)", "f.comb(h-a-1+i,i)", "f.comb", "f", "comb", "h-a-1+i", "h-a-1", "h-a", "h", "a", "1", "i", "i", "f.comb(a-1+w-i-1,w-i-1)", "f.comb", "f", "comb", "a-1+w-i-1", "a-1+w-i", "a-1+w", "a-1", "a", "1", "w", "i", "1", "w-i-1", "w-i", "w", "i", "1", "mod", "print(ans)", "print", "ans", "h,w,a,b=map(int,input().split())", "map(int,input().split())", "h", "a,b=map(int,input().split())", "map(int,input().split())", "a", "ans=0", "0", "ans", "w,a,b=map(int,input().split())", "map(int,input().split())", "w", "f=Factorial(h+w,mod)", "Factorial(h+w,mod)", "f", "mod=10**9+7", "10**9+7", "mod", "b=map(int,input().split())", "map(int,input().split())", "b", "ans=(ans+f.comb(h-a-1+i,i)*f.comb(a-1+w-i-1,w-i-1))%mod", "(ans+f.comb(h-a-1+i,i)*f.comb(a-1+w-i-1,w-i-1))%mod", "ans", "class Factorial:\n def __init__(self,n,mod):\n self.f=[1]\n for i in range(1,n+1):\n self.f.append(self.f[-1]*i%mod)\n self.i=[pow(self.f[-1],mod-2,mod)]\n for i in range(1,n+1)[::-1]:\n self.i.append(self.i[-1]*i%mod)\n self.i.reverse()\n def factorial(self,i):\n return self.f[i]\n def ifactorial(self,i):\n return self.i[i]\n def comb(self,n,k):\n return self.f[n]*self.i[n-k]%mod*self.i[k]%mod", "class Factorial:\n def __init__(self,n,mod):\n self.f=[1]\n for i in range(1,n+1):\n self.f.append(self.f[-1]*i%mod)\n self.i=[pow(self.f[-1],mod-2,mod)]\n for i in range(1,n+1)[::-1]:\n self.i.append(self.i[-1]*i%mod)\n self.i.reverse()\n def factorial(self,i):\n return self.f[i]\n def ifactorial(self,i):\n return self.i[i]\n def comb(self,n,k):\n return self.f[n]*self.i[n-k]%mod*self.i[k]%mod", "Factorial" ]
class Factorial: def __init__(self,n,mod): self.f=[1] for i in range(1,n+1): self.f.append(self.f[-1]*i%mod) self.i=[pow(self.f[-1],mod-2,mod)] for i in range(1,n+1)[::-1]: self.i.append(self.i[-1]*i%mod) self.i.reverse() def factorial(self,i): return self.f[i] def ifactorial(self,i): return self.i[i] def comb(self,n,k): return self.f[n]*self.i[n-k]%mod*self.i[k]%mod mod=10**9+7 h,w,a,b=map(int,input().split()) f=Factorial(h+w,mod) ans=0 for i in range(b,w): ans=(ans+f.comb(h-a-1+i,i)*f.comb(a-1+w-i-1,w-i-1))%mod print(ans)
[ 7, 41, 28, 13, 4, 18, 4, 13, 13, 4, 4, 13, 13, 0, 13, 13, 13, 13, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 2, 13, 17, 0, 13, 2, 2, 13, 13, 17, 0, 13, 2, 2, 13, 13, 17, 0, 13, 2, 13, 17, 0, 13, 4, 13, 2, 13, 13, 2, 13, 13, 12, 13, 0, 13, 17, 42, 2, 13, 17, 14, 2, 2, 13, 17, 17, 0, 13, 2, 2, 13, 13, 13, 0, 13, 2, 13, 17, 0, 13, 2, 2, 13, 13, 13, 0, 13, 2, 13, 17, 29, 13, 23, 13, 23, 13, 23, 13, 0, 13, 2, 39, 17, 2, 13, 17, 28, 13, 4, 13, 17, 2, 13, 17, 0, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 13, 13, 0, 13, 2, 39, 17, 2, 13, 17, 0, 18, 13, 13, 4, 13, 18, 13, 13, 2, 13, 17, 13, 28, 13, 4, 13, 13, 17, 17, 0, 18, 13, 2, 13, 17, 2, 2, 18, 13, 13, 13, 13, 0, 13, 17, 28, 13, 4, 13, 17, 2, 13, 17, 0, 13, 2, 2, 2, 2, 2, 18, 13, 2, 13, 13, 18, 13, 13, 18, 13, 13, 13, 2, 2, 18, 13, 2, 2, 13, 13, 13, 18, 13, 13, 18, 13, 2, 13, 13, 13, 0, 13, 13, 0, 13, 13, 4, 13, 13, 10, 13, 13, 10, 2, 13, 10, 2, 13, 10, 2, 13, 10, 13, 13, 10, 2, 13, 10, 2, 13, 10, 2, 13, 10, 2, 13, 10, 13, 13, 10, 2, 13, 10, 13, 13, 10, 12, 13, 10, 13, 13, 10, 17, 13, 10, 13, 13, 10, 4, 13 ]
[ [ 4, 3 ], [ 3, 12 ], [ 274, 14 ], [ 274, 16 ], [ 274, 17 ], [ 274, 18 ], [ 253, 20 ], [ 250, 27 ], [ 269, 29 ], [ 265, 32 ], [ 275, 35 ], [ 236, 36 ], [ 259, 39 ], [ 263, 42 ], [ 269, 43 ], [ 256, 46 ], [ 275, 48 ], [ 283, 51 ], [ 251, 55 ], [ 266, 56 ], [ 260, 58 ], [ 257, 59 ], [ 64, 63 ], [ 104, 67 ], [ 95, 67 ], [ 83, 67 ], [ 104, 72 ], [ 95, 72 ], [ 83, 72 ], [ 77, 76 ], [ 102, 79 ], [ 76, 79 ], [ 102, 80 ], [ 76, 80 ], [ 106, 81 ], [ 84, 83 ], [ 104, 85 ], [ 95, 85 ], [ 83, 85 ], [ 89, 88 ], [ 102, 91 ], [ 76, 91 ], [ 63, 92 ], [ 88, 92 ], [ 106, 93 ], [ 96, 95 ], [ 104, 97 ], [ 95, 97 ], [ 83, 97 ], [ 88, 100 ], [ 63, 100 ], [ 102, 102 ], [ 104, 104 ], [ 106, 106 ], [ 241, 108 ], [ 284, 113 ], [ 117, 116 ], [ 284, 121 ], [ 127, 124 ], [ 242, 125 ], [ 116, 126 ], [ 242, 130 ], [ 116, 132 ], [ 116, 134 ], [ 254, 135 ], [ 244, 137 ], [ 284, 142 ], [ 148, 145 ], [ 245, 146 ], [ 284, 147 ], [ 272, 149 ], [ 242, 151 ], [ 284, 152 ], [ 254, 154 ], [ 254, 156 ], [ 159, 158 ], [ 284, 161 ], [ 170, 165 ], [ 245, 166 ], [ 158, 168 ], [ 245, 173 ], [ 158, 174 ], [ 158, 175 ], [ 254, 176 ], [ 277, 178 ], [ 182, 181 ], [ 266, 186 ], [ 238, 189 ], [ 242, 196 ], [ 181, 198 ], [ 251, 199 ], [ 245, 201 ], [ 181, 202 ], [ 245, 204 ], [ 251, 205 ], [ 254, 206 ], [ 242, 210 ], [ 260, 213 ], [ 257, 214 ], [ 181, 215 ], [ 245, 217 ], [ 260, 218 ], [ 245, 220 ], [ 257, 222 ], [ 181, 223 ], [ 254, 224 ], [ 247, 226 ], [ 254, 227 ], [ 280, 229 ], [ 254, 230 ], [ 281, 233 ], [ 248, 233 ], [ 239, 233 ], [ 278, 233 ], [ 274, 236 ], [ 238, 239 ], [ 241, 242 ], [ 244, 245 ], [ 254, 247 ], [ 247, 248 ], [ 250, 251 ], [ 253, 254 ], [ 256, 257 ], [ 259, 260 ], [ 274, 263 ], [ 265, 266 ], [ 274, 269 ], [ 274, 275 ], [ 277, 278 ], [ 254, 280 ], [ 280, 281 ], [ 283, 284 ] ]
[ "iH,iW,iA,iB = [int(x) for x in input().split()]\niD = 10**9+7 #法\n\niLBoxW=iB-1\niLBoxH=iH-iA-1\niRBoxW=iW-iB-1\niRBoxH=iH-1\n#iMax = iH+iW-2\niMax = max(iLBoxW+iLBoxH,iRBoxW+iRBoxH)\n\n#nCr = n!/r!(n-r)!\n\n#二分累乗法 iDを法として\ndef fBiPow(iX,iN,iD):\n iY = 1\n while iN > 0:\n if iN % 2 == 0:\n iX = iX * iX % iD\n iN = iN // 2\n else:\n iY = iX * iY % iD\n iN = iN - 1\n return iY\n\n#階乗(iDを法とした)の配列\naM = [1]*(iMax+1)\nfor i in range(1,iMax+1):\n aM[i]=aM[i-1]*i %iD\n#各階乗のiDを法とした逆元の配列\naInvM = [1]*(iMax+1)\naInvM[iMax] = fBiPow(aM[iMax],iD-2,iD)\nfor i in range(iMax,0,-1):\n aInvM[i-1]=aInvM[i]*i % iD\n\niRet = 0\nfor iL in range(0,iLBoxH+1):\n iRet += (aM[iL+iLBoxW]*aInvM[iL]*aInvM[iLBoxW]) % iD * (aM[iRBoxW+iRBoxH-iL]*aInvM[iRBoxW]*aInvM[iRBoxH-iL])%iD\n iRet %= iD\niRet %= iD\nprint(iRet)", "int(x) for x in input().split()", "for x in input().split()", "x", "input().split()", "().split", "()", "input", "split", "for x in input().split()", "int(x)", "int", "x", "iH,iW,iA,iB = [int(x) for x in input().split()]", "iH", "[int(x) for x in input().split()]", "iW", "iA", "iB", "iD = 10**9+7", "iD", "10**9+7", "10**9", "10", "9", "7", "iLBoxW=iB-1", "iLBoxW", "iB-1", "iB", "1", "iLBoxH=iH-iA-1", "iLBoxH", "iH-iA-1", "iH-iA", "iH", "iA", "1", "iRBoxW=iW-iB-1", "iRBoxW", "iW-iB-1", "iW-iB", "iW", "iB", "1", "iRBoxH=iH-1", "iRBoxH", "iH-1", "iH", "1", "iMax = max(iLBoxW+iLBoxH,iRBoxW+iRBoxH)", "iMax", "max(iLBoxW+iLBoxH,iRBoxW+iRBoxH)", "max", "iLBoxW+iLBoxH", "iLBoxW", "iLBoxH", "iRBoxW+iRBoxH", "iRBoxW", "iRBoxH", "def fBiPow(iX,iN,iD):\n iY = 1\n while iN > 0:\n if iN % 2 == 0:\n iX = iX * iX % iD\n iN = iN // 2\n else:\n iY = iX * iY % iD\n iN = iN - 1\n return iY\n\n#階乗(iDを法とした)の配列", "fBiPow", "iY = 1", "iY", "1", "while iN > 0:\n if iN % 2 == 0:\n iX = iX * iX % iD\n iN = iN // 2\n else:\n iY = iX * iY % iD\n iN = iN - 1\n ", "iN > 0", "iN", "0", "if iN % 2 == 0:\n iX = iX * iX % iD\n iN = iN // 2\n else:\n iY = iX * iY % iD\n iN = iN - 1\n ", "iN % 2 == 0", "iN % 2", "iN", "2", "0", "iX = iX * iX % iD", "iX", "iX * iX % iD", "iX * iX", "iX", "iX", "iD", "iN = iN // 2", "iN", "iN // 2", "iN", "2", "iY = iX * iY % iD", "iY", "iX * iY % iD", "iX * iY", "iX", "iY", "iD", "iN = iN - 1", "iN", "iN - 1", "iN", "1", "return iY", "iY", "iX", "iX", "iN", "iN", "iD", "iD", "aM = [1]*(iMax+1)", "aM", "[1]*(iMax+1)", "[1]", "1", "iMax+1", "iMax", "1", "for i in range(1,iMax+1):\n aM[i]=aM[i-1]*i %iD\n#各階乗のiDを法とした逆元の配列", "i", "range(1,iMax+1)", "range", "1", "iMax+1", "iMax", "1", "aM[i]=aM[i-1]*i %iD", "aM[i]", "aM", "i", "aM[i-1]*i %iD", "aM[i-1]*i", "aM[i-1]", "aM", "i-1", "i", "1", "i", "iD", "aInvM = [1]*(iMax+1)", "aInvM", "[1]*(iMax+1)", "[1]", "1", "iMax+1", "iMax", "1", "aInvM[iMax] = fBiPow(aM[iMax],iD-2,iD)", "aInvM[iMax]", "aInvM", "iMax", "fBiPow(aM[iMax],iD-2,iD)", "fBiPow", "aM[iMax]", "aM", "iMax", "iD-2", "iD", "2", "iD", "for i in range(iMax,0,-1):\n aInvM[i-1]=aInvM[i]*i % iD", "i", "range(iMax,0,-1)", "range", "iMax", "0", "-1", "aInvM[i-1]=aInvM[i]*i % iD", "aInvM[i-1]", "aInvM", "i-1", "i", "1", "aInvM[i]*i % iD", "aInvM[i]*i", "aInvM[i]", "aInvM", "i", "i", "iD", "iRet = 0", "iRet", "0", "for iL in range(0,iLBoxH+1):\n iRet += (aM[iL+iLBoxW]*aInvM[iL]*aInvM[iLBoxW]) % iD * (aM[iRBoxW+iRBoxH-iL]*aInvM[iRBoxW]*aInvM[iRBoxH-iL])%iD\n iRet %= iD", "iL", "range(0,iLBoxH+1)", "range", "0", "iLBoxH+1", "iLBoxH", "1", "iRet += (aM[iL+iLBoxW]*aInvM[iL]*aInvM[iLBoxW]) % iD * (aM[iRBoxW+iRBoxH-iL]*aInvM[iRBoxW]*aInvM[iRBoxH-iL])%iD", "iRet", "(aM[iL+iLBoxW]*aInvM[iL]*aInvM[iLBoxW]) % iD * (aM[iRBoxW+iRBoxH-iL]*aInvM[iRBoxW]*aInvM[iRBoxH-iL])%iD", "(aM[iL+iLBoxW]*aInvM[iL]*aInvM[iLBoxW]) % iD * (aM[iRBoxW+iRBoxH-iL]*aInvM[iRBoxW]*aInvM[iRBoxH-iL])", "(aM[iL+iLBoxW]*aInvM[iL]*aInvM[iLBoxW]) % iD", "aM[iL+iLBoxW]*aInvM[iL]*aInvM[iLBoxW]", "aM[iL+iLBoxW]*aInvM[iL]", "aM[iL+iLBoxW]", "aM", "iL+iLBoxW", "iL", "iLBoxW", "aInvM[iL]", "aInvM", "iL", "aInvM[iLBoxW]", "aInvM", "iLBoxW", "iD", "aM[iRBoxW+iRBoxH-iL]*aInvM[iRBoxW]*aInvM[iRBoxH-iL]", "aM[iRBoxW+iRBoxH-iL]*aInvM[iRBoxW]", "aM[iRBoxW+iRBoxH-iL]", "aM", "iRBoxW+iRBoxH-iL", "iRBoxW+iRBoxH", "iRBoxW", "iRBoxH", "iL", "aInvM[iRBoxW]", "aInvM", "iRBoxW", "aInvM[iRBoxH-iL]", "aInvM", "iRBoxH-iL", "iRBoxH", "iL", "iD", "iRet %= iD", "iRet", "iD", "iRet %= iD", "iRet", "iD", "print(iRet)", "print", "iRet", "iA,iB = [int(x) for x in input().split()]", "[int(x) for x in input().split()]", "iA", "iRet += (aM[iL+iLBoxW]*aInvM[iL]*aInvM[iLBoxW]) % iD * (aM[iRBoxW+iRBoxH-iL]*aInvM[iRBoxW]*aInvM[iRBoxH-iL])%iD", "(aM[iL+iLBoxW]*aInvM[iL]*aInvM[iLBoxW]) % iD * (aM[iRBoxW+iRBoxH-iL]*aInvM[iRBoxW]*aInvM[iRBoxH-iL])%iD", "iRet", "aM = [1]*(iMax+1)", "[1]*(iMax+1)", "aM", "aInvM = [1]*(iMax+1)", "[1]*(iMax+1)", "aInvM", "iRet %= iD", "iD", "iRet", "iLBoxW=iB-1", "iB-1", "iLBoxW", "iD = 10**9+7", "10**9+7", "iD", "iRBoxH=iH-1", "iH-1", "iRBoxH", "iRBoxW=iW-iB-1", "iW-iB-1", "iRBoxW", "iW,iA,iB = [int(x) for x in input().split()]", "[int(x) for x in input().split()]", "iW", "iLBoxH=iH-iA-1", "iH-iA-1", "iLBoxH", "iB = [int(x) for x in input().split()]", "[int(x) for x in input().split()]", "iB", "def fBiPow(iX,iN,iD):\n iY = 1\n while iN > 0:\n if iN % 2 == 0:\n iX = iX * iX % iD\n iN = iN // 2\n else:\n iY = iX * iY % iD\n iN = iN - 1\n return iY\n\n#階乗(iDを法とした)の配列", "def fBiPow(iX,iN,iD):\n iY = 1\n while iN > 0:\n if iN % 2 == 0:\n iX = iX * iX % iD\n iN = iN // 2\n else:\n iY = iX * iY % iD\n iN = iN - 1\n return iY\n\n#階乗(iDを法とした)の配列", "fBiPow", "iH,iW,iA,iB = [int(x) for x in input().split()]", "[int(x) for x in input().split()]", "iH", "iRet = 0", "0", "iRet", "iRet %= iD", "iD", "iRet", "iMax = max(iLBoxW+iLBoxH,iRBoxW+iRBoxH)", "max(iLBoxW+iLBoxH,iRBoxW+iRBoxH)", "iMax" ]
iH,iW,iA,iB = [int(x) for x in input().split()] iD = 10**9+7 #法 iLBoxW=iB-1 iLBoxH=iH-iA-1 iRBoxW=iW-iB-1 iRBoxH=iH-1 #iMax = iH+iW-2 iMax = max(iLBoxW+iLBoxH,iRBoxW+iRBoxH) #nCr = n!/r!(n-r)! #二分累乗法 iDを法として def fBiPow(iX,iN,iD): iY = 1 while iN > 0: if iN % 2 == 0: iX = iX * iX % iD iN = iN // 2 else: iY = iX * iY % iD iN = iN - 1 return iY #階乗(iDを法とした)の配列 aM = [1]*(iMax+1) for i in range(1,iMax+1): aM[i]=aM[i-1]*i %iD #各階乗のiDを法とした逆元の配列 aInvM = [1]*(iMax+1) aInvM[iMax] = fBiPow(aM[iMax],iD-2,iD) for i in range(iMax,0,-1): aInvM[i-1]=aInvM[i]*i % iD iRet = 0 for iL in range(0,iLBoxH+1): iRet += (aM[iL+iLBoxW]*aInvM[iL]*aInvM[iLBoxW]) % iD * (aM[iRBoxW+iRBoxH-iL]*aInvM[iRBoxW]*aInvM[iRBoxH-iL])%iD iRet %= iD iRet %= iD print(iRet)
[ 7, 0, 13, 2, 2, 17, 17, 17, 41, 28, 13, 4, 13, 17, 4, 17, 0, 13, 13, 41, 28, 13, 4, 13, 17, 4, 17, 0, 13, 13, 12, 13, 28, 13, 4, 13, 17, 2, 2, 13, 13, 17, 0, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 13, 13, 0, 18, 13, 13, 4, 13, 18, 13, 13, 2, 13, 17, 13, 23, 13, 23, 13, 12, 13, 29, 2, 2, 2, 2, 18, 13, 13, 18, 13, 2, 13, 13, 13, 18, 13, 13, 13, 23, 13, 23, 13, 12, 13, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 4, 13, 13, 13, 41, 28, 13, 4, 13, 13, 13, 4, 2, 2, 4, 13, 2, 2, 2, 13, 13, 17, 13, 13, 4, 13, 2, 2, 2, 2, 13, 17, 13, 13, 17, 2, 13, 17, 13, 4, 13, 2, 4, 13, 13, 13, 14, 2, 13, 17, 4, 13, 10, 13, 13, 10, 13, 13, 10, 12, 13, 10, 2, 13, 10, 12, 13, 10, 12, 13 ]
[ [ 173, 2 ], [ 11, 10 ], [ 164, 17 ], [ 22, 21 ], [ 167, 28 ], [ 34, 33 ], [ 69, 39 ], [ 71, 40 ], [ 46, 43 ], [ 165, 44 ], [ 33, 45 ], [ 165, 49 ], [ 33, 51 ], [ 33, 53 ], [ 174, 54 ], [ 59, 56 ], [ 168, 57 ], [ 33, 58 ], [ 43, 61 ], [ 165, 62 ], [ 33, 63 ], [ 174, 65 ], [ 174, 67 ], [ 69, 69 ], [ 71, 71 ], [ 165, 80 ], [ 93, 81 ], [ 168, 83 ], [ 93, 85 ], [ 95, 86 ], [ 174, 87 ], [ 168, 89 ], [ 95, 90 ], [ 174, 91 ], [ 93, 93 ], [ 95, 95 ], [ 100, 99 ], [ 100, 108 ], [ 100, 109 ], [ 100, 110 ], [ 177, 112 ], [ 99, 113 ], [ 108, 114 ], [ 118, 117 ], [ 110, 120 ], [ 108, 121 ], [ 180, 126 ], [ 99, 130 ], [ 109, 131 ], [ 117, 133 ], [ 117, 134 ], [ 180, 136 ], [ 109, 141 ], [ 108, 143 ], [ 117, 144 ], [ 109, 147 ], [ 174, 149 ], [ 174, 156 ], [ 171, 162 ], [ 164, 165 ], [ 167, 168 ], [ 173, 174 ] ]
[ "mod = 10 ** 9 + 7\nfac_table = [1 for i in range(200001)]\ninv_table = [1 for i in range(200001)]\n\n\ndef make_table(h, w):\n\n for i in range(1, h + w - 1):\n fac_table[i] = fac_table[i - 1] * i % mod\n inv_table[i] = pow(fac_table[i], mod - 2, mod)\n\n\ndef comb(n, r):\n return fac_table[n] * inv_table[n - r] % mod * inv_table[r] % mod\n\n\ndef resolve():\n H, W, A, B = map(int, input().split())\n make_table(H, W)\n print(\n sum(\n [\n comb(H - A - 1 + i, i) * comb(A - 1 + W - i - 1, A - 1) % mod\n for i in range(B, W)\n ]\n )\n % mod\n )\n\nif __name__ == \"__main__\":\n resolve()", "mod = 10 ** 9 + 7", "mod", "10 ** 9 + 7", "10 ** 9", "10", "9", "7", "1 for i in range(200001)", "for i in range(200001)", "i", "range(200001)", "range", "200001", "for i in range(200001)", "1", "fac_table = [1 for i in range(200001)]", "fac_table", "[1 for i in range(200001)]", "1 for i in range(200001)", "for i in range(200001)", "i", "range(200001)", "range", "200001", "for i in range(200001)", "1", "inv_table = [1 for i in range(200001)]", "inv_table", "[1 for i in range(200001)]", "def make_table(h, w):\n\n for i in range(1, h + w - 1):\n fac_table[i] = fac_table[i - 1] * i % mod\n inv_table[i] = pow(fac_table[i], mod - 2, mod)", "make_table", "for i in range(1, h + w - 1):\n fac_table[i] = fac_table[i - 1] * i % mod\n inv_table[i] = pow(fac_table[i], mod - 2, mod)", "i", "range(1, h + w - 1)", "range", "1", "h + w - 1", "h + w", "h", "w", "1", "fac_table[i] = fac_table[i - 1] * i % mod", "fac_table[i]", "fac_table", "i", "fac_table[i - 1] * i % mod", "fac_table[i - 1] * i", "fac_table[i - 1]", "fac_table", "i - 1", "i", "1", "i", "mod", "inv_table[i] = pow(fac_table[i], mod - 2, mod)", "inv_table[i]", "inv_table", "i", "pow(fac_table[i], mod - 2, mod)", "pow", "fac_table[i]", "fac_table", "i", "mod - 2", "mod", "2", "mod", "h", "h", "w", "w", "def comb(n, r):\n return fac_table[n] * inv_table[n - r] % mod * inv_table[r] % mod", "comb", "return fac_table[n] * inv_table[n - r] % mod * inv_table[r] % mod", "fac_table[n] * inv_table[n - r] % mod * inv_table[r] % mod", "fac_table[n] * inv_table[n - r] % mod * inv_table[r]", "fac_table[n] * inv_table[n - r] % mod", "fac_table[n] * inv_table[n - r]", "fac_table[n]", "fac_table", "n", "inv_table[n - r]", "inv_table", "n - r", "n", "r", "mod", "inv_table[r]", "inv_table", "r", "mod", "n", "n", "r", "r", "def resolve():\n H, W, A, B = map(int, input().split())\n make_table(H, W)\n print(\n sum(\n [\n comb(H - A - 1 + i, i) * comb(A - 1 + W - i - 1, A - 1) % mod\n for i in range(B, W)\n ]\n )\n % mod\n )", "resolve", "H, W, A, B = map(int, input().split())", "H", "map(int, input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "make_table(H, W)", "make_table", "H", "W", "comb(H - A - 1 + i, i) * comb(A - 1 + W - i - 1, A - 1) % mod\n for i in range(B, W)", "for i in range(B, W)", "i", "range(B, W)", "range", "B", "W", "for i in range(B, W)", "comb(H - A - 1 + i, i) * comb(A - 1 + W - i - 1, A - 1) % mod", "comb(H - A - 1 + i, i) * comb(A - 1 + W - i - 1, A - 1)", "comb(H - A - 1 + i, i)", "comb", "H - A - 1 + i", "H - A - 1", "H - A", "H", "A", "1", "i", "i", "comb(A - 1 + W - i - 1, A - 1)", "comb", "A - 1 + W - i - 1", "A - 1 + W - i", "A - 1 + W", "A - 1", "A", "1", "W", "i", "1", "A - 1", "A", "1", "mod", "print(\n sum(\n [\n comb(H - A - 1 + i, i) * comb(A - 1 + W - i - 1, A - 1) % mod\n for i in range(B, W)\n ]\n )\n % mod\n )", "print", "sum(\n [\n comb(H - A - 1 + i, i) * comb(A - 1 + W - i - 1, A - 1) % mod\n for i in range(B, W)\n ]\n )\n % mod", "sum(\n [\n comb(H - A - 1 + i, i) * comb(A - 1 + W - i - 1, A - 1) % mod\n for i in range(B, W)\n ]\n )", "sum", "[\n comb(H - A - 1 + i, i) * comb(A - 1 + W - i - 1, A - 1) % mod\n for i in range(B, W)\n ]", "mod", "if __name__ == \"__main__\":\n resolve()", "__name__ == \"__main__\"", "__name__", "\"__main__\"", "resolve()", "resolve", "fac_table = [1 for i in range(200001)]", "[1 for i in range(200001)]", "fac_table", "inv_table = [1 for i in range(200001)]", "[1 for i in range(200001)]", "inv_table", "def resolve():\n H, W, A, B = map(int, input().split())\n make_table(H, W)\n print(\n sum(\n [\n comb(H - A - 1 + i, i) * comb(A - 1 + W - i - 1, A - 1) % mod\n for i in range(B, W)\n ]\n )\n % mod\n )", "def resolve():\n H, W, A, B = map(int, input().split())\n make_table(H, W)\n print(\n sum(\n [\n comb(H - A - 1 + i, i) * comb(A - 1 + W - i - 1, A - 1) % mod\n for i in range(B, W)\n ]\n )\n % mod\n )", "resolve", "mod = 10 ** 9 + 7", "10 ** 9 + 7", "mod", "def make_table(h, w):\n\n for i in range(1, h + w - 1):\n fac_table[i] = fac_table[i - 1] * i % mod\n inv_table[i] = pow(fac_table[i], mod - 2, mod)", "def make_table(h, w):\n\n for i in range(1, h + w - 1):\n fac_table[i] = fac_table[i - 1] * i % mod\n inv_table[i] = pow(fac_table[i], mod - 2, mod)", "make_table", "def comb(n, r):\n return fac_table[n] * inv_table[n - r] % mod * inv_table[r] % mod", "def comb(n, r):\n return fac_table[n] * inv_table[n - r] % mod * inv_table[r] % mod", "comb" ]
mod = 10 ** 9 + 7 fac_table = [1 for i in range(200001)] inv_table = [1 for i in range(200001)] def make_table(h, w): for i in range(1, h + w - 1): fac_table[i] = fac_table[i - 1] * i % mod inv_table[i] = pow(fac_table[i], mod - 2, mod) def comb(n, r): return fac_table[n] * inv_table[n - r] % mod * inv_table[r] % mod def resolve(): H, W, A, B = map(int, input().split()) make_table(H, W) print( sum( [ comb(H - A - 1 + i, i) * comb(A - 1 + W - i - 1, A - 1) % mod for i in range(B, W) ] ) % mod ) if __name__ == "__main__": resolve()
[ 7, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 2, 39, 17, 2, 2, 13, 13, 17, 0, 13, 2, 39, 17, 2, 2, 13, 13, 17, 28, 13, 4, 13, 17, 2, 2, 13, 13, 17, 0, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 13, 13, 28, 13, 4, 13, 17, 2, 2, 13, 13, 17, 0, 18, 13, 13, 4, 13, 18, 13, 13, 2, 13, 17, 13, 12, 13, 29, 2, 2, 18, 13, 13, 18, 13, 13, 18, 13, 2, 13, 13, 23, 13, 23, 13, 0, 13, 17, 28, 13, 4, 13, 17, 2, 2, 13, 13, 17, 0, 13, 2, 2, 4, 13, 2, 2, 13, 17, 2, 13, 17, 2, 13, 17, 4, 13, 2, 2, 2, 13, 13, 17, 2, 13, 13, 2, 2, 13, 13, 17, 13, 4, 13, 4, 13, 2, 13, 13, 10, 2, 13, 10, 2, 13, 10, 17, 13, 10, 4, 13, 10, 4, 13, 10, 4, 13, 10, 2, 13, 10, 4, 13, 10, 12, 13, 10, 2, 13 ]
[ [ 182, 2 ], [ 182, 11 ], [ 182, 12 ], [ 182, 13 ], [ 188, 15 ], [ 161, 22 ], [ 183, 28 ], [ 177, 29 ], [ 164, 32 ], [ 183, 38 ], [ 177, 39 ], [ 43, 42 ], [ 183, 48 ], [ 177, 49 ], [ 55, 52 ], [ 162, 53 ], [ 42, 54 ], [ 162, 58 ], [ 42, 60 ], [ 42, 62 ], [ 189, 63 ], [ 66, 65 ], [ 183, 71 ], [ 177, 72 ], [ 78, 75 ], [ 165, 76 ], [ 65, 77 ], [ 52, 80 ], [ 162, 81 ], [ 65, 82 ], [ 189, 84 ], [ 189, 86 ], [ 162, 93 ], [ 104, 94 ], [ 165, 96 ], [ 106, 97 ], [ 165, 99 ], [ 104, 101 ], [ 106, 102 ], [ 104, 104 ], [ 106, 106 ], [ 167, 108 ], [ 112, 111 ], [ 183, 117 ], [ 171, 118 ], [ 179, 121 ], [ 186, 125 ], [ 174, 128 ], [ 111, 131 ], [ 111, 134 ], [ 186, 137 ], [ 177, 141 ], [ 174, 142 ], [ 183, 145 ], [ 111, 146 ], [ 177, 149 ], [ 174, 150 ], [ 189, 152 ], [ 180, 158 ], [ 168, 158 ], [ 189, 159 ], [ 161, 162 ], [ 164, 165 ], [ 167, 168 ], [ 182, 171 ], [ 182, 174 ], [ 182, 177 ], [ 179, 180 ], [ 182, 183 ], [ 188, 189 ] ]
[ "H, W, A, B = map(int, input().split())\n\nmod = 10**9 + 7\n\nfact = [1] * (H + W - 1)\ninvfact = [1] * (H + W - 1)\n\nfor i in range(1, H + W - 1):\n fact[i] = fact[i - 1] * i % mod\nfor i in range(1, H + W - 1):\n invfact[i] = pow(fact[i], mod-2, mod)\n\ndef nCr(n,r):\n return fact[n] * invfact[r] * invfact[n-r]\n\nresult = 0\nfor i in range(1, H - A + 1):\n result += (nCr((B-1)+(i-1), i-1) * nCr((W-B-1)+(H-i), W-B-1)) % mod\nprint(int(result % mod))", "H, W, A, B = map(int, input().split())", "H", "map(int, input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "mod = 10**9 + 7", "mod", "10**9 + 7", "10**9", "10", "9", "7", "fact = [1] * (H + W - 1)", "fact", "[1] * (H + W - 1)", "[1]", "1", "H + W - 1", "H + W", "H", "W", "1", "invfact = [1] * (H + W - 1)", "invfact", "[1] * (H + W - 1)", "[1]", "1", "H + W - 1", "H + W", "H", "W", "1", "for i in range(1, H + W - 1):\n fact[i] = fact[i - 1] * i % mod", "i", "range(1, H + W - 1)", "range", "1", "H + W - 1", "H + W", "H", "W", "1", "fact[i] = fact[i - 1] * i % mod", "fact[i]", "fact", "i", "fact[i - 1] * i % mod", "fact[i - 1] * i", "fact[i - 1]", "fact", "i - 1", "i", "1", "i", "mod", "for i in range(1, H + W - 1):\n invfact[i] = pow(fact[i], mod-2, mod)", "i", "range(1, H + W - 1)", "range", "1", "H + W - 1", "H + W", "H", "W", "1", "invfact[i] = pow(fact[i], mod-2, mod)", "invfact[i]", "invfact", "i", "pow(fact[i], mod-2, mod)", "pow", "fact[i]", "fact", "i", "mod-2", "mod", "2", "mod", "def nCr(n,r):\n return fact[n] * invfact[r] * invfact[n-r]", "nCr", "return fact[n] * invfact[r] * invfact[n-r]", "fact[n] * invfact[r] * invfact[n-r]", "fact[n] * invfact[r]", "fact[n]", "fact", "n", "invfact[r]", "invfact", "r", "invfact[n-r]", "invfact", "n-r", "n", "r", "n", "n", "r", "r", "result = 0", "result", "0", "for i in range(1, H - A + 1):\n result += (nCr((B-1)+(i-1), i-1) * nCr((W-B-1)+(H-i), W-B-1)) % mod", "i", "range(1, H - A + 1)", "range", "1", "H - A + 1", "H - A", "H", "A", "1", "result += (nCr((B-1)+(i-1), i-1) * nCr((W-B-1)+(H-i), W-B-1)) % mod", "result", "(nCr((B-1)+(i-1), i-1) * nCr((W-B-1)+(H-i), W-B-1)) % mod", "nCr((B-1)+(i-1), i-1) * nCr((W-B-1)+(H-i), W-B-1)", "nCr((B-1)+(i-1), i-1)", "nCr", "(B-1)+(i-1)", "B-1", "B", "1", "i-1", "i", "1", "i-1", "i", "1", "nCr((W-B-1)+(H-i), W-B-1)", "nCr", "(W-B-1)+(H-i)", "W-B-1", "W-B", "W", "B", "1", "H-i", "H", "i", "W-B-1", "W-B", "W", "B", "1", "mod", "print(int(result % mod))", "print", "int(result % mod)", "int", "result % mod", "result", "mod", "fact = [1] * (H + W - 1)", "[1] * (H + W - 1)", "fact", "invfact = [1] * (H + W - 1)", "[1] * (H + W - 1)", "invfact", "result = 0", "0", "result", "A, B = map(int, input().split())", "map(int, input().split())", "A", "B = map(int, input().split())", "map(int, input().split())", "B", "W, A, B = map(int, input().split())", "map(int, input().split())", "W", "result += (nCr((B-1)+(i-1), i-1) * nCr((W-B-1)+(H-i), W-B-1)) % mod", "(nCr((B-1)+(i-1), i-1) * nCr((W-B-1)+(H-i), W-B-1)) % mod", "result", "H, W, A, B = map(int, input().split())", "map(int, input().split())", "H", "def nCr(n,r):\n return fact[n] * invfact[r] * invfact[n-r]", "def nCr(n,r):\n return fact[n] * invfact[r] * invfact[n-r]", "nCr", "mod = 10**9 + 7", "10**9 + 7", "mod" ]
H, W, A, B = map(int, input().split()) mod = 10**9 + 7 fact = [1] * (H + W - 1) invfact = [1] * (H + W - 1) for i in range(1, H + W - 1): fact[i] = fact[i - 1] * i % mod for i in range(1, H + W - 1): invfact[i] = pow(fact[i], mod-2, mod) def nCr(n,r): return fact[n] * invfact[r] * invfact[n-r] result = 0 for i in range(1, H - A + 1): result += (nCr((B-1)+(i-1), i-1) * nCr((W-B-1)+(H-i), W-B-1)) % mod print(int(result % mod))
[ 7, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 2, 17, 17, 17, 6, 13, 12, 13, 0, 18, 13, 13, 2, 39, 17, 2, 13, 17, 0, 18, 13, 13, 2, 39, 17, 2, 13, 17, 0, 13, 2, 39, 17, 2, 13, 17, 28, 13, 4, 13, 17, 2, 13, 17, 0, 18, 13, 13, 2, 2, 40, 2, 13, 13, 18, 13, 2, 13, 13, 13, 28, 13, 4, 13, 17, 2, 13, 17, 0, 18, 18, 13, 13, 13, 2, 2, 18, 18, 13, 13, 2, 13, 17, 13, 13, 0, 18, 18, 13, 13, 13, 2, 2, 18, 18, 13, 13, 2, 13, 17, 18, 13, 13, 13, 23, 13, 23, 13, 12, 13, 14, 2, 40, 13, 17, 2, 13, 13, 29, 17, 14, 2, 13, 17, 29, 13, 0, 13, 2, 2, 2, 2, 18, 18, 13, 13, 13, 18, 18, 13, 13, 13, 13, 18, 18, 13, 13, 2, 13, 13, 13, 29, 13, 23, 13, 23, 13, 23, 13, 0, 13, 4, 13, 2, 13, 13, 0, 13, 17, 0, 13, 2, 2, 13, 13, 17, 0, 13, 2, 2, 13, 13, 17, 28, 13, 4, 13, 2, 13, 13, 0, 13, 2, 2, 2, 2, 13, 13, 17, 13, 13, 0, 13, 2, 4, 18, 13, 13, 2, 2, 13, 13, 17, 2, 13, 17, 4, 18, 13, 13, 13, 2, 2, 13, 13, 17, 0, 13, 13, 4, 13, 2, 13, 13, 10, 4, 13, 10, 4, 13, 10, 4, 13, 10, 4, 13, 10, 2, 13, 10, 2, 13, 10, 4, 13, 10, 2, 13, 10, 13, 13, 10, 6, 13, 10, 2, 13, 10, 2, 13, 10, 17, 13 ]
[ [ 270, 2 ], [ 270, 11 ], [ 270, 12 ], [ 270, 13 ], [ 273, 15 ], [ 29, 26 ], [ 122, 27 ], [ 124, 33 ], [ 39, 36 ], [ 122, 37 ], [ 124, 43 ], [ 47, 46 ], [ 124, 51 ], [ 55, 54 ], [ 124, 59 ], [ 65, 62 ], [ 46, 63 ], [ 54, 64 ], [ 274, 69 ], [ 54, 70 ], [ 46, 72 ], [ 274, 74 ], [ 54, 75 ], [ 274, 76 ], [ 79, 78 ], [ 124, 83 ], [ 91, 86 ], [ 36, 87 ], [ 122, 88 ], [ 78, 90 ], [ 36, 94 ], [ 122, 95 ], [ 78, 98 ], [ 78, 100 ], [ 274, 101 ], [ 108, 103 ], [ 26, 104 ], [ 122, 105 ], [ 78, 107 ], [ 26, 111 ], [ 122, 112 ], [ 78, 115 ], [ 62, 117 ], [ 46, 118 ], [ 78, 119 ], [ 274, 120 ], [ 122, 122 ], [ 124, 124 ], [ 173, 130 ], [ 173, 133 ], [ 175, 134 ], [ 175, 139 ], [ 173, 142 ], [ 145, 144 ], [ 171, 151 ], [ 173, 153 ], [ 171, 156 ], [ 175, 158 ], [ 274, 159 ], [ 171, 162 ], [ 173, 165 ], [ 175, 166 ], [ 274, 167 ], [ 144, 169 ], [ 171, 171 ], [ 173, 173 ], [ 175, 175 ], [ 255, 177 ], [ 259, 181 ], [ 271, 182 ], [ 288, 184 ], [ 267, 187 ], [ 259, 190 ], [ 253, 191 ], [ 285, 194 ], [ 271, 197 ], [ 262, 198 ], [ 202, 201 ], [ 259, 205 ], [ 253, 206 ], [ 282, 208 ], [ 259, 213 ], [ 271, 214 ], [ 201, 216 ], [ 262, 217 ], [ 264, 219 ], [ 256, 223 ], [ 126, 224 ], [ 201, 227 ], [ 262, 228 ], [ 262, 231 ], [ 256, 235 ], [ 126, 236 ], [ 283, 237 ], [ 271, 240 ], [ 262, 241 ], [ 276, 244 ], [ 274, 245 ], [ 277, 249 ], [ 265, 249 ], [ 289, 249 ], [ 274, 250 ], [ 270, 253 ], [ 255, 256 ], [ 270, 259 ], [ 270, 262 ], [ 264, 265 ], [ 267, 268 ], [ 270, 271 ], [ 273, 274 ], [ 274, 276 ], [ 276, 277 ], [ 282, 283 ], [ 285, 286 ], [ 288, 289 ] ]
[ "h, w, a, b = map(int, input().split())\n\nMOD = 10 ** 9 + 7\n\nclass ModCmb:\n def __init__(self, size):\n self.inv = [1] * (size + 1)\n self.fact = [1] * (size + 1)\n temp_inv = [1] * (size + 1)\n for i in range(2, size + 1):\n temp_inv[i] = ( -(MOD // i) * temp_inv[MOD%i] ) % MOD\n for i in range(2, size + 1):\n self.fact[i] = self.fact[i-1] * i % MOD\n self.inv[i] = self.inv[i-1] * temp_inv[i] % MOD\n\n def cmb(self, n, r):\n #print(n, r)\n if n <= 1 or n == r:\n return 1\n elif r == 1:\n return n\n res = (self.fact[n] * self.inv[r] % MOD ) * self.inv[n-r] % MOD\n #print(res)\n return res\n\nc = ModCmb(h+w)\n\nans = 0\nx = h-a-1\ny = w-b-1\nfor i in range(h-a):\n j = h+w-2-i-b\n #print(i, j)\n #print(i+b-1, b-1, j, w-b-1)\n ans += c.cmb(i+b-1, b-1) * c.cmb(j, w-b-1)\n ans %= MOD\n\nprint(ans % MOD)", "h, w, a, b = map(int, input().split())", "h", "map(int, input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "w", "a", "b", "MOD = 10 ** 9 + 7", "MOD", "10 ** 9 + 7", "10 ** 9", "10", "9", "7", "class ModCmb:\n def __init__(self, size):\n self.inv = [1] * (size + 1)\n self.fact = [1] * (size + 1)\n temp_inv = [1] * (size + 1)\n for i in range(2, size + 1):\n temp_inv[i] = ( -(MOD // i) * temp_inv[MOD%i] ) % MOD\n for i in range(2, size + 1):\n self.fact[i] = self.fact[i-1] * i % MOD\n self.inv[i] = self.inv[i-1] * temp_inv[i] % MOD\n\n def cmb(self, n, r):\n #print(n, r)\n if n <= 1 or n == r:\n return 1\n elif r == 1:\n return n\n res = (self.fact[n] * self.inv[r] % MOD ) * self.inv[n-r] % MOD\n #print(res)\n return res", "ModCmb", "def __init__(self, size):\n self.inv = [1] * (size + 1)\n self.fact = [1] * (size + 1)\n temp_inv = [1] * (size + 1)\n for i in range(2, size + 1):\n temp_inv[i] = ( -(MOD // i) * temp_inv[MOD%i] ) % MOD\n for i in range(2, size + 1):\n self.fact[i] = self.fact[i-1] * i % MOD\n self.inv[i] = self.inv[i-1] * temp_inv[i] % MOD\n\n ", "__init__", "self.inv = [1] * (size + 1)", "self.inv", "self", "inv", "[1] * (size + 1)", "[1]", "1", "size + 1", "size", "1", "self.fact = [1] * (size + 1)", "self.fact", "self", "fact", "[1] * (size + 1)", "[1]", "1", "size + 1", "size", "1", "temp_inv = [1] * (size + 1)", "temp_inv", "[1] * (size + 1)", "[1]", "1", "size + 1", "size", "1", "for i in range(2, size + 1):\n temp_inv[i] = ( -(MOD // i) * temp_inv[MOD%i] ) % MOD\n ", "i", "range(2, size + 1)", "range", "2", "size + 1", "size", "1", "temp_inv[i] = ( -(MOD // i) * temp_inv[MOD%i] ) % MOD", "temp_inv[i]", "temp_inv", "i", "( -(MOD // i) * temp_inv[MOD%i] ) % MOD", "-(MOD // i) * temp_inv[MOD%i]", "-(MOD // i)", "MOD // i", "MOD", "i", "temp_inv[MOD%i]", "temp_inv", "MOD%i", "MOD", "i", "MOD", "for i in range(2, size + 1):\n self.fact[i] = self.fact[i-1] * i % MOD\n self.inv[i] = self.inv[i-1] * temp_inv[i] % MOD\n\n ", "i", "range(2, size + 1)", "range", "2", "size + 1", "size", "1", "self.fact[i] = self.fact[i-1] * i % MOD", "self.fact[i]", "self.fact", "self", "fact", "i", "self.fact[i-1] * i % MOD", "self.fact[i-1] * i", "self.fact[i-1]", "self.fact", "self", "fact", "i-1", "i", "1", "i", "MOD", "self.inv[i] = self.inv[i-1] * temp_inv[i] % MOD", "self.inv[i]", "self.inv", "self", "inv", "i", "self.inv[i-1] * temp_inv[i] % MOD", "self.inv[i-1] * temp_inv[i]", "self.inv[i-1]", "self.inv", "self", "inv", "i-1", "i", "1", "temp_inv[i]", "temp_inv", "i", "MOD", "self", "self", "size", "size", "def cmb(self, n, r):\n #print(n, r)\n if n <= 1 or n == r:\n return 1\n elif r == 1:\n return n\n res = (self.fact[n] * self.inv[r] % MOD ) * self.inv[n-r] % MOD\n #print(res)\n return res", "cmb", "if n <= 1 or n == r:\n return 1\n elif r == 1:\n return n\n ", "n <= 1 or n == r", "n <= 1", "n", "1", "n == r", "n", "r", "return 1", "1", "elif r == 1:\n return n\n ", "r == 1", "r", "1", "return n", "n", "res = (self.fact[n] * self.inv[r] % MOD ) * self.inv[n-r] % MOD", "res", "(self.fact[n] * self.inv[r] % MOD ) * self.inv[n-r] % MOD", "(self.fact[n] * self.inv[r] % MOD ) * self.inv[n-r]", "self.fact[n] * self.inv[r] % MOD", "self.fact[n] * self.inv[r]", "self.fact[n]", "self.fact", "self", "fact", "n", "self.inv[r]", "self.inv", "self", "inv", "r", "MOD", "self.inv[n-r]", "self.inv", "self", "inv", "n-r", "n", "r", "MOD", "return res", "res", "self", "self", "n", "n", "r", "r", "c = ModCmb(h+w)", "c", "ModCmb(h+w)", "ModCmb", "h+w", "h", "w", "ans = 0", "ans", "0", "x = h-a-1", "x", "h-a-1", "h-a", "h", "a", "1", "y = w-b-1", "y", "w-b-1", "w-b", "w", "b", "1", "for i in range(h-a):\n j = h+w-2-i-b\n #print(i, j)\n #print(i+b-1, b-1, j, w-b-1)\n ans += c.cmb(i+b-1, b-1) * c.cmb(j, w-b-1)\n ans %= MOD", "i", "range(h-a)", "range", "h-a", "h", "a", "j = h+w-2-i-b", "j", "h+w-2-i-b", "h+w-2-i", "h+w-2", "h+w", "h", "w", "2", "i", "b", "ans += c.cmb(i+b-1, b-1) * c.cmb(j, w-b-1)", "ans", "c.cmb(i+b-1, b-1) * c.cmb(j, w-b-1)", "c.cmb(i+b-1, b-1)", "c.cmb", "c", "cmb", "i+b-1", "i+b", "i", "b", "1", "b-1", "b", "1", "c.cmb(j, w-b-1)", "c.cmb", "c", "cmb", "j", "w-b-1", "w-b", "w", "b", "1", "ans %= MOD", "ans", "MOD", "print(ans % MOD)", "print", "ans % MOD", "ans", "MOD", "a, b = map(int, input().split())", "map(int, input().split())", "a", "c = ModCmb(h+w)", "ModCmb(h+w)", "c", "h, w, a, b = map(int, input().split())", "map(int, input().split())", "h", "b = map(int, input().split())", "map(int, input().split())", "b", "ans += c.cmb(i+b-1, b-1) * c.cmb(j, w-b-1)", "c.cmb(i+b-1, b-1) * c.cmb(j, w-b-1)", "ans", "x = h-a-1", "h-a-1", "x", "w, a, b = map(int, input().split())", "map(int, input().split())", "w", "MOD = 10 ** 9 + 7", "10 ** 9 + 7", "MOD", "ans %= MOD", "MOD", "ans", "class ModCmb:\n def __init__(self, size):\n self.inv = [1] * (size + 1)\n self.fact = [1] * (size + 1)\n temp_inv = [1] * (size + 1)\n for i in range(2, size + 1):\n temp_inv[i] = ( -(MOD // i) * temp_inv[MOD%i] ) % MOD\n for i in range(2, size + 1):\n self.fact[i] = self.fact[i-1] * i % MOD\n self.inv[i] = self.inv[i-1] * temp_inv[i] % MOD\n\n def cmb(self, n, r):\n #print(n, r)\n if n <= 1 or n == r:\n return 1\n elif r == 1:\n return n\n res = (self.fact[n] * self.inv[r] % MOD ) * self.inv[n-r] % MOD\n #print(res)\n return res", "class ModCmb:\n def __init__(self, size):\n self.inv = [1] * (size + 1)\n self.fact = [1] * (size + 1)\n temp_inv = [1] * (size + 1)\n for i in range(2, size + 1):\n temp_inv[i] = ( -(MOD // i) * temp_inv[MOD%i] ) % MOD\n for i in range(2, size + 1):\n self.fact[i] = self.fact[i-1] * i % MOD\n self.inv[i] = self.inv[i-1] * temp_inv[i] % MOD\n\n def cmb(self, n, r):\n #print(n, r)\n if n <= 1 or n == r:\n return 1\n elif r == 1:\n return n\n res = (self.fact[n] * self.inv[r] % MOD ) * self.inv[n-r] % MOD\n #print(res)\n return res", "ModCmb", "j = h+w-2-i-b", "h+w-2-i-b", "j", "y = w-b-1", "w-b-1", "y", "ans = 0", "0", "ans" ]
h, w, a, b = map(int, input().split()) MOD = 10 ** 9 + 7 class ModCmb: def __init__(self, size): self.inv = [1] * (size + 1) self.fact = [1] * (size + 1) temp_inv = [1] * (size + 1) for i in range(2, size + 1): temp_inv[i] = ( -(MOD // i) * temp_inv[MOD%i] ) % MOD for i in range(2, size + 1): self.fact[i] = self.fact[i-1] * i % MOD self.inv[i] = self.inv[i-1] * temp_inv[i] % MOD def cmb(self, n, r): #print(n, r) if n <= 1 or n == r: return 1 elif r == 1: return n res = (self.fact[n] * self.inv[r] % MOD ) * self.inv[n-r] % MOD #print(res) return res c = ModCmb(h+w) ans = 0 x = h-a-1 y = w-b-1 for i in range(h-a): j = h+w-2-i-b #print(i, j) #print(i+b-1, b-1, j, w-b-1) ans += c.cmb(i+b-1, b-1) * c.cmb(j, w-b-1) ans %= MOD print(ans % MOD)
[ 7, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 2, 39, 17, 17, 0, 13, 17, 28, 13, 4, 13, 17, 4, 13, 13, 0, 18, 13, 13, 2, 2, 13, 13, 13, 0, 13, 2, 12, 13, 29, 2, 2, 2, 18, 13, 13, 4, 13, 18, 13, 2, 13, 13, 2, 13, 17, 13, 4, 13, 18, 13, 13, 2, 13, 17, 13, 13, 23, 13, 23, 13, 0, 13, 17, 28, 13, 4, 13, 2, 13, 13, 0, 13, 4, 13, 2, 2, 13, 17, 13, 13, 0, 13, 4, 13, 2, 2, 2, 2, 13, 13, 13, 13, 17, 2, 2, 13, 13, 17, 0, 13, 2, 13, 13, 0, 13, 13, 4, 13, 13, 10, 2, 13, 10, 17, 13, 10, 4, 13, 10, 13, 13, 10, 12, 13, 10, 4, 13, 10, 4, 13, 10, 4, 13, 10, 4, 13, 10, 17, 13, 10, 2, 13, 10, 2, 13, 10, 4, 13, 10, 2, 13 ]
[ [ 170, 2 ], [ 170, 11 ], [ 170, 12 ], [ 170, 13 ], [ 173, 15 ], [ 164, 22 ], [ 161, 28 ], [ 32, 31 ], [ 165, 37 ], [ 134, 39 ], [ 165, 40 ], [ 31, 41 ], [ 162, 44 ], [ 135, 44 ], [ 31, 45 ], [ 174, 46 ], [ 134, 48 ], [ 165, 57 ], [ 81, 58 ], [ 165, 62 ], [ 81, 64 ], [ 83, 65 ], [ 174, 67 ], [ 174, 69 ], [ 165, 73 ], [ 83, 74 ], [ 174, 76 ], [ 174, 78 ], [ 174, 79 ], [ 81, 81 ], [ 83, 83 ], [ 137, 85 ], [ 89, 88 ], [ 153, 92 ], [ 141, 93 ], [ 158, 95 ], [ 147, 97 ], [ 171, 100 ], [ 88, 102 ], [ 88, 103 ], [ 149, 105 ], [ 147, 107 ], [ 156, 112 ], [ 153, 113 ], [ 171, 114 ], [ 88, 115 ], [ 153, 119 ], [ 88, 120 ], [ 167, 123 ], [ 159, 125 ], [ 150, 126 ], [ 143, 128 ], [ 174, 129 ], [ 144, 132 ], [ 168, 132 ], [ 138, 132 ], [ 134, 135 ], [ 137, 138 ], [ 170, 141 ], [ 174, 143 ], [ 143, 144 ], [ 149, 150 ], [ 170, 153 ], [ 170, 156 ], [ 158, 159 ], [ 161, 162 ], [ 164, 165 ], [ 167, 168 ], [ 170, 171 ], [ 173, 174 ] ]
[ "H, W, A, B = map(int, input().split())\nmod = 10**9+7\n\nF = [1]*200010\np = 1\nfor i in range(1, len(F)):\n F[i] = p = p*i%mod\n\ndef comb(n, k):\n return F[n]*pow(F[n-k], mod-2, mod)*pow(F[k], mod-2, mod)%mod\n\nans = 0\nfor h in range(H-A):\n x = comb(B-1+h, h) # 右にB-1回、下にh回移動する方法の数\n y = comb(W+H-B-h-2, H-h-1) # 右にW-B-1回、下にH-h-1回移動する方法の数\n ans += x*y\n ans %= mod\nprint(ans)", "H, W, A, B = map(int, input().split())", "H", "map(int, input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "mod = 10**9+7", "mod", "10**9+7", "10**9", "10", "9", "7", "F = [1]*200010", "F", "[1]*200010", "[1]", "1", "200010", "p = 1", "p", "1", "for i in range(1, len(F)):\n F[i] = p = p*i%mod", "i", "range(1, len(F))", "range", "1", "len(F)", "len", "F", "F[i] = p = p*i%mod", "F[i]", "F", "i", "p*i%mod", "p*i", "p", "i", "mod", "= p = p*i%mod", "p", "p*i%mod", "def comb(n, k):\n return F[n]*pow(F[n-k], mod-2, mod)*pow(F[k], mod-2, mod)%mod", "comb", "return F[n]*pow(F[n-k], mod-2, mod)*pow(F[k], mod-2, mod)%mod", "F[n]*pow(F[n-k], mod-2, mod)*pow(F[k], mod-2, mod)%mod", "F[n]*pow(F[n-k], mod-2, mod)*pow(F[k], mod-2, mod)", "F[n]*pow(F[n-k], mod-2, mod)", "F[n]", "F", "n", "pow(F[n-k], mod-2, mod)", "pow", "F[n-k]", "F", "n-k", "n", "k", "mod-2", "mod", "2", "mod", "pow(F[k], mod-2, mod)", "pow", "F[k]", "F", "k", "mod-2", "mod", "2", "mod", "mod", "n", "n", "k", "k", "ans = 0", "ans", "0", "for h in range(H-A):\n x = comb(B-1+h, h) # 右にB-1回、下にh回移動する方法の数\n y = comb(W+H-B-h-2, H-h-1) # 右にW-B-1回、下にH-h-1回移動する方法の数\n ans += x*y\n ans %= mod", "h", "range(H-A)", "range", "H-A", "H", "A", "x = comb(B-1+h, h)", "x", "comb(B-1+h, h)", "comb", "B-1+h", "B-1", "B", "1", "h", "h", "y = comb(W+H-B-h-2, H-h-1)", "y", "comb(W+H-B-h-2, H-h-1)", "comb", "W+H-B-h-2", "W+H-B-h", "W+H-B", "W+H", "W", "H", "B", "h", "2", "H-h-1", "H-h", "H", "h", "1", "ans += x*y", "ans", "x*y", "x", "y", "ans %= mod", "ans", "mod", "print(ans)", "print", "ans", "p = p*i%mod", "p*i%mod", "p", "ans = 0", "0", "ans", "A, B = map(int, input().split())", "map(int, input().split())", "A", "ans %= mod", "mod", "ans", "def comb(n, k):\n return F[n]*pow(F[n-k], mod-2, mod)*pow(F[k], mod-2, mod)%mod", "def comb(n, k):\n return F[n]*pow(F[n-k], mod-2, mod)*pow(F[k], mod-2, mod)%mod", "comb", "y = comb(W+H-B-h-2, H-h-1)", "comb(W+H-B-h-2, H-h-1)", "y", "H, W, A, B = map(int, input().split())", "map(int, input().split())", "H", "W, A, B = map(int, input().split())", "map(int, input().split())", "W", "x = comb(B-1+h, h)", "comb(B-1+h, h)", "x", "p = 1", "1", "p", "F = [1]*200010", "[1]*200010", "F", "ans += x*y", "x*y", "ans", "B = map(int, input().split())", "map(int, input().split())", "B", "mod = 10**9+7", "10**9+7", "mod" ]
H, W, A, B = map(int, input().split()) mod = 10**9+7 F = [1]*200010 p = 1 for i in range(1, len(F)): F[i] = p = p*i%mod def comb(n, k): return F[n]*pow(F[n-k], mod-2, mod)*pow(F[k], mod-2, mod)%mod ans = 0 for h in range(H-A): x = comb(B-1+h, h) # 右にB-1回、下にh回移動する方法の数 y = comb(W+H-B-h-2, H-h-1) # 右にW-B-1回、下にH-h-1回移動する方法の数 ans += x*y ans %= mod print(ans)
[ 7, 6, 13, 12, 13, 0, 18, 13, 13, 2, 13, 17, 0, 18, 13, 13, 13, 0, 18, 13, 13, 2, 39, 17, 17, 2, 39, 17, 13, 0, 18, 13, 13, 2, 39, 17, 17, 2, 39, 17, 13, 0, 18, 13, 13, 2, 39, 17, 17, 2, 39, 17, 13, 28, 13, 4, 13, 17, 2, 13, 17, 0, 18, 18, 13, 13, 13, 2, 2, 18, 18, 13, 13, 2, 13, 17, 13, 13, 0, 18, 18, 13, 13, 13, 2, 2, 40, 18, 18, 13, 13, 2, 13, 13, 2, 13, 13, 13, 0, 18, 18, 13, 13, 13, 2, 2, 18, 18, 13, 13, 2, 13, 17, 18, 18, 13, 13, 13, 13, 23, 13, 23, 13, 17, 23, 13, 2, 2, 17, 17, 17, 12, 13, 14, 2, 2, 2, 13, 13, 2, 13, 17, 2, 13, 17, 29, 17, 29, 2, 2, 18, 18, 13, 13, 13, 2, 2, 18, 18, 13, 13, 13, 18, 18, 13, 13, 2, 13, 13, 18, 13, 13, 18, 13, 13, 23, 13, 23, 13, 23, 13, 12, 13, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 4, 13, 2, 2, 13, 13, 17, 0, 13, 17, 28, 13, 4, 13, 2, 13, 13, 0, 13, 2, 2, 13, 2, 4, 18, 13, 13, 2, 2, 2, 2, 13, 17, 13, 13, 13, 2, 2, 13, 17, 13, 4, 18, 13, 13, 2, 2, 2, 2, 2, 13, 17, 13, 17, 13, 13, 2, 13, 17, 13, 4, 13, 13, 4, 13, 10, 12, 13, 10, 6, 13 ]
[ [ 9, 6 ], [ 120, 7 ], [ 122, 8 ], [ 122, 10 ], [ 16, 13 ], [ 120, 14 ], [ 125, 15 ], [ 125, 16 ], [ 21, 18 ], [ 120, 19 ], [ 122, 28 ], [ 33, 30 ], [ 120, 31 ], [ 122, 40 ], [ 45, 42 ], [ 120, 43 ], [ 122, 52 ], [ 55, 54 ], [ 122, 59 ], [ 67, 62 ], [ 18, 63 ], [ 120, 64 ], [ 54, 66 ], [ 18, 70 ], [ 120, 71 ], [ 54, 74 ], [ 54, 76 ], [ 125, 77 ], [ 84, 79 ], [ 42, 80 ], [ 120, 81 ], [ 54, 83 ], [ 42, 88 ], [ 120, 89 ], [ 125, 92 ], [ 54, 93 ], [ 125, 95 ], [ 54, 96 ], [ 125, 97 ], [ 104, 99 ], [ 30, 100 ], [ 120, 101 ], [ 54, 103 ], [ 30, 107 ], [ 120, 108 ], [ 54, 111 ], [ 79, 113 ], [ 42, 114 ], [ 120, 115 ], [ 54, 117 ], [ 125, 118 ], [ 120, 120 ], [ 123, 122 ], [ 126, 125 ], [ 178, 137 ], [ 180, 138 ], [ 178, 140 ], [ 180, 143 ], [ 176, 152 ], [ 178, 154 ], [ 176, 159 ], [ 180, 161 ], [ 176, 164 ], [ 178, 167 ], [ 180, 168 ], [ 176, 170 ], [ 176, 173 ], [ 176, 176 ], [ 178, 178 ], [ 180, 180 ], [ 185, 184 ], [ 185, 193 ], [ 185, 194 ], [ 185, 195 ], [ 198, 197 ], [ 205, 204 ], [ 184, 209 ], [ 193, 210 ], [ 214, 213 ], [ 217, 216 ], [ 193, 220 ], [ 195, 221 ], [ 224, 223 ], [ 213, 226 ], [ 223, 226 ], [ 204, 230 ], [ 132, 231 ], [ 184, 236 ], [ 194, 238 ], [ 195, 239 ], [ 216, 240 ], [ 184, 243 ], [ 194, 245 ], [ 204, 248 ], [ 132, 249 ], [ 194, 255 ], [ 193, 257 ], [ 195, 259 ], [ 216, 260 ], [ 194, 262 ], [ 197, 264 ], [ 223, 267 ], [ 213, 267 ], [ 272, 269 ] ]
[ "class Combination:\n def __init__(self, size=100, mod=10**9 + 7):\n self.size = size + 2\n self.mod = mod\n self.fact = [1, 1] + [0] * size\n self.factInv = [1, 1] + [0] * size\n self.inv = [0, 1] + [0] * size\n\n for i in range(2, size + 2):\n self.fact[i] = self.fact[i - 1] * i % mod\n self.inv[i] = -self.inv[mod % i] * (mod // i) % mod\n self.factInv[i] = self.factInv[i - 1] * self.inv[i] % mod\n\n def ncr(self, n, r):\n if n < r or n < 0 or r < 0:\n return 0\n return self.fact[n] * (self.factInv[r] * self.factInv[n - r] % self.mod) % self.mod\n\ndef sol():\n H, W, A, B = map(int, input().split())\n MOD = 10**9 + 7\n\n comb = Combination(H + W + 100)\n\n ans = 0\n for i in range(W - B):\n ans = (ans + comb.ncr(H - 1 - A + B + i, H - 1 - A) * comb.ncr(A - 1 + W - 1 - B - i, A - 1)) % MOD\n\n print(ans)\n\n\nsol()", "class Combination:\n def __init__(self, size=100, mod=10**9 + 7):\n self.size = size + 2\n self.mod = mod\n self.fact = [1, 1] + [0] * size\n self.factInv = [1, 1] + [0] * size\n self.inv = [0, 1] + [0] * size\n\n for i in range(2, size + 2):\n self.fact[i] = self.fact[i - 1] * i % mod\n self.inv[i] = -self.inv[mod % i] * (mod // i) % mod\n self.factInv[i] = self.factInv[i - 1] * self.inv[i] % mod\n\n def ncr(self, n, r):\n if n < r or n < 0 or r < 0:\n return 0\n return self.fact[n] * (self.factInv[r] * self.factInv[n - r] % self.mod) % self.mod", "Combination", "def __init__(self, size=100, mod=10**9 + 7):\n self.size = size + 2\n self.mod = mod\n self.fact = [1, 1] + [0] * size\n self.factInv = [1, 1] + [0] * size\n self.inv = [0, 1] + [0] * size\n\n for i in range(2, size + 2):\n self.fact[i] = self.fact[i - 1] * i % mod\n self.inv[i] = -self.inv[mod % i] * (mod // i) % mod\n self.factInv[i] = self.factInv[i - 1] * self.inv[i] % mod\n\n ", "__init__", "self.size = size + 2", "self.size", "self", "size", "size + 2", "size", "2", "self.mod = mod", "self.mod", "self", "mod", "mod", "self.fact = [1, 1] + [0] * size", "self.fact", "self", "fact", "[1, 1] + [0] * size", "[1, 1]", "1", "1", "[0] * size", "[0]", "0", "size", "self.factInv = [1, 1] + [0] * size", "self.factInv", "self", "factInv", "[1, 1] + [0] * size", "[1, 1]", "1", "1", "[0] * size", "[0]", "0", "size", "self.inv = [0, 1] + [0] * size", "self.inv", "self", "inv", "[0, 1] + [0] * size", "[0, 1]", "0", "1", "[0] * size", "[0]", "0", "size", "for i in range(2, size + 2):\n self.fact[i] = self.fact[i - 1] * i % mod\n self.inv[i] = -self.inv[mod % i] * (mod // i) % mod\n self.factInv[i] = self.factInv[i - 1] * self.inv[i] % mod\n\n ", "i", "range(2, size + 2)", "range", "2", "size + 2", "size", "2", "self.fact[i] = self.fact[i - 1] * i % mod", "self.fact[i]", "self.fact", "self", "fact", "i", "self.fact[i - 1] * i % mod", "self.fact[i - 1] * i", "self.fact[i - 1]", "self.fact", "self", "fact", "i - 1", "i", "1", "i", "mod", "self.inv[i] = -self.inv[mod % i] * (mod // i) % mod", "self.inv[i]", "self.inv", "self", "inv", "i", "-self.inv[mod % i] * (mod // i) % mod", "-self.inv[mod % i] * (mod // i)", "-self.inv[mod % i]", "self.inv[mod % i]", "self.inv", "self", "inv", "mod % i", "mod", "i", "mod // i", "mod", "i", "mod", "self.factInv[i] = self.factInv[i - 1] * self.inv[i] % mod", "self.factInv[i]", "self.factInv", "self", "factInv", "i", "self.factInv[i - 1] * self.inv[i] % mod", "self.factInv[i - 1] * self.inv[i]", "self.factInv[i - 1]", "self.factInv", "self", "factInv", "i - 1", "i", "1", "self.inv[i]", "self.inv", "self", "inv", "i", "mod", "self", "self", "size=100", "size", "100", "mod=10**9 + 7", "mod", "10**9 + 7", "10**9", "10", "9", "7", "def ncr(self, n, r):\n if n < r or n < 0 or r < 0:\n return 0\n return self.fact[n] * (self.factInv[r] * self.factInv[n - r] % self.mod) % self.mod", "ncr", "if n < r or n < 0 or r < 0:\n return 0\n ", "n < r or n < 0 or r < 0", "n < r or n < 0", "n < r", "n", "r", "n < 0", "n", "0", "r < 0", "r", "0", "return 0", "0", "return self.fact[n] * (self.factInv[r] * self.factInv[n - r] % self.mod) % self.mod", "self.fact[n] * (self.factInv[r] * self.factInv[n - r] % self.mod) % self.mod", "self.fact[n] * (self.factInv[r] * self.factInv[n - r] % self.mod)", "self.fact[n]", "self.fact", "self", "fact", "n", "self.factInv[r] * self.factInv[n - r] % self.mod", "self.factInv[r] * self.factInv[n - r]", "self.factInv[r]", "self.factInv", "self", "factInv", "r", "self.factInv[n - r]", "self.factInv", "self", "factInv", "n - r", "n", "r", "self.mod", "self", "mod", "self.mod", "self", "mod", "self", "self", "n", "n", "r", "r", "def sol():\n H, W, A, B = map(int, input().split())\n MOD = 10**9 + 7\n\n comb = Combination(H + W + 100)\n\n ans = 0\n for i in range(W - B):\n ans = (ans + comb.ncr(H - 1 - A + B + i, H - 1 - A) * comb.ncr(A - 1 + W - 1 - B - i, A - 1)) % MOD\n\n print(ans)", "sol", "H, W, A, B = map(int, input().split())", "H", "map(int, input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "MOD = 10**9 + 7", "MOD", "10**9 + 7", "10**9", "10", "9", "7", "comb = Combination(H + W + 100)", "comb", "Combination(H + W + 100)", "Combination", "H + W + 100", "H + W", "H", "W", "100", "ans = 0", "ans", "0", "for i in range(W - B):\n ans = (ans + comb.ncr(H - 1 - A + B + i, H - 1 - A) * comb.ncr(A - 1 + W - 1 - B - i, A - 1)) % MOD\n\n ", "i", "range(W - B)", "range", "W - B", "W", "B", "ans = (ans + comb.ncr(H - 1 - A + B + i, H - 1 - A) * comb.ncr(A - 1 + W - 1 - B - i, A - 1)) % MOD", "ans", "(ans + comb.ncr(H - 1 - A + B + i, H - 1 - A) * comb.ncr(A - 1 + W - 1 - B - i, A - 1)) % MOD", "ans + comb.ncr(H - 1 - A + B + i, H - 1 - A) * comb.ncr(A - 1 + W - 1 - B - i, A - 1)", "ans", "comb.ncr(H - 1 - A + B + i, H - 1 - A) * comb.ncr(A - 1 + W - 1 - B - i, A - 1)", "comb.ncr(H - 1 - A + B + i, H - 1 - A)", "comb.ncr", "comb", "ncr", "H - 1 - A + B + i", "H - 1 - A + B", "H - 1 - A", "H - 1", "H", "1", "A", "B", "i", "H - 1 - A", "H - 1", "H", "1", "A", "comb.ncr(A - 1 + W - 1 - B - i, A - 1)", "comb.ncr", "comb", "ncr", "A - 1 + W - 1 - B - i", "A - 1 + W - 1 - B", "A - 1 + W - 1", "A - 1 + W", "A - 1", "A", "1", "W", "1", "B", "i", "A - 1", "A", "1", "MOD", "print(ans)", "print", "ans", "sol()", "sol", "def sol():\n H, W, A, B = map(int, input().split())\n MOD = 10**9 + 7\n\n comb = Combination(H + W + 100)\n\n ans = 0\n for i in range(W - B):\n ans = (ans + comb.ncr(H - 1 - A + B + i, H - 1 - A) * comb.ncr(A - 1 + W - 1 - B - i, A - 1)) % MOD\n\n print(ans)", "def sol():\n H, W, A, B = map(int, input().split())\n MOD = 10**9 + 7\n\n comb = Combination(H + W + 100)\n\n ans = 0\n for i in range(W - B):\n ans = (ans + comb.ncr(H - 1 - A + B + i, H - 1 - A) * comb.ncr(A - 1 + W - 1 - B - i, A - 1)) % MOD\n\n print(ans)", "sol", "class Combination:\n def __init__(self, size=100, mod=10**9 + 7):\n self.size = size + 2\n self.mod = mod\n self.fact = [1, 1] + [0] * size\n self.factInv = [1, 1] + [0] * size\n self.inv = [0, 1] + [0] * size\n\n for i in range(2, size + 2):\n self.fact[i] = self.fact[i - 1] * i % mod\n self.inv[i] = -self.inv[mod % i] * (mod // i) % mod\n self.factInv[i] = self.factInv[i - 1] * self.inv[i] % mod\n\n def ncr(self, n, r):\n if n < r or n < 0 or r < 0:\n return 0\n return self.fact[n] * (self.factInv[r] * self.factInv[n - r] % self.mod) % self.mod", "class Combination:\n def __init__(self, size=100, mod=10**9 + 7):\n self.size = size + 2\n self.mod = mod\n self.fact = [1, 1] + [0] * size\n self.factInv = [1, 1] + [0] * size\n self.inv = [0, 1] + [0] * size\n\n for i in range(2, size + 2):\n self.fact[i] = self.fact[i - 1] * i % mod\n self.inv[i] = -self.inv[mod % i] * (mod // i) % mod\n self.factInv[i] = self.factInv[i - 1] * self.inv[i] % mod\n\n def ncr(self, n, r):\n if n < r or n < 0 or r < 0:\n return 0\n return self.fact[n] * (self.factInv[r] * self.factInv[n - r] % self.mod) % self.mod", "Combination" ]
class Combination: def __init__(self, size=100, mod=10**9 + 7): self.size = size + 2 self.mod = mod self.fact = [1, 1] + [0] * size self.factInv = [1, 1] + [0] * size self.inv = [0, 1] + [0] * size for i in range(2, size + 2): self.fact[i] = self.fact[i - 1] * i % mod self.inv[i] = -self.inv[mod % i] * (mod // i) % mod self.factInv[i] = self.factInv[i - 1] * self.inv[i] % mod def ncr(self, n, r): if n < r or n < 0 or r < 0: return 0 return self.fact[n] * (self.factInv[r] * self.factInv[n - r] % self.mod) % self.mod def sol(): H, W, A, B = map(int, input().split()) MOD = 10**9 + 7 comb = Combination(H + W + 100) ans = 0 for i in range(W - B): ans = (ans + comb.ncr(H - 1 - A + B + i, H - 1 - A) * comb.ncr(A - 1 + W - 1 - B - i, A - 1)) % MOD print(ans) sol()
[ 7, 0, 13, 2, 2, 17, 17, 17, 12, 13, 0, 13, 2, 39, 17, 2, 13, 17, 0, 18, 13, 17, 17, 0, 18, 13, 17, 17, 28, 13, 4, 13, 17, 2, 13, 17, 0, 18, 13, 13, 2, 2, 40, 2, 13, 13, 18, 13, 2, 13, 13, 13, 29, 13, 23, 13, 0, 13, 2, 39, 17, 2, 2, 17, 2, 17, 17, 17, 0, 13, 4, 13, 2, 2, 17, 17, 17, 0, 13, 2, 39, 17, 2, 2, 17, 17, 17, 28, 13, 4, 13, 2, 17, 17, 0, 18, 13, 2, 13, 17, 2, 2, 18, 13, 13, 18, 13, 2, 13, 17, 13, 28, 13, 4, 13, 2, 17, 2, 17, 17, 0, 18, 13, 2, 13, 17, 2, 2, 18, 13, 13, 2, 13, 17, 13, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 17, 28, 13, 4, 13, 2, 13, 17, 2, 13, 17, 0, 13, 2, 2, 2, 2, 2, 18, 13, 2, 2, 2, 13, 13, 13, 17, 18, 13, 2, 13, 17, 18, 13, 2, 2, 13, 13, 17, 13, 2, 2, 2, 18, 13, 2, 2, 2, 13, 13, 13, 17, 18, 13, 2, 13, 17, 18, 13, 2, 13, 13, 13, 13, 0, 13, 13, 4, 13, 13, 10, 4, 13, 10, 2, 13, 10, 4, 13, 10, 17, 13, 10, 4, 13, 10, 2, 13, 10, 2, 13, 10, 13, 13, 10, 4, 13, 10, 12, 13, 10, 4, 13, 10, 2, 13 ]
[ [ 236, 2 ], [ 12, 11 ], [ 55, 16 ], [ 22, 19 ], [ 11, 20 ], [ 27, 24 ], [ 11, 25 ], [ 30, 29 ], [ 55, 34 ], [ 40, 37 ], [ 11, 38 ], [ 29, 39 ], [ 237, 44 ], [ 29, 45 ], [ 11, 47 ], [ 237, 49 ], [ 29, 50 ], [ 237, 51 ], [ 11, 53 ], [ 55, 55 ], [ 254, 57 ], [ 221, 69 ], [ 249, 71 ], [ 224, 78 ], [ 89, 88 ], [ 100, 95 ], [ 225, 96 ], [ 88, 98 ], [ 225, 103 ], [ 88, 104 ], [ 222, 106 ], [ 88, 108 ], [ 237, 110 ], [ 113, 112 ], [ 126, 121 ], [ 255, 122 ], [ 112, 124 ], [ 255, 129 ], [ 112, 130 ], [ 112, 132 ], [ 237, 134 ], [ 251, 136 ], [ 251, 145 ], [ 251, 146 ], [ 251, 147 ], [ 230, 149 ], [ 153, 152 ], [ 246, 156 ], [ 228, 159 ], [ 239, 162 ], [ 255, 169 ], [ 152, 173 ], [ 234, 174 ], [ 252, 175 ], [ 225, 178 ], [ 152, 180 ], [ 225, 183 ], [ 234, 186 ], [ 252, 187 ], [ 237, 189 ], [ 255, 194 ], [ 252, 198 ], [ 228, 199 ], [ 152, 200 ], [ 225, 203 ], [ 252, 205 ], [ 225, 208 ], [ 228, 210 ], [ 152, 211 ], [ 237, 212 ], [ 237, 213 ], [ 242, 215 ], [ 237, 216 ], [ 243, 219 ], [ 240, 219 ], [ 231, 219 ], [ 221, 222 ], [ 224, 225 ], [ 251, 228 ], [ 230, 231 ], [ 251, 234 ], [ 236, 237 ], [ 239, 240 ], [ 237, 242 ], [ 242, 243 ], [ 251, 246 ], [ 251, 252 ], [ 254, 255 ] ]
[ "Q = 10**9+7\ndef getInv(N):#Qはmod\n inv = [0] * (N + 1)\n inv[0] = 1\n inv[1] = 1\n for i in range(2, N + 1):\n inv[i] = (-(Q // i) * inv[Q%i]) % Q\n return inv\nmodfunctional = [1]*(2*10**5+1)\nmodinv = getInv(10**5+1)\nmodinvfunctional = [1]*(10**5+1)\nfor i in range(10**5):\n modinvfunctional[i+1] = (modinvfunctional[i]*modinv[i+1])%Q\nfor i in range(2*10**5):\n modfunctional[i+1] = (modfunctional[i]*(i+1))%Q\nH, W, A, B = map( int, input().split())\nans = 0\nfor i in range(B+1, W+1):\n ans += (modfunctional[i+H-A-2]*modinvfunctional[i-1]*modinvfunctional[H-A-1]%Q)*(modfunctional[A+W-i-1]*modinvfunctional[A-1]*modinvfunctional[W-i]%Q)%Q\n ans %= Q\nprint(ans)", "Q = 10**9+7", "Q", "10**9+7", "10**9", "10", "9", "7", "def getInv(N):#Qはmod\n inv = [0] * (N + 1)\n inv[0] = 1\n inv[1] = 1\n for i in range(2, N + 1):\n inv[i] = (-(Q // i) * inv[Q%i]) % Q\n return inv", "getInv", "inv = [0] * (N + 1)", "inv", "[0] * (N + 1)", "[0]", "0", "N + 1", "N", "1", "inv[0] = 1", "inv[0]", "inv", "0", "1", "inv[1] = 1", "inv[1]", "inv", "1", "1", "for i in range(2, N + 1):\n inv[i] = (-(Q // i) * inv[Q%i]) % Q\n ", "i", "range(2, N + 1)", "range", "2", "N + 1", "N", "1", "inv[i] = (-(Q // i) * inv[Q%i]) % Q", "inv[i]", "inv", "i", "(-(Q // i) * inv[Q%i]) % Q", "-(Q // i) * inv[Q%i]", "-(Q // i)", "Q // i", "Q", "i", "inv[Q%i]", "inv", "Q%i", "Q", "i", "Q", "return inv", "inv", "N", "N", "modfunctional = [1]*(2*10**5+1)", "modfunctional", "[1]*(2*10**5+1)", "[1]", "1", "2*10**5+1", "2*10**5", "2", "10**5", "10", "5", "1", "modinv = getInv(10**5+1)", "modinv", "getInv(10**5+1)", "getInv", "10**5+1", "10**5", "10", "5", "1", "modinvfunctional = [1]*(10**5+1)", "modinvfunctional", "[1]*(10**5+1)", "[1]", "1", "10**5+1", "10**5", "10", "5", "1", "for i in range(10**5):\n modinvfunctional[i+1] = (modinvfunctional[i]*modinv[i+1])%Q", "i", "range(10**5)", "range", "10**5", "10", "5", "modinvfunctional[i+1] = (modinvfunctional[i]*modinv[i+1])%Q", "modinvfunctional[i+1]", "modinvfunctional", "i+1", "i", "1", "(modinvfunctional[i]*modinv[i+1])%Q", "modinvfunctional[i]*modinv[i+1]", "modinvfunctional[i]", "modinvfunctional", "i", "modinv[i+1]", "modinv", "i+1", "i", "1", "Q", "for i in range(2*10**5):\n modfunctional[i+1] = (modfunctional[i]*(i+1))%Q", "i", "range(2*10**5)", "range", "2*10**5", "2", "10**5", "10", "5", "modfunctional[i+1] = (modfunctional[i]*(i+1))%Q", "modfunctional[i+1]", "modfunctional", "i+1", "i", "1", "(modfunctional[i]*(i+1))%Q", "modfunctional[i]*(i+1)", "modfunctional[i]", "modfunctional", "i", "i+1", "i", "1", "Q", "H, W, A, B = map( int, input().split())", "H", "map( int, input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "ans = 0", "ans", "0", "for i in range(B+1, W+1):\n ans += (modfunctional[i+H-A-2]*modinvfunctional[i-1]*modinvfunctional[H-A-1]%Q)*(modfunctional[A+W-i-1]*modinvfunctional[A-1]*modinvfunctional[W-i]%Q)%Q\n ans %= Q", "i", "range(B+1, W+1)", "range", "B+1", "B", "1", "W+1", "W", "1", "ans += (modfunctional[i+H-A-2]*modinvfunctional[i-1]*modinvfunctional[H-A-1]%Q)*(modfunctional[A+W-i-1]*modinvfunctional[A-1]*modinvfunctional[W-i]%Q)%Q", "ans", "(modfunctional[i+H-A-2]*modinvfunctional[i-1]*modinvfunctional[H-A-1]%Q)*(modfunctional[A+W-i-1]*modinvfunctional[A-1]*modinvfunctional[W-i]%Q)%Q", "(modfunctional[i+H-A-2]*modinvfunctional[i-1]*modinvfunctional[H-A-1]%Q)*(modfunctional[A+W-i-1]*modinvfunctional[A-1]*modinvfunctional[W-i]%Q)", "modfunctional[i+H-A-2]*modinvfunctional[i-1]*modinvfunctional[H-A-1]%Q", "modfunctional[i+H-A-2]*modinvfunctional[i-1]*modinvfunctional[H-A-1]", "modfunctional[i+H-A-2]*modinvfunctional[i-1]", "modfunctional[i+H-A-2]", "modfunctional", "i+H-A-2", "i+H-A", "i+H", "i", "H", "A", "2", "modinvfunctional[i-1]", "modinvfunctional", "i-1", "i", "1", "modinvfunctional[H-A-1]", "modinvfunctional", "H-A-1", "H-A", "H", "A", "1", "Q", "modfunctional[A+W-i-1]*modinvfunctional[A-1]*modinvfunctional[W-i]%Q", "modfunctional[A+W-i-1]*modinvfunctional[A-1]*modinvfunctional[W-i]", "modfunctional[A+W-i-1]*modinvfunctional[A-1]", "modfunctional[A+W-i-1]", "modfunctional", "A+W-i-1", "A+W-i", "A+W", "A", "W", "i", "1", "modinvfunctional[A-1]", "modinvfunctional", "A-1", "A", "1", "modinvfunctional[W-i]", "modinvfunctional", "W-i", "W", "i", "Q", "Q", "ans %= Q", "ans", "Q", "print(ans)", "print", "ans", "modinv = getInv(10**5+1)", "getInv(10**5+1)", "modinv", "modinvfunctional = [1]*(10**5+1)", "[1]*(10**5+1)", "modinvfunctional", "W, A, B = map( int, input().split())", "map( int, input().split())", "W", "ans = 0", "0", "ans", "H, W, A, B = map( int, input().split())", "map( int, input().split())", "H", "Q = 10**9+7", "10**9+7", "Q", "ans += (modfunctional[i+H-A-2]*modinvfunctional[i-1]*modinvfunctional[H-A-1]%Q)*(modfunctional[A+W-i-1]*modinvfunctional[A-1]*modinvfunctional[W-i]%Q)%Q", "(modfunctional[i+H-A-2]*modinvfunctional[i-1]*modinvfunctional[H-A-1]%Q)*(modfunctional[A+W-i-1]*modinvfunctional[A-1]*modinvfunctional[W-i]%Q)%Q", "ans", "ans %= Q", "Q", "ans", "B = map( int, input().split())", "map( int, input().split())", "B", "def getInv(N):#Qはmod\n inv = [0] * (N + 1)\n inv[0] = 1\n inv[1] = 1\n for i in range(2, N + 1):\n inv[i] = (-(Q // i) * inv[Q%i]) % Q\n return inv", "def getInv(N):#Qはmod\n inv = [0] * (N + 1)\n inv[0] = 1\n inv[1] = 1\n for i in range(2, N + 1):\n inv[i] = (-(Q // i) * inv[Q%i]) % Q\n return inv", "getInv", "A, B = map( int, input().split())", "map( int, input().split())", "A", "modfunctional = [1]*(2*10**5+1)", "[1]*(2*10**5+1)", "modfunctional" ]
Q = 10**9+7 def getInv(N):#Qはmod inv = [0] * (N + 1) inv[0] = 1 inv[1] = 1 for i in range(2, N + 1): inv[i] = (-(Q // i) * inv[Q%i]) % Q return inv modfunctional = [1]*(2*10**5+1) modinv = getInv(10**5+1) modinvfunctional = [1]*(10**5+1) for i in range(10**5): modinvfunctional[i+1] = (modinvfunctional[i]*modinv[i+1])%Q for i in range(2*10**5): modfunctional[i+1] = (modfunctional[i]*(i+1))%Q H, W, A, B = map( int, input().split()) ans = 0 for i in range(B+1, W+1): ans += (modfunctional[i+H-A-2]*modinvfunctional[i-1]*modinvfunctional[H-A-1]%Q)*(modfunctional[A+W-i-1]*modinvfunctional[A-1]*modinvfunctional[W-i]%Q)%Q ans %= Q print(ans)
[ 7, 15, 13, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 4, 13, 17, 17, 17, 12, 13, 29, 4, 13, 13, 2, 13, 17, 13, 23, 13, 23, 13, 2, 2, 17, 17, 17, 12, 13, 0, 13, 2, 2, 18, 13, 2, 13, 13, 18, 13, 13, 13, 29, 2, 2, 18, 13, 13, 4, 13, 13, 13, 23, 13, 23, 13, 0, 13, 39, 17, 28, 13, 4, 13, 17, 2, 13, 13, 4, 18, 13, 13, 2, 2, 13, 18, 13, 2, 13, 17, 13, 0, 13, 17, 28, 13, 4, 13, 2, 13, 13, 0, 13, 2, 2, 4, 13, 2, 2, 13, 17, 13, 13, 4, 13, 2, 2, 2, 2, 13, 13, 13, 17, 13, 2, 2, 13, 13, 17, 13, 0, 13, 13, 0, 13, 2, 13, 13, 4, 13, 4, 13, 13, 17, 17, 10, 4, 13, 10, 4, 13, 10, 2, 13, 10, 12, 13, 10, 2, 13, 10, 17, 13, 10, 13, 13, 10, 4, 13, 10, 39, 13, 10, 12, 13, 10, 4, 13, 10, 2, 13 ]
[ [ 182, 4 ], [ 182, 13 ], [ 182, 14 ], [ 182, 15 ], [ 164, 17 ], [ 35, 29 ], [ 37, 31 ], [ 37, 33 ], [ 35, 35 ], [ 38, 37 ], [ 47, 46 ], [ 69, 52 ], [ 71, 53 ], [ 71, 56 ], [ 165, 57 ], [ 69, 63 ], [ 180, 65 ], [ 46, 66 ], [ 165, 67 ], [ 69, 69 ], [ 71, 71 ], [ 176, 73 ], [ 78, 77 ], [ 174, 82 ], [ 156, 83 ], [ 177, 86 ], [ 77, 90 ], [ 177, 92 ], [ 77, 94 ], [ 165, 96 ], [ 167, 98 ], [ 102, 101 ], [ 174, 105 ], [ 153, 106 ], [ 185, 108 ], [ 162, 112 ], [ 183, 115 ], [ 101, 117 ], [ 101, 118 ], [ 162, 120 ], [ 156, 125 ], [ 174, 126 ], [ 183, 127 ], [ 101, 129 ], [ 156, 132 ], [ 183, 133 ], [ 165, 135 ], [ 170, 137 ], [ 186, 138 ], [ 158, 140 ], [ 171, 142 ], [ 168, 142 ], [ 159, 142 ], [ 165, 143 ], [ 159, 148 ], [ 171, 148 ], [ 168, 148 ], [ 182, 153 ], [ 182, 156 ], [ 158, 159 ], [ 164, 165 ], [ 167, 168 ], [ 186, 170 ], [ 170, 171 ], [ 182, 174 ], [ 176, 177 ], [ 182, 183 ], [ 185, 186 ] ]
[ "import math\n\nh, w, a, b = map(int, input().split())\n\n#divmod\nmod = pow(10,9)+7\ndef divmod(num, mod=10**9+7):\n return pow(num, mod-2, mod)\n\n#combination\ndef comb(a,b):\n\tp=fact[a-b]*fact[b]%mod\n\treturn fact[a]*divmod(p)%mod\n\nfact = [1]\nfor i in range(1,h+w):\n fact.append(i*fact[i-1]%mod)\n#print(fact)\n\nans = 0\nfor j in range(h-a):\n tmp = comb(b-1+j,j)*comb(w+h-b-2-j,w-b-1)%mod\n ans += tmp\n ans = ans%mod\n# ans = ans + fact[b-1+j]*fact[w+h-b-2-j]/fact[b-1]/fact[j]/fact[w-b-1]/fact[h-1-j]\nprint(int(ans))\n\n'''\n単純なh*wのマス目だった場合\n#h-row / w-col\ncon = [[0]*w]*h\nfor i in range(h):\n con[i][0] = 1\nfor j in range(w):\n con[0][j] = 1\n\nfor k in range(1,h):\n for l in range(1,w):\n con[k][l] = con[k-1][l] + con[k][l-1]\n\nprint(con[h-1][w-1])\n'''\n\n'''\n全量を計算するやり方\nH*Wがデカすぎると時間というよりもメモリエラー\nprint('initialize')\ncon = [[0 for i in range(w)] for j in range(h)]\n#リスト内包表記で作らないとバグる\n#ダメな例 -> con = [[0]*w]*h\n#https://qiita.com/utgwkk/items/5ad2527f19150ae33322\nprint('initialize finished')\n\n\nfor i in range(h-a):\n con[i][0] = 1\n#print(con[0])\nfor j in range(w):\n #wは先に初期化やっちゃう\n con[0][j] = 1\n#print(con)\n\nfor k in range(1,h-a):\n# print(k)\n for l in range(1,b+1):\n con[k][l] = con[k-1][l] + con[k][l-1]\n#print(con[h-a-1][b-1])\n#print(con[h-a][b-1])\n#print(con[h-a-1][b])\n\nfor m in range(1,h):\n# print('---{} row---'.format(m))\n# print(con[m])\n for n in range(b,w):\n# print('m,n:('+str(m)+','+str(n)+')')\n con[m][n] = con[m-1][n] + con[m][n-1]\n# print(con[m])\n\nprint(con[h-1][w-1])\n'''\n", "import math", "math", "h, w, a, b = map(int, input().split())", "h", "map(int, input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "w", "a", "b", "mod = pow(10,9)+7", "mod", "pow(10,9)+7", "pow(10,9)", "pow", "10", "9", "7", "def divmod(num, mod=10**9+7):\n return pow(num, mod-2, mod)\n\n#combination", "divmod", "return pow(num, mod-2, mod)", "pow(num, mod-2, mod)", "pow", "num", "mod-2", "mod", "2", "mod", "num", "num", "mod=10**9+7", "mod", "10**9+7", "10**9", "10", "9", "7", "def comb(a,b):\n\tp=fact[a-b]*fact[b]%mod\n\treturn fact[a]*divmod(p)%mod", "comb", "p=fact[a-b]*fact[b]%mod", "p", "fact[a-b]*fact[b]%mod", "fact[a-b]*fact[b]", "fact[a-b]", "fact", "a-b", "a", "b", "fact[b]", "fact", "b", "mod", "return fact[a]*divmod(p)%mod", "fact[a]*divmod(p)%mod", "fact[a]*divmod(p)", "fact[a]", "fact", "a", "divmod(p)", "divmod", "p", "mod", "a", "a", "b", "b", "fact = [1]", "fact", "[1]", "1", "for i in range(1,h+w):\n fact.append(i*fact[i-1]%mod)\n#print(fact)", "i", "range(1,h+w)", "range", "1", "h+w", "h", "w", "fact.append(i*fact[i-1]%mod)", "fact.append", "fact", "append", "i*fact[i-1]%mod", "i*fact[i-1]", "i", "fact[i-1]", "fact", "i-1", "i", "1", "mod", "ans = 0", "ans", "0", "for j in range(h-a):\n tmp = comb(b-1+j,j)*comb(w+h-b-2-j,w-b-1)%mod\n ans += tmp\n ans = ans%mod\n# ans = ans + fact[b-1+j]*fact[w+h-b-2-j]/fact[b-1]/fact[j]/fact[w-b-1]/fact[h-1-j]", "j", "range(h-a)", "range", "h-a", "h", "a", "tmp = comb(b-1+j,j)*comb(w+h-b-2-j,w-b-1)%mod", "tmp", "comb(b-1+j,j)*comb(w+h-b-2-j,w-b-1)%mod", "comb(b-1+j,j)*comb(w+h-b-2-j,w-b-1)", "comb(b-1+j,j)", "comb", "b-1+j", "b-1", "b", "1", "j", "j", "comb(w+h-b-2-j,w-b-1)", "comb", "w+h-b-2-j", "w+h-b-2", "w+h-b", "w+h", "w", "h", "b", "2", "j", "w-b-1", "w-b", "w", "b", "1", "mod", "ans += tmp", "ans", "tmp", "ans = ans%mod", "ans", "ans%mod", "ans", "mod", "print(int(ans))", "print", "int(ans)", "int", "ans", "'''\n単純なh*wのマス目だった場合\n#h-row / w-col\ncon = [[0]*w]*h\nfor i in range(h):\n con[i][0] = 1\nfor j in range(w):\n con[0][j] = 1\n\nfor k in range(1,h):\n for l in range(1,w):\n con[k][l] = con[k-1][l] + con[k][l-1]\n\nprint(con[h-1][w-1])\n'''", "'''\n全量を計算するやり方\nH*Wがデカすぎると時間というよりもメモリエラー\nprint('initialize')\ncon = [[0 for i in range(w)] for j in range(h)]\n#リスト内包表記で作らないとバグる\n#ダメな例 -> con = [[0]*w]*h\n#https://qiita.com/utgwkk/items/5ad2527f19150ae33322\nprint('initialize finished')\n\n\nfor i in range(h-a):\n con[i][0] = 1\n#print(con[0])\nfor j in range(w):\n #wは先に初期化やっちゃう\n con[0][j] = 1\n#print(con)\n\nfor k in range(1,h-a):\n# print(k)\n for l in range(1,b+1):\n con[k][l] = con[k-1][l] + con[k][l-1]\n#print(con[h-a-1][b-1])\n#print(con[h-a][b-1])\n#print(con[h-a-1][b])\n\nfor m in range(1,h):\n# print('---{} row---'.format(m))\n# print(con[m])\n for n in range(b,w):\n# print('m,n:('+str(m)+','+str(n)+')')\n con[m][n] = con[m-1][n] + con[m][n-1]\n# print(con[m])\n\nprint(con[h-1][w-1])\n'''", "a, b = map(int, input().split())", "map(int, input().split())", "a", "w, a, b = map(int, input().split())", "map(int, input().split())", "w", "ans = ans%mod", "ans%mod", "ans", "def comb(a,b):\n\tp=fact[a-b]*fact[b]%mod\n\treturn fact[a]*divmod(p)%mod", "def comb(a,b):\n\tp=fact[a-b]*fact[b]%mod\n\treturn fact[a]*divmod(p)%mod", "comb", "mod = pow(10,9)+7", "pow(10,9)+7", "mod", "ans = 0", "0", "ans", "ans += tmp", "tmp", "ans", "h, w, a, b = map(int, input().split())", "map(int, input().split())", "h", "fact = [1]", "[1]", "fact", "def divmod(num, mod=10**9+7):\n return pow(num, mod-2, mod)\n\n#combination", "def divmod(num, mod=10**9+7):\n return pow(num, mod-2, mod)\n\n#combination", "divmod", "b = map(int, input().split())", "map(int, input().split())", "b", "tmp = comb(b-1+j,j)*comb(w+h-b-2-j,w-b-1)%mod", "comb(b-1+j,j)*comb(w+h-b-2-j,w-b-1)%mod", "tmp" ]
import math h, w, a, b = map(int, input().split()) #divmod mod = pow(10,9)+7 def divmod(num, mod=10**9+7): return pow(num, mod-2, mod) #combination def comb(a,b): p=fact[a-b]*fact[b]%mod return fact[a]*divmod(p)%mod fact = [1] for i in range(1,h+w): fact.append(i*fact[i-1]%mod) #print(fact) ans = 0 for j in range(h-a): tmp = comb(b-1+j,j)*comb(w+h-b-2-j,w-b-1)%mod ans += tmp ans = ans%mod # ans = ans + fact[b-1+j]*fact[w+h-b-2-j]/fact[b-1]/fact[j]/fact[w-b-1]/fact[h-1-j] print(int(ans)) ''' 単純なh*wのマス目だった場合 #h-row / w-col con = [[0]*w]*h for i in range(h): con[i][0] = 1 for j in range(w): con[0][j] = 1 for k in range(1,h): for l in range(1,w): con[k][l] = con[k-1][l] + con[k][l-1] print(con[h-1][w-1]) ''' ''' 全量を計算するやり方 H*Wがデカすぎると時間というよりもメモリエラー print('initialize') con = [[0 for i in range(w)] for j in range(h)] #リスト内包表記で作らないとバグる #ダメな例 -> con = [[0]*w]*h #https://qiita.com/utgwkk/items/5ad2527f19150ae33322 print('initialize finished') for i in range(h-a): con[i][0] = 1 #print(con[0]) for j in range(w): #wは先に初期化やっちゃう con[0][j] = 1 #print(con) for k in range(1,h-a): # print(k) for l in range(1,b+1): con[k][l] = con[k-1][l] + con[k][l-1] #print(con[h-a-1][b-1]) #print(con[h-a][b-1]) #print(con[h-a-1][b]) for m in range(1,h): # print('---{} row---'.format(m)) # print(con[m]) for n in range(b,w): # print('m,n:('+str(m)+','+str(n)+')') con[m][n] = con[m-1][n] + con[m][n-1] # print(con[m]) print(con[h-1][w-1]) '''
[ 7, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 39, 17, 17, 0, 13, 39, 17, 17, 0, 13, 39, 17, 17, 28, 13, 4, 13, 17, 2, 2, 13, 13, 17, 4, 18, 13, 13, 2, 2, 18, 13, 17, 13, 13, 4, 18, 13, 13, 2, 2, 40, 18, 13, 2, 13, 13, 2, 13, 13, 13, 4, 18, 13, 13, 2, 2, 18, 13, 17, 18, 13, 17, 13, 0, 13, 17, 28, 13, 4, 13, 2, 13, 13, 0, 13, 2, 2, 18, 13, 2, 2, 13, 13, 17, 18, 13, 2, 2, 2, 2, 2, 13, 17, 13, 13, 13, 17, 13, 0, 13, 2, 2, 13, 18, 13, 2, 13, 17, 13, 0, 13, 2, 2, 13, 18, 13, 13, 13, 0, 13, 2, 2, 13, 18, 13, 2, 2, 13, 13, 17, 13, 0, 13, 2, 2, 13, 18, 13, 2, 2, 13, 13, 17, 13, 0, 13, 13, 0, 13, 13, 4, 13, 13, 10, 2, 13, 10, 4, 13, 10, 2, 13, 10, 39, 13, 10, 13, 13, 10, 4, 13, 10, 13, 13, 10, 2, 13, 10, 4, 13, 10, 39, 13, 10, 2, 13, 10, 17, 13, 10, 39, 13, 10, 2, 13, 10, 2, 13, 10, 4, 13 ]
[ [ 222, 2 ], [ 222, 11 ], [ 222, 12 ], [ 222, 13 ], [ 183, 15 ], [ 213, 22 ], [ 186, 27 ], [ 204, 32 ], [ 38, 37 ], [ 193, 43 ], [ 181, 44 ], [ 214, 48 ], [ 214, 53 ], [ 37, 55 ], [ 184, 56 ], [ 187, 59 ], [ 187, 65 ], [ 184, 67 ], [ 37, 68 ], [ 184, 70 ], [ 37, 71 ], [ 184, 72 ], [ 205, 75 ], [ 205, 80 ], [ 187, 83 ], [ 184, 85 ], [ 210, 87 ], [ 91, 90 ], [ 193, 94 ], [ 223, 95 ], [ 207, 97 ], [ 214, 101 ], [ 90, 104 ], [ 202, 105 ], [ 214, 108 ], [ 193, 114 ], [ 90, 116 ], [ 181, 117 ], [ 202, 118 ], [ 184, 120 ], [ 198, 122 ], [ 208, 125 ], [ 178, 125 ], [ 220, 125 ], [ 217, 125 ], [ 199, 125 ], [ 205, 127 ], [ 202, 129 ], [ 184, 131 ], [ 216, 133 ], [ 199, 136 ], [ 208, 136 ], [ 178, 136 ], [ 220, 136 ], [ 217, 136 ], [ 205, 138 ], [ 90, 139 ], [ 184, 140 ], [ 219, 142 ], [ 217, 145 ], [ 199, 145 ], [ 208, 145 ], [ 178, 145 ], [ 220, 145 ], [ 205, 147 ], [ 181, 150 ], [ 202, 151 ], [ 184, 153 ], [ 177, 155 ], [ 220, 158 ], [ 217, 158 ], [ 199, 158 ], [ 208, 158 ], [ 178, 158 ], [ 205, 160 ], [ 193, 163 ], [ 90, 164 ], [ 184, 166 ], [ 195, 168 ], [ 178, 169 ], [ 220, 169 ], [ 217, 169 ], [ 199, 169 ], [ 208, 169 ], [ 189, 171 ], [ 184, 172 ], [ 190, 175 ], [ 196, 175 ], [ 211, 175 ], [ 177, 178 ], [ 222, 181 ], [ 183, 184 ], [ 186, 187 ], [ 184, 189 ], [ 189, 190 ], [ 222, 193 ], [ 178, 195 ], [ 220, 195 ], [ 217, 195 ], [ 199, 195 ], [ 208, 195 ], [ 195, 196 ], [ 198, 199 ], [ 222, 202 ], [ 204, 205 ], [ 207, 208 ], [ 210, 211 ], [ 213, 214 ], [ 216, 217 ], [ 219, 220 ], [ 222, 223 ] ]
[ "H, W, A, B = map(int,input().split())\nmod = 10**9+7\nC = [1,1]\ninv = [0,1]\nCinv = [1,1]\nfor i in range(2,H+W+1):\n C.append((C[-1]*i)%mod)\n inv.append((-inv[mod%i]*(mod//i)%mod))\n Cinv.append(Cinv[-1]*inv[-1]%mod)\nans = 0\nfor i in range(H-A):\n a = (C[i+B-1]*C[H-1-i+W-B-1])%mod\n a = (a*Cinv[B-1])%mod\n a = (a*Cinv[i])%mod\n a = (a*Cinv[W-B-1])%mod\n a = (a*Cinv[H-i-1])%mod\n ans += a\n ans %= mod\nprint(ans)", "H, W, A, B = map(int,input().split())", "H", "map(int,input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "mod = 10**9+7", "mod", "10**9+7", "10**9", "10", "9", "7", "C = [1,1]", "C", "[1,1]", "1", "1", "inv = [0,1]", "inv", "[0,1]", "0", "1", "Cinv = [1,1]", "Cinv", "[1,1]", "1", "1", "for i in range(2,H+W+1):\n C.append((C[-1]*i)%mod)\n inv.append((-inv[mod%i]*(mod//i)%mod))\n Cinv.append(Cinv[-1]*inv[-1]%mod)", "i", "range(2,H+W+1)", "range", "2", "H+W+1", "H+W", "H", "W", "1", "C.append((C[-1]*i)%mod)", "C.append", "C", "append", "(C[-1]*i)%mod", "C[-1]*i", "C[-1]", "C", "-1", "i", "mod", "inv.append((-inv[mod%i]*(mod//i)%mod))", "inv.append", "inv", "append", "-inv[mod%i]*(mod//i)%mod", "-inv[mod%i]*(mod//i)", "-inv[mod%i]", "inv[mod%i]", "inv", "mod%i", "mod", "i", "mod//i", "mod", "i", "mod", "Cinv.append(Cinv[-1]*inv[-1]%mod)", "Cinv.append", "Cinv", "append", "Cinv[-1]*inv[-1]%mod", "Cinv[-1]*inv[-1]", "Cinv[-1]", "Cinv", "-1", "inv[-1]", "inv", "-1", "mod", "ans = 0", "ans", "0", "for i in range(H-A):\n a = (C[i+B-1]*C[H-1-i+W-B-1])%mod\n a = (a*Cinv[B-1])%mod\n a = (a*Cinv[i])%mod\n a = (a*Cinv[W-B-1])%mod\n a = (a*Cinv[H-i-1])%mod\n ans += a\n ans %= mod", "i", "range(H-A)", "range", "H-A", "H", "A", "a = (C[i+B-1]*C[H-1-i+W-B-1])%mod", "a", "(C[i+B-1]*C[H-1-i+W-B-1])%mod", "C[i+B-1]*C[H-1-i+W-B-1]", "C[i+B-1]", "C", "i+B-1", "i+B", "i", "B", "1", "C[H-1-i+W-B-1]", "C", "H-1-i+W-B-1", "H-1-i+W-B", "H-1-i+W", "H-1-i", "H-1", "H", "1", "i", "W", "B", "1", "mod", "a = (a*Cinv[B-1])%mod", "a", "(a*Cinv[B-1])%mod", "a*Cinv[B-1]", "a", "Cinv[B-1]", "Cinv", "B-1", "B", "1", "mod", "a = (a*Cinv[i])%mod", "a", "(a*Cinv[i])%mod", "a*Cinv[i]", "a", "Cinv[i]", "Cinv", "i", "mod", "a = (a*Cinv[W-B-1])%mod", "a", "(a*Cinv[W-B-1])%mod", "a*Cinv[W-B-1]", "a", "Cinv[W-B-1]", "Cinv", "W-B-1", "W-B", "W", "B", "1", "mod", "a = (a*Cinv[H-i-1])%mod", "a", "(a*Cinv[H-i-1])%mod", "a*Cinv[H-i-1]", "a", "Cinv[H-i-1]", "Cinv", "H-i-1", "H-i", "H", "i", "1", "mod", "ans += a", "ans", "a", "ans %= mod", "ans", "mod", "print(ans)", "print", "ans", "a = (a*Cinv[H-i-1])%mod", "(a*Cinv[H-i-1])%mod", "a", "W, A, B = map(int,input().split())", "map(int,input().split())", "W", "mod = 10**9+7", "10**9+7", "mod", "inv = [0,1]", "[0,1]", "inv", "ans %= mod", "mod", "ans", "H, W, A, B = map(int,input().split())", "map(int,input().split())", "H", "ans += a", "a", "ans", "a = (a*Cinv[B-1])%mod", "(a*Cinv[B-1])%mod", "a", "B = map(int,input().split())", "map(int,input().split())", "B", "Cinv = [1,1]", "[1,1]", "Cinv", "a = (C[i+B-1]*C[H-1-i+W-B-1])%mod", "(C[i+B-1]*C[H-1-i+W-B-1])%mod", "a", "ans = 0", "0", "ans", "C = [1,1]", "[1,1]", "C", "a = (a*Cinv[i])%mod", "(a*Cinv[i])%mod", "a", "a = (a*Cinv[W-B-1])%mod", "(a*Cinv[W-B-1])%mod", "a", "A, B = map(int,input().split())", "map(int,input().split())", "A" ]
H, W, A, B = map(int,input().split()) mod = 10**9+7 C = [1,1] inv = [0,1] Cinv = [1,1] for i in range(2,H+W+1): C.append((C[-1]*i)%mod) inv.append((-inv[mod%i]*(mod//i)%mod)) Cinv.append(Cinv[-1]*inv[-1]%mod) ans = 0 for i in range(H-A): a = (C[i+B-1]*C[H-1-i+W-B-1])%mod a = (a*Cinv[B-1])%mod a = (a*Cinv[i])%mod a = (a*Cinv[W-B-1])%mod a = (a*Cinv[H-i-1])%mod ans += a ans %= mod print(ans)
[ 7, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 17, 0, 13, 2, 2, 17, 17, 17, 0, 13, 2, 2, 13, 13, 17, 0, 13, 2, 39, 17, 2, 13, 17, 0, 13, 2, 39, 17, 2, 13, 17, 28, 13, 4, 13, 17, 2, 13, 17, 0, 18, 13, 13, 2, 2, 13, 18, 13, 2, 13, 17, 13, 28, 13, 4, 13, 17, 2, 13, 17, 0, 18, 13, 13, 4, 13, 18, 13, 13, 2, 13, 17, 13, 12, 13, 0, 13, 2, 2, 2, 18, 13, 2, 13, 13, 18, 13, 13, 18, 13, 13, 13, 29, 13, 23, 13, 23, 13, 28, 13, 4, 13, 13, 13, 0, 13, 2, 4, 13, 13, 2, 2, 13, 13, 17, 4, 13, 2, 2, 13, 17, 13, 2, 13, 17, 0, 13, 13, 4, 13, 2, 13, 13, 10, 12, 13, 10, 2, 13, 10, 4, 13, 10, 2, 13, 10, 2, 13, 10, 4, 13, 10, 2, 13, 10, 13, 13, 10, 4, 13, 10, 4, 13, 10, 17, 13, 10, 2, 13 ]
[ [ 177, 2 ], [ 177, 11 ], [ 177, 12 ], [ 177, 13 ], [ 180, 15 ], [ 162, 18 ], [ 159, 25 ], [ 175, 28 ], [ 166, 29 ], [ 168, 32 ], [ 160, 37 ], [ 153, 40 ], [ 160, 45 ], [ 49, 48 ], [ 160, 53 ], [ 59, 56 ], [ 169, 57 ], [ 48, 58 ], [ 48, 61 ], [ 169, 63 ], [ 48, 65 ], [ 163, 67 ], [ 70, 69 ], [ 160, 74 ], [ 80, 77 ], [ 154, 78 ], [ 69, 79 ], [ 56, 82 ], [ 169, 83 ], [ 69, 84 ], [ 163, 86 ], [ 163, 88 ], [ 93, 92 ], [ 169, 97 ], [ 111, 99 ], [ 113, 100 ], [ 154, 102 ], [ 111, 103 ], [ 154, 105 ], [ 113, 106 ], [ 163, 107 ], [ 92, 109 ], [ 181, 109 ], [ 111, 111 ], [ 113, 113 ], [ 116, 115 ], [ 157, 118 ], [ 166, 119 ], [ 183, 121 ], [ 151, 124 ], [ 115, 125 ], [ 175, 128 ], [ 178, 129 ], [ 151, 132 ], [ 166, 135 ], [ 115, 137 ], [ 178, 139 ], [ 171, 142 ], [ 163, 143 ], [ 172, 147 ], [ 184, 147 ], [ 181, 147 ], [ 163, 148 ], [ 153, 154 ], [ 177, 157 ], [ 159, 160 ], [ 162, 163 ], [ 177, 166 ], [ 168, 169 ], [ 163, 171 ], [ 171, 172 ], [ 177, 175 ], [ 177, 178 ], [ 180, 181 ], [ 183, 184 ] ]
[ "H, W, A, B = map(int, input().split())\n\nans = 0 \nMOD = 10**9 + 7\nN = H + W - 2\nfac = [1] * (N+1)\ninv = [1] * (N+1)\n\n# 階乗\nfor i in range(1, N+1):\n fac[i] = i * fac[i - 1] % MOD\n \n# 普通の逆元テーブル\nfor i in range(1, N+1):\n inv[i] = pow(fac[i], MOD-2, MOD)\n \n \ndef f(x, y):\n ans = fac[x + y] * inv[x] * inv[y] % MOD\n return ans\n \n\nfor x in range(B, W):\n ans += f(x, H - A - 1) * f(W - 1 - x, A - 1)\n ans %= MOD\n \nprint(ans % MOD)", "H, W, A, B = map(int, input().split())", "H", "map(int, input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "ans = 0", "ans", "0", "MOD = 10**9 + 7", "MOD", "10**9 + 7", "10**9", "10", "9", "7", "N = H + W - 2", "N", "H + W - 2", "H + W", "H", "W", "2", "fac = [1] * (N+1)", "fac", "[1] * (N+1)", "[1]", "1", "N+1", "N", "1", "inv = [1] * (N+1)", "inv", "[1] * (N+1)", "[1]", "1", "N+1", "N", "1", "for i in range(1, N+1):\n fac[i] = i * fac[i - 1] % MOD\n \n# 普通の逆元テーブル", "i", "range(1, N+1)", "range", "1", "N+1", "N", "1", "fac[i] = i * fac[i - 1] % MOD", "fac[i]", "fac", "i", "i * fac[i - 1] % MOD", "i * fac[i - 1]", "i", "fac[i - 1]", "fac", "i - 1", "i", "1", "MOD", "for i in range(1, N+1):\n inv[i] = pow(fac[i], MOD-2, MOD)\n \n ", "i", "range(1, N+1)", "range", "1", "N+1", "N", "1", "inv[i] = pow(fac[i], MOD-2, MOD)", "inv[i]", "inv", "i", "pow(fac[i], MOD-2, MOD)", "pow", "fac[i]", "fac", "i", "MOD-2", "MOD", "2", "MOD", "def f(x, y):\n ans = fac[x + y] * inv[x] * inv[y] % MOD\n return ans\n ", "f", "ans = fac[x + y] * inv[x] * inv[y] % MOD", "ans", "fac[x + y] * inv[x] * inv[y] % MOD", "fac[x + y] * inv[x] * inv[y]", "fac[x + y] * inv[x]", "fac[x + y]", "fac", "x + y", "x", "y", "inv[x]", "inv", "x", "inv[y]", "inv", "y", "MOD", "return ans", "ans", "x", "x", "y", "y", "for x in range(B, W):\n ans += f(x, H - A - 1) * f(W - 1 - x, A - 1)\n ans %= MOD\n ", "x", "range(B, W)", "range", "B", "W", "ans += f(x, H - A - 1) * f(W - 1 - x, A - 1)", "ans", "f(x, H - A - 1) * f(W - 1 - x, A - 1)", "f(x, H - A - 1)", "f", "x", "H - A - 1", "H - A", "H", "A", "1", "f(W - 1 - x, A - 1)", "f", "W - 1 - x", "W - 1", "W", "1", "x", "A - 1", "A", "1", "ans %= MOD", "ans", "MOD", "print(ans % MOD)", "print", "ans % MOD", "ans", "MOD", "def f(x, y):\n ans = fac[x + y] * inv[x] * inv[y] % MOD\n return ans\n ", "def f(x, y):\n ans = fac[x + y] * inv[x] * inv[y] % MOD\n return ans\n ", "f", "inv = [1] * (N+1)", "[1] * (N+1)", "inv", "B = map(int, input().split())", "map(int, input().split())", "B", "N = H + W - 2", "H + W - 2", "N", "MOD = 10**9 + 7", "10**9 + 7", "MOD", "W, A, B = map(int, input().split())", "map(int, input().split())", "W", "fac = [1] * (N+1)", "[1] * (N+1)", "fac", "ans %= MOD", "MOD", "ans", "H, W, A, B = map(int, input().split())", "map(int, input().split())", "H", "A, B = map(int, input().split())", "map(int, input().split())", "A", "ans = 0", "0", "ans", "ans += f(x, H - A - 1) * f(W - 1 - x, A - 1)", "f(x, H - A - 1) * f(W - 1 - x, A - 1)", "ans" ]
H, W, A, B = map(int, input().split()) ans = 0 MOD = 10**9 + 7 N = H + W - 2 fac = [1] * (N+1) inv = [1] * (N+1) # 階乗 for i in range(1, N+1): fac[i] = i * fac[i - 1] % MOD # 普通の逆元テーブル for i in range(1, N+1): inv[i] = pow(fac[i], MOD-2, MOD) def f(x, y): ans = fac[x + y] * inv[x] * inv[y] % MOD return ans for x in range(B, W): ans += f(x, H - A - 1) * f(W - 1 - x, A - 1) ans %= MOD print(ans % MOD)
[ 7, 15, 13, 0, 13, 18, 18, 13, 13, 13, 6, 13, 12, 13, 0, 18, 13, 13, 13, 0, 18, 13, 13, 4, 18, 13, 13, 13, 0, 18, 13, 13, 4, 18, 13, 13, 13, 18, 13, 13, 23, 13, 23, 13, 23, 13, 2, 2, 17, 17, 17, 12, 13, 29, 2, 2, 2, 2, 18, 18, 13, 13, 13, 18, 18, 13, 13, 13, 18, 13, 13, 18, 18, 13, 13, 2, 13, 13, 18, 13, 13, 23, 13, 23, 13, 23, 13, 12, 13, 0, 13, 39, 17, 0, 13, 39, 17, 28, 13, 4, 13, 17, 2, 13, 17, 4, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 13, 18, 13, 13, 4, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 18, 18, 13, 13, 13, 18, 13, 13, 29, 39, 13, 13, 23, 13, 23, 13, 12, 13, 0, 13, 2, 39, 17, 2, 13, 17, 0, 18, 13, 17, 17, 28, 13, 4, 13, 17, 2, 13, 17, 0, 18, 13, 13, 2, 18, 13, 13, 2, 2, 2, 18, 13, 13, 13, 18, 13, 2, 18, 13, 13, 13, 18, 13, 13, 29, 13, 23, 13, 23, 13, 12, 13, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 4, 13, 2, 17, 17, 0, 13, 4, 13, 2, 13, 13, 2, 13, 13, 0, 13, 17, 28, 13, 4, 13, 13, 0, 13, 2, 4, 13, 2, 2, 2, 13, 13, 13, 17, 2, 13, 13, 2, 2, 17, 17, 17, 0, 13, 2, 4, 13, 2, 2, 2, 13, 13, 13, 17, 2, 13, 13, 2, 2, 17, 17, 17, 0, 13, 2, 2, 13, 2, 2, 13, 13, 2, 2, 17, 17, 17, 2, 2, 17, 17, 17, 4, 13, 13, 14, 2, 13, 17, 4, 13, 10, 18, 13, 10, 12, 13, 10, 6, 13 ]
[ [ 310, 4 ], [ 18, 15 ], [ 41, 16 ], [ 45, 17 ], [ 45, 18 ], [ 23, 20 ], [ 41, 21 ], [ 41, 25 ], [ 43, 27 ], [ 32, 29 ], [ 41, 30 ], [ 41, 34 ], [ 43, 36 ], [ 32, 37 ], [ 41, 38 ], [ 41, 41 ], [ 43, 43 ], [ 46, 45 ], [ 82, 60 ], [ 84, 62 ], [ 82, 65 ], [ 86, 67 ], [ 82, 69 ], [ 82, 73 ], [ 84, 76 ], [ 86, 77 ], [ 82, 79 ], [ 82, 82 ], [ 84, 84 ], [ 86, 86 ], [ 91, 90 ], [ 95, 94 ], [ 99, 98 ], [ 146, 103 ], [ 90, 107 ], [ 90, 112 ], [ 98, 114 ], [ 98, 116 ], [ 144, 118 ], [ 94, 122 ], [ 94, 127 ], [ 98, 129 ], [ 144, 133 ], [ 98, 135 ], [ 144, 137 ], [ 144, 144 ], [ 146, 146 ], [ 151, 150 ], [ 200, 155 ], [ 161, 158 ], [ 150, 159 ], [ 164, 163 ], [ 200, 168 ], [ 174, 171 ], [ 150, 172 ], [ 163, 173 ], [ 198, 176 ], [ 198, 182 ], [ 163, 184 ], [ 150, 186 ], [ 198, 189 ], [ 163, 191 ], [ 198, 193 ], [ 150, 196 ], [ 198, 198 ], [ 200, 200 ], [ 205, 204 ], [ 311, 211 ], [ 205, 213 ], [ 205, 214 ], [ 205, 215 ], [ 218, 217 ], [ 225, 224 ], [ 204, 228 ], [ 214, 229 ], [ 213, 231 ], [ 215, 232 ], [ 235, 234 ], [ 238, 237 ], [ 224, 240 ], [ 243, 242 ], [ 217, 245 ], [ 204, 249 ], [ 214, 250 ], [ 215, 251 ], [ 215, 254 ], [ 237, 255 ], [ 263, 262 ], [ 217, 265 ], [ 213, 269 ], [ 214, 270 ], [ 215, 271 ], [ 214, 274 ], [ 237, 275 ], [ 283, 282 ], [ 234, 285 ], [ 282, 285 ], [ 242, 288 ], [ 262, 289 ], [ 282, 302 ], [ 234, 302 ], [ 314, 308 ], [ 310, 311 ] ]
[ "import sys\ninput = sys.stdin.readline\n#str 注意\n\nclass Combination:\n def __init__(self, n_max, mod=10**9+7):\n self.mod = mod\n self.modinv = self.make_modinv_list(n_max)\n self.fac, self.facinv = self.make_factorial_list(n_max)\n\n def __call__(self, n, r):\n return self.fac[n] * self.facinv[r] % self.mod * self.facinv[n-r] % self.mod\n\n def make_factorial_list(self, n):\n # 階乗のリストと階乗のmod逆元のリストを返す O(n)\n # self.make_modinv_list()が先に実行されている必要がある\n fac = [1]\n facinv = [1]\n for i in range(1, n+1):\n fac.append(fac[i-1] * i % self.mod)\n facinv.append(facinv[i-1] * self.modinv[i] % self.mod)\n return fac, facinv\n\n def make_modinv_list(self, n):\n # 0からnまでのmod逆元のリストを返す O(n)\n modinv = [0] * (n+1)\n modinv[1] = 1\n for i in range(2, n+1):\n modinv[i] = self.mod - self.mod//i * modinv[self.mod%i] % self.mod\n return modinv\n\n\ndef main():\n h,w,a,b = map(int,input().split())\n cmb = Combination(10**6)\n roop = min(h-a,w-b)\n ans = 0\n for i in range(roop):\n before = cmb(h-a+b-1,b+i) % (10**9+7)\n after = cmb(w+a-b-1,a+i) % (10**9+7)\n ans = (ans+(before*after)%(10**9+7)) % (10**9+7)\n print(ans)\nif __name__=='__main__':\n main()", "import sys", "sys", "input = sys.stdin.readline", "input", "sys.stdin.readline", "sys.stdin", "sys", "stdin", "readline", "class Combination:\n def __init__(self, n_max, mod=10**9+7):\n self.mod = mod\n self.modinv = self.make_modinv_list(n_max)\n self.fac, self.facinv = self.make_factorial_list(n_max)\n\n def __call__(self, n, r):\n return self.fac[n] * self.facinv[r] % self.mod * self.facinv[n-r] % self.mod\n\n def make_factorial_list(self, n):\n # 階乗のリストと階乗のmod逆元のリストを返す O(n)\n # self.make_modinv_list()が先に実行されている必要がある\n fac = [1]\n facinv = [1]\n for i in range(1, n+1):\n fac.append(fac[i-1] * i % self.mod)\n facinv.append(facinv[i-1] * self.modinv[i] % self.mod)\n return fac, facinv\n\n def make_modinv_list(self, n):\n # 0からnまでのmod逆元のリストを返す O(n)\n modinv = [0] * (n+1)\n modinv[1] = 1\n for i in range(2, n+1):\n modinv[i] = self.mod - self.mod//i * modinv[self.mod%i] % self.mod\n return modinv", "Combination", "def __init__(self, n_max, mod=10**9+7):\n self.mod = mod\n self.modinv = self.make_modinv_list(n_max)\n self.fac, self.facinv = self.make_factorial_list(n_max)\n\n ", "__init__", "self.mod = mod", "self.mod", "self", "mod", "mod", "self.modinv = self.make_modinv_list(n_max)", "self.modinv", "self", "modinv", "self.make_modinv_list(n_max)", "self.make_modinv_list", "self", "make_modinv_list", "n_max", "self.fac, self.facinv = self.make_factorial_list(n_max)", "self.fac", "self", "fac", "self.make_factorial_list(n_max)", "self.make_factorial_list", "self", "make_factorial_list", "n_max", "self.facinv", "self", "facinv", "self", "self", "n_max", "n_max", "mod=10**9+7", "mod", "10**9+7", "10**9", "10", "9", "7", "def __call__(self, n, r):\n return self.fac[n] * self.facinv[r] % self.mod * self.facinv[n-r] % self.mod\n\n ", "__call__", "return self.fac[n] * self.facinv[r] % self.mod * self.facinv[n-r] % self.mod", "self.fac[n] * self.facinv[r] % self.mod * self.facinv[n-r] % self.mod", "self.fac[n] * self.facinv[r] % self.mod * self.facinv[n-r]", "self.fac[n] * self.facinv[r] % self.mod", "self.fac[n] * self.facinv[r]", "self.fac[n]", "self.fac", "self", "fac", "n", "self.facinv[r]", "self.facinv", "self", "facinv", "r", "self.mod", "self", "mod", "self.facinv[n-r]", "self.facinv", "self", "facinv", "n-r", "n", "r", "self.mod", "self", "mod", "self", "self", "n", "n", "r", "r", "def make_factorial_list(self, n):\n # 階乗のリストと階乗のmod逆元のリストを返す O(n)\n # self.make_modinv_list()が先に実行されている必要がある\n fac = [1]\n facinv = [1]\n for i in range(1, n+1):\n fac.append(fac[i-1] * i % self.mod)\n facinv.append(facinv[i-1] * self.modinv[i] % self.mod)\n return fac, facinv\n\n ", "make_factorial_list", "fac = [1]", "fac", "[1]", "1", "facinv = [1]", "facinv", "[1]", "1", "for i in range(1, n+1):\n fac.append(fac[i-1] * i % self.mod)\n facinv.append(facinv[i-1] * self.modinv[i] % self.mod)\n ", "i", "range(1, n+1)", "range", "1", "n+1", "n", "1", "fac.append(fac[i-1] * i % self.mod)", "fac.append", "fac", "append", "fac[i-1] * i % self.mod", "fac[i-1] * i", "fac[i-1]", "fac", "i-1", "i", "1", "i", "self.mod", "self", "mod", "facinv.append(facinv[i-1] * self.modinv[i] % self.mod)", "facinv.append", "facinv", "append", "facinv[i-1] * self.modinv[i] % self.mod", "facinv[i-1] * self.modinv[i]", "facinv[i-1]", "facinv", "i-1", "i", "1", "self.modinv[i]", "self.modinv", "self", "modinv", "i", "self.mod", "self", "mod", "return fac, facinv", "return fac, facinv", "fac", "facinv", "self", "self", "n", "n", "def make_modinv_list(self, n):\n # 0からnまでのmod逆元のリストを返す O(n)\n modinv = [0] * (n+1)\n modinv[1] = 1\n for i in range(2, n+1):\n modinv[i] = self.mod - self.mod//i * modinv[self.mod%i] % self.mod\n return modinv", "make_modinv_list", "modinv = [0] * (n+1)", "modinv", "[0] * (n+1)", "[0]", "0", "n+1", "n", "1", "modinv[1] = 1", "modinv[1]", "modinv", "1", "1", "for i in range(2, n+1):\n modinv[i] = self.mod - self.mod//i * modinv[self.mod%i] % self.mod\n ", "i", "range(2, n+1)", "range", "2", "n+1", "n", "1", "modinv[i] = self.mod - self.mod//i * modinv[self.mod%i] % self.mod", "modinv[i]", "modinv", "i", "self.mod - self.mod//i * modinv[self.mod%i] % self.mod", "self.mod", "self", "mod", "self.mod//i * modinv[self.mod%i] % self.mod", "self.mod//i * modinv[self.mod%i]", "self.mod//i", "self.mod", "self", "mod", "i", "modinv[self.mod%i]", "modinv", "self.mod%i", "self.mod", "self", "mod", "i", "self.mod", "self", "mod", "return modinv", "modinv", "self", "self", "n", "n", "def main():\n h,w,a,b = map(int,input().split())\n cmb = Combination(10**6)\n roop = min(h-a,w-b)\n ans = 0\n for i in range(roop):\n before = cmb(h-a+b-1,b+i) % (10**9+7)\n after = cmb(w+a-b-1,a+i) % (10**9+7)\n ans = (ans+(before*after)%(10**9+7)) % (10**9+7)\n print(ans)", "main", "h,w,a,b = map(int,input().split())", "h", "map(int,input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "w", "a", "b", "cmb = Combination(10**6)", "cmb", "Combination(10**6)", "Combination", "10**6", "10", "6", "roop = min(h-a,w-b)", "roop", "min(h-a,w-b)", "min", "h-a", "h", "a", "w-b", "w", "b", "ans = 0", "ans", "0", "for i in range(roop):\n before = cmb(h-a+b-1,b+i) % (10**9+7)\n after = cmb(w+a-b-1,a+i) % (10**9+7)\n ans = (ans+(before*after)%(10**9+7)) % (10**9+7)\n ", "i", "range(roop)", "range", "roop", "before = cmb(h-a+b-1,b+i) % (10**9+7)", "before", "cmb(h-a+b-1,b+i) % (10**9+7)", "cmb(h-a+b-1,b+i)", "cmb", "h-a+b-1", "h-a+b", "h-a", "h", "a", "b", "1", "b+i", "b", "i", "10**9+7", "10**9", "10", "9", "7", "after = cmb(w+a-b-1,a+i) % (10**9+7)", "after", "cmb(w+a-b-1,a+i) % (10**9+7)", "cmb(w+a-b-1,a+i)", "cmb", "w+a-b-1", "w+a-b", "w+a", "w", "a", "b", "1", "a+i", "a", "i", "10**9+7", "10**9", "10", "9", "7", "ans = (ans+(before*after)%(10**9+7)) % (10**9+7)", "ans", "(ans+(before*after)%(10**9+7)) % (10**9+7)", "ans+(before*after)%(10**9+7)", "ans", "(before*after)%(10**9+7)", "before*after", "before", "after", "10**9+7", "10**9", "10", "9", "7", "10**9+7", "10**9", "10", "9", "7", "print(ans)", "print", "ans", "if __name__=='__main__':\n main()", "__name__=='__main__'", "__name__", "'__main__'", "main()", "main", "input = sys.stdin.readline", "sys.stdin.readline", "input", "def main():\n h,w,a,b = map(int,input().split())\n cmb = Combination(10**6)\n roop = min(h-a,w-b)\n ans = 0\n for i in range(roop):\n before = cmb(h-a+b-1,b+i) % (10**9+7)\n after = cmb(w+a-b-1,a+i) % (10**9+7)\n ans = (ans+(before*after)%(10**9+7)) % (10**9+7)\n print(ans)", "def main():\n h,w,a,b = map(int,input().split())\n cmb = Combination(10**6)\n roop = min(h-a,w-b)\n ans = 0\n for i in range(roop):\n before = cmb(h-a+b-1,b+i) % (10**9+7)\n after = cmb(w+a-b-1,a+i) % (10**9+7)\n ans = (ans+(before*after)%(10**9+7)) % (10**9+7)\n print(ans)", "main", "class Combination:\n def __init__(self, n_max, mod=10**9+7):\n self.mod = mod\n self.modinv = self.make_modinv_list(n_max)\n self.fac, self.facinv = self.make_factorial_list(n_max)\n\n def __call__(self, n, r):\n return self.fac[n] * self.facinv[r] % self.mod * self.facinv[n-r] % self.mod\n\n def make_factorial_list(self, n):\n # 階乗のリストと階乗のmod逆元のリストを返す O(n)\n # self.make_modinv_list()が先に実行されている必要がある\n fac = [1]\n facinv = [1]\n for i in range(1, n+1):\n fac.append(fac[i-1] * i % self.mod)\n facinv.append(facinv[i-1] * self.modinv[i] % self.mod)\n return fac, facinv\n\n def make_modinv_list(self, n):\n # 0からnまでのmod逆元のリストを返す O(n)\n modinv = [0] * (n+1)\n modinv[1] = 1\n for i in range(2, n+1):\n modinv[i] = self.mod - self.mod//i * modinv[self.mod%i] % self.mod\n return modinv", "class Combination:\n def __init__(self, n_max, mod=10**9+7):\n self.mod = mod\n self.modinv = self.make_modinv_list(n_max)\n self.fac, self.facinv = self.make_factorial_list(n_max)\n\n def __call__(self, n, r):\n return self.fac[n] * self.facinv[r] % self.mod * self.facinv[n-r] % self.mod\n\n def make_factorial_list(self, n):\n # 階乗のリストと階乗のmod逆元のリストを返す O(n)\n # self.make_modinv_list()が先に実行されている必要がある\n fac = [1]\n facinv = [1]\n for i in range(1, n+1):\n fac.append(fac[i-1] * i % self.mod)\n facinv.append(facinv[i-1] * self.modinv[i] % self.mod)\n return fac, facinv\n\n def make_modinv_list(self, n):\n # 0からnまでのmod逆元のリストを返す O(n)\n modinv = [0] * (n+1)\n modinv[1] = 1\n for i in range(2, n+1):\n modinv[i] = self.mod - self.mod//i * modinv[self.mod%i] % self.mod\n return modinv", "Combination" ]
import sys input = sys.stdin.readline #str 注意 class Combination: def __init__(self, n_max, mod=10**9+7): self.mod = mod self.modinv = self.make_modinv_list(n_max) self.fac, self.facinv = self.make_factorial_list(n_max) def __call__(self, n, r): return self.fac[n] * self.facinv[r] % self.mod * self.facinv[n-r] % self.mod def make_factorial_list(self, n): # 階乗のリストと階乗のmod逆元のリストを返す O(n) # self.make_modinv_list()が先に実行されている必要がある fac = [1] facinv = [1] for i in range(1, n+1): fac.append(fac[i-1] * i % self.mod) facinv.append(facinv[i-1] * self.modinv[i] % self.mod) return fac, facinv def make_modinv_list(self, n): # 0からnまでのmod逆元のリストを返す O(n) modinv = [0] * (n+1) modinv[1] = 1 for i in range(2, n+1): modinv[i] = self.mod - self.mod//i * modinv[self.mod%i] % self.mod return modinv def main(): h,w,a,b = map(int,input().split()) cmb = Combination(10**6) roop = min(h-a,w-b) ans = 0 for i in range(roop): before = cmb(h-a+b-1,b+i) % (10**9+7) after = cmb(w+a-b-1,a+i) % (10**9+7) ans = (ans+(before*after)%(10**9+7)) % (10**9+7) print(ans) if __name__=='__main__': main()
[ 7, 6, 13, 12, 13, 0, 18, 13, 13, 39, 17, 0, 18, 13, 13, 2, 39, 17, 2, 13, 17, 0, 18, 13, 13, 13, 14, 2, 13, 13, 28, 13, 4, 13, 2, 13, 17, 4, 18, 18, 13, 13, 13, 2, 2, 18, 18, 13, 13, 17, 2, 13, 17, 18, 13, 13, 0, 18, 18, 13, 13, 17, 4, 13, 18, 18, 13, 13, 17, 2, 18, 13, 13, 17, 18, 13, 13, 28, 13, 4, 13, 2, 13, 17, 17, 17, 0, 18, 18, 13, 13, 13, 2, 2, 18, 18, 13, 13, 2, 13, 17, 2, 13, 17, 18, 13, 13, 23, 13, 23, 13, 2, 17, 17, 23, 13, 2, 2, 17, 17, 17, 12, 13, 14, 2, 13, 13, 4, 13, 17, 29, 17, 23, 13, 23, 13, 23, 13, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 4, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 4, 18, 13, 13, 2, 2, 13, 13, 17, 2, 13, 17, 28, 13, 4, 13, 13, 0, 13, 2, 2, 4, 18, 13, 13, 2, 2, 2, 13, 13, 13, 17, 13, 4, 18, 13, 13, 2, 2, 2, 13, 13, 17, 13, 2, 13, 17, 13, 4, 13, 2, 13, 13, 10, 4, 13, 10, 4, 13, 10, 4, 13, 10, 6, 13, 10, 2, 13, 10, 4, 13, 10, 4, 13, 10, 2, 13, 10, 4, 13 ]
[ [ 9, 6 ], [ 108, 7 ], [ 15, 12 ], [ 108, 13 ], [ 110, 19 ], [ 25, 22 ], [ 108, 23 ], [ 115, 24 ], [ 115, 25 ], [ 110, 28 ], [ 115, 29 ], [ 32, 31 ], [ 110, 35 ], [ 6, 39 ], [ 108, 40 ], [ 6, 46 ], [ 108, 47 ], [ 31, 51 ], [ 22, 53 ], [ 108, 54 ], [ 115, 55 ], [ 62, 57 ], [ 12, 58 ], [ 108, 59 ], [ 6, 65 ], [ 108, 66 ], [ 22, 70 ], [ 108, 71 ], [ 115, 72 ], [ 22, 74 ], [ 108, 75 ], [ 115, 76 ], [ 79, 78 ], [ 110, 82 ], [ 92, 87 ], [ 12, 88 ], [ 108, 89 ], [ 78, 91 ], [ 12, 95 ], [ 108, 96 ], [ 78, 99 ], [ 78, 102 ], [ 22, 104 ], [ 108, 105 ], [ 115, 106 ], [ 108, 108 ], [ 111, 110 ], [ 116, 115 ], [ 135, 125 ], [ 137, 126 ], [ 133, 133 ], [ 135, 135 ], [ 137, 137 ], [ 236, 139 ], [ 236, 148 ], [ 236, 149 ], [ 236, 150 ], [ 221, 152 ], [ 230, 156 ], [ 242, 163 ], [ 222, 166 ], [ 122, 167 ], [ 219, 170 ], [ 225, 171 ], [ 225, 174 ], [ 178, 177 ], [ 234, 180 ], [ 239, 182 ], [ 222, 187 ], [ 122, 188 ], [ 177, 192 ], [ 219, 193 ], [ 237, 194 ], [ 177, 196 ], [ 222, 199 ], [ 122, 200 ], [ 237, 204 ], [ 225, 205 ], [ 177, 207 ], [ 237, 209 ], [ 231, 211 ], [ 240, 215 ], [ 243, 215 ], [ 231, 216 ], [ 236, 219 ], [ 221, 222 ], [ 236, 225 ], [ 230, 231 ], [ 236, 234 ], [ 236, 237 ], [ 239, 240 ], [ 242, 243 ] ]
[ "class mod_comb_k():\n def __init__(self, MAX_N = 10**6, mod = 10**9+7):\n self.fact = [1]\n self.fact_inv = [0] * (MAX_N + 4)\n self.mod = mod\n if MAX_N > mod:print('MAX_N > mod !')\n for i in range(MAX_N + 3):\n self.fact.append(self.fact[-1] * (i + 1) % self.mod)\n self.fact_inv[-1] = pow(self.fact[-1], self.mod - 2, self.mod)\n for i in range(MAX_N + 2, -1, -1):\n self.fact_inv[i] = self.fact_inv[i + 1] * (i + 1) % self.mod\n def comb(self, n, k):\n if n < k:\n print('n < k !')\n return 0\n else:return self.fact[n] * self.fact_inv[k] % self.mod * self.fact_inv[n - k] % self.mod\nh,w,a,b=map(int,input().split())\nc=mod_comb_k()\nmod=10**9+7\nans=c.comb(h+w-2,w-1)\nfor i in range(b):\n ans-=(c.comb(i+h-a-1,i)*c.comb(a+w-2-i,a-1))%mod\nprint(ans%mod)", "class mod_comb_k():\n def __init__(self, MAX_N = 10**6, mod = 10**9+7):\n self.fact = [1]\n self.fact_inv = [0] * (MAX_N + 4)\n self.mod = mod\n if MAX_N > mod:print('MAX_N > mod !')\n for i in range(MAX_N + 3):\n self.fact.append(self.fact[-1] * (i + 1) % self.mod)\n self.fact_inv[-1] = pow(self.fact[-1], self.mod - 2, self.mod)\n for i in range(MAX_N + 2, -1, -1):\n self.fact_inv[i] = self.fact_inv[i + 1] * (i + 1) % self.mod\n def comb(self, n, k):\n if n < k:\n print('n < k !')\n return 0\n else:return self.fact[n] * self.fact_inv[k] % self.mod * self.fact_inv[n - k] % self.mod", "mod_comb_k", "def __init__(self, MAX_N = 10**6, mod = 10**9+7):\n self.fact = [1]\n self.fact_inv = [0] * (MAX_N + 4)\n self.mod = mod\n if MAX_N > mod:print('MAX_N > mod !')\n for i in range(MAX_N + 3):\n self.fact.append(self.fact[-1] * (i + 1) % self.mod)\n self.fact_inv[-1] = pow(self.fact[-1], self.mod - 2, self.mod)\n for i in range(MAX_N + 2, -1, -1):\n self.fact_inv[i] = self.fact_inv[i + 1] * (i + 1) % self.mod\n ", "__init__", "self.fact = [1]", "self.fact", "self", "fact", "[1]", "1", "self.fact_inv = [0] * (MAX_N + 4)", "self.fact_inv", "self", "fact_inv", "[0] * (MAX_N + 4)", "[0]", "0", "MAX_N + 4", "MAX_N", "4", "self.mod = mod", "self.mod", "self", "mod", "mod", "if MAX_N > mod:print('MAX_N > mod !')\n ", "MAX_N > mod", "MAX_N", "mod", "for i in range(MAX_N + 3):\n self.fact.append(self.fact[-1] * (i + 1) % self.mod)\n ", "i", "range(MAX_N + 3)", "range", "MAX_N + 3", "MAX_N", "3", "self.fact.append(self.fact[-1] * (i + 1) % self.mod)", "self.fact.append", "self.fact", "self", "fact", "append", "self.fact[-1] * (i + 1) % self.mod", "self.fact[-1] * (i + 1)", "self.fact[-1]", "self.fact", "self", "fact", "-1", "i + 1", "i", "1", "self.mod", "self", "mod", "self.fact_inv[-1] = pow(self.fact[-1], self.mod - 2, self.mod)", "self.fact_inv[-1]", "self.fact_inv", "self", "fact_inv", "-1", "pow(self.fact[-1], self.mod - 2, self.mod)", "pow", "self.fact[-1]", "self.fact", "self", "fact", "-1", "self.mod - 2", "self.mod", "self", "mod", "2", "self.mod", "self", "mod", "for i in range(MAX_N + 2, -1, -1):\n self.fact_inv[i] = self.fact_inv[i + 1] * (i + 1) % self.mod\n ", "i", "range(MAX_N + 2, -1, -1)", "range", "MAX_N + 2", "MAX_N", "2", "-1", "-1", "self.fact_inv[i] = self.fact_inv[i + 1] * (i + 1) % self.mod", "self.fact_inv[i]", "self.fact_inv", "self", "fact_inv", "i", "self.fact_inv[i + 1] * (i + 1) % self.mod", "self.fact_inv[i + 1] * (i + 1)", "self.fact_inv[i + 1]", "self.fact_inv", "self", "fact_inv", "i + 1", "i", "1", "i + 1", "i", "1", "self.mod", "self", "mod", "self", "self", "MAX_N = 10**6", "MAX_N", "10**6", "10", "6", "mod = 10**9+7", "mod", "10**9+7", "10**9", "10", "9", "7", "def comb(self, n, k):\n if n < k:\n print('n < k !')\n return 0\n else:return self.fact[n] * self.fact_inv[k] % self.mod * self.fact_inv[n - k] % self.mod", "comb", "if n < k:\n print('n < k !')\n return 0\n else:return self.fact[n] * self.fact_inv[k] % self.mod * self.fact_inv[n - k] % self.mod", "n < k", "n", "k", "print('n < k !')", "print", "'n < k !'", "return 0", "0", "self", "self", "n", "n", "k", "k", "h,w,a,b=map(int,input().split())", "h", "map(int,input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "w", "a", "b", "c=mod_comb_k()", "c", "mod_comb_k()", "mod_comb_k", "mod=10**9+7", "mod", "10**9+7", "10**9", "10", "9", "7", "ans=c.comb(h+w-2,w-1)", "ans", "c.comb(h+w-2,w-1)", "c.comb", "c", "comb", "h+w-2", "h+w", "h", "w", "2", "w-1", "w", "1", "for i in range(b):\n ans-=(c.comb(i+h-a-1,i)*c.comb(a+w-2-i,a-1))%mod", "i", "range(b)", "range", "b", "ans-=(c.comb(i+h-a-1,i)*c.comb(a+w-2-i,a-1))%mod", "ans", "(c.comb(i+h-a-1,i)*c.comb(a+w-2-i,a-1))%mod", "c.comb(i+h-a-1,i)*c.comb(a+w-2-i,a-1)", "c.comb(i+h-a-1,i)", "c.comb", "c", "comb", "i+h-a-1", "i+h-a", "i+h", "i", "h", "a", "1", "i", "c.comb(a+w-2-i,a-1)", "c.comb", "c", "comb", "a+w-2-i", "a+w-2", "a+w", "a", "w", "2", "i", "a-1", "a", "1", "mod", "print(ans%mod)", "print", "ans%mod", "ans", "mod", "h,w,a,b=map(int,input().split())", "map(int,input().split())", "h", "c=mod_comb_k()", "mod_comb_k()", "c", "w,a,b=map(int,input().split())", "map(int,input().split())", "w", "class mod_comb_k():\n def __init__(self, MAX_N = 10**6, mod = 10**9+7):\n self.fact = [1]\n self.fact_inv = [0] * (MAX_N + 4)\n self.mod = mod\n if MAX_N > mod:print('MAX_N > mod !')\n for i in range(MAX_N + 3):\n self.fact.append(self.fact[-1] * (i + 1) % self.mod)\n self.fact_inv[-1] = pow(self.fact[-1], self.mod - 2, self.mod)\n for i in range(MAX_N + 2, -1, -1):\n self.fact_inv[i] = self.fact_inv[i + 1] * (i + 1) % self.mod\n def comb(self, n, k):\n if n < k:\n print('n < k !')\n return 0\n else:return self.fact[n] * self.fact_inv[k] % self.mod * self.fact_inv[n - k] % self.mod", "class mod_comb_k():\n def __init__(self, MAX_N = 10**6, mod = 10**9+7):\n self.fact = [1]\n self.fact_inv = [0] * (MAX_N + 4)\n self.mod = mod\n if MAX_N > mod:print('MAX_N > mod !')\n for i in range(MAX_N + 3):\n self.fact.append(self.fact[-1] * (i + 1) % self.mod)\n self.fact_inv[-1] = pow(self.fact[-1], self.mod - 2, self.mod)\n for i in range(MAX_N + 2, -1, -1):\n self.fact_inv[i] = self.fact_inv[i + 1] * (i + 1) % self.mod\n def comb(self, n, k):\n if n < k:\n print('n < k !')\n return 0\n else:return self.fact[n] * self.fact_inv[k] % self.mod * self.fact_inv[n - k] % self.mod", "mod_comb_k", "mod=10**9+7", "10**9+7", "mod", "b=map(int,input().split())", "map(int,input().split())", "b", "a,b=map(int,input().split())", "map(int,input().split())", "a", "ans-=(c.comb(i+h-a-1,i)*c.comb(a+w-2-i,a-1))%mod", "(c.comb(i+h-a-1,i)*c.comb(a+w-2-i,a-1))%mod", "ans", "ans=c.comb(h+w-2,w-1)", "c.comb(h+w-2,w-1)", "ans" ]
class mod_comb_k(): def __init__(self, MAX_N = 10**6, mod = 10**9+7): self.fact = [1] self.fact_inv = [0] * (MAX_N + 4) self.mod = mod if MAX_N > mod:print('MAX_N > mod !') for i in range(MAX_N + 3): self.fact.append(self.fact[-1] * (i + 1) % self.mod) self.fact_inv[-1] = pow(self.fact[-1], self.mod - 2, self.mod) for i in range(MAX_N + 2, -1, -1): self.fact_inv[i] = self.fact_inv[i + 1] * (i + 1) % self.mod def comb(self, n, k): if n < k: print('n < k !') return 0 else:return self.fact[n] * self.fact_inv[k] % self.mod * self.fact_inv[n - k] % self.mod h,w,a,b=map(int,input().split()) c=mod_comb_k() mod=10**9+7 ans=c.comb(h+w-2,w-1) for i in range(b): ans-=(c.comb(i+h-a-1,i)*c.comb(a+w-2-i,a-1))%mod print(ans%mod)
[ 7, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 2, 2, 2, 17, 17, 17, 17, 0, 13, 2, 39, 17, 2, 13, 17, 0, 13, 2, 39, 17, 2, 13, 17, 0, 13, 17, 28, 13, 4, 13, 17, 2, 13, 17, 0, 18, 13, 13, 2, 2, 13, 13, 13, 0, 13, 2, 0, 18, 13, 13, 4, 13, 18, 13, 13, 2, 13, 17, 13, 0, 13, 4, 28, 13, 4, 13, 13, 17, 17, 0, 18, 13, 2, 13, 17, 2, 2, 13, 13, 13, 0, 13, 2, 12, 13, 29, 2, 2, 18, 13, 13, 18, 13, 2, 13, 13, 13, 23, 13, 23, 13, 12, 13, 29, 2, 2, 2, 18, 13, 13, 18, 13, 13, 18, 13, 2, 13, 13, 13, 23, 13, 23, 13, 0, 13, 17, 28, 13, 4, 13, 13, 13, 0, 13, 2, 2, 13, 2, 4, 13, 2, 2, 2, 13, 13, 17, 13, 13, 4, 13, 2, 2, 2, 13, 13, 13, 17, 2, 13, 17, 13, 4, 13, 13, 10, 4, 13, 10, 2, 13, 10, 2, 13, 10, 17, 13, 10, 2, 13, 10, 4, 13, 10, 4, 13, 10, 4, 13, 10, 2, 13, 10, 12, 13, 10, 12, 13, 10, 2, 13, 10, 17, 13, 10, 2, 13, 10, 4, 13, 10, 2, 13 ]
[ [ 230, 2 ], [ 230, 11 ], [ 230, 12 ], [ 230, 13 ], [ 191, 15 ], [ 221, 22 ], [ 194, 31 ], [ 222, 36 ], [ 233, 39 ], [ 222, 44 ], [ 197, 47 ], [ 51, 50 ], [ 222, 55 ], [ 212, 58 ], [ 195, 59 ], [ 50, 60 ], [ 198, 63 ], [ 213, 63 ], [ 50, 64 ], [ 192, 65 ], [ 212, 67 ], [ 206, 70 ], [ 234, 71 ], [ 222, 72 ], [ 195, 76 ], [ 222, 77 ], [ 192, 79 ], [ 192, 81 ], [ 206, 83 ], [ 87, 86 ], [ 222, 89 ], [ 227, 93 ], [ 234, 94 ], [ 86, 96 ], [ 207, 100 ], [ 213, 100 ], [ 198, 100 ], [ 228, 100 ], [ 86, 101 ], [ 192, 102 ], [ 227, 104 ], [ 195, 112 ], [ 121, 113 ], [ 234, 115 ], [ 121, 117 ], [ 123, 118 ], [ 192, 119 ], [ 121, 121 ], [ 123, 123 ], [ 195, 131 ], [ 143, 132 ], [ 234, 134 ], [ 145, 135 ], [ 234, 137 ], [ 143, 139 ], [ 145, 140 ], [ 192, 141 ], [ 143, 143 ], [ 145, 145 ], [ 224, 147 ], [ 151, 150 ], [ 189, 153 ], [ 231, 154 ], [ 200, 156 ], [ 225, 159 ], [ 201, 159 ], [ 216, 162 ], [ 204, 166 ], [ 210, 167 ], [ 150, 169 ], [ 150, 170 ], [ 216, 172 ], [ 231, 176 ], [ 150, 177 ], [ 210, 178 ], [ 210, 181 ], [ 192, 183 ], [ 201, 186 ], [ 225, 186 ], [ 230, 189 ], [ 191, 192 ], [ 194, 195 ], [ 197, 198 ], [ 200, 201 ], [ 230, 204 ], [ 206, 207 ], [ 230, 210 ], [ 212, 213 ], [ 221, 222 ], [ 224, 225 ], [ 227, 228 ], [ 230, 231 ], [ 233, 234 ] ]
[ "h,w,a,b = map(int, input().split())\n\nmod = 10**9 + 7\nn = 10**5 * 2 + 1\n\nfact = [1]*(n+1)\nrfact = [1]*(n+1)\nr = 1\nfor i in range(1, n+1):\n fact[i] = r = r * i % mod\nrfact[n] = r = pow(fact[n], mod-2, mod)\nfor i in range(n, 0, -1):\n rfact[i-1] = r = r * i % mod\n\n# nPk (mod MOD) を求める\ndef perm(n, k):\n return fact[n] * rfact[n-k] % mod\n\n# nCk (mod MOD) を求める\ndef comb(n, k):\n return fact[n] * rfact[k] * rfact[n-k] % mod \nans = 0\nfor i in range(b,w):\n ans = (ans + comb(h-a-1+i,i) * comb(w-i+a-2,a-1)) % mod\nprint(ans)", "h,w,a,b = map(int, input().split())", "h", "map(int, input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "w", "a", "b", "mod = 10**9 + 7", "mod", "10**9 + 7", "10**9", "10", "9", "7", "n = 10**5 * 2 + 1", "n", "10**5 * 2 + 1", "10**5 * 2", "10**5", "10", "5", "2", "1", "fact = [1]*(n+1)", "fact", "[1]*(n+1)", "[1]", "1", "n+1", "n", "1", "rfact = [1]*(n+1)", "rfact", "[1]*(n+1)", "[1]", "1", "n+1", "n", "1", "r = 1", "r", "1", "for i in range(1, n+1):\n fact[i] = r = r * i % mod", "i", "range(1, n+1)", "range", "1", "n+1", "n", "1", "fact[i] = r = r * i % mod", "fact[i]", "fact", "i", "r * i % mod", "r * i", "r", "i", "mod", "= r = r * i % mod", "r", "r * i % mod", "rfact[n] = r = pow(fact[n], mod-2, mod)", "rfact[n]", "rfact", "n", "pow(fact[n], mod-2, mod)", "pow", "fact[n]", "fact", "n", "mod-2", "mod", "2", "mod", "= r = pow(fact[n], mod-2, mod)", "r", "pow(fact[n], mod-2, mod)", "for i in range(n, 0, -1):\n rfact[i-1] = r = r * i % mod\n\n# nPk (mod MOD) を求める", "i", "range(n, 0, -1)", "range", "n", "0", "-1", "rfact[i-1] = r = r * i % mod", "rfact[i-1]", "rfact", "i-1", "i", "1", "r * i % mod", "r * i", "r", "i", "mod", "= r = r * i % mod", "r", "r * i % mod", "def perm(n, k):\n return fact[n] * rfact[n-k] % mod\n\n# nCk (mod MOD) を求める", "perm", "return fact[n] * rfact[n-k] % mod", "fact[n] * rfact[n-k] % mod", "fact[n] * rfact[n-k]", "fact[n]", "fact", "n", "rfact[n-k]", "rfact", "n-k", "n", "k", "mod", "n", "n", "k", "k", "def comb(n, k):\n return fact[n] * rfact[k] * rfact[n-k] % mod ", "comb", "return fact[n] * rfact[k] * rfact[n-k] % mod", "fact[n] * rfact[k] * rfact[n-k] % mod", "fact[n] * rfact[k] * rfact[n-k]", "fact[n] * rfact[k]", "fact[n]", "fact", "n", "rfact[k]", "rfact", "k", "rfact[n-k]", "rfact", "n-k", "n", "k", "mod", "n", "n", "k", "k", "ans = 0", "ans", "0", "for i in range(b,w):\n ans = (ans + comb(h-a-1+i,i) * comb(w-i+a-2,a-1)) % mod", "i", "range(b,w)", "range", "b", "w", "ans = (ans + comb(h-a-1+i,i) * comb(w-i+a-2,a-1)) % mod", "ans", "(ans + comb(h-a-1+i,i) * comb(w-i+a-2,a-1)) % mod", "ans + comb(h-a-1+i,i) * comb(w-i+a-2,a-1)", "ans", "comb(h-a-1+i,i) * comb(w-i+a-2,a-1)", "comb(h-a-1+i,i)", "comb", "h-a-1+i", "h-a-1", "h-a", "h", "a", "1", "i", "i", "comb(w-i+a-2,a-1)", "comb", "w-i+a-2", "w-i+a", "w-i", "w", "i", "a", "2", "a-1", "a", "1", "mod", "print(ans)", "print", "ans", "b = map(int, input().split())", "map(int, input().split())", "b", "mod = 10**9 + 7", "10**9 + 7", "mod", "fact = [1]*(n+1)", "[1]*(n+1)", "fact", "r = 1", "1", "r", "ans = (ans + comb(h-a-1+i,i) * comb(w-i+a-2,a-1)) % mod", "(ans + comb(h-a-1+i,i) * comb(w-i+a-2,a-1)) % mod", "ans", "h,w,a,b = map(int, input().split())", "map(int, input().split())", "h", "r = pow(fact[n], mod-2, mod)", "pow(fact[n], mod-2, mod)", "r", "a,b = map(int, input().split())", "map(int, input().split())", "a", "r = r * i % mod", "r * i % mod", "r", "def comb(n, k):\n return fact[n] * rfact[k] * rfact[n-k] % mod ", "def comb(n, k):\n return fact[n] * rfact[k] * rfact[n-k] % mod ", "comb", "def perm(n, k):\n return fact[n] * rfact[n-k] % mod\n\n# nCk (mod MOD) を求める", "def perm(n, k):\n return fact[n] * rfact[n-k] % mod\n\n# nCk (mod MOD) を求める", "perm", "n = 10**5 * 2 + 1", "10**5 * 2 + 1", "n", "ans = 0", "0", "ans", "r = r * i % mod", "r * i % mod", "r", "w,a,b = map(int, input().split())", "map(int, input().split())", "w", "rfact = [1]*(n+1)", "[1]*(n+1)", "rfact" ]
h,w,a,b = map(int, input().split()) mod = 10**9 + 7 n = 10**5 * 2 + 1 fact = [1]*(n+1) rfact = [1]*(n+1) r = 1 for i in range(1, n+1): fact[i] = r = r * i % mod rfact[n] = r = pow(fact[n], mod-2, mod) for i in range(n, 0, -1): rfact[i-1] = r = r * i % mod # nPk (mod MOD) を求める def perm(n, k): return fact[n] * rfact[n-k] % mod # nCk (mod MOD) を求める def comb(n, k): return fact[n] * rfact[k] * rfact[n-k] % mod ans = 0 for i in range(b,w): ans = (ans + comb(h-a-1+i,i) * comb(w-i+a-2,a-1)) % mod print(ans)
[ 7, 0, 13, 4, 13, 13, 4, 18, 4, 18, 4, 13, 17, 13, 13, 13, 13, 13, 0, 13, 2, 2, 17, 17, 17, 12, 13, 0, 13, 17, 28, 13, 4, 13, 13, 0, 13, 2, 2, 13, 2, 13, 13, 13, 29, 13, 23, 13, 23, 13, 23, 13, 12, 13, 14, 2, 13, 2, 13, 13, 0, 13, 2, 13, 13, 0, 13, 4, 13, 13, 13, 13, 0, 13, 4, 13, 4, 13, 13, 13, 13, 2, 13, 17, 13, 29, 2, 2, 13, 13, 13, 23, 13, 23, 13, 23, 13, 0, 13, 4, 13, 2, 2, 13, 13, 17, 2, 13, 17, 13, 0, 13, 4, 13, 2, 2, 13, 13, 17, 2, 13, 17, 13, 0, 13, 13, 28, 13, 4, 13, 2, 13, 17, 0, 13, 2, 2, 13, 13, 13, 0, 13, 2, 13, 17, 0, 13, 2, 2, 13, 13, 17, 0, 13, 2, 2, 2, 13, 13, 17, 13, 0, 13, 2, 2, 2, 13, 13, 13, 13, 0, 13, 2, 2, 13, 4, 13, 13, 2, 13, 17, 13, 13, 0, 13, 2, 2, 13, 4, 13, 13, 2, 13, 17, 13, 13, 0, 13, 2, 2, 13, 13, 13, 4, 13, 13, 10, 4, 13, 10, 2, 13, 10, 2, 13, 10, 4, 13, 10, 2, 13, 10, 4, 13, 10, 4, 13, 10, 13, 13, 10, 12, 13, 10, 2, 13, 10, 4, 13, 10, 2, 13, 10, 2, 13, 10, 2, 13, 10, 2, 13, 10, 4, 13, 10, 12, 13, 10, 2, 13 ]
[ [ 252, 2 ], [ 252, 15 ], [ 252, 16 ], [ 252, 17 ], [ 258, 19 ], [ 29, 28 ], [ 32, 31 ], [ 49, 34 ], [ 37, 36 ], [ 28, 39 ], [ 36, 39 ], [ 47, 41 ], [ 31, 42 ], [ 51, 43 ], [ 36, 45 ], [ 28, 45 ], [ 47, 47 ], [ 49, 49 ], [ 51, 51 ], [ 94, 56 ], [ 92, 58 ], [ 94, 59 ], [ 62, 61 ], [ 92, 63 ], [ 94, 64 ], [ 67, 66 ], [ 232, 68 ], [ 92, 69 ], [ 61, 70 ], [ 94, 70 ], [ 96, 71 ], [ 74, 73 ], [ 232, 77 ], [ 61, 78 ], [ 94, 78 ], [ 61, 79 ], [ 94, 79 ], [ 96, 80 ], [ 96, 82 ], [ 96, 84 ], [ 66, 88 ], [ 73, 89 ], [ 96, 90 ], [ 92, 92 ], [ 94, 94 ], [ 96, 96 ], [ 207, 98 ], [ 256, 100 ], [ 223, 103 ], [ 253, 104 ], [ 253, 107 ], [ 259, 109 ], [ 225, 111 ], [ 256, 113 ], [ 238, 116 ], [ 253, 117 ], [ 253, 120 ], [ 259, 122 ], [ 228, 124 ], [ 226, 125 ], [ 128, 127 ], [ 217, 131 ], [ 240, 134 ], [ 223, 137 ], [ 238, 138 ], [ 127, 139 ], [ 234, 141 ], [ 127, 143 ], [ 246, 146 ], [ 253, 149 ], [ 127, 150 ], [ 210, 153 ], [ 253, 157 ], [ 238, 158 ], [ 127, 160 ], [ 243, 162 ], [ 226, 166 ], [ 220, 166 ], [ 250, 166 ], [ 244, 166 ], [ 241, 167 ], [ 247, 168 ], [ 259, 169 ], [ 249, 171 ], [ 244, 174 ], [ 226, 174 ], [ 220, 174 ], [ 250, 174 ], [ 235, 177 ], [ 259, 179 ], [ 259, 181 ], [ 259, 182 ], [ 219, 184 ], [ 250, 187 ], [ 244, 187 ], [ 226, 187 ], [ 220, 187 ], [ 211, 190 ], [ 259, 192 ], [ 259, 194 ], [ 259, 195 ], [ 213, 197 ], [ 229, 200 ], [ 208, 200 ], [ 214, 200 ], [ 220, 201 ], [ 250, 201 ], [ 244, 201 ], [ 226, 201 ], [ 259, 202 ], [ 214, 205 ], [ 229, 205 ], [ 208, 205 ], [ 207, 208 ], [ 210, 211 ], [ 213, 214 ], [ 252, 217 ], [ 219, 220 ], [ 252, 223 ], [ 225, 226 ], [ 226, 228 ], [ 228, 229 ], [ 234, 235 ], [ 252, 238 ], [ 240, 241 ], [ 243, 244 ], [ 246, 247 ], [ 249, 250 ], [ 252, 253 ], [ 258, 259 ] ]
[ "H, W, A, B = map(int, open(0).read().split())\nMOD = 10**9+7\n\ndef modperm(m, n, mod):\n p = 1\n for i in range(n):\n p = p * (m - i) % mod\n return p\n\ndef modcomb(m, n, mod):\n if n > m - n:\n n = m - n\n p = modperm(m, n, mod)\n q = pow(modperm(n, n, mod), mod - 2, mod)\n return p * q % mod\n\ntotal = modcomb(H + W - 2, W - 1, MOD)\n\ntmp = modcomb(A + W - 2, W - 1, MOD)\ntotal -= tmp\n\nfor i in range(B - 1):\n a = H - A + i\n b = i + 1\n c = W - i - 1\n d = W + A - 2 - i\n# print(a,b,c,d)\n tmp = tmp * a * c % MOD\n tmp = tmp * pow(b, MOD - 2, MOD) % MOD\n tmp = tmp * pow(d, MOD - 2, MOD) % MOD\n# print(tmp)\n total = (total - tmp) % MOD\n\nprint(total)", "H, W, A, B = map(int, open(0).read().split())", "H", "map(int, open(0).read().split())", "map", "int", "open(0).read().split()", "(0).read().split", "(0).read()", "(0).read", "(0)", "open", "0", "read", "split", "W", "A", "B", "MOD = 10**9+7", "MOD", "10**9+7", "10**9", "10", "9", "7", "def modperm(m, n, mod):\n p = 1\n for i in range(n):\n p = p * (m - i) % mod\n return p", "modperm", "p = 1", "p", "1", "for i in range(n):\n p = p * (m - i) % mod\n ", "i", "range(n)", "range", "n", "p = p * (m - i) % mod", "p", "p * (m - i) % mod", "p * (m - i)", "p", "m - i", "m", "i", "mod", "return p", "p", "m", "m", "n", "n", "mod", "mod", "def modcomb(m, n, mod):\n if n > m - n:\n n = m - n\n p = modperm(m, n, mod)\n q = pow(modperm(n, n, mod), mod - 2, mod)\n return p * q % mod", "modcomb", "if n > m - n:\n n = m - n\n ", "n > m - n", "n", "m - n", "m", "n", "n = m - n", "n", "m - n", "m", "n", "p = modperm(m, n, mod)", "p", "modperm(m, n, mod)", "modperm", "m", "n", "mod", "q = pow(modperm(n, n, mod), mod - 2, mod)", "q", "pow(modperm(n, n, mod), mod - 2, mod)", "pow", "modperm(n, n, mod)", "modperm", "n", "n", "mod", "mod - 2", "mod", "2", "mod", "return p * q % mod", "p * q % mod", "p * q", "p", "q", "mod", "m", "m", "n", "n", "mod", "mod", "total = modcomb(H + W - 2, W - 1, MOD)", "total", "modcomb(H + W - 2, W - 1, MOD)", "modcomb", "H + W - 2", "H + W", "H", "W", "2", "W - 1", "W", "1", "MOD", "tmp = modcomb(A + W - 2, W - 1, MOD)", "tmp", "modcomb(A + W - 2, W - 1, MOD)", "modcomb", "A + W - 2", "A + W", "A", "W", "2", "W - 1", "W", "1", "MOD", "total -= tmp", "total", "tmp", "for i in range(B - 1):\n a = H - A + i\n b = i + 1\n c = W - i - 1\n d = W + A - 2 - i\n# print(a,b,c,d)\n tmp = tmp * a * c % MOD\n tmp = tmp * pow(b, MOD - 2, MOD) % MOD\n tmp = tmp * pow(d, MOD - 2, MOD) % MOD\n# print(tmp)\n total = (total - tmp) % MOD", "i", "range(B - 1)", "range", "B - 1", "B", "1", "a = H - A + i", "a", "H - A + i", "H - A", "H", "A", "i", "b = i + 1", "b", "i + 1", "i", "1", "c = W - i - 1", "c", "W - i - 1", "W - i", "W", "i", "1", "d = W + A - 2 - i", "d", "W + A - 2 - i", "W + A - 2", "W + A", "W", "A", "2", "i", "tmp = tmp * a * c % MOD", "tmp", "tmp * a * c % MOD", "tmp * a * c", "tmp * a", "tmp", "a", "c", "MOD", "tmp = tmp * pow(b, MOD - 2, MOD) % MOD", "tmp", "tmp * pow(b, MOD - 2, MOD) % MOD", "tmp * pow(b, MOD - 2, MOD)", "tmp", "pow(b, MOD - 2, MOD)", "pow", "b", "MOD - 2", "MOD", "2", "MOD", "MOD", "tmp = tmp * pow(d, MOD - 2, MOD) % MOD", "tmp", "tmp * pow(d, MOD - 2, MOD) % MOD", "tmp * pow(d, MOD - 2, MOD)", "tmp", "pow(d, MOD - 2, MOD)", "pow", "d", "MOD - 2", "MOD", "2", "MOD", "MOD", "total = (total - tmp) % MOD", "total", "(total - tmp) % MOD", "total - tmp", "total", "tmp", "MOD", "print(total)", "print", "total", "total = modcomb(H + W - 2, W - 1, MOD)", "modcomb(H + W - 2, W - 1, MOD)", "total", "d = W + A - 2 - i", "W + A - 2 - i", "d", "total = (total - tmp) % MOD", "(total - tmp) % MOD", "total", "B = map(int, open(0).read().split())", "map(int, open(0).read().split())", "B", "tmp = tmp * pow(d, MOD - 2, MOD) % MOD", "tmp * pow(d, MOD - 2, MOD) % MOD", "tmp", "H, W, A, B = map(int, open(0).read().split())", "map(int, open(0).read().split())", "H", "tmp = modcomb(A + W - 2, W - 1, MOD)", "modcomb(A + W - 2, W - 1, MOD)", "tmp", "total -= tmp", "tmp", "total", "def modperm(m, n, mod):\n p = 1\n for i in range(n):\n p = p * (m - i) % mod\n return p", "def modperm(m, n, mod):\n p = 1\n for i in range(n):\n p = p * (m - i) % mod\n return p", "modperm", "b = i + 1", "i + 1", "b", "A, B = map(int, open(0).read().split())", "map(int, open(0).read().split())", "A", "a = H - A + i", "H - A + i", "a", "tmp = tmp * a * c % MOD", "tmp * a * c % MOD", "tmp", "c = W - i - 1", "W - i - 1", "c", "tmp = tmp * pow(b, MOD - 2, MOD) % MOD", "tmp * pow(b, MOD - 2, MOD) % MOD", "tmp", "W, A, B = map(int, open(0).read().split())", "map(int, open(0).read().split())", "W", "def modcomb(m, n, mod):\n if n > m - n:\n n = m - n\n p = modperm(m, n, mod)\n q = pow(modperm(n, n, mod), mod - 2, mod)\n return p * q % mod", "def modcomb(m, n, mod):\n if n > m - n:\n n = m - n\n p = modperm(m, n, mod)\n q = pow(modperm(n, n, mod), mod - 2, mod)\n return p * q % mod", "modcomb", "MOD = 10**9+7", "10**9+7", "MOD" ]
H, W, A, B = map(int, open(0).read().split()) MOD = 10**9+7 def modperm(m, n, mod): p = 1 for i in range(n): p = p * (m - i) % mod return p def modcomb(m, n, mod): if n > m - n: n = m - n p = modperm(m, n, mod) q = pow(modperm(n, n, mod), mod - 2, mod) return p * q % mod total = modcomb(H + W - 2, W - 1, MOD) tmp = modcomb(A + W - 2, W - 1, MOD) total -= tmp for i in range(B - 1): a = H - A + i b = i + 1 c = W - i - 1 d = W + A - 2 - i # print(a,b,c,d) tmp = tmp * a * c % MOD tmp = tmp * pow(b, MOD - 2, MOD) % MOD tmp = tmp * pow(d, MOD - 2, MOD) % MOD # print(tmp) total = (total - tmp) % MOD print(total)
[ 7, 15, 13, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 2, 2, 13, 13, 17, 41, 28, 13, 4, 13, 13, 4, 17, 0, 13, 13, 28, 13, 4, 13, 13, 14, 2, 13, 17, 0, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 13, 13, 41, 28, 13, 4, 13, 13, 4, 17, 0, 13, 13, 0, 13, 2, 13, 17, 0, 13, 4, 13, 13, 0, 13, 4, 18, 13, 13, 17, 0, 13, 18, 13, 39, 17, 0, 13, 4, 13, 13, 28, 13, 4, 13, 13, 41, 28, 13, 4, 13, 13, 4, 17, 0, 13, 13, 28, 13, 4, 13, 13, 14, 2, 13, 17, 0, 18, 13, 17, 18, 13, 13, 0, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 17, 13, 28, 13, 4, 13, 13, 14, 2, 18, 13, 13, 17, 0, 18, 13, 13, 18, 13, 13, 0, 18, 13, 13, 13, 0, 13, 13, 0, 13, 2, 13, 13, 0, 13, 17, 28, 13, 4, 13, 13, 0, 13, 2, 13, 13, 0, 13, 2, 2, 2, 18, 13, 2, 2, 2, 13, 13, 13, 17, 18, 13, 2, 2, 13, 13, 17, 18, 13, 13, 13, 0, 13, 2, 2, 2, 18, 13, 2, 2, 2, 13, 13, 13, 17, 18, 13, 2, 2, 13, 13, 17, 18, 13, 2, 13, 17, 13, 0, 13, 2, 13, 13, 0, 13, 13, 4, 13, 13, 10, 2, 13, 10, 4, 13, 10, 2, 13, 10, 13, 13, 10, 2, 13, 10, 2, 13, 10, 4, 13, 10, 13, 13, 10, 18, 13, 10, 4, 13, 10, 13, 13, 10, 2, 13, 10, 2, 13, 10, 2, 13, 10, 17, 13, 10, 2, 13, 10, 13, 13, 10, 4, 13, 10, 13, 13, 10, 4, 13, 10, 4, 13, 10, 4, 13 ]
[ [ 318, 4 ], [ 318, 13 ], [ 318, 14 ], [ 318, 15 ], [ 294, 17 ], [ 261, 24 ], [ 319, 27 ], [ 283, 28 ], [ 33, 32 ], [ 262, 35 ], [ 285, 39 ], [ 43, 42 ], [ 262, 45 ], [ 42, 48 ], [ 54, 51 ], [ 286, 52 ], [ 42, 53 ], [ 286, 57 ], [ 42, 59 ], [ 42, 61 ], [ 295, 62 ], [ 66, 65 ], [ 262, 68 ], [ 303, 72 ], [ 291, 75 ], [ 295, 77 ], [ 273, 80 ], [ 292, 83 ], [ 312, 85 ], [ 274, 88 ], [ 279, 92 ], [ 313, 94 ], [ 274, 94 ], [ 306, 98 ], [ 280, 101 ], [ 313, 101 ], [ 274, 101 ], [ 104, 103 ], [ 262, 106 ], [ 110, 109 ], [ 307, 112 ], [ 264, 116 ], [ 120, 119 ], [ 307, 122 ], [ 119, 125 ], [ 131, 128 ], [ 265, 129 ], [ 51, 131 ], [ 286, 132 ], [ 103, 133 ], [ 138, 135 ], [ 265, 136 ], [ 119, 137 ], [ 265, 141 ], [ 119, 143 ], [ 295, 146 ], [ 149, 148 ], [ 307, 151 ], [ 280, 155 ], [ 313, 155 ], [ 274, 155 ], [ 148, 156 ], [ 162, 159 ], [ 304, 160 ], [ 103, 161 ], [ 135, 162 ], [ 265, 163 ], [ 148, 164 ], [ 169, 166 ], [ 304, 167 ], [ 103, 168 ], [ 295, 169 ], [ 276, 171 ], [ 259, 172 ], [ 288, 174 ], [ 283, 176 ], [ 259, 177 ], [ 297, 179 ], [ 183, 182 ], [ 289, 185 ], [ 267, 187 ], [ 259, 189 ], [ 182, 190 ], [ 270, 192 ], [ 286, 197 ], [ 319, 201 ], [ 316, 202 ], [ 268, 203 ], [ 277, 203 ], [ 304, 206 ], [ 319, 209 ], [ 316, 210 ], [ 304, 213 ], [ 268, 214 ], [ 277, 214 ], [ 295, 215 ], [ 255, 217 ], [ 286, 222 ], [ 283, 226 ], [ 316, 227 ], [ 268, 228 ], [ 277, 228 ], [ 304, 231 ], [ 283, 234 ], [ 268, 235 ], [ 277, 235 ], [ 304, 238 ], [ 316, 240 ], [ 295, 242 ], [ 300, 244 ], [ 271, 246 ], [ 256, 247 ], [ 309, 249 ], [ 295, 250 ], [ 310, 253 ], [ 301, 253 ], [ 298, 253 ], [ 255, 256 ], [ 318, 259 ], [ 261, 262 ], [ 264, 265 ], [ 267, 268 ], [ 270, 271 ], [ 273, 274 ], [ 259, 276 ], [ 276, 277 ], [ 279, 280 ], [ 318, 283 ], [ 285, 286 ], [ 288, 289 ], [ 291, 292 ], [ 294, 295 ], [ 297, 298 ], [ 300, 301 ], [ 303, 304 ], [ 306, 307 ], [ 295, 309 ], [ 309, 310 ], [ 312, 313 ], [ 318, 316 ], [ 318, 319 ] ]
[ "#D問題\nimport math\nH,W,A,B = map(int,input().split())\nmod = 10**9 + 7\n\nM = H+W-1\nfact = [1 for i in range(M)]\nfor i in range(M):\n if i == 0:\n pass\n else:\n fact[i] = (fact[i-1]*i)%mod\n \nrefact = [1 for i in range(M)]\nm = mod-2\nb = bin(m)\nb = b.lstrip(\"0b\")\nb = b[::-1]\nm2 = len(b)\nfor i in range(M): \n flog = [0 for j in range(m2)]\n for j in range(m2):\n if j == 0:\n flog[0] = fact[i]\n else:\n flog[j] = (flog[j-1]**2)%mod\n #print(flog)\n for j in range(m2):\n if b[j] == \"1\":\n refact[i]*=flog[j]\n refact[i]%=mod\n \nrow = B\nwide = W-B\nans = 0\nfor i in range(wide):\n row = B+i\n C1 = (fact[H-A+row-1]*refact[H-A-1]*refact[row])%mod\n C2 = (fact[W+A-row-2]*refact[W-row-1]*refact[A-1])%mod\n #print(C1,C2)\n ans+=C1*C2\n ans%=mod\n\n#print(fact)\n#print(refact)\n\nprint(ans)", "import math", "math", "H,W,A,B = map(int,input().split())", "H", "map(int,input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "mod = 10**9 + 7", "mod", "10**9 + 7", "10**9", "10", "9", "7", "M = H+W-1", "M", "H+W-1", "H+W", "H", "W", "1", "1 for i in range(M)", "for i in range(M)", "i", "range(M)", "range", "M", "for i in range(M)", "1", "fact = [1 for i in range(M)]", "fact", "[1 for i in range(M)]", "for i in range(M):\n if i == 0:\n pass\n else:\n fact[i] = (fact[i-1]*i)%mod\n ", "i", "range(M)", "range", "M", "if i == 0:\n pass\n else:\n fact[i] = (fact[i-1]*i)%mod\n ", "i == 0", "i", "0", "fact[i] = (fact[i-1]*i)%mod", "fact[i]", "fact", "i", "(fact[i-1]*i)%mod", "fact[i-1]*i", "fact[i-1]", "fact", "i-1", "i", "1", "i", "mod", "1 for i in range(M)", "for i in range(M)", "i", "range(M)", "range", "M", "for i in range(M)", "1", "refact = [1 for i in range(M)]", "refact", "[1 for i in range(M)]", "m = mod-2", "m", "mod-2", "mod", "2", "b = bin(m)", "b", "bin(m)", "bin", "m", "b = b.lstrip(\"0b\")", "b", "b.lstrip(\"0b\")", "b.lstrip", "b", "lstrip", "\"0b\"", "b = b[::-1]", "b", "b[::-1]", "b", "::-1", "-1", "m2 = len(b)", "m2", "len(b)", "len", "b", "for i in range(M): \n flog = [0 for j in range(m2)]\n for j in range(m2):\n if j == 0:\n flog[0] = fact[i]\n else:\n flog[j] = (flog[j-1]**2)%mod\n #print(flog)\n for j in range(m2):\n if b[j] == \"1\":\n refact[i]*=flog[j]\n refact[i]%=mod\n ", "i", "range(M)", "range", "M", "0 for j in range(m2)", "for j in range(m2)", "j", "range(m2)", "range", "m2", "for j in range(m2)", "0", "flog = [0 for j in range(m2)]", "flog", "[0 for j in range(m2)]", "for j in range(m2):\n if j == 0:\n flog[0] = fact[i]\n else:\n flog[j] = (flog[j-1]**2)%mod\n #print(flog)\n ", "j", "range(m2)", "range", "m2", "if j == 0:\n flog[0] = fact[i]\n else:\n flog[j] = (flog[j-1]**2)%mod\n #print(flog)\n ", "j == 0", "j", "0", "flog[0] = fact[i]", "flog[0]", "flog", "0", "fact[i]", "fact", "i", "flog[j] = (flog[j-1]**2)%mod", "flog[j]", "flog", "j", "(flog[j-1]**2)%mod", "flog[j-1]**2", "flog[j-1]", "flog", "j-1", "j", "1", "2", "mod", "for j in range(m2):\n if b[j] == \"1\":\n refact[i]*=flog[j]\n refact[i]%=mod\n ", "j", "range(m2)", "range", "m2", "if b[j] == \"1\":\n refact[i]*=flog[j]\n refact[i]%=mod\n ", "b[j] == \"1\"", "b[j]", "b", "j", "\"1\"", "refact[i]*=flog[j]", "refact[i]", "refact", "i", "flog[j]", "flog", "j", "refact[i]%=mod", "refact[i]", "refact", "i", "mod", "row = B", "row", "B", "wide = W-B", "wide", "W-B", "W", "B", "ans = 0", "ans", "0", "for i in range(wide):\n row = B+i\n C1 = (fact[H-A+row-1]*refact[H-A-1]*refact[row])%mod\n C2 = (fact[W+A-row-2]*refact[W-row-1]*refact[A-1])%mod\n #print(C1,C2)\n ans+=C1*C2\n ans%=mod\n\n#print(fact)\n#print(refact)", "i", "range(wide)", "range", "wide", "row = B+i", "row", "B+i", "B", "i", "C1 = (fact[H-A+row-1]*refact[H-A-1]*refact[row])%mod", "C1", "(fact[H-A+row-1]*refact[H-A-1]*refact[row])%mod", "fact[H-A+row-1]*refact[H-A-1]*refact[row]", "fact[H-A+row-1]*refact[H-A-1]", "fact[H-A+row-1]", "fact", "H-A+row-1", "H-A+row", "H-A", "H", "A", "row", "1", "refact[H-A-1]", "refact", "H-A-1", "H-A", "H", "A", "1", "refact[row]", "refact", "row", "mod", "C2 = (fact[W+A-row-2]*refact[W-row-1]*refact[A-1])%mod", "C2", "(fact[W+A-row-2]*refact[W-row-1]*refact[A-1])%mod", "fact[W+A-row-2]*refact[W-row-1]*refact[A-1]", "fact[W+A-row-2]*refact[W-row-1]", "fact[W+A-row-2]", "fact", "W+A-row-2", "W+A-row", "W+A", "W", "A", "row", "2", "refact[W-row-1]", "refact", "W-row-1", "W-row", "W", "row", "1", "refact[A-1]", "refact", "A-1", "A", "1", "mod", "ans+=C1*C2", "ans", "C1*C2", "C1", "C2", "ans%=mod", "ans", "mod", "print(ans)", "print", "ans", "C2 = (fact[W+A-row-2]*refact[W-row-1]*refact[A-1])%mod", "(fact[W+A-row-2]*refact[W-row-1]*refact[A-1])%mod", "C2", "B = map(int,input().split())", "map(int,input().split())", "B", "M = H+W-1", "H+W-1", "M", "flog = [0 for j in range(m2)]", "[0 for j in range(m2)]", "flog", "row = B+i", "B+i", "row", "C1 = (fact[H-A+row-1]*refact[H-A-1]*refact[row])%mod", "(fact[H-A+row-1]*refact[H-A-1]*refact[row])%mod", "C1", "b = bin(m)", "bin(m)", "b", "row = B", "B", "row", "b = b[::-1]", "b[::-1]", "b", "W,A,B = map(int,input().split())", "map(int,input().split())", "W", "fact = [1 for i in range(M)]", "[1 for i in range(M)]", "fact", "wide = W-B", "W-B", "wide", "m = mod-2", "mod-2", "m", "mod = 10**9 + 7", "10**9 + 7", "mod", "ans = 0", "0", "ans", "ans+=C1*C2", "C1*C2", "ans", "refact = [1 for i in range(M)]", "[1 for i in range(M)]", "refact", "m2 = len(b)", "len(b)", "m2", "ans%=mod", "mod", "ans", "b = b.lstrip(\"0b\")", "b.lstrip(\"0b\")", "b", "A,B = map(int,input().split())", "map(int,input().split())", "A", "H,W,A,B = map(int,input().split())", "map(int,input().split())", "H" ]
#D問題 import math H,W,A,B = map(int,input().split()) mod = 10**9 + 7 M = H+W-1 fact = [1 for i in range(M)] for i in range(M): if i == 0: pass else: fact[i] = (fact[i-1]*i)%mod refact = [1 for i in range(M)] m = mod-2 b = bin(m) b = b.lstrip("0b") b = b[::-1] m2 = len(b) for i in range(M): flog = [0 for j in range(m2)] for j in range(m2): if j == 0: flog[0] = fact[i] else: flog[j] = (flog[j-1]**2)%mod #print(flog) for j in range(m2): if b[j] == "1": refact[i]*=flog[j] refact[i]%=mod row = B wide = W-B ans = 0 for i in range(wide): row = B+i C1 = (fact[H-A+row-1]*refact[H-A-1]*refact[row])%mod C2 = (fact[W+A-row-2]*refact[W-row-1]*refact[A-1])%mod #print(C1,C2) ans+=C1*C2 ans%=mod #print(fact) #print(refact) print(ans)
[ 7, 0, 13, 4, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 12, 13, 14, 2, 2, 13, 17, 2, 13, 13, 29, 17, 0, 13, 4, 13, 13, 2, 13, 13, 29, 2, 2, 2, 18, 13, 13, 18, 13, 13, 18, 13, 2, 13, 13, 13, 23, 13, 23, 13, 23, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 2, 2, 17, 17, 17, 0, 13, 39, 17, 17, 0, 13, 39, 17, 17, 0, 13, 39, 17, 17, 28, 13, 4, 13, 17, 2, 13, 17, 4, 18, 13, 13, 2, 2, 18, 13, 17, 13, 13, 4, 18, 13, 13, 2, 2, 40, 18, 13, 2, 13, 13, 2, 13, 13, 13, 4, 18, 13, 13, 2, 2, 18, 13, 17, 18, 13, 17, 13, 12, 13, 29, 4, 13, 2, 13, 13, 13, 2, 2, 17, 17, 17, 23, 13, 23, 13, 0, 13, 4, 13, 2, 13, 17, 2, 13, 17, 28, 13, 4, 13, 13, 0, 13, 2, 2, 4, 13, 13, 2, 2, 13, 13, 17, 4, 13, 2, 13, 17, 2, 2, 13, 13, 17, 13, 0, 13, 13, 0, 13, 13, 0, 13, 13, 4, 13, 13, 10, 12, 13, 10, 4, 13, 10, 2, 13, 10, 13, 13, 10, 39, 13, 10, 2, 13, 10, 4, 13, 10, 13, 13, 10, 4, 13, 10, 4, 13, 10, 39, 13, 10, 4, 13, 10, 13, 13, 10, 12, 13, 10, 39, 13, 10, 2, 13 ]
[ [ 237, 2 ], [ 237, 13 ], [ 237, 14 ], [ 237, 15 ], [ 55, 21 ], [ 53, 24 ], [ 55, 25 ], [ 30, 29 ], [ 55, 32 ], [ 53, 34 ], [ 55, 35 ], [ 53, 42 ], [ 29, 45 ], [ 55, 45 ], [ 53, 49 ], [ 29, 50 ], [ 55, 50 ], [ 57, 51 ], [ 53, 53 ], [ 55, 55 ], [ 57, 57 ], [ 210, 59 ], [ 249, 66 ], [ 234, 73 ], [ 216, 78 ], [ 246, 83 ], [ 89, 88 ], [ 250, 93 ], [ 235, 97 ], [ 235, 102 ], [ 88, 104 ], [ 211, 105 ], [ 247, 108 ], [ 247, 114 ], [ 211, 116 ], [ 88, 117 ], [ 211, 119 ], [ 88, 120 ], [ 211, 121 ], [ 217, 124 ], [ 217, 129 ], [ 247, 132 ], [ 211, 134 ], [ 205, 139 ], [ 150, 141 ], [ 152, 142 ], [ 150, 143 ], [ 150, 150 ], [ 152, 152 ], [ 231, 154 ], [ 244, 156 ], [ 208, 158 ], [ 238, 161 ], [ 165, 164 ], [ 223, 167 ], [ 219, 169 ], [ 244, 173 ], [ 164, 174 ], [ 238, 177 ], [ 229, 178 ], [ 244, 181 ], [ 229, 183 ], [ 208, 187 ], [ 164, 188 ], [ 211, 190 ], [ 225, 192 ], [ 211, 193 ], [ 213, 195 ], [ 220, 196 ], [ 240, 198 ], [ 211, 199 ], [ 241, 202 ], [ 214, 202 ], [ 226, 202 ], [ 232, 202 ], [ 237, 208 ], [ 210, 211 ], [ 220, 213 ], [ 213, 214 ], [ 216, 217 ], [ 219, 220 ], [ 237, 223 ], [ 211, 225 ], [ 225, 226 ], [ 237, 229 ], [ 231, 232 ], [ 234, 235 ], [ 237, 238 ], [ 211, 240 ], [ 240, 241 ], [ 246, 247 ], [ 249, 250 ] ]
[ "\na,b,c,d = list(map(int, input().split()))\n\ndef cmb(n, r, p):\n if (r < 0) or (n < r):\n return 0\n r = min(r, n - r)\n return fact[n] * factinv[r] * factinv[n-r] % p\n\np = 10**9+7\nN = 10 ** 6 + 2\nfact = [1, 1] # fact[n] = (n! mod p)\nfactinv = [1, 1] # factinv[n] = ((n!)^(-1) mod p)\ninv = [0, 1] # factinv 計算用\n\nfor i in range(2, N + 1):\n fact.append((fact[-1] * i) % p)\n inv.append((-inv[p % i] * (p // i)) % p)\n factinv.append((factinv[-1] * inv[-1]) % p)\n \ndef wh(w,h):\n return cmb(w+h,w,10**9+7)\n\nans = wh(b-1,a-1)\n#print(ans)\n\nfor i in range(d):\n tmp = wh(i,a-c-1) * wh(c-1,b-i-1) % p\n ans += p\n ans -= tmp\n ans %= p\n #print(ans)\n \nprint(ans)\n\n", "a,b,c,d = list(map(int, input().split()))", "a", "list(map(int, input().split()))", "list", "map(int, input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "b", "c", "d", "def cmb(n, r, p):\n if (r < 0) or (n < r):\n return 0\n r = min(r, n - r)\n return fact[n] * factinv[r] * factinv[n-r] % p", "cmb", "if (r < 0) or (n < r):\n return 0\n ", "(r < 0) or (n < r)", "r < 0", "r", "0", "n < r", "n", "r", "return 0", "0", "r = min(r, n - r)", "r", "min(r, n - r)", "min", "r", "n - r", "n", "r", "return fact[n] * factinv[r] * factinv[n-r] % p", "fact[n] * factinv[r] * factinv[n-r] % p", "fact[n] * factinv[r] * factinv[n-r]", "fact[n] * factinv[r]", "fact[n]", "fact", "n", "factinv[r]", "factinv", "r", "factinv[n-r]", "factinv", "n-r", "n", "r", "p", "n", "n", "r", "r", "p", "p", "p = 10**9+7", "p", "10**9+7", "10**9", "10", "9", "7", "N = 10 ** 6 + 2", "N", "10 ** 6 + 2", "10 ** 6", "10", "6", "2", "fact = [1, 1]", "fact", "[1, 1]", "1", "1", "factinv = [1, 1]", "factinv", "[1, 1]", "1", "1", "inv = [0, 1]", "inv", "[0, 1]", "0", "1", "for i in range(2, N + 1):\n fact.append((fact[-1] * i) % p)\n inv.append((-inv[p % i] * (p // i)) % p)\n factinv.append((factinv[-1] * inv[-1]) % p)\n ", "i", "range(2, N + 1)", "range", "2", "N + 1", "N", "1", "fact.append((fact[-1] * i) % p)", "fact.append", "fact", "append", "(fact[-1] * i) % p", "fact[-1] * i", "fact[-1]", "fact", "-1", "i", "p", "inv.append((-inv[p % i] * (p // i)) % p)", "inv.append", "inv", "append", "(-inv[p % i] * (p // i)) % p", "-inv[p % i] * (p // i)", "-inv[p % i]", "inv[p % i]", "inv", "p % i", "p", "i", "p // i", "p", "i", "p", "factinv.append((factinv[-1] * inv[-1]) % p)", "factinv.append", "factinv", "append", "(factinv[-1] * inv[-1]) % p", "factinv[-1] * inv[-1]", "factinv[-1]", "factinv", "-1", "inv[-1]", "inv", "-1", "p", "def wh(w,h):\n return cmb(w+h,w,10**9+7)", "wh", "return cmb(w+h,w,10**9+7)", "cmb(w+h,w,10**9+7)", "cmb", "w+h", "w", "h", "w", "10**9+7", "10**9", "10", "9", "7", "w", "w", "h", "h", "ans = wh(b-1,a-1)", "ans", "wh(b-1,a-1)", "wh", "b-1", "b", "1", "a-1", "a", "1", "for i in range(d):\n tmp = wh(i,a-c-1) * wh(c-1,b-i-1) % p\n ans += p\n ans -= tmp\n ans %= p\n #print(ans)\n ", "i", "range(d)", "range", "d", "tmp = wh(i,a-c-1) * wh(c-1,b-i-1) % p", "tmp", "wh(i,a-c-1) * wh(c-1,b-i-1) % p", "wh(i,a-c-1) * wh(c-1,b-i-1)", "wh(i,a-c-1)", "wh", "i", "a-c-1", "a-c", "a", "c", "1", "wh(c-1,b-i-1)", "wh", "c-1", "c", "1", "b-i-1", "b-i", "b", "i", "1", "p", "ans += p", "ans", "p", "ans -= tmp", "ans", "tmp", "ans %= p", "ans", "p", "print(ans)", "print", "ans", "def cmb(n, r, p):\n if (r < 0) or (n < r):\n return 0\n r = min(r, n - r)\n return fact[n] * factinv[r] * factinv[n-r] % p", "def cmb(n, r, p):\n if (r < 0) or (n < r):\n return 0\n r = min(r, n - r)\n return fact[n] * factinv[r] * factinv[n-r] % p", "cmb", "b,c,d = list(map(int, input().split()))", "list(map(int, input().split()))", "b", "p = 10**9+7", "10**9+7", "p", "ans -= tmp", "tmp", "ans", "factinv = [1, 1]", "[1, 1]", "factinv", "tmp = wh(i,a-c-1) * wh(c-1,b-i-1) % p", "wh(i,a-c-1) * wh(c-1,b-i-1) % p", "tmp", "d = list(map(int, input().split()))", "list(map(int, input().split()))", "d", "ans += p", "p", "ans", "c,d = list(map(int, input().split()))", "list(map(int, input().split()))", "c", "ans = wh(b-1,a-1)", "wh(b-1,a-1)", "ans", "fact = [1, 1]", "[1, 1]", "fact", "a,b,c,d = list(map(int, input().split()))", "list(map(int, input().split()))", "a", "ans %= p", "p", "ans", "def wh(w,h):\n return cmb(w+h,w,10**9+7)", "def wh(w,h):\n return cmb(w+h,w,10**9+7)", "wh", "inv = [0, 1]", "[0, 1]", "inv", "N = 10 ** 6 + 2", "10 ** 6 + 2", "N" ]
a,b,c,d = list(map(int, input().split())) def cmb(n, r, p): if (r < 0) or (n < r): return 0 r = min(r, n - r) return fact[n] * factinv[r] * factinv[n-r] % p p = 10**9+7 N = 10 ** 6 + 2 fact = [1, 1] # fact[n] = (n! mod p) factinv = [1, 1] # factinv[n] = ((n!)^(-1) mod p) inv = [0, 1] # factinv 計算用 for i in range(2, N + 1): fact.append((fact[-1] * i) % p) inv.append((-inv[p % i] * (p // i)) % p) factinv.append((factinv[-1] * inv[-1]) % p) def wh(w,h): return cmb(w+h,w,10**9+7) ans = wh(b-1,a-1) #print(ans) for i in range(d): tmp = wh(i,a-c-1) * wh(c-1,b-i-1) % p ans += p ans -= tmp ans %= p #print(ans) print(ans)
[ 7, 15, 13, 12, 13, 0, 13, 13, 0, 13, 17, 0, 13, 17, 42, 13, 0, 13, 2, 13, 13, 0, 13, 2, 13, 13, 0, 13, 13, 13, 13, 0, 13, 2, 13, 13, 0, 13, 13, 13, 13, 0, 13, 13, 14, 2, 13, 17, 0, 13, 13, 29, 13, 23, 13, 23, 13, 0, 13, 4, 18, 4, 13, 13, 17, 41, 28, 13, 13, 4, 4, 13, 13, 0, 13, 13, 0, 13, 18, 13, 17, 0, 13, 18, 13, 17, 0, 13, 18, 13, 17, 0, 13, 18, 13, 17, 41, 28, 13, 4, 13, 2, 2, 13, 13, 17, 4, 17, 0, 13, 13, 41, 28, 13, 4, 13, 2, 2, 13, 13, 17, 4, 17, 0, 13, 13, 28, 13, 4, 13, 2, 2, 13, 13, 17, 14, 2, 13, 17, 0, 18, 13, 13, 17, 0, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 13, 17, 28, 13, 4, 13, 4, 13, 2, 2, 13, 13, 17, 14, 2, 13, 2, 2, 13, 13, 17, 0, 18, 13, 13, 4, 13, 4, 18, 13, 13, 13, 17, 0, 18, 13, 13, 2, 2, 18, 13, 2, 13, 17, 2, 13, 17, 17, 12, 13, 29, 2, 2, 2, 18, 13, 13, 18, 13, 13, 18, 13, 2, 13, 13, 17, 23, 13, 23, 13, 0, 13, 17, 28, 13, 4, 13, 13, 13, 0, 13, 2, 4, 13, 2, 2, 2, 13, 13, 13, 17, 2, 2, 13, 13, 17, 4, 13, 2, 2, 2, 2, 13, 17, 13, 13, 17, 2, 2, 13, 13, 17, 0, 13, 17, 4, 13, 13, 10, 17, 13, 10, 18, 13, 10, 17, 13, 10, 18, 13, 10, 12, 13, 10, 12, 13, 10, 18, 13, 10, 13, 13, 10, 2, 13, 10, 13, 13, 10, 13, 13, 10, 18, 13, 10, 4, 13 ]
[ [ 7, 6 ], [ 56, 7 ], [ 10, 9 ], [ 13, 12 ], [ 18, 17 ], [ 54, 19 ], [ 27, 19 ], [ 22, 19 ], [ 6, 20 ], [ 29, 20 ], [ 23, 22 ], [ 17, 24 ], [ 6, 25 ], [ 29, 25 ], [ 28, 27 ], [ 6, 28 ], [ 29, 28 ], [ 30, 29 ], [ 27, 30 ], [ 22, 30 ], [ 54, 30 ], [ 33, 32 ], [ 17, 34 ], [ 12, 35 ], [ 39, 35 ], [ 38, 37 ], [ 12, 38 ], [ 39, 38 ], [ 40, 39 ], [ 37, 40 ], [ 32, 40 ], [ 9, 40 ], [ 43, 42 ], [ 56, 43 ], [ 42, 46 ], [ 37, 46 ], [ 32, 46 ], [ 9, 46 ], [ 50, 49 ], [ 56, 50 ], [ 49, 52 ], [ 42, 52 ], [ 37, 52 ], [ 32, 52 ], [ 9, 52 ], [ 54, 54 ], [ 56, 56 ], [ 310, 58 ], [ 68, 67 ], [ 311, 67 ], [ 67, 72 ], [ 301, 74 ], [ 283, 77 ], [ 302, 79 ], [ 307, 82 ], [ 302, 84 ], [ 277, 87 ], [ 302, 89 ], [ 292, 92 ], [ 302, 94 ], [ 99, 98 ], [ 284, 103 ], [ 308, 104 ], [ 304, 109 ], [ 114, 113 ], [ 284, 118 ], [ 308, 119 ], [ 295, 124 ], [ 128, 127 ], [ 284, 132 ], [ 308, 133 ], [ 127, 137 ], [ 143, 140 ], [ 305, 141 ], [ 127, 142 ], [ 148, 145 ], [ 305, 146 ], [ 127, 147 ], [ 305, 151 ], [ 127, 153 ], [ 127, 155 ], [ 159, 158 ], [ 284, 165 ], [ 308, 166 ], [ 158, 170 ], [ 284, 173 ], [ 308, 174 ], [ 180, 177 ], [ 296, 178 ], [ 158, 179 ], [ 287, 181 ], [ 158, 186 ], [ 192, 189 ], [ 296, 190 ], [ 158, 191 ], [ 296, 195 ], [ 158, 197 ], [ 158, 200 ], [ 305, 210 ], [ 222, 211 ], [ 296, 213 ], [ 224, 214 ], [ 296, 216 ], [ 222, 218 ], [ 224, 219 ], [ 222, 222 ], [ 224, 224 ], [ 280, 226 ], [ 230, 229 ], [ 293, 232 ], [ 308, 233 ], [ 298, 235 ], [ 290, 238 ], [ 229, 242 ], [ 284, 243 ], [ 278, 244 ], [ 284, 248 ], [ 278, 249 ], [ 290, 252 ], [ 278, 257 ], [ 308, 259 ], [ 229, 260 ], [ 308, 264 ], [ 229, 265 ], [ 274, 268 ], [ 275, 272 ], [ 299, 272 ], [ 281, 272 ], [ 274, 275 ], [ 277, 278 ], [ 280, 281 ], [ 283, 284 ], [ 292, 293 ], [ 295, 296 ], [ 298, 299 ], [ 301, 302 ], [ 304, 305 ], [ 307, 308 ], [ 310, 311 ] ]
[ "import math\n\ndef modinv(a,m):\n\tb = m\n\tu = 1\n\tv = 0\n\twhile(b):\n\t\tt = a // b\n\t\ta -= t * b\n\t\ta,b = b,a\n\t\tu -= t * v\n\t\tu,v = v,u\n\tu %= m\n\tif u < 0:\n\t\tu += m\n\treturn u\n\ninp = input().split(' ')\ninpint = [int(i) for i in inp]\nh = inpint[0]\nw = inpint[1]\na = inpint[2]\nb = inpint[3]\n\nxfac = [0 for r in range(h+w-2)]\nxfac_inv = [0 for r in range(h+w-2)]\n\nfor i in range(h+w-2):\n\tif i == 0:\n\t\txfac[i] = 1\n\telse:\n\t\txfac[i] = (xfac[i-1]*i)%1000000007\n\nfor i in reversed(range(h+w-2)):\n\tif i == h+w-3:\n\t\txfac_inv[i] = modinv(math.factorial(i),1000000007)\n\telse:\n\t\txfac_inv[i] = xfac_inv[i+1] * (i+1) % 1000000007\n\n# print(xfac)\n# print(xfac_inv)\n\n# for i in range(h+w-2):\n# \tprint(xfac[i]*xfac_inv[i]%1000000007)\n\ndef com(a,b):\n\treturn (xfac[a] * xfac_inv[b] * xfac_inv[a-b])%1000000007\n\nsum = 0\nfor i in range(b,w):\n\tsum += com(i + h-a-1,h-a-1) * com((a-1)+w-i-1, w-i-1)\n\tsum %= 1000000007\n\nprint(sum)", "import math", "math", "def modinv(a,m):\n\tb = m\n\tu = 1\n\tv = 0\n\twhile(b):\n\t\tt = a // b\n\t\ta -= t * b\n\t\ta,b = b,a\n\t\tu -= t * v\n\t\tu,v = v,u\n\tu %= m\n\tif u < 0:\n\t\tu += m\n\treturn u", "modinv", "b = m", "b", "m", "u = 1", "u", "1", "v = 0", "v", "0", "while(b):\n\t\tt = a // b\n\t\ta -= t * b\n\t\ta,b = b,a\n\t\tu -= t * v\n\t\tu,v = v,u\n\t", "b", "t = a // b", "t", "a // b", "a", "b", "a -= t * b", "a", "t * b", "t", "b", "a,b = b,a", "a", "b", "b", "a", "u -= t * v", "u", "t * v", "t", "v", "u,v = v,u", "u", "v", "v", "u", "u %= m", "u", "m", "if u < 0:\n\t\tu += m\n\t", "u < 0", "u", "0", "u += m", "u", "m", "return u", "u", "a", "a", "m", "m", "inp = input().split(' ')", "inp", "input().split(' ')", "().split", "()", "input", "split", "' '", "int(i) for i in inp", "for i in inp", "i", "inp", "for i in inp", "int(i)", "int", "i", "inpint = [int(i) for i in inp]", "inpint", "[int(i) for i in inp]", "h = inpint[0]", "h", "inpint[0]", "inpint", "0", "w = inpint[1]", "w", "inpint[1]", "inpint", "1", "a = inpint[2]", "a", "inpint[2]", "inpint", "2", "b = inpint[3]", "b", "inpint[3]", "inpint", "3", "0 for r in range(h+w-2)", "for r in range(h+w-2)", "r", "range(h+w-2)", "range", "h+w-2", "h+w", "h", "w", "2", "for r in range(h+w-2)", "0", "xfac = [0 for r in range(h+w-2)]", "xfac", "[0 for r in range(h+w-2)]", "0 for r in range(h+w-2)", "for r in range(h+w-2)", "r", "range(h+w-2)", "range", "h+w-2", "h+w", "h", "w", "2", "for r in range(h+w-2)", "0", "xfac_inv = [0 for r in range(h+w-2)]", "xfac_inv", "[0 for r in range(h+w-2)]", "for i in range(h+w-2):\n\tif i == 0:\n\t\txfac[i] = 1\n\telse:\n\t\txfac[i] = (xfac[i-1]*i)%1000000007", "i", "range(h+w-2)", "range", "h+w-2", "h+w", "h", "w", "2", "if i == 0:\n\t\txfac[i] = 1\n\telse:\n\t\txfac[i] = (xfac[i-1]*i)%1000000007", "i == 0", "i", "0", "xfac[i] = 1", "xfac[i]", "xfac", "i", "1", "xfac[i] = (xfac[i-1]*i)%1000000007", "xfac[i]", "xfac", "i", "(xfac[i-1]*i)%1000000007", "xfac[i-1]*i", "xfac[i-1]", "xfac", "i-1", "i", "1", "i", "1000000007", "for i in reversed(range(h+w-2)):\n\tif i == h+w-3:\n\t\txfac_inv[i] = modinv(math.factorial(i),1000000007)\n\telse:\n\t\txfac_inv[i] = xfac_inv[i+1] * (i+1) % 1000000007\n\n# print(xfac)\n# print(xfac_inv)\n\n# for i in range(h+w-2):\n# \tprint(xfac[i]*xfac_inv[i]%1000000007)", "i", "reversed(range(h+w-2))", "reversed", "range(h+w-2)", "range", "h+w-2", "h+w", "h", "w", "2", "if i == h+w-3:\n\t\txfac_inv[i] = modinv(math.factorial(i),1000000007)\n\telse:\n\t\txfac_inv[i] = xfac_inv[i+1] * (i+1) % 1000000007\n\n# print(xfac)\n# print(xfac_inv)\n\n# for i in range(h+w-2):\n# \tprint(xfac[i]*xfac_inv[i]%1000000007)", "i == h+w-3", "i", "h+w-3", "h+w", "h", "w", "3", "xfac_inv[i] = modinv(math.factorial(i),1000000007)", "xfac_inv[i]", "xfac_inv", "i", "modinv(math.factorial(i),1000000007)", "modinv", "math.factorial(i)", "math.factorial", "math", "factorial", "i", "1000000007", "xfac_inv[i] = xfac_inv[i+1] * (i+1) % 1000000007", "xfac_inv[i]", "xfac_inv", "i", "xfac_inv[i+1] * (i+1) % 1000000007", "xfac_inv[i+1] * (i+1)", "xfac_inv[i+1]", "xfac_inv", "i+1", "i", "1", "i+1", "i", "1", "1000000007", "def com(a,b):\n\treturn (xfac[a] * xfac_inv[b] * xfac_inv[a-b])%1000000007", "com", "return (xfac[a] * xfac_inv[b] * xfac_inv[a-b])%1000000007", "(xfac[a] * xfac_inv[b] * xfac_inv[a-b])%1000000007", "xfac[a] * xfac_inv[b] * xfac_inv[a-b]", "xfac[a] * xfac_inv[b]", "xfac[a]", "xfac", "a", "xfac_inv[b]", "xfac_inv", "b", "xfac_inv[a-b]", "xfac_inv", "a-b", "a", "b", "1000000007", "a", "a", "b", "b", "sum = 0", "sum", "0", "for i in range(b,w):\n\tsum += com(i + h-a-1,h-a-1) * com((a-1)+w-i-1, w-i-1)\n\tsum %= 1000000007", "i", "range(b,w)", "range", "b", "w", "sum += com(i + h-a-1,h-a-1) * com((a-1)+w-i-1, w-i-1)", "sum", "com(i + h-a-1,h-a-1) * com((a-1)+w-i-1, w-i-1)", "com(i + h-a-1,h-a-1)", "com", "i + h-a-1", "i + h-a", "i + h", "i", "h", "a", "1", "h-a-1", "h-a", "h", "a", "1", "com((a-1)+w-i-1, w-i-1)", "com", "(a-1)+w-i-1", "(a-1)+w-i", "(a-1)+w", "a-1", "a", "1", "w", "i", "1", "w-i-1", "w-i", "w", "i", "1", "sum %= 1000000007", "sum", "1000000007", "print(sum)", "print", "sum", "sum %= 1000000007", "1000000007", "sum", "a = inpint[2]", "inpint[2]", "a", "sum = 0", "0", "sum", "h = inpint[0]", "inpint[0]", "h", "def modinv(a,m):\n\tb = m\n\tu = 1\n\tv = 0\n\twhile(b):\n\t\tt = a // b\n\t\ta -= t * b\n\t\ta,b = b,a\n\t\tu -= t * v\n\t\tu,v = v,u\n\tu %= m\n\tif u < 0:\n\t\tu += m\n\treturn u", "def modinv(a,m):\n\tb = m\n\tu = 1\n\tv = 0\n\twhile(b):\n\t\tt = a // b\n\t\ta -= t * b\n\t\ta,b = b,a\n\t\tu -= t * v\n\t\tu,v = v,u\n\tu %= m\n\tif u < 0:\n\t\tu += m\n\treturn u", "modinv", "def com(a,b):\n\treturn (xfac[a] * xfac_inv[b] * xfac_inv[a-b])%1000000007", "def com(a,b):\n\treturn (xfac[a] * xfac_inv[b] * xfac_inv[a-b])%1000000007", "com", "b = inpint[3]", "inpint[3]", "b", "xfac_inv = [0 for r in range(h+w-2)]", "[0 for r in range(h+w-2)]", "xfac_inv", "sum += com(i + h-a-1,h-a-1) * com((a-1)+w-i-1, w-i-1)", "com(i + h-a-1,h-a-1) * com((a-1)+w-i-1, w-i-1)", "sum", "inpint = [int(i) for i in inp]", "[int(i) for i in inp]", "inpint", "xfac = [0 for r in range(h+w-2)]", "[0 for r in range(h+w-2)]", "xfac", "w = inpint[1]", "inpint[1]", "w", "inp = input().split(' ')", "input().split(' ')", "inp" ]
import math def modinv(a,m): b = m u = 1 v = 0 while(b): t = a // b a -= t * b a,b = b,a u -= t * v u,v = v,u u %= m if u < 0: u += m return u inp = input().split(' ') inpint = [int(i) for i in inp] h = inpint[0] w = inpint[1] a = inpint[2] b = inpint[3] xfac = [0 for r in range(h+w-2)] xfac_inv = [0 for r in range(h+w-2)] for i in range(h+w-2): if i == 0: xfac[i] = 1 else: xfac[i] = (xfac[i-1]*i)%1000000007 for i in reversed(range(h+w-2)): if i == h+w-3: xfac_inv[i] = modinv(math.factorial(i),1000000007) else: xfac_inv[i] = xfac_inv[i+1] * (i+1) % 1000000007 # print(xfac) # print(xfac_inv) # for i in range(h+w-2): # print(xfac[i]*xfac_inv[i]%1000000007) def com(a,b): return (xfac[a] * xfac_inv[b] * xfac_inv[a-b])%1000000007 sum = 0 for i in range(b,w): sum += com(i + h-a-1,h-a-1) * com((a-1)+w-i-1, w-i-1) sum %= 1000000007 print(sum)
[ 7, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 2, 2, 17, 17, 17, 12, 13, 0, 13, 17, 42, 13, 14, 2, 13, 17, 0, 13, 2, 2, 13, 13, 13, 0, 13, 2, 2, 13, 13, 13, 0, 13, 17, 29, 13, 23, 13, 23, 13, 0, 13, 39, 17, 0, 13, 39, 12, 13, 29, 2, 2, 2, 18, 13, 13, 18, 13, 13, 18, 13, 2, 13, 13, 13, 23, 13, 23, 13, 28, 13, 4, 13, 17, 2, 2, 13, 13, 17, 4, 18, 13, 13, 2, 2, 18, 13, 17, 13, 13, 4, 18, 13, 13, 4, 13, 18, 13, 17, 2, 13, 17, 28, 13, 4, 13, 2, 4, 13, 13, 17, 4, 18, 13, 13, 2, 2, 18, 13, 17, 2, 4, 13, 13, 4, 13, 13, 13, 0, 13, 18, 13, 39, 17, 0, 13, 17, 28, 13, 4, 13, 2, 13, 17, 2, 13, 17, 0, 13, 2, 2, 13, 13, 17, 0, 13, 2, 13, 17, 0, 13, 2, 2, 13, 2, 4, 13, 2, 2, 2, 2, 13, 13, 17, 13, 17, 2, 2, 13, 13, 17, 4, 13, 2, 2, 2, 13, 17, 13, 13, 2, 13, 13, 13, 4, 13, 13, 10, 12, 13, 10, 4, 13, 10, 18, 13, 10, 2, 13, 10, 39, 13, 10, 12, 13, 10, 4, 13, 10, 2, 13, 10, 2, 13, 10, 17, 13, 10, 2, 13, 10, 4, 13, 10, 4, 13, 10, 39, 13 ]
[ [ 249, 2 ], [ 249, 11 ], [ 249, 12 ], [ 249, 13 ], [ 234, 15 ], [ 25, 24 ], [ 54, 30 ], [ 47, 30 ], [ 34, 33 ], [ 24, 36 ], [ 33, 36 ], [ 52, 37 ], [ 40, 37 ], [ 235, 38 ], [ 41, 40 ], [ 52, 43 ], [ 40, 43 ], [ 52, 44 ], [ 40, 44 ], [ 235, 45 ], [ 48, 47 ], [ 33, 50 ], [ 24, 50 ], [ 52, 52 ], [ 54, 54 ], [ 252, 56 ], [ 225, 60 ], [ 253, 69 ], [ 81, 70 ], [ 226, 72 ], [ 83, 73 ], [ 226, 75 ], [ 81, 77 ], [ 83, 78 ], [ 235, 79 ], [ 81, 81 ], [ 83, 83 ], [ 86, 85 ], [ 250, 91 ], [ 217, 92 ], [ 253, 96 ], [ 253, 101 ], [ 85, 103 ], [ 235, 104 ], [ 226, 107 ], [ 214, 110 ], [ 253, 112 ], [ 235, 115 ], [ 119, 118 ], [ 253, 124 ], [ 226, 128 ], [ 226, 133 ], [ 253, 138 ], [ 226, 141 ], [ 235, 142 ], [ 219, 144 ], [ 226, 146 ], [ 240, 150 ], [ 154, 153 ], [ 232, 157 ], [ 217, 160 ], [ 243, 163 ], [ 250, 166 ], [ 247, 167 ], [ 222, 170 ], [ 153, 172 ], [ 237, 175 ], [ 241, 178 ], [ 238, 178 ], [ 229, 181 ], [ 250, 186 ], [ 247, 187 ], [ 153, 189 ], [ 250, 193 ], [ 247, 194 ], [ 229, 197 ], [ 247, 201 ], [ 217, 203 ], [ 153, 204 ], [ 217, 206 ], [ 153, 207 ], [ 235, 208 ], [ 238, 211 ], [ 241, 211 ], [ 249, 217 ], [ 219, 220 ], [ 222, 223 ], [ 225, 226 ], [ 249, 232 ], [ 234, 235 ], [ 237, 238 ], [ 240, 241 ], [ 243, 244 ], [ 249, 247 ], [ 249, 250 ], [ 252, 253 ] ]
[ "H, W, A, B = map(int, input().split())\n\nMOD = 10 ** 9 + 7\n\n\ndef pow_mod(x, p):\n res = 1\n while p:\n if p % 2:\n res = res * x % MOD\n x = x * x % MOD\n p //= 2\n return res\n\n\nF = [1]\ninvF = []\n\n\ndef comb_mod(n, r):\n return F[n] * invF[r] * invF[n - r] % MOD\n\n\nfor i in range(1, H + W - 1):\n F.append(F[-1] * i % MOD)\n\ninvF.append(pow_mod(F[-1], (MOD - 2)))\nfor f in range(len(F) - 1):\n invF.append(invF[-1] * (len(F) - len(invF)) % MOD)\ninvF = invF[::-1]\n\nres = 0\nfor i in range(B + 1, W + 1):\n p = H - A - 1\n q = i - 1\n\n res = (\n res\n + comb_mod(H - A - 1 + i - 1, H - A - 1)\n * comb_mod(A - 1 + W - i, W - i)\n ) % MOD\n\nprint(res)", "H, W, A, B = map(int, input().split())", "H", "map(int, input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "MOD = 10 ** 9 + 7", "MOD", "10 ** 9 + 7", "10 ** 9", "10", "9", "7", "def pow_mod(x, p):\n res = 1\n while p:\n if p % 2:\n res = res * x % MOD\n x = x * x % MOD\n p //= 2\n return res", "pow_mod", "res = 1", "res", "1", "while p:\n if p % 2:\n res = res * x % MOD\n x = x * x % MOD\n p //= 2\n ", "p", "if p % 2:\n res = res * x % MOD\n ", "p % 2", "p", "2", "res = res * x % MOD", "res", "res * x % MOD", "res * x", "res", "x", "MOD", "x = x * x % MOD", "x", "x * x % MOD", "x * x", "x", "x", "MOD", "p //= 2", "p", "2", "return res", "res", "x", "x", "p", "p", "F = [1]", "F", "[1]", "1", "invF = []", "invF", "[]", "def comb_mod(n, r):\n return F[n] * invF[r] * invF[n - r] % MOD", "comb_mod", "return F[n] * invF[r] * invF[n - r] % MOD", "F[n] * invF[r] * invF[n - r] % MOD", "F[n] * invF[r] * invF[n - r]", "F[n] * invF[r]", "F[n]", "F", "n", "invF[r]", "invF", "r", "invF[n - r]", "invF", "n - r", "n", "r", "MOD", "n", "n", "r", "r", "for i in range(1, H + W - 1):\n F.append(F[-1] * i % MOD)", "i", "range(1, H + W - 1)", "range", "1", "H + W - 1", "H + W", "H", "W", "1", "F.append(F[-1] * i % MOD)", "F.append", "F", "append", "F[-1] * i % MOD", "F[-1] * i", "F[-1]", "F", "-1", "i", "MOD", "invF.append(pow_mod(F[-1], (MOD - 2)))", "invF.append", "invF", "append", "pow_mod(F[-1], (MOD - 2))", "pow_mod", "F[-1]", "F", "-1", "MOD - 2", "MOD", "2", "for f in range(len(F) - 1):\n invF.append(invF[-1] * (len(F) - len(invF)) % MOD)", "f", "range(len(F) - 1)", "range", "len(F) - 1", "len(F)", "len", "F", "1", "invF.append(invF[-1] * (len(F) - len(invF)) % MOD)", "invF.append", "invF", "append", "invF[-1] * (len(F) - len(invF)) % MOD", "invF[-1] * (len(F) - len(invF))", "invF[-1]", "invF", "-1", "len(F) - len(invF)", "len(F)", "len", "F", "len(invF)", "len", "invF", "MOD", "invF = invF[::-1]", "invF", "invF[::-1]", "invF", "::-1", "-1", "res = 0", "res", "0", "for i in range(B + 1, W + 1):\n p = H - A - 1\n q = i - 1\n\n res = (\n res\n + comb_mod(H - A - 1 + i - 1, H - A - 1)\n * comb_mod(A - 1 + W - i, W - i)\n ) % MOD", "i", "range(B + 1, W + 1)", "range", "B + 1", "B", "1", "W + 1", "W", "1", "p = H - A - 1", "p", "H - A - 1", "H - A", "H", "A", "1", "q = i - 1", "q", "i - 1", "i", "1", "res = (\n res\n + comb_mod(H - A - 1 + i - 1, H - A - 1)\n * comb_mod(A - 1 + W - i, W - i)\n ) % MOD", "res", "(\n res\n + comb_mod(H - A - 1 + i - 1, H - A - 1)\n * comb_mod(A - 1 + W - i, W - i)\n ) % MOD", "res\n + comb_mod(H - A - 1 + i - 1, H - A - 1)\n * comb_mod(A - 1 + W - i, W - i)", "res", "comb_mod(H - A - 1 + i - 1, H - A - 1)\n * comb_mod(A - 1 + W - i, W - i)", "comb_mod(H - A - 1 + i - 1, H - A - 1)", "comb_mod", "H - A - 1 + i - 1", "H - A - 1 + i", "H - A - 1", "H - A", "H", "A", "1", "i", "1", "H - A - 1", "H - A", "H", "A", "1", "comb_mod(A - 1 + W - i, W - i)", "comb_mod", "A - 1 + W - i", "A - 1 + W", "A - 1", "A", "1", "W", "i", "W - i", "W", "i", "MOD", "print(res)", "print", "res", "def pow_mod(x, p):\n res = 1\n while p:\n if p % 2:\n res = res * x % MOD\n x = x * x % MOD\n p //= 2\n return res", "def pow_mod(x, p):\n res = 1\n while p:\n if p % 2:\n res = res * x % MOD\n x = x * x % MOD\n p //= 2\n return res", "pow_mod", "W, A, B = map(int, input().split())", "map(int, input().split())", "W", "invF = invF[::-1]", "invF[::-1]", "invF", "q = i - 1", "i - 1", "q", "invF = []", "[]", "invF", "def comb_mod(n, r):\n return F[n] * invF[r] * invF[n - r] % MOD", "def comb_mod(n, r):\n return F[n] * invF[r] * invF[n - r] % MOD", "comb_mod", "B = map(int, input().split())", "map(int, input().split())", "B", "MOD = 10 ** 9 + 7", "10 ** 9 + 7", "MOD", "res = (\n res\n + comb_mod(H - A - 1 + i - 1, H - A - 1)\n * comb_mod(A - 1 + W - i, W - i)\n ) % MOD", "(\n res\n + comb_mod(H - A - 1 + i - 1, H - A - 1)\n * comb_mod(A - 1 + W - i, W - i)\n ) % MOD", "res", "res = 0", "0", "res", "p = H - A - 1", "H - A - 1", "p", "A, B = map(int, input().split())", "map(int, input().split())", "A", "H, W, A, B = map(int, input().split())", "map(int, input().split())", "H", "F = [1]", "[1]", "F" ]
H, W, A, B = map(int, input().split()) MOD = 10 ** 9 + 7 def pow_mod(x, p): res = 1 while p: if p % 2: res = res * x % MOD x = x * x % MOD p //= 2 return res F = [1] invF = [] def comb_mod(n, r): return F[n] * invF[r] * invF[n - r] % MOD for i in range(1, H + W - 1): F.append(F[-1] * i % MOD) invF.append(pow_mod(F[-1], (MOD - 2))) for f in range(len(F) - 1): invF.append(invF[-1] * (len(F) - len(invF)) % MOD) invF = invF[::-1] res = 0 for i in range(B + 1, W + 1): p = H - A - 1 q = i - 1 res = ( res + comb_mod(H - A - 1 + i - 1, H - A - 1) * comb_mod(A - 1 + W - i, W - i) ) % MOD print(res)
[ 7, 12, 13, 12, 13, 14, 2, 2, 13, 17, 2, 13, 13, 29, 17, 0, 13, 4, 13, 13, 2, 13, 13, 29, 2, 2, 2, 18, 13, 13, 18, 13, 13, 18, 13, 2, 13, 13, 13, 23, 13, 23, 13, 23, 13, 0, 13, 2, 2, 17, 17, 17, 0, 13, 2, 17, 17, 0, 13, 39, 17, 17, 0, 13, 39, 17, 17, 0, 13, 39, 17, 17, 28, 13, 4, 13, 17, 2, 13, 17, 4, 18, 13, 13, 2, 2, 18, 13, 17, 13, 13, 4, 18, 13, 13, 2, 2, 40, 18, 13, 2, 13, 13, 2, 13, 13, 13, 4, 18, 13, 13, 2, 2, 18, 13, 17, 18, 13, 17, 13, 0, 13, 4, 13, 13, 4, 18, 4, 13, 13, 13, 13, 13, 0, 13, 4, 13, 2, 2, 13, 13, 17, 2, 4, 13, 13, 13, 17, 13, 0, 13, 17, 28, 13, 4, 13, 13, 0, 13, 4, 13, 2, 2, 2, 13, 13, 17, 13, 13, 13, 0, 13, 4, 13, 2, 2, 2, 2, 13, 17, 13, 13, 17, 2, 13, 17, 13, 0, 13, 13, 0, 13, 13, 4, 13, 2, 2, 13, 13, 13, 4, 13, 10, 12, 13 ]
[ [ 42, 8 ], [ 42, 11 ], [ 40, 12 ], [ 17, 16 ], [ 42, 19 ], [ 40, 21 ], [ 42, 22 ], [ 40, 29 ], [ 16, 32 ], [ 42, 32 ], [ 40, 36 ], [ 16, 37 ], [ 42, 37 ], [ 44, 38 ], [ 40, 40 ], [ 42, 42 ], [ 44, 44 ], [ 47, 46 ], [ 54, 53 ], [ 59, 58 ], [ 64, 63 ], [ 69, 68 ], [ 74, 73 ], [ 53, 78 ], [ 58, 82 ], [ 58, 87 ], [ 73, 89 ], [ 46, 90 ], [ 68, 93 ], [ 68, 99 ], [ 46, 101 ], [ 73, 102 ], [ 46, 104 ], [ 73, 105 ], [ 46, 106 ], [ 63, 109 ], [ 63, 114 ], [ 68, 117 ], [ 46, 119 ], [ 122, 121 ], [ 122, 130 ], [ 122, 131 ], [ 122, 132 ], [ 135, 134 ], [ 4, 136 ], [ 121, 139 ], [ 130, 140 ], [ 121, 145 ], [ 130, 146 ], [ 46, 148 ], [ 151, 150 ], [ 154, 153 ], [ 132, 156 ], [ 159, 158 ], [ 4, 160 ], [ 121, 164 ], [ 131, 165 ], [ 153, 167 ], [ 153, 168 ], [ 46, 169 ], [ 172, 171 ], [ 4, 173 ], [ 130, 178 ], [ 153, 180 ], [ 131, 181 ], [ 131, 184 ], [ 46, 186 ], [ 189, 188 ], [ 171, 189 ], [ 158, 189 ], [ 192, 191 ], [ 46, 192 ], [ 134, 197 ], [ 191, 198 ], [ 188, 198 ], [ 150, 198 ], [ 46, 199 ], [ 204, 201 ] ]
[ "def main():\n def cmb(n, r, mod):\n if (r < 0 or r > n):\n return 0\n r = min(r, n-r)\n return g1[n] * g2[r] * g2[n-r] % mod\n\n mod = 10**9+7 # 出力の制限\n N = 10**6\n g1 = [1, 1] # 元テーブル\n g2 = [1, 1] # 逆元テーブル\n inverse = [0, 1] # 逆元テーブル計算用テーブル\n\n for i in range(2, N + 1):\n g1.append((g1[-1] * i) % mod)\n inverse.append((-inverse[mod % i] * (mod//i)) % mod)\n g2.append((g2[-1] * inverse[-1]) % mod)\n\n H, W, A, B = map(int, input().split())\n\n ans = cmb((H+W-2), min(H, W)-1, mod)\n\n tmp = 0\n for i in range(B):\n t = cmb(H-A-1+i, i, mod)\n t *= cmb(W-1-i + A - 1, A-1, mod)\n tmp += t\n tmp %= mod\n print((ans - tmp) % mod)\n\n\nmain()", "def main():\n def cmb(n, r, mod):\n if (r < 0 or r > n):\n return 0\n r = min(r, n-r)\n return g1[n] * g2[r] * g2[n-r] % mod\n\n mod = 10**9+7 # 出力の制限\n N = 10**6\n g1 = [1, 1] # 元テーブル\n g2 = [1, 1] # 逆元テーブル\n inverse = [0, 1] # 逆元テーブル計算用テーブル\n\n for i in range(2, N + 1):\n g1.append((g1[-1] * i) % mod)\n inverse.append((-inverse[mod % i] * (mod//i)) % mod)\n g2.append((g2[-1] * inverse[-1]) % mod)\n\n H, W, A, B = map(int, input().split())\n\n ans = cmb((H+W-2), min(H, W)-1, mod)\n\n tmp = 0\n for i in range(B):\n t = cmb(H-A-1+i, i, mod)\n t *= cmb(W-1-i + A - 1, A-1, mod)\n tmp += t\n tmp %= mod\n print((ans - tmp) % mod)", "main", "def cmb(n, r, mod):\n if (r < 0 or r > n):\n return 0\n r = min(r, n-r)\n return g1[n] * g2[r] * g2[n-r] % mod\n\n ", "cmb", "if (r < 0 or r > n):\n return 0\n ", "r < 0 or r > n", "r < 0", "r", "0", "r > n", "r", "n", "return 0", "0", "r = min(r, n-r)", "r", "min(r, n-r)", "min", "r", "n-r", "n", "r", "return g1[n] * g2[r] * g2[n-r] % mod", "g1[n] * g2[r] * g2[n-r] % mod", "g1[n] * g2[r] * g2[n-r]", "g1[n] * g2[r]", "g1[n]", "g1", "n", "g2[r]", "g2", "r", "g2[n-r]", "g2", "n-r", "n", "r", "mod", "n", "n", "r", "r", "mod", "mod", "mod = 10**9+7", "mod", "10**9+7", "10**9", "10", "9", "7", "N = 10**6", "N", "10**6", "10", "6", "g1 = [1, 1]", "g1", "[1, 1]", "1", "1", "g2 = [1, 1]", "g2", "[1, 1]", "1", "1", "inverse = [0, 1]", "inverse", "[0, 1]", "0", "1", "for i in range(2, N + 1):\n g1.append((g1[-1] * i) % mod)\n inverse.append((-inverse[mod % i] * (mod//i)) % mod)\n g2.append((g2[-1] * inverse[-1]) % mod)\n\n ", "i", "range(2, N + 1)", "range", "2", "N + 1", "N", "1", "g1.append((g1[-1] * i) % mod)", "g1.append", "g1", "append", "(g1[-1] * i) % mod", "g1[-1] * i", "g1[-1]", "g1", "-1", "i", "mod", "inverse.append((-inverse[mod % i] * (mod//i)) % mod)", "inverse.append", "inverse", "append", "(-inverse[mod % i] * (mod//i)) % mod", "-inverse[mod % i] * (mod//i)", "-inverse[mod % i]", "inverse[mod % i]", "inverse", "mod % i", "mod", "i", "mod//i", "mod", "i", "mod", "g2.append((g2[-1] * inverse[-1]) % mod)", "g2.append", "g2", "append", "(g2[-1] * inverse[-1]) % mod", "g2[-1] * inverse[-1]", "g2[-1]", "g2", "-1", "inverse[-1]", "inverse", "-1", "mod", "H, W, A, B = map(int, input().split())", "H", "map(int, input().split())", "map", "int", "input().split()", "().split", "()", "input", "split", "W", "A", "B", "ans = cmb((H+W-2), min(H, W)-1, mod)", "ans", "cmb((H+W-2), min(H, W)-1, mod)", "cmb", "H+W-2", "H+W", "H", "W", "2", "min(H, W)-1", "min(H, W)", "min", "H", "W", "1", "mod", "tmp = 0", "tmp", "0", "for i in range(B):\n t = cmb(H-A-1+i, i, mod)\n t *= cmb(W-1-i + A - 1, A-1, mod)\n tmp += t\n tmp %= mod\n ", "i", "range(B)", "range", "B", "t = cmb(H-A-1+i, i, mod)", "t", "cmb(H-A-1+i, i, mod)", "cmb", "H-A-1+i", "H-A-1", "H-A", "H", "A", "1", "i", "i", "mod", "t *= cmb(W-1-i + A - 1, A-1, mod)", "t", "cmb(W-1-i + A - 1, A-1, mod)", "cmb", "W-1-i + A - 1", "W-1-i + A", "W-1-i", "W-1", "W", "1", "i", "A", "1", "A-1", "A", "1", "mod", "tmp += t", "tmp", "t", "tmp %= mod", "tmp", "mod", "print((ans - tmp) % mod)", "print", "(ans - tmp) % mod", "ans - tmp", "ans", "tmp", "mod", "main()", "main", "def main():\n def cmb(n, r, mod):\n if (r < 0 or r > n):\n return 0\n r = min(r, n-r)\n return g1[n] * g2[r] * g2[n-r] % mod\n\n mod = 10**9+7 # 出力の制限\n N = 10**6\n g1 = [1, 1] # 元テーブル\n g2 = [1, 1] # 逆元テーブル\n inverse = [0, 1] # 逆元テーブル計算用テーブル\n\n for i in range(2, N + 1):\n g1.append((g1[-1] * i) % mod)\n inverse.append((-inverse[mod % i] * (mod//i)) % mod)\n g2.append((g2[-1] * inverse[-1]) % mod)\n\n H, W, A, B = map(int, input().split())\n\n ans = cmb((H+W-2), min(H, W)-1, mod)\n\n tmp = 0\n for i in range(B):\n t = cmb(H-A-1+i, i, mod)\n t *= cmb(W-1-i + A - 1, A-1, mod)\n tmp += t\n tmp %= mod\n print((ans - tmp) % mod)", "def main():\n def cmb(n, r, mod):\n if (r < 0 or r > n):\n return 0\n r = min(r, n-r)\n return g1[n] * g2[r] * g2[n-r] % mod\n\n mod = 10**9+7 # 出力の制限\n N = 10**6\n g1 = [1, 1] # 元テーブル\n g2 = [1, 1] # 逆元テーブル\n inverse = [0, 1] # 逆元テーブル計算用テーブル\n\n for i in range(2, N + 1):\n g1.append((g1[-1] * i) % mod)\n inverse.append((-inverse[mod % i] * (mod//i)) % mod)\n g2.append((g2[-1] * inverse[-1]) % mod)\n\n H, W, A, B = map(int, input().split())\n\n ans = cmb((H+W-2), min(H, W)-1, mod)\n\n tmp = 0\n for i in range(B):\n t = cmb(H-A-1+i, i, mod)\n t *= cmb(W-1-i + A - 1, A-1, mod)\n tmp += t\n tmp %= mod\n print((ans - tmp) % mod)", "main" ]
def main(): def cmb(n, r, mod): if (r < 0 or r > n): return 0 r = min(r, n-r) return g1[n] * g2[r] * g2[n-r] % mod mod = 10**9+7 # 出力の制限 N = 10**6 g1 = [1, 1] # 元テーブル g2 = [1, 1] # 逆元テーブル inverse = [0, 1] # 逆元テーブル計算用テーブル for i in range(2, N + 1): g1.append((g1[-1] * i) % mod) inverse.append((-inverse[mod % i] * (mod//i)) % mod) g2.append((g2[-1] * inverse[-1]) % mod) H, W, A, B = map(int, input().split()) ans = cmb((H+W-2), min(H, W)-1, mod) tmp = 0 for i in range(B): t = cmb(H-A-1+i, i, mod) t *= cmb(W-1-i + A - 1, A-1, mod) tmp += t tmp %= mod print((ans - tmp) % mod) main()